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main goal: use purely algebraic computations to obtain
existence and uniqueness results for structured ring spectra.

setup: C
E∗−→ A. (e.g. C = E∞-ring spectra; A the appropriate algebraic target)

question: Given A ∈ A, is there X ∈ C with E∗X ∼= A?

obstructions live in André–Quillen cohomology in A:

to existence in Hn+2
AQ (A,ΩnA) for n ≥ 1,

to uniqueness in Hn+1
AQ (A,ΩnA) for n ≥ 1.
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higher-categorical perspective: write

C A

M (A) {A}

E∗

for the moduli space (i.e.∞-gpd) of realizations of A.

now, existence and uniqueness:  asks about π0(M (A)).

higher data: are any two equivalences equivalent (i.e. homotopic)?
 asks about π1(M (A)).

GHOsT: can (try to) compute all πn(M (A))!
spectral sequence H∗AQ(A,Ω∗A)⇒ π∗(M (A))
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sample application: “naive” theory of spectral alg geometry .

should have Spec : (E∞-rings)op ↪→ (spectral schemes).

Whatever a spectral scheme is, it should be “locally” Spec R for
some E∞-ring R... so what does “locally” mean?

a priori: abstract definition coming from ∞-topos theory.

“naive” defn: (top space Specπ0R) + (E∞-structure sheaf).

why this works: π0 : Zar(R)
∼−→ Zar(π0R).

key fact: AQ coh measures failure of smoothness...
but inclusions of Zariski opens are smooth.

GHOsT for ∞-cats ?
 “naive” theory of DAG in other ∞-cats
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more motivation for GHOsT for ∞-categories

dogmatic: ∞-cat : model cat :: manifold : atlas
Goerss–Hopkins worked very, very hard to get just the right
‘atlases’ when they set up GHOsT, but this shouldn’t be necessary.
 GHOsT should be model-independent, i.e. construction itself
should descend to the underlying ∞-category of spectra.

pragmatic: then, may as well do it for all ∞-categories, to get:

GHOsT in
equivariant / motivic homotopy theory
logarithmic E∞-ring spectra
cxes of qcoh sheaves ( coeffs for factorizn homology)

∞-categorical Rognes–Galois correspondence
et al.
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precursors / inputs to GHOsT

Hopkins–Miller obstruction theory for A∞-ring spectra
simpler than GHOsT: Σn acts freely on π0((A∞)n)

Blanc–Dwyer–Goerss obstruction theory for Top∗
yet simpler: no operad at all, use π∗ instead of E∗
(stability is nbd either way)

E 2-model structure of Dwyer–Kan–Stover on sTop∗
a/k/a resolution model structure: generalizes the notion of “projective
resolutions” to nonabelian setting
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setup

(for simplicity, just BDG obstrn theory; the GHOsT story is kind of scary.)

C a presentable homotopy theory;

G a set of generators;

define “homotopy” functor

C A
π∗

by
π∗X = {[Sβ,X ]}Sβ∈G.

(by defn of “generators”, π∗ detects equivalences.)

example: C = Top≥1
∗ , G = {Sn}n≥1.

example: C = Spectra, G = {Sn}n∈Z.
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C A
π∗

goal: given A ∈ A, want to understand M (A) ⊂ C.

key tool: Postnikov methods.

problem: π∗ not necessarily bounded-below: nowhere to start.
(e.g. htpy groups of spectra are Z-graded.)

solution: “flip Z’s worth of π∗ on its side” and resolve “upwards”
in a new simplicial direction.
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So, work in sC. We have a homotopy spectral sequence

E 2 = π∗(π
lw
∗ X )⇒ π∗|X |.

question: When does X ∈ sC have |X | ∈M (A)?

easiest answer: When the spectral sequence collapses!

E 2 =

A

0

πi (π
lw
∗ X) ∼=

{
A, i = 0
0, i > 0
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call such an X ∈ sC an ∞-stage for A.

sC C

(∞-stages) M (A)

|−|

recall: want to study M (A)  want this to be an equivalence!

obviously false as stated: a map X → Y of ∞-stages can be an iso
on E 2 = π∗(π

lw
∗ (−)) (so that |X | ∼−→ |Y |) even if it’s not a

levelwise equivalence, i.e. an iso on E 1 = πlw
∗ (−).

 invert such “E 2-equivalences”  E 2-model structure on sC

 moduli space M∞(A) ⊂ sCE2 of ∞-stages for A
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It turns out that this is just what we need:

sCE2 C

M∞(A) M (A)

|−|

∼

moral reason: ∞-stages only have πiπlw
∗ at i = 0

 maps between them are totally determined by behavior on π0πlw
∗

great!

step 2: find a Postnikov decomposition of M∞(A).

“global” version of Postnikov tower
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Define an n-stage for A to be X ∈ sC with

E 2 =

A

Ωn+1A

0

n+2

∼= ∼= ∼=

(really, n-truncation of the “hidden” part of the exact couple for an ∞-stage)

 moduli space Mn(A) ⊂ sCE2 of n-stages for A.

have “truncation” functors Mn(A)
Pn−1−−−→Mn−1(A), and

M (A)
∼←−M∞(A)

lim−−→ · · · →M2(A)
P1−→M1(A)

P0−→M0(A).
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climbing the tower: where does the AQ coh come from?

we just saw: if Y ∈Mn−1(A), then πi (πlw
∗ Y ) ∼=

{
A, i = 0
ΩnA, i = n + 1
0, otherwise.

however, for Y to extend to an n-stage, actually need to have a
weak equivalence (!) πlw

∗ Y ' A n (ΩnA)[n + 1] in sA.
(as always, the abstract π∗-iso isn’t enough: need a map inducing it.)

in sAA/, we have Loops(A n M[k]) ' A n M[k − 1].

have algebraic Postnikov theory in sA, giving ho-p.b. square
πlw
∗ Y A

A ' Palg
n (πlw

∗ Y ) A n (ΩnA)[n + 2]

Palg
n

kalg
n

 need kalg
n to be trivial, i.e. to represent 0 ∈ Hn+2

AQ (A,ΩnA).

 obstrns to existence really do lie in Hn+2
AQ (A,ΩnA)! :o)
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 obstrns to existence really do lie in Hn+2
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Model∞-categories

towards a GHOsT for ∞-categories

recall: for M a model category, obstrn thy takes place in sME2 .

fact: if M C, then sME2  PΣ(G) = FunΣ(Gop, S), the
∞-category of product-preserving presheaves of spaces on G.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived ∞-category of C)

problem: The setup of GHOsT uses the actual 1-category sM –
and its E 2-model structure – to make computations in sM[W−1

E2 ].
How can we do this in the ∞-categorical context?

solution: We need an “E 2-model structure” on the ∞-category sC
which presents the ∞-category PΣ(G)!

 two ingredients in generalizing GHOsT to ∞-categories:
1 a theory of model ∞-categories.
2 plagiarism.
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3. Model ∞-categories

Aaron Mazel-Gee GHOsT for∞-categories



Introduction
Obstruction theory

Model∞-categories

A model structure on a category M allows us to effectively
compute the hom-sets

homM[W−1](x , y).

A model structure on an ∞-category M allows us to effectively
compute the hom-spaces

homM[W−1](x , y).

axioms: almost identical, but careful with lifting axiom: instead of
asking for an epimorphism of sets, want an effective epimorphism
of spaces (i.e. π0-surjection).

N.B.: ∞-categories are already homotopically well-behaved .
 has more to do with interesting mathematical structures
(namely, with resolutions) than with eliminating pathologies (e.g.
replacing spaces with CW-cxes).
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Model∞-categories

first examples

trivial model structure: W = M', C = F = M.
model 1-categories.
Reedy and E 2 model structures on sC.
left localizn L : M� LM : i gives model structure on M

presenting LM 'M[W−1]. this has Mc = M, Mf = i(LM).
(e.g. τ≤n : S� S≤n, LQ : S� SQ, |−| : sS� S : const, LE : Sp� LESp)

...and dually (so all obj’s fibt). (e.g. S≥n � S : τ≥n)

 a model structure is a simultaneous generalization of the
notions of left and right localizations.

 another perspective: model structures on ∞-categories can
compute the composition of total derived functors of (classical)
left and right Quillen functors.
(e.g. sC→ sC[W−1

E2 ] ' PΣ(G) is a right adjoint followed by a left adjoint)
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Model∞-categories

computing hom-spaces

model 1-categories: start with a set of maps, quotient by
relations to obtain a set of “homotopy classes of maps”.

taking a quotient goes against the core thesis of higher category
theory : instead, remember the relations, build them into a space
of “homotopy classes of maps”.

recall: in a model 1-category, a cylinder for x ∈M is a factorizn

x t x � cyl(x)
≈−→ x ,

and a path for y ∈M is a factorizn

y ≈−→ path(y)� y × y .

model ∞-categories: don’t truncate these co/simplicial objects!
 a cylinder obj is cyl•(x) ∈ cM, a path obj is path•(y) ∈ sM.
(“cofibt W-cohypercover” and “fibt W-hypercover”, resp.)
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Model∞-categories

1-topos theory : quotient by an equivce reln ::
∞-topos theory : geom realizn of a simplicial object

 define space of left htpy classes of maps by

hom
l∼
M(x , y) =

∣∣∣homlw
M(cyl•(x), y)

∣∣∣
and space of right htpy classes of maps by

hom
r∼
M(x , y) =

∣∣∣homlw
M(x , path•(y))

∣∣∣ .
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Model∞-categories

fundamental theorem of model ∞-categories

if x cofibt and y fibt, then for any cylinder/path obj’s,

hom
l∼
M(x , y) homM[W−1](x , y) hom

r∼
M(x , y).∼ ∼

proof uses model two important model ∞-categories:
the Quillen model structure on sS,
the Thomason model structure on Cat∞.

(can’t use fund thm here: must prove things in these model ∞-cats by hand!)
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Model∞-categories

Quillen model structure on sS

model 1-cats enriched in sets  sSetQ plays a distinguished role.
model ∞-cats enriched in spaces  sSQ plays a distinguished role.

both give “presentations of spaces” via geometric realization.

write

π0 : sS� sSet : δ, IQ = {∂∆n → ∆n}n≥0, JQ = {Λn
i → ∆n}0≤i≤n>0.

(for sSetQ, IQ = generating cofibns and JQ = generating acyclic cofibns.)

then, sSQuillen is cofibtly generated too:
IsS
Q = δ(IQ) and J sS

Q = δ(JQ);
WQ = Wcolim created by colim = |−| : sS→ S.

sSQ � sSetQ a Quillen equivce! (derived adjunction is S
id
� S.)
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comparison with analogous results on sS from model 1-cats

Moerdijk model structure: diag! : sSetQ
Q. eq.
� ssSetMoer : diag∗,

IMoer = {∂∆n � ∂∆n → ∆n �∆n}.

 · · · in sS, rlp
(
{∂∆n � Sn−1 → ∆n � pt}

)
⊂WQ = Wcolim.

These maps have serious geometric content!

n = 2:
IsS
M IsS

Q

∂∆n � Sn−1 δ(∆n) δ(∂∆n) δ(∆n)

 only needing to check rlp(IsS
Q ) is a substantial improvement.

similarly: ‘dreaded’ π∗-Kan condition for ho-p.b.’s in s(sSet)Reedy;
replace with “htpy-coherent π0-Kan condition”.

moral: working with model ∞-cats allows us to replace maps in
from spheres with homotopy-coherent maps in from points.
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Thomason model structure on Cat∞

cofibtly gend, lifted directly along sSQ � CSS ' Cat∞, which is a
Quillen equivce (so this model ∞-cat also presents S).

 WTh created by Cat∞
CSS−−→ sS |−|−−→ S, i.e. by Cat∞

(−)gpd
−−−−→ S.

 fibrant objects are exactly the ∞-groupoids.

image of C ∈ Cat N−→ sSetQ or C ∈ Cat∞
CSS−−→ sSQ is fibrant iff C is a groupoid .

note: 1-gpds only model 1-types, but ∞-gpds model all spaces.

 CatTh can only be lifted along

ho ◦ sd2 : sSetQ � sSet� sSet� Cat : Ex2 ◦ N,

at least if we want this to be a Quillen equivalence.
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Q.: why is this useful?
A.: the Grothendieck construction, just as with CatTh.

e.g.: if C F−→ (Cat∞)Th, then Gr(F ) ≈ hocolim(F ), i.e.

Gr(F )gpd ' colim
(
C

F−→ Cat∞
(−)gpd
−−−−→ S

)
.

(think of F as “presenting” a C-shaped diagram in S.)

e.g.: if
C Cat∞

WTh

F
then ∀x ∈ C,

F (x) Gr(F )

{x} C

is a ho-p.b.

in (Cat∞)Th, i.e.
F (x)gpd Gr(F )gpd

{x}gpd Cgpd

is a p.b. in S.

(compare with Quillen’s Theorem B.)
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proof of fundamental theorem of model ∞-cats

set up sSQ, then prove string of equivces in S following Dwyer–Kan.

eventually, need to access hom-space homM[W−1](x , y). do so using

localizn thm for model ∞-cats: define CSS(M,W)• ∈ sS by

CSS(M,W)n =
(

Fun([n],M)W
)gpd

,

• • · · · •

• • · · · •

≈ ≈ ≈

(following Rezk’s “classification diagram” functor RelCat→ s(sSet)).

then: CSS(M,W)• is actually a complete Segal space, and

(CSS(M)• → CSS(M,W)•) ∈ CSS ! (M→M[W−1]) ∈ Cat∞.

proof: set up (Cat∞)Thomason, then follow Barwick–Kan.
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Thanks for listening!

references:
Goerss–Hopkins, Moduli problems for structured ring spectra.
Rezk, Notes on the Hopkins–Miller theorem.
Blanc–Dwyer–Goerss, The realization space of a Π-algebra: a moduli problem in
algebraic topology.
Dwyer–Kan–Stover, An E2 model category structure for pointed simplicial
spaces.
Dwyer–Kan, Function complexes in homotopical algebra.
Barwick–Kan, From partial model categories to ∞-categories.

this talk:

http://math.berkeley.edu/∼aaron/writing/ytm-cghost-beamer.pdf

greatly expanded version:

http://math.berkeley.edu/∼aaron/writing/thursday-cghost-beamer.pdf

/thursday-cghost-talk-notes.pdf

/BDG-diagram-beamer.pdf
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