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These goal of these notes is to explain what a spectrum is. There are many different definitions,

and it is not obvious to a nonspecialist how they are equivalent. Therefore we will begin with a

description of the properties that we want spectra to have, before actually defining them. We assume

familiarity with homology, cohomology, and homotopy groups, along with categories, functors, and

natural transformations.

To start, spectra should form a category, with functors coming in and going out to other

categories that we care about. We can capture this in a commuting diagram of functors:
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or in shorthand,

Top
X 7→X+ //

��
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Σ∞ //

��
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��
HoTop

X 7→X+ // HoTop∗
Σ∞ //GF ED@A BC?> =<89 :;HoSpectra

π∗ // Graded Ab

There are many different definitions of the category labelled Spectra, most of which are not

equivalent. Each of them in turn gives a definition of the stable homotopy category HoSpectra,

but here they are almost always equivalent. So we can prove many things using only abstract

properties of the stable homotopy category HoSpectra, avoiding the “implementation details”

found in Spectra.
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1 Properties We Want the Stable Homotopy Category to Have

1.1 Topological Spaces

We care about the category of compactly generated weak Hausdorff (CGWH) topological spaces,

which we’ll denote Top. The homotopy category of spaces HoTop has the same objects as Top,

but the morphisms from X to Y are homotopy classes of maps between CW approximations [X̃, Ỹ ].

By Whitehead’s theorem, every weak homotopy equivalence in Top becomes an isomorphism in

HoTop, and conversely, every map that becomes invertible in HoTop is a weak homotopy equiv-

alence.
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We could also start with the category of based spaces, denoted Top∗. The homotopy category

of based spaces HoTop∗ has the same objects (the based CGWH spaces), and the morphisms are

based homotopy classes of maps between based CW approximations [X̃, Ỹ ]. To pass from unbased

spaces to based spaces, we add a disjoint basepoint.

Remark. If you know about model categories, we have described a category that is isomorphic to

the usual one given by the Quillen model structure on Top and Top∗. We construct the cofibrant

replacement QX by factoring the weak equivalence X̃ −→ X into a trivial cofibration X̃ −→ QX

and a fibration QX −→ X. The composition of cofibrations ∅ −→ X̃ −→ QX is a cofibration,

and QX −→ X is a weak equivalence by 2 out of 3. The usual construction of the factorization

is natural and makes X̃ −→ QX a strong homotopy equivalence, so it gives a natural bijection

[X̃, Ỹ ] ←→ [QX,QY ]. Therefore our construction of HoTop and HoTop∗ is isomorphic to the

usual one.

1.2 Suspension and Abelian Groups

We claim that there is a category called HoSpectra, and a functor Σ∞ : HoTop∗ −→ HoSpectra

with the following properties:

• There is a suspension functor Σ : HoSpectra −→ HoSpectra that agrees with the usual

(reduced) suspension of based spaces:

Top∗
Σ //

��

Top∗

��
HoTop∗

Σ //

Σ∞

��

HoTop∗

Σ∞

��
HoSpectra∗

Σ // HoSpectra∗

Moreover, Σ is an equivalence of categories from HoSpectra to itself. So every object of

HoSpectra is isomorphic to the suspension of some other object. This certainly wasn’t true

for Top∗ or HoTop∗.

• There is a loopspace functor Ω : HoSpectra −→ HoSpectra that agrees with the usual
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based loopspace:

Top∗

Σ
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��

Top∗
Ω

mm

��
HoTop∗

Σ
--

Σ∞

��

HoTop∗
Ω

mm

Σ∞

��
HoSpectra∗

Σ ..
HoSpectra∗

Ω

nn

In HoSpectra, the functors Σ and Ω are inverse equivalences, so Σ◦Ω and Ω◦Σ are naturally

isomorphic to the identity. Every object is isomorphic to the loopspace of some other object.

Again, this isn’t true in Top∗ or HoTop∗.

• Given objects X and Y in HoSpectra, the set of morphisms [X,Y ] can be turned into

an abelian group. Intuitively, we think of X as a suspension ΣX ′, and we use the usual

“pinching” and “flipping” constructions on [Sn, Z] = πn(Z) to add or negate maps ΣX ′ −→
Y . (There is also an analogue of the Eckmann-Hilton argument to show that addition in

[Σ2X ′′, Y ] is commutative, and a natural bijection [ΣX ′, Y ] ∼= [X ′,ΩY ].) Composition of

morphisms [X,Y ] × [Y,Z] −→ [X,Z] is bilinear, so it induces a homomorphism of abelian

groups [X,Y ]⊗ [Y,Z] −→ [X,Z].

• The category HoSpectra has coproducts (wedge sums) X ∨ Y and products X × Y . There

is a zero object ∗, coming from the one-point based space ∗ in Top∗. This means that for

every object X, there are unique maps ∗ −→ X −→ ∗. This gives natural maps
X ∨ ∗ −→ X

X −→ X × ∗
X ∨ Y −→ X × Y

The first two rows are always isomorphisms, using the data we gave above. In HoSpectra,

the third map is also an isomorphism. This was not true for based spaces!

• The last two bullet points combine to tell us that HoSpectra is an additive category.

• We can extend the abelian group [X,Y ] into a graded abelian group [X,Y ]∗, containing

[X,Y ] as the 0th level. We simply define [X,Y ]n = [ΣnX,Y ]. Notice that n can be any

integer, since suspension Σ has an inverse equivalence Σ−1. Alternatively, we could define

[X,Y ]−n = [X,ΣnY ].

All of these properties are completely analogous to the basic properties of graded abelian groups.

Suspension is the operation that shifts the grading by one. Looping shifts the grading by one in the

opposite direction. If G and H are two graded abelian groups, the set of graded homomorphisms
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{Gi −→ Hi}i between them forms an abelian group. This can be extended to a graded abelian

group of “shifted homomorphisms” {Gi −→ Hi+n}i. The coproduct G⊕H and the product G×H
are naturally isomorphic. Many of these properties also carry over to the simpler setting of ungraded

abelian groups.

Before we continue the analogy with abelian groups, let’s list a few more topological properties

of HoSpectra:

• Define the sphere spectrum to be S = Σ∞S0. Given an object X in the stable homotopy

category, we define its stable homotopy groups to be

πn(X) = [S, X]n = [ΣnS, X]

Again, notice that n can be a negative integer and this still makes sense. If K is a based

space, then we require that πn(Σ∞K) be naturally isomorphic to the usual stable homotopy

groups

πSn (K) := colimk→∞πk+n(ΣkK)

= colimk→∞πn(ΩkΣkK)

= πn(Ω∞Σ∞K)

Notice that πn(Σ∞K) is zero for negative n.

• The functor Σ∞ has a right adjoint Ω∞ : HoSpectra −→ HoTop∗. This means that for a

based space K and a spectrum X,

[Σ∞K,X] ∼= [K,Ω∞X]

In particular, for nonnegative n this gives πn(X) ∼= πn(Ω∞X). Of course, Ω∞X is a space,

so it has no negative homotopy groups.

• The objects X in HoSpectra whose homotopy groups πn(X) vanish for negative n are called

connective spectra. By the above, Σ∞ takes every based space to a connective spectrum.

• Whitehead’s Theorem: If a map f : X −→ Y in HoSpectra induces an isomorphism

π∗(X)
∼=−→ π∗(Y ), then f is an isomorphism.

1.3 Tensor Products and Rings

Carrying the analogy with abelian groups even further, we can define a tensor product on objects of

HoSpectra. Before describing its properties, let’s recall the basic properties of the tensor product

⊗ = ⊗Z of abelian groups:

⊗ : Ab×Ab −→ Ab
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Here Ab×Ab is a “product category,” whose objects are pairs of abelian groups and morphisms

are pairs of morphisms. So we can think of the tensor product as an operation on abelian groups

that is a “functor in each slot.”

Let’s follow the convention that Ab(A,B) is the set of linear maps from A to B, and Hom(A,B)

is the abelian group of linear maps. So if we forget that Hom(A,B) is a group, we get the set

Ab(A,B). The defining property of ⊗ is that linear maps A ⊗ B −→ C correspond naturally to

bilinear maps A× B −→ C. A bilinear map is the same thing as a linear map A −→ Hom(B,C).

Therefore we get a bijection of sets

Ab(A⊗B,C)←→ Ab(A,Hom(B,C))

The tensor product is unital, associative, and commutative. This means there is a unit object

I and natural isomorphisms

lA : I ⊗A
∼=−→ A

rA : A⊗ I
∼=−→ A

aA,B,C : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C)

sA,B : A⊗B
∼=−→ B ⊗A

The unit object is the group of integers Z. We can start with a tensor product of a bunch of groups

and start applying these isomorphisms willy-nilly to regroup the parentheses and rearrange terms:

(A⊗ (B ⊗ C))⊗D
∼=−→ (A⊗ (C ⊗B))⊗D

∼=−→ ((A⊗ C)⊗B)⊗D
∼=−→ . . .

If we ever come back to the expression we started with, then the composition of the maps we applied

becomes the identity map. (This means that the isomorphisms l, r, a, s are coherent. Heuristically,

this means we can drop the parentheses around the tensor products without getting into trouble.)

If we carefully rewrite the above properties of (Ab,Z,⊗,Hom, l, r, a, s) using only notation from

category theory, we get the concept of a closed symmetric monoidal category. If we drop everything

involving Hom, then (Ab,Z,⊗, l, r, a, s) gives a symmetric monoidal category.

We’ve been building up to a statement about HoSpectra, so here it is: HoSpectra is a closed

symmetric monoidal category. Its unit object is the sphere spectrum S. Its tensor product is called

the smash product ∧, since it is based on the smash product of based spaces

X ∧ Y = (X × Y )/(X ∨ Y )

(In some papers it’s called the left derived smash product ∧L, to distinguish it from the smash

product ∧ in Spectra.) Its internal hom is denoted F (X,Y ). So if X, Y , and Z are spectra, there
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are natural coherent isomorphisms in HoSpectra

S ∧X ∼= X

(X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z)

X ∧ Y ∼= Y ∧X
[X ∧ Y, Z] ∼= [X,F (Y,Z)]

F (S, X) ∼= X

F (X ∧ Y, Z) ∼= F (X,F (Y,Z))

(1)

Exercises.

• Show that the last two isomorphisms follow from the first four. (Use the Yoneda Lemma.)

• Define natural maps

X ∧ F (X,Y ) −→ Y

X −→ F (Y,X ∧ Y )

• Let’s define suspension and looping more explicitly:

ΣX = (Σ∞S1) ∧X
ΩX = F (Σ∞S1, X)

Using the above isomorphisms, together with the fact that Σ∞ is a functor, prove that sus-

pension and looping are adjoint:

[ΣX,Y ] ∼= [X,ΩY ]

and construct the operation on either of these two sets that turns it into an abelian group.

(Can we prove that Σ and Ω are inverses yet? Why not?)

• Prove that there are natural isomorphisms

(ΣX) ∧ Y ∼= Σ(X ∧ Y ) ∼= X ∧ (ΣY )

ΩF (X,Y ) ∼= F (ΣX,Y ) ∼= F (X,ΩY )

There are many concepts in algebra that have an analogue in the world of spectra. Here’s an

important example. Start with a symmetric monoidal category C and an object M of C. If we can

give a “multiplication” morphism µ : M ⊗M −→M that is associative

M ⊗M ⊗M
id⊗µ //

µ⊗id

��

M ⊗M
µ

��
M ⊗M

µ // M
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and a “unit” morphism i : I −→M of this multiplication

I ⊗M i⊗id //

lM &&LLLLLLLLLL M ⊗M
µ

��

M ⊗ Iid⊗ioo

rMyyrrrrrrrrrr

M

then we say that (M,µ, i) is a monoid in C. Fun fact: a monoid in Ab is the same thing as a ring!

By analogy, we call a monoid in HoSpectra a ring spectrum. If you understand this example, you

should be able to define a commutative monoid in C. If you define it correctly, a commutative

monoid in Ab will be a commutative ring.

Here’s a list of some symmetric monoidal categories, and common names for monoids in those

categories:

Category Tensor Product Unit Monoid Commutative Monoid

Set × {∗} Monoid Commutative Monoid

Ab ⊗ Z Ring Commutative Ring

Graded Ab(1) ⊗ Z Graded Ring Commutative Graded Ring

Graded Ab(2) ⊗ Z Graded Ring Skew-Commutative Ring*

ModR ⊗R R R-algebra Commutative R-algebra

Top × {∗} Topological Commutative

Monoid Topological Monoid

Top∗ ∧ S0 Based Topological Based Commutative

Monoid Topological Monoid

Spectra ∧ S (Strict) Ring (Strict) Commutative

Spectrum Ring Spectrum

HoSpectra ∧(L) S Ring Spectrum Commutative Ring Spectrum

(up to homotopy) (up to homotopy)

* There are two common conventions for the symmetry isomorphism for graded abelian groups:

a⊗ b 7→ b⊗ a
a⊗ b 7→ (−1)|a|·|b|(b⊗ a)

Under the first convention, a commutative monoid is a commutative ring that happens to be graded.

Under the second convention, a commutative monoid is a skew-commutative ring. This means that

even-degree elements commute with everything, and odd-degree elements introduce a −1 when

switched past each other. Sometimes skew-commutative rings are called graded-commutative or

8



even just commutative, but don’t confuse them with commutative graded rings like Z[x]. Skew-

commutative rings show up all over algebraic topology: the cohomology of a space H∗(X) and the

stable homotopy groups of spheres πS∗ (S0) are two examples. We’re doing algebraic topology here,

so we’ll follow the second convention and work with skew-commutative rings.

Now we have a language that relates spectra to abelian groups. But we really want much more.

Consider the diagram we gave at the beginning, with Spectra deleted because it doesn’t always

have a good smash product:

Top
X 7→X+ //

��

Top∗
Σ∞

''OOOOOOOOOOO

��

Ab
G 7→HG

vvmmmmmmmmmmmmmm

0th degree

��
HoTop // HoTop∗

Σ∞ // HoSpectra
π∗ // Graded Ab

We claim that every functor in this diagram agrees with tensor products. To be more specific, if

F : C −→ D is any functor in the diagram, X and Y are objects of C, and IC and ID are the units

of C and D, respectively, then there are natural transformations

F (X)⊗ F (Y ) −→ F (X ⊗ Y )

F (IC) −→ ID

that commute with the unit, associativity, and symmetry isomorphisms of C and D.

Exercise. Prove that a functor F with these properties takes monoids to monoids.

A functor F satisfying these properties is called lax monoidal. If the above maps are isomor-

phisms, then F is called strong monoidal. In the above diagram, every functor is at least lax

monoidal. So if we start with a (commutative) monoid anywhere on the diagram, and follow any

route, we end up at another (commutative) monoid. For example, if X is a ring spectrum, then

π∗(X) is a graded ring.

Exercises.

• Prove that the forgetful functor Ab −→ Set is lax monoidal.

• Prove that its left adjoint, the “free abelian group on a set” construction, is strong monoidal.

Here’s another example. Consider the one-point space {∗} in Top. This clearly forms a com-

mutative monoid. Its image in HoSpectra is the sphere spectrum S. Therefore S is a commutative

ring spectrum! Applying π∗, we deduce that the stable homotopy groups of spheres πS∗ (S0) ∼= π∗(S)

form a skew-commutative ring.

To draw more conclusions about multiplication, we need to take a look at homology and coho-

mology.
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1.4 Exact Sequences

One of the main goals in algebraic topology is to actually calculate the invariants we define for

interesting objects. And one of the most basic tools for calculation is the exact sequence. It

turns out that HoSpectra has a notion of “short exact sequences” of objects, which generalize the

classical cofiber sequences

A −→ X −→ X/A −→ ΣA

and the classical fiber sequences

ΩB −→ F −→ E −→ B

To be more precise, we can form triples of objects (X,Y, Z), and triples of maps (f, g, h) of the

form

X
f−→ Y

g−→ Z
h−→ ΣX

We call (X,Y, Z, f, g, h) a triangle. Now here is our claim. There is a collection of triangles in

HoSpectra, called the distinguished triangles, that satisfy a few useful properties:

• Every cofiber sequence or fiber sequence in Top∗ becomes a distinguished triangle in HoSpectra.

• For each distinguished triangle

X
f−→ Y

g−→ Z
h−→ ΣX

and each object W , there are long exact sequences of abelian groups

. . . −→ [W,X]n −→ [W,Y ]n −→ [W,Z]n −→ [W,X]n−1 −→ . . .

. . .←− [X,W ]n ←− [Y,W ]n ←− [Z,W ]n ←− [X,W ]n−1 ←− . . .

Taking W = S, we see that the stable homotopy groups form a long exact sequence

. . . −→ πn(X) −→ πn(Y ) −→ πn(Z) −→ πn−1(X) −→ . . .

• If (X,Y, Z, f, g, h) is distinguished and W is another object, then

W ∧X f−→W ∧ Y g−→W ∧ Z h−→ Σ(W ∧X)

F (W,X)
f−→ F (W,Y )

g−→ F (W,Z)
h−→ ΣF (W,X)

Σ−1F (X,W )
−h−→ F (Z,W )

g−→ F (Y,W )
f−→ F (X,W )

are distinguished.

There are actually a lot more properties than the ones we mentioned. If we were to list them all,

we would be able to say that HoSpectra forms a triangulated category [7]. Instead, we’ll just take

the above results and use them to study homology and cohomology.
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1.5 Homology and Cohomology

The objects of HoSpectra define (reduced) homology and cohomology theories on Top∗. To see

this, take a based space X and a spectrum E in HoSpectra. Then the abelian groups

Ẽn(X) = [S, (Σ∞X) ∧ E]n ∼= πn((Σ∞X) ∧ E)

Ẽn(X) = [Σ∞X,E]−n ∼= π−n(F (Σ∞X,E))

define an (extraordinary, reduced) homology theory and a cohomology theory.

Exercise. Use the statements from the last section to prove that these satisfy the axioms of a

reduced (co)homology theory. Equivalently, show that

En(X) = Ẽn(X+)

En(X) = Ẽn(X+)

form an unreduced cohomology theory.

Now we can easily generalize from the homology of spaces to the homology of spectra. If Y and

E are objects in HoSpectra, define the abelian groups

Ẽn(Y ) = [S, Y ∧ E]n ∼= πn(Y ∧ E)

Ẽn(X) = [Y,E]−n ∼= π−n(F (Y,E))

Exercises.

• Construct the above two isomorphisms, using only the properties we have already given for

HoSpectra.

• Show that E∗(pt) ∼= E∗(pt).

• If E is a ring spectrum, and X is a space, show that E∗(X) is a graded ring. Define an

unreduced cohomology theory E∗ for spectra, and use it show that E∗(Y ) is a graded ring.

• If E is a commutative ring spectrum, show that E∗(Y ) is a graded skew-commutative algebra

over the commutative ring Ẽ∗(S) ∼= E∗(pt).

• If E and Y are both ring spectra, show that E∗(Y ) is a graded ring. What happens when E

is commutative?

So every object of HoSpectra gives an extraordinary cohomology theory, on CW-complexes or

even on spectra. It turns out that the converse is true: every cohomology theory on CW-complexes

extends to a cohomology theory on HoSpectra, and is represented by an object in HoSpectra.

(This is Brown Representability. By the Yoneda Lemma, the representing object is unique up to

isomorphism.)

11



Remark. There is sometimes ambiguity when we talk about (co)homology of spaces that are not

homotopy equivalent to CW-complexes. Here we always assume that you take a CW approximation

of such a space, and then you take the cellular cohomology of the result. This is represented in

HoTop∗ by the Eilenberg-Maclane space K(G,n).

Let’s consider H̃∗(X;G), the theory of ordinary (singular or cellular) cohomology with coeffi-

cients in an abelian group G. By the above statement, there is an object in HoSpectra called

HG, the Eilenberg-Maclane spectrum associated to G, and a natural isomorphism

(̃HG)
n
(X) ∼= H̃n(X;G)

The associated homology theories also agree: (why is this always true?)

(̃HG)n(X) ∼= H̃n(X;G)

It turns out that H : Ab −→ HoSpectra is (strong?) monoidal. So if R is a commutative ring,

then HR is a commutative ring spectrum. The multiplication on (̃HR)
∗
(X) is just the cup product

on H̃∗(X;R)! If X is an unbased topological monoid, then the multiplication on (̃HR)∗(X+) is the

Pontryagin product on H̃∗(X+;R) ∼= H∗(X;R).

Similarly, there is a spectrum KU for complex K-theory, KO for real K-theory, MU for complex

cobordism, and MO for real cobordism. There is a long list of interesting cohomology theories,

and we won’t try to list all of them. But we can still list infinitely many of them: any based space

X becomes a cohomology theory Σ∞X ∈ HoSpectra, whose groups are “shifted stable maps into

X.” Classically, we had to think of cohomology theories and the spaces we took cohomology of as

different objects. In HoSpectra, we can think of them on equal terms, and state theorems that

apply to both.

12



1.6 In Summary

The stable homotopy category HoSpectra has:

• A functor Σ∞ coming in from based spaces.

• Suspension that is invertible up to natural isomorphism.

• Morphism sets [X,Y ] that are abelian groups, which extend to graded abelian groups [X,Y ]∗.

Composition of morphisms is graded and bilinear.

• Stable homotopy groups π∗(X).

• A zero object ∗, and a natural isomorphism X ∨ Y
∼=−→ X × Y from coproducts to products.

• A unit object S, a smash product X ∧ Y , and an internal hom F (X,Y ), together with some

natural isomorphisms, that make it a closed symmetric monoidal category.

• Distinguished triangles that form long exact sequences of homotopy groups, and that agree

with the smash product and internal hom.

• Objects which represent cohomology theories.

1.7 Atiyah Duality of Manifolds

Here’s a geometric application of the above properties. Two based finite CW-complexes A,B are

strongly n-dual if there is an embedding ΣkA ↪→ Sk+n+1 and a homotopy equivalence ΣlB
'−→

Σl(Sk+n+1 − ΣkA). By Alexander duality, this gives isomorphisms

H̃q(A) ∼= H̃n−q(B)

H̃q(A) ∼= H̃n−q(B)

If A and B are strongly n-dual, then there is a map

Σk+l(A ∧B) −→ Σk+lSn

such that if we pull back the top-dimensional cohomology class of Sn to A ∧ B, the slant product

with this class gives isomorphisms as above

H̃q(A) ∼= H̃n−q(B)

H̃q(A) ∼= H̃n−q(B)

In this case we say that A and B are simply n-dual. These two (different) notions are often both

called Spanier-Whitehead duality.
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It turns out that Spanier-Whitehead duality is much easier to state and work with in the stable

homotopy category. We say that two objects A, B of HoSpectra are dual if there is a map

A ∧B −→ S inducing isomorphisms

A ∼= F (B, S)

B ∼= F (A, S)

Notice the parallel with vector spaces, where Hom(V, k) is defined to be the dual of V , and the

double dual of V is naturally isomorphic to V itself. Two spectra are n-dual if there is a map

A ∧B −→ ΣnS inducing isomorphisms

A ∼= F (B,ΣnS) ⇔ Σ−nA ∼= F (B, S)

B ∼= F (A,ΣnS) ⇔ Σ−nB ∼= F (A,S)

If A and B are n-dual spaces, then Σ∞A and Σ∞B are n-dual spectra. So we can import the entire

theory of Spanier-Whitehead duality to the stable homotopy category, and the statements become

cleaner.

If M is an m-manifold, then there is a smooth embedding e : M ↪→ Rn for sufficiently large n.

It follows that M+ and Rn−M are (strongly) (n−1)-dual. But then the Thom space of the normal

bundle Mν is homotopy equivalent to the suspension of Rn −M , so M+ and Mν are n-dual. This

was classically called “Atiyah duality”. The n-duality map can be described explicitly as

Mν ∧M+ −→ Sn

Rn/(Rn − νε(M)) ∧M+ −→ Rn/(Rn −Bε(0))

(x, y) 7→ x− e(y)

As an immediate corollary, we get isomorphisms in HoSpectra

Σ∞Mν ' F (M+,Σ
nS) ⇒ M−TM := Σ−nΣ∞Mν ' F (M+, S)

coming from the Alexander map above. This is Atiyah duality in the stable homotopy category.

From this, and the properties discussed in previous sections, we can take any cohomology theory

E in HoSpectra and get isomorphisms

Ẽq(M
ν) ∼= En−q(M)

Ẽq(Mν) ∼= En−q(M)

(Recall that the tilde means the theory is reduced, and Eq(M) := Ẽq(M+).)

Notice that we have not assumed any kind of orientability for M . If M is orientable in the

cohomology theory E, then applying the Thom isomorphism to these gives Poincaré duality in E:

Em−q(M) ∼= Eq(M)

We can put a product on M−TM that gives the intersection product on homology; then the Atiyah

duality isomorphism is an isomorphism of ring spectra [2]. As an easy consequence, Poincaré duality

takes the intersection product on Em−q(M) to the cup product on Eq(M).
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2 HoSpectra: How Do We Construct It?

Now that we’ve made a wish list of all the properties we desire in the category HoSpectra, we’ll

give some actual constructions of this category. These constructions all require a category called

Spectra, which could be the category of prespectra, CW-prespectra, symmetric spectra, orthogonal

spectra, coordinate-free spectra of various kinds, or S-modules. We give them here with forgetful

functors:

ON MLHI JKCW-prespectra

��
ON MLHI JKprespectra WV UTPQ RSsymmetric/orthogonal spectraoo

ON MLHI JKS-modules //_^ ]\XY Z[coordinate-free
(Ω-)spectra

//_^ ]\XY Z[coordinate-free
prespectra

��

OO

_^ ]\XY Z[coordinate-free
symmetric/orthogonal spectra

oo

��

OO

The blue-colored categories have good smash products in Spectra before descending to the stable

homotopy category HoSpectra.

2.1 The Boardman Category

A prespectrum E is a sequence of based spaces E0, E1, E2, . . . along with structure maps ΣEn −→
En+1. We call En the nth level of E. A map of prespectra f : X −→ Y is a sequence of maps

fn : Xn −→ Yn that commute with the structure maps:

ΣXn
//

Σfn
��

Xn+1

fn+1

��
ΣYn // Yn+1

A CW-prespectrum is a prespectrum E with the following properties: Each level En is a CW-

complex. One of the 0-cells is chosen to be the basepoint. Therefore, the reduced suspension of

each cell Dm is Dm+1, glued to the suspensions of the lower-dimensional cells. Therefore we can

view ΣEn as a CW-complex with one (m+ 1)-cell for every m-cell of En other than the basepoint.

Using this cell structure on ΣEn, we require that the structure map ΣEn ↪→ En+1 be the inclusion

of a subcomplex.

Now every k-cell of En becomes a (k + 1)-cell of En+1, a (k + 2)-cell in En+2, etc. We call

this a stable (k − n)-cell. It’s clear that we can have stable m-cells for all integer values of m, so

a CW-prespectrum is like a CW-complex in which we have somehow allowed negative-dimensional

cells.
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Our first definition of HoSpectra is a category Board whose objects are CW-prespectra,

and whose morphisms are “eventually-defined maps up to eventually-defined homotopy”. More

precisely, each map f : X −→ Y is a map on each stable m-cell of X that is defined on the (m−n)-

cell in En for all sufficiently large values of n. Of course, the maps on different cells have to agree

with the attaching maps of those cells. So if X has finitely many stable cells, then the map is

eventually defined on all of Xn. In general, though, a map need not ever be defined on all of Xn

for sufficiently large n.

Define a functor Σ∞ : HoTop∗ −→ Board by taking each based CW-complex X to the

prespectrum whose nth level is ΣnX, and whose structure maps are the identity. (This functor

extends to all of HoTop∗ by some categorical nonsense, because everything there is isomorphic to

a CW-complex.)

This construction is called the Boardman category. Historically, it was the first construction of

the stable homotopy category. The description given here agrees with the one given by Adams in

his classic notes [1].

Exercises.

• Describe the zero object ∗ := Σ∞({pt}) and the sphere spectrum S := Σ∞S0.

• Define the suspension functor Σ : Board −→ Board so that it agrees with suspension in

HoTop∗.

• Define the shift functor sh : Board −→ Board by (shE)n = En+1, with the obvious structure

maps. Show that sh is a functor, and has an inverse up to natural isomorphism.

• Give a natural isomorphism between Σ and sh.

• Describe the abelian group structure of [X,Y ] and [X,Y ]n. In particular, this gives us the

stable homotopy groups πn(X) := [S, X]n.

• Prove that Board has all of the properties that we claimed for HoSpectra in section 1.2.

Note that Σ is easy to work with, but Ω is quite tricky. This motivates the category that we

define in the next section.

• Let Board′ be defined as above, but we require that the attaching map of every cell in En
to be a based map Sm−1 −→ X, instead of an unbased map. (This is the definition given in

a book by Switzer.) Give an equivalence of categories between Board and Board′.

2.2 All Prespectra

Let Prespectra denote the category of all prespectra (not just the CW ones) with maps that are

defined on every level (not just eventually defined). So an object in Prespectra is a sequence of

spaces {En}∞n=1, together with maps ΣEn −→ En+1. Notice that these maps always have adjoints
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En −→ ΩEn+1. We say that E is a (weak) Ω-spectrum if these adjoints are all weak homotopy

equivalences. We still define the stable homotopy groups of X to be πk(X) = colimkπn+k(Xk).

Notice that if X is a weak Ω-spectrum, then πk(X) = πk(X0).

Exercises.

• Let X be any prespectrum. Construct a CW-prespectrum X̃ and a map of prespectra X̃ −→
X that is a weak homotopy equivalence on each level.

• Construct a (weak) Ω-spectrum X̂, and a map X −→ X̂ that induces isomorphisms on the

stable homotopy groups π∗(X)
∼=−→ π∗(X̂).

Now we can define HoPrespectra to have the same objects as Prespectra, but morphisms

from X to Y are [X̃, Ŷ ]. Note that each map or homotopy is defined on every level, not just

eventually defined. Intuitively, this will agree with the Boardman category because an eventually-

defined map X̃n −→ Ŷn can always be looped to give X̃0 −→ ΩnX̃n −→ ΩnŶn ' Ŷ0. Now we

have a good concrete description of the maps in the homotopy category, but unfortunately, in this

description it is difficult to describe how we compose the maps. One way to circumvent this is

to redefine the maps as zig-zags X ←− A −→ B ←− . . . −→ Y , where the backwards maps are

required to be π∗-isomorphisms. But this has problems of its own, so if we need to work with these

objects on a very explicit level, we have to use the language of model categories.

There is a model structure on Prespectra with the following description, found in [5]. A

cofibration is a retract of a relative stable cell complex. Here the stable cells are defined as in the

previous section, but we allow ourselves to attach lower-dimensional cells to higher-dimensional

ones. A weak equivalence is a map inducing isomorphisms on the stable homotopy groups. A

fibration is a map E −→ B such that every level En −→ Bn is a Serre fibration, and in the square

En //

��

ΩEn+1

��
Bn // ΩBn+1

the natural map En −→ Bn ×ΩBn+1 ΩEn+1 is a weak homotopy equivalence. Now we can pass to

HoPrespectra, and this category is isomorphic to the one defined above (although technically we

didn’t actually say above how to compose the maps).

Does HoPrespectra have any advantages over Board? In some contexts, it’s simpler to work

with. For example, to define the loopspace ΩX of a prespectrum X, we want to take (ΩX)n =

Ω(Xn). In Prespectra, this is easy. In Board, we have to take functorial CW approximations,

making the construction more obscure.

More importantly, we want to get a definition of smash product. However, in either Board or

HoPrespectra, we define smash products by taking an arbitrary sequence p(n) −→ ∞ such that

(n− p(n)) −→∞, and setting (X ∧Y )n = Xp(n) ∧Yn−p(n). If we fix one such sequence, this defines
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a smash product that has all of the properties that we claimed in section 1. Unfortunately, this

relies on a non-canonical choice of sequence, and we hate choices because they make things hard in

practice. Fortunately, there exist some tricks for making it canonical. Here is one such trick:

2.3 Symmetric and Orthogonal Spectra

A symmetric spectrum E is a sequence of based spaces E0, E1, E2, . . . such that En has a Σn-action

and such that the composite

Sp ∧ Eq −→ Sp−1 ∧ E1+q −→ · · · −→ S1 ∧ E(p−1)+q −→ Ep+q

is (Σp × Σq)-equivariant. A map f : X −→ Y between symmetric spectra is a sequence of maps

fn : Xn −→ Yn that agree with suspension, such that fn is Σn-equivariant. This defines a category

called SpΣ. To define an orthogonal spectrum, we take the above definition and replace Σn with

O(n) everywhere; this gives a category SpO. (The O(n) actions must be continuous.) We have an

inclusion of groups Σn ↪→ O(n), so an orthogonal spectrum defines a symmetric spectrum.

It turns out that, unlike prespectra, symmetric (or orthogonal) spectra form a closed symmetric

monoidal category. If we let Spectra denote either symmetric or orthogonal spectra, then we have

the diagram

Top
X 7→X+ //

��

Top∗
Σ∞ //

��

Spectra

��

Ab
G 7→HGoo

0th degree

��
HoTop

X 7→X+ // HoTop∗
Σ∞ //GF ED@A BC?> =<89 :;HoSpectra

π∗ // Graded Ab

and every functor is at least lax monoidal. So we can define monoids in Spectra, which then

become monoids in HoSpectra. These two notions are not the same. A monoid in Spectra is a

symmetric/orthogonal ring spectrum, whereas a monoid in HoSpectra is just a ring spectrum “up

to homotopy.” We’ve neglected to actually describe HoSpectra in either of these two cases, and

we’ll continue to neglect this while we discuss the closed symmetric monoidal structure.

Let’s describe this structure more explicitly. The unit object is the sphere spectrum Sn = Sn.

The mapping space is

F (X,Y )n ⊂
∏
i

F (Xi, Yi+n)

the subspace of all collections of Σi-equivariant maps {Xi −→ Yi+n}i that commute with suspension.

Notice that F (X,Y )0 is just the based space of all maps of symmetric spectra. The smash product

is

(X ∧ Y )n =
∨

p+q=n

Σp+q+ ∧Σp×Σq (Xp ∧ Yq)/ ∼
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The quotient relation identifies the images of the two maps

Σ(p+q+r)+
∧Σq×Σp+r (Xq ∧ Yp+r) ←− Σ(p+q+r)+

∧ (Sp ∧Xq ∧ Yr) −→ Σ(p+q+r)+
∧Σp+q×Σr (Xp+q ∧ Yr)

(σ ◦ τq,p, x, sy) ←− (σ, s, x, y) −→ (σ, sx, y)

Here (s, x) 7→ sx is shorthand for the structure map

Sp ∧Xq
∼= ΣpXq −→ Xp+q

and τq,p is a permutation in Σp+q+r moves the first block of q elements past the second block of p

elements and leaves the last block of r elements alone.

Let’s describe this more heuristically. Sp has p sphere coordinates, Xq has q sphere coordinates,

and Yr has r sphere coordinates. They are naturally arranged with the p coordinates first, then

the q coordinates, then the r coordinates. The permutation σ takes this natural arrangement and

gives us the arrangement we desire. Now if we smash Sp into Xq, we get a space Xp+q with (p+ q)

sphere coordinates, still lined in order with the p coordinates first and the q coordinates second. So

in Xp+q∧Yr, the p coordinates come first, then the q coordinates, then the r coordinates. Applying

σ, we again get the desired arrangement of sphere coordinates.

However, if we smash Sp into Yr, we get Xq ∧ Yp+r. The q coordinates come first, then the p

coordinates, then the r coordinates. Applying σ, we get the wrong arrangement. We fix the problem

by applying σ ◦ τq,p instead. The τq,p pulls the p coordinates back to the beginning where they

belong. Therefore σ ◦ τq,p gives us the correct arrangement of sphere coordinates. We remember to

include τq,p by feeling a pang of guilt whenever we try to move Sp past Xq. The permutation τq,p
alleviates that guilt.

To recap, symmetric (or orthogonal) spectra form a closed symmetric monoidal category. We

can define a symmetric ring spectrum to be a monoid object in this category; this always descends to

a monoid object in the homotopy category. Unfortunately, symmetric spectra sometimes have the

“wrong” homotopy groups. If we try to define πn of a symmetric spectrumX as colimk→∞πk+n(Xk),

then we get a diagram

_^ ]\XY Z[Symmetric
Spectra

��

colimkπk+n(Xk)

))SSSSSSSSSSSSSSSSSSSSSSSSSSS

_^ ]\
XY Z[

Stable
Homotopy
Category [S, X]∗

// Graded Ab

This diagram does NOT commute, so the näıve homotopy groups πn(X) = colimk→∞πk+n(Xk)

are not equal to our original definition πn(X) = [S, X]n. Moreover, the näıve homotopy groups do
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not define a monoidal functor into Graded Ab. Therefore, the “correct” definition of homotopy

groups is π∗(X) = [S, X]∗. Fortunately, our two definitions coincide for the class of “semistable”

symmetric spectra, as defined in [8].

Every orthogonal spectrum gives a “semistable” symmetric spectrum, so the näıve definition

of π∗ gives the right answer when X is an orthogonal spectrum. So orthogonal spectra enjoy the

convenience of having a good smash product and internal hom, and the näıve definition of their

homotopy groups is the correct one. The smash product of orthogonal spectra is defined as above,

but with O(n) everywhere instead of Σn.

We sometimes find it necessary to calculate the homotopy groups of a smash product of orthog-

onal spectra X ∧ Y . Using the above definition directly, this looks like a nightmare. Fortunately,

(using [5]) these homotopy groups are equal to the ones we obtain from the “handicrafted smash

product” of X and Y as prespectra. We can actually calculate these homotopy groups as the colimit

of the following commuting grid of abelian groups:

...
...

...
... colim = πk(X ∧ Y )

π2+k(X0 ∧ Y2)

+

OO

+ // π3+k(X1 ∧ Y2)

−

OO

+ // π4+k(X2 ∧ Y2)

+

OO

+ // π5+k(X3 ∧ Y2)

−

OO

+ // . . .

π1+k(X0 ∧ Y1)

+

OO

+ // π2+k(X1 ∧ Y1)

−

OO

+ // π3+k(X2 ∧ Y1)

+

OO

+ // π4+k(X3 ∧ Y1)

−

OO

+ // . . .

πk(X0 ∧ Y0)

+

OO

+ // π1+k(X1 ∧ Y0)

−

OO

+ // π2+k(X2 ∧ Y0)

+

OO

+ // π3+k(X3 ∧ Y0)

−

OO

+ // . . .

Here (+) means that we use the usual suspension homomorphism, and (−) means that we negate

it. The signs are explained by the fact that a new sphere coordinate must be switched past Xp

before it can be smashed into Yq. Note that the colimit can be computed in at least three different

ways: we can compute the colimit of each column and then take the colimit of the results, or we

could do the same thing with rows, or we could take a path from the bottom-left corner out to

infinity that eventually reaches each row and column, and take the colimit along that path.

How do we go to HoSpectra? We need a notion of an unbased cell; we get it by creating a

“free” symmetric/orthogonal spectrum out of the map of based spaces Sn−1
+ ↪→ Dn

+. (Here Sn−1
+

is a sphere with a disjoint basepoint, NOT the upper hemisphere of Sn−1.) Then there’s a model

structure in which the cofibrations are the retracts of the relative cell complexes, the fibrations are

the levelwise fibrations E −→ B giving homotopy pullbacks

En //

��

ΩEn+1

��
Bn // ΩBn+1

and the weak equivalences X −→ Y are the maps that induce isomorphisms [Y,E]
∼=−→ [X,E] for
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every (weak) Ω-spectrum E. (These will coincide with the idea that X −→ Y gives isomorphisms

on the “correct” homotopy groups, but to define the “correct” groups we need to actually construct

HoSpectra first.) This is the model structure given in [5]; another one is given in [8].

It’s important to keep in mind that the smash product ∧L on HoSpectra is not the same as

∧ on Spectra; it is “left derived.” There is a natural transformation X ∧L Y −→ X ∧ Y , which is

an isomorphism when one of the factors is “flat.” The unit object is still the sphere spectrum S.

This is discussed more in [8].

2.4 Coordinate-Free Spectra

At the risk of introducing additional confusion, we can talk about symmetric and orthogonal spectra

in a “coordinate-free” way. We’ll do this and also discuss other notions of coordinate-free spectrum

that appear in the literature.

If A is a finite set, let RA denote the space of all functions A −→ R, and SA its the one-point

compactification. A coordinate-free symmetric spectrum is an assignment of a space X(A) to each

finite set A (in some appropriate universe), and a map SB−i(A) ∧X(A)
ξi−→ X(B) to each inclusion

i : A ↪→ B. The identity map A ↪→ A must induce the identity S0 ∧X(A) −→ X(A), and for each

composition A
i−→ B

j−→ C the evident diagram commutes:

SC−j(B) ∧ SB−i(A) ∧X(A)
ξi //

��

SC−j(B) ∧X(B)

ξj
��

SC−j(i(A)) ∧X(A)
ξj◦i // X(C)

Exercise. Let n be the finite set {1, . . . , n}. If X is a coordinate-free symmetric spectrum, con-

struct an ordinary symmetric spectrum whose levels are {X(n)}∞n=0.

Since every finite set is isomorphic to some n, it’s also possible to go backwards and turn any

symmetric spectrum into a coordinate-free one. So the theory of coordinate-free symmetric spectra

is essentially the same as the the theory of symmetric spectra.

If V is an inner product space, let SV denote its one-point compactification. A coordinate-

free orthogonal spectrum is an assignment of a space X(V ) to each finite-dimensional inner product

space V , and a map SW−i(V )∧X(V )
ξi−→ X(W ) to each linear isometric inclusion i : V ↪→W . Here

W − i(V ) is the orthogonal complement of i(V ) ⊂ W . The maps must depend continuously on i.

To state this precisely, let O(V,W ) be the space of linear isometries V ↪→W , and let O(V,W )W−V

be the Thom space of the canonical bundle over the Grassmannian O(V,W ), whose fiber over i is

W − i(V ). Then we require that the following map be continuous:

O(V,W )W−V ∧X(V ) −→ X(W )

The identity map V ↪→ V must induce the identity S0∧X(V ) −→ X(V ), and for each composition

V −→ V ′ −→ V ′′ the evident diagram commutes. As above, if X is a coordinate-free orthogonal
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spectrum, then the sequence of spaces XRn forms an orthogonal spectrum that captures all the

information in X up to isomorphism. We can also avoid set-theoretic difficulties by declaring that

our “universe” is just some infinite-dimensional real inner product space U ∼= R∞, and that we

only consider the finite-dimensional subspaces V ⊂ U . Note however that we work with all linear

isometric injective maps V ↪→W , not just the inclusions of subspaces V ⊂W ⊂ U .

Next we briefly describe coordinate-free (Ω-)spectra, a theory that should not be confused with

the theory of symmetric/orthogonal spectra. As above, we fix a universe U ∼= R∞ with an inner

product, and for each finite-dimensional V ⊂ U we let SV be its one-point compactification. If

K is any based space, let ΩVK = F (SV ,K) be space of based maps in the (CGWH) compact-

open topology. A coordinate-free prespectrum X associates to every finite-dimensional subspace

V ⊂ U a based space X(V ), and to every inclusion V ⊂ W of subspaces a continuous map

SW−V ∧ X(V ) −→ X(W ). Equivalently, there is a continuous map X(V ) −→ ΩW−VX(W ).

We have identity and composition axioms: the inclusion V ⊂ V must induce the identity map

X(V ) −→ X(V ), and a triple of inclusions V ⊂ V ′ ⊂ V ′′ yield three maps that must agree.

A coordinate-free spectrum X is a prespectrum for which the maps X(V ) −→ ΩW−VX(W ) are

homeomorphisms. These are discussed in classic notes by Lewis, May and Steinberger [4].

Remark. Note that coordinate-free (Ω-)spectra only have maps for inclusions of spaces V ⊂ W ,

whereas coordinate-free orthogonal spectra have maps for every injective map V ↪→ W that pre-

serves the inner product. It is not difficult to see that the only spectrum satisfying both definitions

is the zero object, X(V ) = ∗ for all V . (To do this, consider the O(V )-equivariant map

X(V )
∼=−→ ΩW−VX(W )

when dim(W − V ) = 2.)

Unfortunately, even coordinate-free spectra do not themselves form a closed symmetric monoidal

category. But we can pass to a subcategory of “S-modules” that does. This is done in work of

Elmendorf, Kriz, Mandell, and May [3]. The homotopy category of S-modules is then equivalent

to Board, HoPrespectra, HoSpΣ, and HoSpO as defined in previous sections. S-modules in

the sense of EKMM are not as elementary as orthogonal spectra, though they have at least two

advantages: all the objects are already fibrant, so the smash product ∧L on the homotopy category

is simpler than it is for symmetric/orthogonal spectra. The second advantage is that an E∞ operad

is built into the definition of the smash product, so that a commutative monoid in HoSpectra is a

strict E∞ ring spectrum in some appropriate sense. (In symmetric spectra, a commutative monoid

in the homotopy category is weaker than an E∞ ring spectrum, and there is an obstruction theory

to get from one to the other; see [8] for details.)

In the long run, we need to be able to use coordinate-free constructions (S-modules or orthogonal

spectra) because they naturally generalize to the G-equivariant setting.
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2.5 A∞ and E∞ Rings

An A∞ symmetric ring spectrum becomes a ring spectrum in the homotopy category, but not

conversely. In the category of S-modules, a ring spectum in the appropriate homotopy category is

exactly the same thing as an A∞ ring.

Talk about FSPs and coordinate-free rings.

3 The Parametrized World

Loosely, a parametrized spectrum or fibered spectrum is an object over some (CGWH) topological

space B such that the “fiber” over each point b ∈ B is a spectrum, using one of the definitions

we gave in the previous section. If B is a point, a fibered spectrum over B should just be a

spectrum. These objects are very useful tools for collecting together unstable information (in the

base B) with stable information (in the fibers). As a basic application, one can prove a version of

twisted Poincaré duality that is much more powerful and general than the usual one using ordinary

(co)homology with twisted coefficients.

There are at least three approaches to parametrized spectra: the May-Sigurdsson approach

uses coordinate-free orthogonal spectra, but there is another approach using S-modules, and other

approaches using ∞-categories and/or homotopy sheaves.

3.1 Notes on the May-Sigurdsson Approach

The reference for this entire section is [6]. Let B be an unbased (CGWH) topological space. An

ex-space over B is a topological space X (which for technical reasons must be a k-space but need

not be weak Hausdorff) together with maps B −→ X −→ B that compose to the identity. The

category of such spaces is denoted KB. This category has products X ×B Y , quotients X/BY ,

wedge sums X∨B Y , and smash products X∧B Y , and each of these constructions does the obvious

thing on each fiber. It also has mapping spaces FB(X,Y ), which on each fiber is the mapping space

of fibers F (Xb, Yb), but its construction is a bit subtle.

Let’s define the “right” model structure on these guys, the qf -model structre. This structure is

“compactly generated” in the sense that there is a collection of cells I and trivial cells J that are

compact in some sense, such that the cofibrations are the retracts of relative I-cell complexes, the

acyclic fibrations have the RLP with respect to maps in I, the acyclic cofibrations are the retracts

of the relative J-cell complexes, and the fibrations have the RLP with respect to maps in J . It’s

also “well grounded,” in the sense that there is a forgetful functor to spaces (total space), and the

model structure on spaces interacts in the correct way with the qf -model structure on KB. As a

consequence, arguments like the Puppe cofibration sequence go through. (Other model structures

run into problems with this.)

To define the qf -model structure, we first define the f maps. On p.80, we see that f -cofibrations,
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fibrations, and weak equivalences are fiberwise HEP, HLP, and homotopy equivalence. There are

f̄ -cofibrations, but these end up being f -cofibrations that are also closed inclusions. From p.84,

these give an f -model structure on spaces over B and ex-spaces over B.

Now we can give the qf -model structure on ex-spaces over B. From p.101, an f -disc is a disc

Dn −→ B such that Sn−1 ↪→ Dn is an f -cofibration; this is morally the same as saying that the

map Dn −→ B is constant on some collar neighborhood of the boundary of Dn. A relative f -disc

is a diagram of f -cofibrations over B

upper hemisphere −→ Sn −→ Dn+1

Equivalently, Dn+1 and its lower hemisphere are both f -discs. Then I is the collection of f -

discs Sn−1 −→ Dn (with a disjoint section attached) and J is the collection of relative f -discs

upper hemisphere −→ Dn+1 (with a disjoint section attached). These collections generate the

cofibrations and acyclic cofibrations of the qf -model structure. The qf -equivalences are the weak

homotopy equivalences on total spaces. This is enough to determine the qf model structure: the

cofibrations are the retracts of the f -disc complexes, whereas the qf -fibrations have the usual lifting

property with respect to every relative f -disc. Every qf -cofibrant object is f -cofibrant, f̄ -cofibrant,

and q-cofibrant. Every f -fibrant object is qf -fibrant. Every qf -fibrant object is a quasifibration,

i.e. for every point b ∈ B there is a long exact sequence of homotopy groups. So for the fibrant

objects, the homotopy groups of each fiber capture the homotopy type.

Now we’ll move from spaces KB to spectra SB. Fix a universe U . For each finite-dimensional

subspace V , let SVB be the fiberwise one-point compactification of the trivial bundle B × V −→ B.

Now a parametrized coordinate-free orthogonal spectrum is an assignment of an ex-space X(V ) to

each finite-dimensional inner product space V , and a map of ex-spaces S
W−i(V )
B ∧BX(V )

ξi−→ X(W )

to each linear isometric inclusion i : V ↪→W . As before, the maps must depend continuously on i:

(O(V,W )W−V ×B) ∧B X(V ) −→ X(W )

As before, these maps also respect the identity and composition.

To construct the homotopy category HoSB, we restrict attention to orthogonal spectra whose

levels X(V ) are well-grounded (f̄ -cofibrant and CGWH). Construct shift desuspensions FV :

KB −→ SB just as in the nonparametrized case:

FV (A)(W ) = (O(V,W )W−V ×B) ∧B A

Then the level model structure has as its weak equivalences the levelwise weak homotopy equiv-

alences of total spaces over B. The cofibrations and acyclic cofibrations generated by the shift

desuspensions of the f -discs and the relative f -discs, respectively. The stable model structure has

weak equivalences the maps that induce isomorphisms on the stable homotopy groups of each fiber.

The cofibrations are the same as in the level case; this is enough to determine the fibrations. The

fibrant objects are levelwise qf -fibrant and are Ω-spectra in the sense that the maps from one space

to fiberwise loops of the next is a weak homotopy equivalence on the total space.
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Notice that if B = ∗ then we get the category of coordinate-free orthogonal spectra from a

previous section, with the same stable model structure, yielding the same homotopy category.
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