Every love story is a GHOsT story: Goerss–Hopkins obstruction theory for ∞ -categories

Aaron Mazel-Gee

University of California, Berkeley aaron@math.berkeley.edu

July 2, 2014

1. Introduction

Introduction
Obstruction theory
Model ∞-categories

<u>main goal</u>: use *purely algebraic* computations to obtain <u>existence</u> and <u>uniqueness</u> results for structured ring spectra. <u>main goal</u>: use *purely algebraic* computations to obtain <u>existence</u> and <u>uniqueness</u> results for structured ring spectra.

setup: $\mathcal{C} \xrightarrow{E_*} \mathcal{A}$. (e.g. $\mathcal{C} = E_{\infty}$ -ring spectra; \mathcal{A} the appropriate algebraic target)

question: Given $A \in \mathcal{A}$, is there $X \in \mathcal{C}$ with $E_*X \cong A$?

<u>main goal</u>: use *purely algebraic* computations to obtain <u>existence</u> and <u>uniqueness</u> results for structured ring spectra.

setup:
$$\mathcal{C} \xrightarrow{E_*} \mathcal{A}$$
. (e.g. $\mathcal{C} = E_{\infty}$ -ring spectra; \mathcal{A} the appropriate algebraic target)

question: Given $A \in \mathcal{A}$, is there $X \in \mathcal{C}$ with $E_*X \cong A$?

obstructions live in **André-Quillen cohomology** in A:

- to **existence** in $H_{AQ}^{n+2}(A,\Omega^n A)$ for $n \ge 1$,
- to *uniqueness* in $H_{AQ}^{n+1}(A,\Omega^nA)$ for $n \ge 1$.

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{E_*} & \mathcal{A} \\
\uparrow & & \uparrow \\
\mathscr{M}(A) & & & & \\
\end{array}$$

for the **moduli space** (i.e. ∞ -gpd) of **realizations** of A.

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{E_*} & \mathcal{A} \\
\uparrow & & \uparrow \\
\mathcal{M}(A) & \xrightarrow{} & \{A\}
\end{array}$$

for the **moduli space** (i.e. ∞ -gpd) of **realizations** of A.

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{E_*} & \mathcal{A} \\
\uparrow & & \uparrow \\
\mathcal{M}(A) & & & & \\
\end{array}$$

for the **moduli space** (i.e. ∞ -gpd) of **realizations** of A.

now, existence and uniqueness: \rightsquigarrow asks about $\pi_0(\mathcal{M}(A))$.

higher data: are any two equivalences equivalent (i.e. homotopic)? \rightsquigarrow asks about $\pi_1(\mathcal{M}(A))$.

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{E_*} & \mathcal{A} \\
\uparrow & & \uparrow \\
\mathcal{M}(A) & & & & \\
\end{array}$$

for the **moduli space** (i.e. ∞ -gpd) of **realizations** of A.

now, existence and uniqueness: \rightsquigarrow asks about $\pi_0(\mathcal{M}(A))$.

higher data: are any two equivalences equivalent (i.e. homotopic)? \rightsquigarrow asks about $\pi_1(\mathcal{M}(A))$.

GHOsT: can (try to) compute all $\pi_n(\mathcal{M}(A))!$

spectral sequence $H_{\Delta O}^*(A, \Omega^*A) \Rightarrow \pi_*(\mathcal{M}(A))$

should have Spec : $(E_{\infty}\text{-rings})^{op} \hookrightarrow (\text{spectral schemes})$.

Whatever a spectral scheme is, it should be "locally" Spec R for some E_{∞} -ring R... so what does "locally" mean?

should have Spec : $(E_{\infty}\text{-rings})^{op} \hookrightarrow (\text{spectral schemes})$.

Whatever a spectral scheme is, it should be "locally" Spec R for some E_{∞} -ring R... so what does "locally" mean?

a priori: abstract definition coming from ∞ -topos theory.

"naive" defⁿ: (top space Spec $\pi_0 R$) + (E_{∞} -structure sheaf).

should have Spec : $(E_{\infty}\text{-rings})^{op} \hookrightarrow (\text{spectral schemes})$.

Whatever a spectral scheme is, it should be "locally" Spec R for some E_{∞} -ring R... so what does "locally" mean?

a priori: abstract definition coming from ∞ -topos theory.

"naive" defⁿ: (top space Spec $\pi_0 R$) + (E_{∞} -structure sheaf).

why this works: $\pi_0: \mathbb{Z}ar(R) \xrightarrow{\sim} \mathbb{Z}ar(\pi_0 R)$.

key fact: AQ coh measures *failure of smoothness*... but inclusions of Zariski opens are smooth.

should have Spec : $(E_{\infty}\text{-rings})^{op} \hookrightarrow (\text{spectral schemes})$.

Whatever a spectral scheme is, it should be "locally" Spec R for some E_{∞} -ring R... so what does "locally" mean?

a priori: abstract definition coming from ∞ -topos theory.

"naive" $\operatorname{def}^{\mathbf{n}}$: (top space $\operatorname{Spec} \pi_0 R$) + (E_{∞} -structure sheaf).

why this works: $\pi_0: \mathbb{Z}ar(R) \xrightarrow{\sim} \mathbb{Z}ar(\pi_0 R)$.

key fact: AQ coh measures *failure of smoothness*... but inclusions of Zariski opens are smooth.

GHOsT for ∞ -cats $\stackrel{?}{\leadsto}$ "naive" theory of DAG in other ∞ -cats

more motivation for GHOsT for ∞ -categories

more motivation for GHOsT for ∞ -categories

dogmatic: ∞ -cat : model cat :: manifold : atlas

Goerss–Hopkins worked very, very hard to get just the right 'atlases' when they set up GHOsT, but this shouldn't be necessary.

 \rightsquigarrow GHOsT should be *model-independent*, i.e. construction itself should descend to the *underlying* ∞ -category of spectra.

more motivation for GHOsT for ∞ -categories

dogmatic: ∞ -cat : model cat :: manifold : atlas

Goerss–Hopkins worked very, very hard to get just the right 'atlases' when they set up GHOsT, but this shouldn't be necessary.

 \leadsto GHOsT should be *model-independent*, i.e. construction itself should descend to the *underlying* ∞ -category of spectra.

pragmatic: then, may as well do it for all ∞ -categories, to get:

- GHOsT in
 - equivariant / motivic homotopy theory
 - logarithmic E_{∞} -ring spectra
 - cxes of qcoh sheaves (→ coeffs for factorizⁿ homology)
- ∞-categorical Rognes–Galois correspondence
- et al.

• Hopkins–Miller obstruction theory for A_{∞} -ring spectra simpler than GHOsT: Σ_n acts freely on $\pi_0((A_{\infty})_n)$

- Hopkins–Miller obstruction theory for A_{∞} -ring spectra simpler than GHOsT: Σ_n acts freely on $\pi_0((A_{\infty})_n)$
- **Blanc–Dwyer–Goerss obstruction theory** for Top_* yet simpler: no operad at all, use π_* instead of E_* (stability is nbd either way)

- Hopkins–Miller obstruction theory for A_{∞} -ring spectra simpler than GHOsT: Σ_n acts freely on $\pi_0((A_{\infty})_n)$
- **Blanc–Dwyer–Goerss obstruction theory** for Top_* yet simpler: no operad at all, use π_* instead of E_* (stability is nbd either way)
- E²-model structure of Dwyer-Kan-Stover on sTop_{*}
 a/k/a resolution model structure: generalizes the notion of "projective resolutions" to nonabelian setting

Introduction Obstruction theory Model ∞-categories

2. Obstruction theory

setup

 $\textbf{Setup} \quad \text{(for simplicity, just BDG obstr}^n \text{ theory; the GHOsT story is kind of scary.)}$

 $\textbf{Setup} \quad \text{(for simplicity, just BDG obstr}^n \text{ theory; the GHOsT story is kind of scary.)}$

setup (for simplicity, just BDG obstrⁿ theory; the GHOsT story is kind of scary.)

- C a presentable homotopy theory;
- 9 a set of generators;
- define "homotopy" functor

$$\mathcal{C} \xrightarrow{\pi_*} \mathcal{A}$$

by

$$\pi_*X = \{ [S^\beta, X] \}_{S^\beta \in \mathcal{G}}.$$

(by defⁿ of "generators", π_* detects equivalences.)

example:
$$\mathcal{C} = \mathsf{Top}^{\geq 1}_*$$
, $\mathcal{G} = \{S^n\}_{n \geq 1}$.

example:
$$C = Spectra$$
, $S = \{S^n\}_{n \in \mathbb{Z}}$.

$$\mathcal{C} \xrightarrow{\pi_*} \mathcal{A}$$

goal: given $A \in \mathcal{A}$, want to understand $\mathcal{M}(A) \subset \mathcal{C}$.

key tool: Postnikov methods.

$$\mathcal{C} \xrightarrow{\pi_*} \mathcal{A}$$

goal: given $A \in \mathcal{A}$, want to understand $\mathcal{M}(A) \subset \mathcal{C}$.

key tool: Postnikov methods.

 $\frac{\textbf{problem}}{(\text{e.g. htpy groups of spectra are \mathbb{Z}-graded.})}$

$$\mathcal{C} \xrightarrow{\pi_*} \mathcal{A}$$

goal: given $A \in \mathcal{A}$, want to understand $\mathcal{M}(A) \subset \mathcal{C}$.

key tool: Postnikov methods.

 $\frac{\textbf{problem}}{(\text{e.g. htpy groups of spectra are }\mathbb{Z}\text{-graded.})}$

<u>solution</u>: "flip \mathbb{Z} 's worth of π_* on its side" and resolve "upwards" in a new simplicial direction.

So, work in $s\mathcal{C}$. We have a **homotopy spectral sequence**

$$E^2 = \pi_*(\pi_*^{\mathsf{Iw}}X) \Rightarrow \pi_*|X|.$$

question: When does $X \in s\mathcal{C}$ have $|X| \in \mathcal{M}(A)$?

So, work in $s\mathcal{C}$. We have a **homotopy spectral sequence**

$$E^2 = \pi_*(\pi_*^{\mathsf{lw}}X) \Rightarrow \pi_*|X|.$$

question: When does $X \in s\mathcal{C}$ have $|X| \in \mathcal{M}(A)$?

easiest answer: When the spectral sequence collapses!

$$E^2 = 0$$

$$\pi_i(\pi_*^{\mathsf{lw}}X)\cong\left\{egin{array}{ll} A, & i=0 \ 0, & i>0 \end{array}
ight.$$

call such an $X \in s\mathcal{C}$ an ∞ -stage for A.

$$\begin{array}{c}
s\mathfrak{C} & \xrightarrow{|-|} & \mathfrak{C} \\
\uparrow & & \uparrow \\
(\infty\text{-stages}) & \xrightarrow{----} & \mathscr{M}(A)
\end{array}$$

recall: want to study $\mathcal{M}(A) \rightsquigarrow$ want this to be an equivalence!

call such an $X \in s\mathbb{C}$ an ∞ -stage for A.

$$\begin{array}{ccc}
s & & & \xrightarrow{|-|} & & & \\
\uparrow & & & \uparrow & \\
(\infty\text{-stages}) & & & & & & & & & & & & \\
\end{array}$$

<u>recall</u>: want to study $\mathcal{M}(A) \rightsquigarrow$ want this to be an equivalence!

obviously false as stated: a map $X \to Y$ of ∞ -stages can be an iso on $E^2 = \pi_*(\pi_*^{\operatorname{Iw}}(-))$ (so that $|X| \stackrel{\sim}{\to} |Y|$) even if it's not a levelwise equivalence, i.e. an iso on $E^1 = \pi_*^{\operatorname{Iw}}(-)$.

call such an $X \in s\mathbb{C}$ an ∞ -stage for A.

$$s \stackrel{\circ}{\mathbb{C}} \xrightarrow{|-|} \stackrel{\circ}{\mathbb{C}}$$

$$\uparrow \qquad \qquad \uparrow$$

$$(\infty\text{-stages}) \xrightarrow{-----} \mathscr{M}(A)$$

<u>recall</u>: want to study $\mathcal{M}(A) \rightsquigarrow$ want this to be an equivalence!

obviously false as stated: a map $X \to Y$ of ∞ -stages can be an iso on $E^2 = \pi_*(\pi_*^{\operatorname{Iw}}(-))$ (so that $|X| \stackrel{\sim}{\to} |Y|$) even if it's not a levelwise equivalence, i.e. an iso on $E^1 = \pi_*^{\operatorname{Iw}}(-)$.

 \rightsquigarrow invert such " E^2 -equivalences" \rightsquigarrow E^2 -model structure on $s\mathfrak{C}$

 \leadsto moduli space $\mathscr{M}_{\infty}(A) \subset s\mathscr{C}_{E^2}$ of ∞ -stages for A

It turns out that this is just what we need:

$$\begin{array}{ccc} s\mathcal{C}_{E^2} & \xrightarrow{|-|} & \mathcal{C} \\ \uparrow & & \uparrow \\ \mathcal{M}_{\infty}(A) & \xrightarrow{\sim} & \mathcal{M}(A) \end{array}$$

moral reason: ∞ -stages only have $\pi_i\pi_*^{\mathrm{lw}}$ at i=0 \longrightarrow maps between them are totally determined by behavior on $\pi_0\pi_*^{\mathrm{lw}}$

great!

It turns out that this is just what we need:

$$\begin{array}{ccc}
s\mathcal{C}_{E^2} & \xrightarrow{|-|} & \mathcal{C} \\
\uparrow & & \uparrow \\
\mathcal{M}_{\infty}(A) & \xrightarrow{\sim} & \mathcal{M}(A)
\end{array}$$

moral reason: ∞ -stages only have $\pi_i\pi_*^{\mathsf{lw}}$ at i=0

 \leadsto maps between them are totally determined by behavior on $\pi_0\pi_*^{\mathrm{lw}}$

great!

step 2: find a Postnikov decomposition of $\mathcal{M}_{\infty}(A)$.

"global" version of Postnikov tower

Define an *n*-stage for A to be $X \in s\mathbb{C}$ with

(really, n-truncation of the "hidden" part of the exact couple for an $\infty\text{-stage}$)

 \leadsto moduli space $\mathscr{M}_n(A) \subset s\mathfrak{C}_{E^2}$ of *n*-stages for A.

Define an n-stage for A to be $X \in s\mathcal{C}$ with

(really, *n*-truncation of the "hidden" part of the exact couple for an ∞ -stage)

 \leadsto moduli space $\mathscr{M}_n(A) \subset s\mathfrak{C}_{E^2}$ of *n*-stages for A.

have "truncation" functors $\mathcal{M}_n(A) \xrightarrow{P_{n-1}} \mathcal{M}_{n-1}(A)$, and

$$\mathscr{M}(A) \stackrel{\sim}{\longleftarrow} \mathscr{M}_{\infty}(A) \stackrel{\mathsf{lim}}{\longrightarrow} \cdots \to \mathscr{M}_{2}(A) \stackrel{P_{1}}{\longrightarrow} \mathscr{M}_{1}(A) \stackrel{P_{0}}{\longrightarrow} \mathscr{M}_{0}(A).$$

we just saw: if
$$Y \in \mathcal{M}_{n-1}(A)$$
, then $\pi_i(\pi_*^{\text{lw}}Y) \cong \left\{ \begin{array}{ll} A, & i=0 \\ \Omega^n A, & i=n+1 \\ 0, & \text{otherwise.} \end{array} \right.$

however, for Y to extend to an n-stage, actually need to have a weak equivalence (!) $\pi^{\mathsf{Iw}}_*Y \simeq A \ltimes (\Omega^n A)[n+1]$ in s.A.

(as always, the abstract π_* -iso isn't enough: need a map inducing it.)

we just saw: if
$$Y \in \mathscr{M}_{n-1}(A)$$
, then $\pi_i(\pi_*^{\mathsf{lw}}Y) \cong \left\{ \begin{array}{ll} A, & i=0 \\ \Omega^n A, & i=n+1 \\ 0, & \mathsf{otherwise}. \end{array} \right.$

however, for Y to extend to an n-stage, actually need to have a weak equivalence (!) $\pi^{\mathsf{Iw}}_*Y \simeq A \ltimes (\Omega^n A)[n+1]$ in $s\mathcal{A}$.

(as always, the abstract π_* -iso isn't enough: need a map inducing it.)

we just saw: if
$$Y \in \mathscr{M}_{n-1}(A)$$
, then $\pi_i(\pi_*^{\operatorname{lw}}Y) \cong \left\{ \begin{array}{ll} A, & i=0 \\ \Omega^n A, & i=n+1 \\ 0, & \text{otherwise.} \end{array} \right.$

however, for Y to extend to an n-stage, actually need to have a weak equivalence (!) $\pi^{lw}_*Y \simeq A \ltimes (\Omega^n A)[n+1]$ in sA.

(as always, the abstract π_* -iso isn't enough: need a map inducing it.)

in
$$s\mathcal{A}_{A/}$$
, we have Loops $(A \ltimes M[k]) \simeq A \ltimes M[k-1]$.

have algebraic Postnikov theory in sA, giving ho-p.b. square

$$\begin{array}{ccc} \pi_*^{\text{lw}} Y & \longrightarrow & A \\ & & \downarrow & & \downarrow \\ A & & P_n^{\text{alg}} \downarrow & & & \downarrow \\ A & \simeq P_n^{\text{alg}}(\pi_*^{\text{lw}} Y) & \xrightarrow[k_n^{\text{alg}}]{} & A \ltimes (\Omega^n A)[n+2] \end{array}$$

 \rightsquigarrow need k_n^{alg} to be *trivial*, i.e. to represent $0 \in H_{AO}^{n+2}(A, \Omega^n A)$.

 \rightarrow obstr^{ns} to existence really do lie in $H_{AO}^{n+2}(A,\Omega^nA)!$

we just saw: if
$$Y \in \mathscr{M}_{n-1}(A)$$
, then $\pi_i(\pi_*^{\operatorname{lw}}Y) \cong \left\{ \begin{array}{ll} A, & i=0 \\ \Omega^n A, & i=n+1 \\ 0, & \text{otherwise.} \end{array} \right.$

however, for Y to extend to an n-stage, actually need to have a weak equivalence (!) $\pi^{lw}_*Y \simeq A \ltimes (\Omega^n A)[n+1]$ in sA.

(as always, the abstract π_* -iso isn't enough: need a map inducing it.)

in
$$s\mathcal{A}_{A/}$$
, we have Loops $(A \ltimes M[k]) \simeq A \ltimes M[k-1]$.

have algebraic Postnikov theory in sA, giving ho-p.b. square

$$\begin{array}{ccc} \pi^{\text{lw}}_{*}Y & \longrightarrow & A \\ & & \downarrow & & \downarrow \\ A & & P^{\text{alg}}_{n} & & \downarrow & & \downarrow \\ A & & & & P^{\text{alg}}_{n}(\pi^{\text{lw}}_{*}Y) & \xrightarrow[k_n^{\text{alg}}]{} & A \ltimes (\Omega^n A)[n+2] \end{array}$$

 \rightsquigarrow need k_n^{alg} to be *trivial*, i.e. to represent $0 \in H_{AO}^{n+2}(A, \Omega^n A)$.

 \rightarrow obstr^{ns} to existence really do lie in $H_{AO}^{n+2}(A,\Omega^nA)!$ \rightarrow o)

<u>recall</u>: for **M** a model category, obstrⁿ thy takes place in $s\mathbf{M}_{E^2}$.

<u>fact</u>: if M \rightsquigarrow C, then $sM_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of *product-preserving presheaves of spaces* on \mathcal{G} .

(WLOG, the set ${\mathfrak G}$ (of generators of ${\mathfrak C})$ is closed under finite coproducts)

(a/k/a the nonabelian derived $\infty\text{-category}$ of $\mathfrak C$)

<u>recall</u>: for M a model category, obstrⁿ thy takes place in sM_{E^2} .

<u>fact</u>: if $\mathbf{M} \rightsquigarrow \mathcal{C}$, then $s\mathbf{M}_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of *product-preserving presheaves of spaces* on \mathcal{G} . (WLOG, the set \mathcal{G} (of generators of \mathcal{C}) is closed under finite coproducts) (a/k/a the *nonabelian derived* ∞ -category of \mathcal{C})

<u>problem</u>: The setup of GHOsT uses the actual 1-category sM – and its E^2 -model structure – to make computations in $sM[W_{E^2}^{-1}]$. How can we do this in the ∞ -categorical context?

<u>recall</u>: for M a model category, obstrⁿ thy takes place in sM_{E^2} .

<u>fact</u>: if $\mathbf{M} \rightsquigarrow \mathcal{C}$, then $s\mathbf{M}_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of *product-preserving presheaves of spaces* on \mathcal{G} . (WLOG, the set \mathcal{G} (of generators of \mathcal{C}) is closed under finite coproducts) (a/k/a the *nonabelian derived* ∞ -category of \mathcal{C})

<u>problem</u>: The setup of GHOsT uses the actual 1-category sM – and its E^2 -model structure – to make computations in $sM[W_{E^2}^{-1}]$. How can we do this in the ∞ -categorical context?

solution: We need an " E^2 -model structure" on the ∞ -category $s\mathfrak{C}$ which presents the ∞ -category $\mathfrak{P}_{\Sigma}(\mathfrak{G})!$

<u>recall</u>: for **M** a model category, obstrⁿ thy takes place in sM_{E^2} .

<u>fact</u>: if $\mathbf{M} \rightsquigarrow \mathcal{C}$, then $s\mathbf{M}_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of *product-preserving presheaves of spaces* on \mathcal{G} . (WLOG, the set \mathcal{G} (of generators of \mathcal{C}) is closed under finite coproducts) (a/k/a the *nonabelian derived* ∞ -category of \mathcal{C})

<u>problem</u>: The setup of GHOsT uses the actual 1-category sM – and its E^2 -model structure – to make computations in $sM[W_{E^2}^{-1}]$. How can we do this in the ∞ -categorical context?

<u>solution</u>: We need an " E^2 -model structure" on the ∞ -category $s\mathfrak{C}$ which presents the ∞ -category $\mathfrak{P}_{\Sigma}(\mathfrak{G})!$

 \rightsquigarrow two ingredients in generalizing GHOsT to ∞ -categories:

<u>recall</u>: for **M** a model category, obstrⁿ thy takes place in sM_{E^2} .

<u>fact</u>: if $\mathbf{M} \rightsquigarrow \mathcal{C}$, then $s\mathbf{M}_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of *product-preserving presheaves of spaces* on \mathcal{G} . (WLOG, the set \mathcal{G} (of generators of \mathcal{C}) is closed under finite coproducts) (a/k/a the *nonabelian derived* ∞ -category of \mathcal{C})

<u>problem</u>: The setup of GHOsT uses the actual 1-category sM – and its E^2 -model structure – to make computations in $sM[W_{E^2}^{-1}]$. How can we do this in the ∞ -categorical context?

solution: We need an " E^2 -model structure" on the ∞ -category $s\mathfrak{C}$ which presents the ∞ -category $\mathfrak{P}_{\Sigma}(\mathfrak{G})!$

- \rightsquigarrow two ingredients in generalizing GHOsT to ∞ -categories:
 - **1** a theory of **model** ∞ -categories.

<u>recall</u>: for **M** a model category, obstrⁿ thy takes place in sM_{E^2} .

<u>fact</u>: if $\mathbf{M} \rightsquigarrow \mathcal{C}$, then $s\mathbf{M}_{E^2} \rightsquigarrow \mathcal{P}_{\Sigma}(\mathcal{G}) = \operatorname{Fun}_{\Sigma}(\mathcal{G}^{op}, \mathcal{S})$, the ∞ -category of product-preserving presheaves of spaces on \mathcal{G} . (WLOG, the set \mathcal{G} (of generators of \mathcal{C}) is closed under finite coproducts) (a/k/a the nonabelian derived ∞ -category of \mathcal{C})

<u>problem</u>: The setup of GHOsT uses the actual 1-category sM – and its E^2 -model structure – to make computations in $sM[W_{E^2}^{-1}]$. How can we do this in the ∞ -categorical context?

solution: We need an " E^2 -model structure" on the ∞ -category $s\mathfrak{C}$ which presents the ∞ -category $\mathfrak{P}_{\Sigma}(\mathfrak{G})!$

- \rightsquigarrow two ingredients in generalizing GHOsT to ∞ -categories:
 - **1** a theory of **model** ∞ -categories.
 - plagiarism.

Introduction
Obstruction theory
Model ∞-categories

3. Model ∞ -categories

A $\emph{model structure}$ on a category \mathbf{M} allows us to effectively compute the hom-sets

$$\mathsf{hom}_{\mathbf{M}[\mathbf{W}^{-1}]}(x,y).$$

A model structure on an ∞ -category $\mathcal M$ allows us to effectively compute the hom-spaces

$$\mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y).$$

A model structure on an $\infty\text{-category }\mathcal{M}$ allows us to effectively compute the hom-spaces

$$\mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y).$$

A model structure on an ∞ -category $\mathcal M$ allows us to effectively compute the hom-spaces

$$\mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y).$$

<u>axioms</u>: almost identical, but careful with lifting axiom: instead of asking for an *epimorphism* of sets, want an *effective epimorphism* of spaces (i.e. π_0 -surjection).

A model structure on an ∞ -category $\mathcal M$ allows us to effectively compute the hom-spaces

$$\mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y).$$

<u>axioms</u>: almost identical, but careful with lifting axiom: instead of asking for an *epimorphism* of sets, want an *effective epimorphism* of spaces (i.e. π_0 -surjection).

<u>N.B.</u>: ∞ -categories are already *homotopically well-behaved*.

→ has more to do with *interesting mathematical structures* (namely, with *resolutions*) than with *eliminating pathologies* (e.g. replacing spaces with CW-cxes).

• trivial model structure: $\mathbf{W} = \mathcal{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathcal{M}$.

- trivial model structure: $\mathbf{W} = \mathcal{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathcal{M}$.
- model 1-categories.

- trivial model structure: $\mathbf{W} = \mathfrak{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathfrak{M}$.
- model 1-categories.
- Reedy and E^2 model structures on s $^{\circ}$ C.

- trivial model structure: $\mathbf{W} = \mathfrak{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathfrak{M}$.
- model 1-categories.
- Reedy and E^2 model structures on s° .
- left localizⁿ $L: \mathcal{M} \rightleftarrows L\mathcal{M}: i$ gives model structure on \mathcal{M} presenting $L\mathcal{M} \simeq \mathcal{M}[\mathbf{W}^{-1}]$. this has $\mathcal{M}^c = \mathcal{M}$, $\mathcal{M}^f = i(L\mathcal{M})$. (e.g. $\tau_{\leq n}: \mathcal{S} \rightleftarrows \mathcal{S}^{\leq n}$, $L_{\mathbb{Q}}: \mathcal{S} \rightleftarrows \mathcal{S}_{\mathbb{Q}}$, $|-|: s\mathcal{S} \rightleftarrows \mathcal{S}: const$, $L_{E}: \mathcal{S}p \rightleftarrows L_{E}\mathcal{S}p$)

- trivial model structure: $\mathbf{W} = \mathcal{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathcal{M}$.
- model 1-categories.
- Reedy and E^2 model structures on s $^{\circ}$.
- left localizⁿ $L: \mathcal{M} \rightleftarrows L\mathcal{M}: i$ gives model structure on \mathcal{M} presenting $L\mathcal{M} \simeq \mathcal{M}[\mathbf{W}^{-1}]$. this has $\mathcal{M}^c = \mathcal{M}$, $\mathcal{M}^f = i(L\mathcal{M})$. (e.g. $\tau_{\leq n}: \mathbb{S} \rightleftarrows \mathbb{S}^{\leq n}$, $L_{\mathbb{Q}}: \mathbb{S} \rightleftarrows \mathbb{S}_{\mathbb{Q}}$, $|-|: s\mathbb{S} \rightleftarrows \mathbb{S}: \mathsf{const}$, $L_{E}: \mathbb{S}p \rightleftarrows L_{E}\mathbb{S}p$)
- ...and dually (so all obj's fib^t). (e.g. $S^{\geq n} \rightleftharpoons S : \tau_{\geq n}$)

- trivial model structure: $\mathbf{W} = \mathcal{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathcal{M}$.
- model 1-categories.
- Reedy and E^2 model structures on s° .
- left localizⁿ $L: \mathcal{M} \rightleftarrows L\mathcal{M}: i$ gives model structure on \mathcal{M} presenting $L\mathcal{M} \simeq \mathcal{M}[\mathbf{W}^{-1}]$. this has $\mathcal{M}^c = \mathcal{M}$, $\mathcal{M}^f = i(L\mathcal{M})$. (e.g. $\tau_{\leq n}: \mathbb{S} \rightleftarrows \mathbb{S}^{\leq n}$, $L_{\mathbb{Q}}: \mathbb{S} \rightleftarrows \mathbb{S}_{\mathbb{Q}}$, $|-|: s\mathbb{S} \rightleftarrows \mathbb{S}: const$, $L_{E}: \mathbb{S}p \rightleftarrows L_{E}\mathbb{S}p$)
- ...and dually (so all obj's fib^t). (e.g. $S^{\geq n} \rightleftharpoons S : \tau_{\geq n}$)

→ a model structure is a *simultaneous generalization* of the notions of *left* and *right* localizations.

- trivial model structure: $\mathbf{W} = \mathcal{M}^{\simeq}$, $\mathbf{C} = \mathbf{F} = \mathcal{M}$.
- model 1-categories.
- Reedy and E^2 model structures on s° .
- left localizⁿ $L: \mathcal{M} \rightleftarrows L\mathcal{M}: i$ gives model structure on \mathcal{M} presenting $L\mathcal{M} \simeq \mathcal{M}[\mathbf{W}^{-1}]$. this has $\mathcal{M}^c = \mathcal{M}$, $\mathcal{M}^f = i(L\mathcal{M})$. (e.g. $\tau_{\leq n}: \mathbb{S} \rightleftarrows \mathbb{S}^{\leq n}$, $L_{\mathbb{Q}}: \mathbb{S} \rightleftarrows \mathbb{S}_{\mathbb{Q}}$, $|-|: s\mathbb{S} \rightleftarrows \mathbb{S}: \mathsf{const}$, $L_{E}: \mathbb{S}p \rightleftarrows L_{E}\mathbb{S}p$)
- ...and dually (so all obj's fib^t). (e.g. $S^{\geq n} \rightleftharpoons S : \tau_{\geq n}$)
- → a model structure is a *simultaneous generalization* of the notions of *left* and *right* localizations.
- \sim another perspective: model structures on ∞ -categories can compute the composition of total derived functors of (classical) left and right Quillen functors.

(e.g.
$$s\mathcal{C} \to s\mathcal{C}[\mathbf{W}_{E^2}^{-1}] \simeq \mathcal{P}_{\Sigma}(\mathfrak{G})$$
 is a right adjoint followed by a left adjoint)

computing hom-spaces

computing hom-spaces

model 1-categories: start with a set of maps, *quotient* by relations to obtain a set of "homotopy classes of maps".

taking a quotient goes against the *core thesis of higher category theory*: instead, *remember* the relations, build them into a *space* of "homotopy classes of maps".

computing hom-spaces

model 1-categories: start with a set of maps, *quotient* by relations to obtain a set of "homotopy classes of maps".

taking a quotient goes against the *core thesis of higher category theory*: instead, *remember* the relations, build them into a *space* of "homotopy classes of maps".

recall: in a model 1-category, a *cylinder* for $x \in \mathbf{M}$ is a factorizⁿ

$$x \sqcup x \rightarrowtail \operatorname{cyl}(x) \xrightarrow{\approx} x$$
,

and a *path* for $y \in M$ is a factorizⁿ

$$y \xrightarrow{\approx} \operatorname{path}(y) \twoheadrightarrow y \times y.$$

model ∞ -categories: don't truncate these co/simplicial objects! \rightsquigarrow a *cylinder obj* is $\text{cyl}^{\bullet}(x) \in c \mathcal{M}$, a *path obj* is $\text{path}_{\bullet}(y) \in s \mathcal{M}$. ("cofib^t **W**-cohypercover" and "fib^t **W**-hypercover", resp.)

1-topos theory : **quotient** by an equiv^{ce} rel^n :: ∞ -topos theory : **geom realiz**ⁿ of a simplicial object

→ define space of left htpy classes of maps by

$$\mathsf{hom}_{\mathfrak{M}}^{\stackrel{\prime}{\sim}}(x,y) = \left|\mathsf{hom}_{\mathfrak{M}}^{\mathsf{lw}}(\mathsf{cyl}^{\bullet}(x),y)\right|$$

and **space of right htpy classes of maps** by

$$\mathsf{hom}^{r}_{\mathfrak{M}}(x,y) = \left| \mathsf{hom}^{\mathsf{Iw}}_{\mathfrak{M}}(x,\mathsf{path}_{ullet}(y)) \right|.$$

fundamental theorem of model ∞ -categories

if x cofib^t and y fib^t, then for any cylinder/path obj's,

$$\mathsf{hom}^{\stackrel{\prime}{\hspace{-0.05cm} \leftarrow}}_{\mathfrak{M}}(x,y) \stackrel{\sim}{\longrightarrow} \mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y) \stackrel{\sim}{\longleftarrow} \mathsf{hom}^{\stackrel{\prime}{\hspace{-0.05cm} \leftarrow}}_{\mathfrak{M}}(x,y).$$

fundamental theorem of model ∞ -categories

if x cofib^t and y fib^t, then for any cylinder/path obj's,

$$\mathsf{hom}_{\mathfrak{M}}^{\overset{\prime}{\overset{}{\overset{}{\smile}}}}(x,y) \stackrel{\sim}{\longrightarrow} \mathsf{hom}_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y) \stackrel{\sim}{\longleftarrow} \mathsf{hom}_{\mathfrak{M}}^{\overset{\prime}{\overset{}{\smile}}}(x,y).$$

proof uses model two important model ∞ -categories:

- the **Quillen model structure** on sS.
- ullet the **Thomason model structure** on $\mathbb{C}at_{\infty}$.

(can't use fund thm here: must prove things in these model ∞ -cats by hand!)

Quillen model structure on sS

Quillen model structure on sS

model 1-cats enriched in $sets \leadsto s \mathcal{S}et_Q$ plays a distinguished role. model ∞ -cats enriched in $spaces \leadsto s \mathcal{S}_Q$ plays a distinguished role.

both give "presentations of spaces" via geometric realization.

Quillen model structure on sS

model 1-cats enriched in $sets \leadsto s \mathcal{S}et_Q$ plays a distinguished role. model ∞ -cats enriched in $spaces \leadsto s \mathcal{S}_Q$ plays a distinguished role.

both give "presentations of spaces" via geometric realization.

write

$$\pi_0: sS \rightleftarrows sSet: \delta, \quad I_Q = \{\partial \Delta^n \to \Delta^n\}_{n \geq 0}, \quad J_Q = \{\Lambda^n_i \to \Delta^n\}_{0 \leq i \leq n > 0}.$$
 (for $sSet_Q$, I_Q = generating cofib^{ns} and J_Q = generating acyclic cofib^{ns}.)

Quillen model structure on sS

model 1-cats enriched in $sets \leadsto s \mathcal{S}et_Q$ plays a distinguished role. model ∞ -cats enriched in $spaces \leadsto s \mathcal{S}_Q$ plays a distinguished role.

both give "presentations of spaces" via geometric realization.

write

$$\pi_0: s\mathbb{S} \rightleftarrows s\mathbb{S}$$
et $:\delta, \quad I_Q = \{\partial\Delta^n \to \Delta^n\}_{n\geq 0}, \quad J_Q = \{\Lambda^n_i \to \Delta^n\}_{0\leq i\leq n>0}.$

(for $sSet_Q$, I_Q = generating cofib^{ns} and J_Q = generating acyclic cofib^{ns}.)

then, $sS_{Quillen}$ is cofib^{tly} generated too:

- $I_{\mathsf{Q}}^{s\mathbb{S}} = \delta(I_{\mathsf{Q}})$ and $J_{\mathsf{Q}}^{s\mathbb{S}} = \delta(J_{\mathsf{Q}})$;
- $\mathbf{W}_{Q} = \mathbf{W}_{colim}$ created by $colim = |-| : sS \to S$.

Quillen model structure on s8

model 1-cats enriched in $sets \leadsto s \aleph et_Q$ plays a distinguished role. model ∞ -cats enriched in $spaces \leadsto s \aleph_Q$ plays a distinguished role.

both give "presentations of spaces" via geometric realization.

write

$$\pi_0: \mathsf{s} \$ \rightleftarrows \mathsf{s} \$\mathsf{e} \mathsf{t} : \delta, \quad I_Q = \{\partial \Delta^n \to \Delta^n\}_{n \geq 0}, \quad J_Q = \{\Lambda^n_i \to \Delta^n\}_{0 \leq i \leq n > 0}.$$

(for $s \delta et_Q$, $I_Q = generating cofib^{ns}$ and $J_Q = generating acyclic cofib^{ns}$.)

then, $sS_{Quillen}$ is cofib^{tly} generated too:

- $I_{\mathsf{Q}}^{\mathsf{s}\mathcal{S}} = \delta(I_{\mathsf{Q}})$ and $J_{\mathsf{Q}}^{\mathsf{s}\mathcal{S}} = \delta(J_{\mathsf{Q}});$
- $\mathbf{W}_{\mathsf{Q}} = \mathbf{W}_{\mathsf{colim}}$ created by $\mathsf{colim} = |-| : s \mathbb{S} \to \mathbb{S}$.

 $sS_Q \rightleftharpoons sSet_Q$ a Quillen equiv^{ce}! (derived adjunction is $S \stackrel{id}{\rightleftharpoons} S$.)

comparison with analogous results on s S from model 1-cats

comparison with analogous results on $s\delta$ from model 1-cats

Moerdijk model structure: diag! : sSet $_{Q} \stackrel{Q. eq.}{\rightleftharpoons} ss$ Set $_{Moer} : diag^*$, $I_{Moer} = \{ \partial \Delta^n \boxtimes \partial \Delta^n \to \Delta^n \boxtimes \Delta^n \}$. $\leadsto \cdots \leadsto \text{in } s$ S, rIp $(\{ \partial \Delta^n \boxtimes S^{n-1} \to \Delta^n \boxtimes pt \}) \subset \mathbf{W}_{Q} = \mathbf{W}_{colim}$.

comparison with analogous results on sS from model 1-cats

Moerdijk model structure: $\operatorname{diag}_{!}: s\mathfrak{S}\mathrm{et}_{\mathsf{Q}} \overset{\mathsf{Q. eq.}}{\rightleftarrows} ss\mathfrak{S}\mathrm{et}_{\mathsf{Moer}}: \operatorname{diag}^{*},$ $I_{\mathsf{Moer}} = \{\partial \Delta^{n} \boxtimes \partial \Delta^{n} \to \Delta^{n} \boxtimes \Delta^{n}\}.$

$$\leadsto \cdots \leadsto \text{in } sS$$
, $\mathsf{rlp}\left(\{\partial \Delta^n \boxtimes S^{n-1} \to \Delta^n \boxtimes \mathsf{pt}\}\right) \subset \mathbf{W}_\mathsf{Q} = \mathbf{W}_\mathsf{colim}.$

These maps have serious geometric content!

$$n = 2: \qquad \bigcap_{\substack{Q \\ Q \\ \partial \Delta^n \boxtimes S^{n-1}}}^{\mathbb{Q}} \bigcap_{\substack{M \\ \delta(\Delta^n)}}^{\mathfrak{g}_{\mathbb{R}}} \bigcap_{\substack{\beta \\ \delta(\Delta^$$

 \rightsquigarrow only needing to check $\mathsf{rlp}(I_{\mathsf{Q}}^{\mathsf{sS}})$ is a substantial improvement.

comparison with analogous results on sS from model 1-cats

Moerdijk model structure: $\operatorname{diag}_{!}: s\mathfrak{S}\mathrm{et}_{\mathbb{Q}} \overset{Q. \, \mathrm{eq.}}{\rightleftarrows} ss\mathfrak{S}\mathrm{et}_{\mathsf{Moer}}: \operatorname{diag}^{*},$ $I_{\mathsf{Moer}} = \{\partial \Delta^{n} \boxtimes \partial \Delta^{n} \to \Delta^{n} \boxtimes \Delta^{n}\}.$

$$ightarrow \cdots
ightarrow ext{in } s S$$
, $\mathsf{rlp}\left(\{\partial \Delta^n oxtimes S^{n-1} o \Delta^n oxtimes \mathsf{pt}\}\right) \subset \mathbf{W}_\mathsf{Q} = \mathbf{W}_\mathsf{colim}.$

These maps have serious geometric content!

 \rightsquigarrow only needing to check $\mathsf{rlp}(I_{\mathsf{Q}}^{\mathsf{sS}})$ is a substantial improvement.

similarly: 'dreaded' π_* -Kan condition for ho-p.b.'s in $s(sSet)_{Reedy}$; replace with "htpy-coherent π_0 -Kan condition".

comparison with analogous results on sS from model 1-cats

$$ightarrow \cdots
ightarrow ext{in } s S$$
, $\mathsf{rlp}\left(\{\partial \Delta^n oxtimes S^{n-1} o \Delta^n oxtimes \mathsf{pt}\}\right) \subset \mathbf{W}_\mathsf{Q} = \mathbf{W}_\mathsf{colim}.$

These maps have serious geometric content!

ightharpoonup only needing to check $\mathsf{rlp}(I_{\mathsf{Q}}^{\mathsf{sS}})$ is a substantial improvement.

similarly: 'dreaded' π_* -Kan condition for ho-p.b.'s in $s(sSet)_{Reedy}$; replace with "htpy-coherent π_0 -Kan condition".

<u>moral</u>: working with model ∞ -cats allows us to replace *maps in from spheres* with *homotopy-coherent maps in from points*.

Thomason model structure on $\mathfrak{C}at_{\infty}$

Thomason model structure on $\mathfrak{C}at_{\infty}$

cofib^{tly} gen^d, lifted *directly* along $sS_Q \rightleftarrows \mathbb{C}SS \simeq \mathbb{C}at_\infty$, which is a **Quillen equiv**^{ce} (so this model ∞ -cat also presents S).

$$\leadsto$$
 \mathbf{W}_{Th} created by $\mathsf{Cat}_{\infty} \xrightarrow{\mathit{CSS}} \mathit{sS} \xrightarrow{|-|} \mathsf{S}$, i.e. by $\mathsf{Cat}_{\infty} \xrightarrow{(-)^{\mathsf{gpd}}} \mathsf{S}$.

 \rightsquigarrow fibrant objects are exactly the ∞ -groupoids.

Thomason model structure on Cat_{∞}

cofib^{tly} gen^d, lifted *directly* along $sS_Q \rightleftarrows \mathbb{CSS} \simeq \mathbb{C}at_\infty$, which is a **Quillen equiv**^{ce} (so this model ∞ -cat also presents S).

$$\leadsto$$
 W_{Th} created by $\operatorname{Cat}_{\infty} \xrightarrow{\mathit{CSS}} \mathit{sS} \xrightarrow{|-|} \operatorname{S}$, i.e. by $\operatorname{Cat}_{\infty} \xrightarrow{(-)^{gpd}} \operatorname{S}$.

 \leadsto fibrant objects are exactly the ∞ -groupoids.

image of $\mathcal{C}\in \operatorname{Cat} \xrightarrow{N} s\operatorname{Set}_Q$ or $\mathcal{C}\in \operatorname{Cat}_\infty \xrightarrow{CSS} s\operatorname{S}_Q$ is fibrant iff \mathcal{C} is a *groupoid*. note: 1-gpds only model 1-types, but ∞ -gpds model *all* spaces.

 $\rightsquigarrow \mathbb{C}\text{at}_{\mathsf{Th}}$ can only be lifted along

$$\mathsf{ho} \circ \mathsf{sd}^2 : \mathsf{sSet}_\mathsf{Q} \rightleftarrows \mathsf{sSet} \rightleftarrows \mathsf{sSet} \rightleftarrows \mathsf{Cat} : \mathsf{Ex}^2 \circ \mathsf{N},$$

at least if we want this to be a Quillen equivalence.

A.: the *Grothendieck construction*, just as with Cat_{Th} .

A.: the *Grothendieck construction*, just as with Cat_{Th}.

e.g.: if $\mathcal{C} \xrightarrow{F} (\mathcal{C}at_{\infty})_{\mathsf{Th}}$, then $\mathsf{Gr}(F) \approx \mathsf{ho}\mathsf{colim}(F)$, i.e.

$$\mathsf{Gr}(F)^{\mathsf{gpd}} \simeq \mathsf{colim}\left(\mathfrak{C} \xrightarrow{F} \mathfrak{Cat}_{\infty} \xrightarrow{(-)^{\mathsf{gpd}}} \mathfrak{S}\right).$$

(think of F as "presenting" a \mathbb{C} -shaped diagram in \mathbb{S} .)

A.: the *Grothendieck construction*, just as with Cat_{Th}.

e.g.: if $\mathcal{C} \xrightarrow{F} (\mathbb{C}at_{\infty})_{\mathsf{Th}}$, then $\mathsf{Gr}(F) \approx \mathsf{ho}\mathsf{colim}(F)$, i.e.

$$\mathsf{Gr}(F)^{\mathsf{gpd}} \simeq \mathsf{colim}\left(\mathfrak{C} \xrightarrow{F} \mathfrak{Cat}_{\infty} \xrightarrow{(-)^{\mathsf{gpd}}} \mathfrak{S}\right).$$

(think of F as "presenting" a \mathbb{C} -shaped diagram in \mathbb{S} .)

A.: the **Grothendieck construction**, just as with Cat_{Th} .

e.g.: if $\mathcal{C} \xrightarrow{F} (\mathbb{C}at_{\infty})_{\mathsf{Th}}$, then $\mathsf{Gr}(F) \approx \mathsf{ho}\mathsf{colim}(F)$, i.e.

$$\mathsf{Gr}(F)^{\mathsf{gpd}} \simeq \mathsf{colim}\left(\mathfrak{C} \xrightarrow{F} \mathfrak{Cat}_{\infty} \xrightarrow{(-)^{\mathsf{gpd}}} \mathfrak{S}\right).$$

(think of F as "presenting" a \mathbb{C} -shaped diagram in \mathbb{S} .)

$$\underbrace{\mathbf{e.g.}}_{\mathbb{C}} : \text{ if } \overset{\mathbb{C}}{\underset{\mathsf{W}_{\mathsf{Th}}}{\longrightarrow}} \overset{\mathsf{Cat}_{\infty}}{\underset{\mathsf{AV}_{\mathsf{Th}}}{\longrightarrow}} \text{ then } \forall x \in \mathbb{C}, \quad \downarrow \qquad \downarrow \qquad \text{is a ho-p.b.}$$
 is a \$ho\$-p.b. in \$\begin{align*} \cdot \mathbb{C} & \

(compare with Quillen's Theorem B.)

A.: the **Grothendieck construction**, just as with Cat_{Th} .

e.g.: if $\mathcal{C} \xrightarrow{F} (\mathbb{C}at_{\infty})_{\mathsf{Th}}$, then $\mathsf{Gr}(F) \approx \mathsf{ho}\mathsf{colim}(F)$, i.e.

$$\mathsf{Gr}(F)^{\mathsf{gpd}} \simeq \mathsf{colim}\left(\mathfrak{C} \xrightarrow{F} \mathfrak{Cat}_{\infty} \xrightarrow{(-)^{\mathsf{gpd}}} \mathfrak{S}\right).$$

(think of F as "presenting" a \mathbb{C} -shaped diagram in \mathbb{S} .)

(compare with Quillen's Theorem B.)

 $\{x\}^{gpd} \longrightarrow \mathcal{C}^{gpd}$

set up sS_Q , then prove string of equiv^{ces} in S following Dwyer–Kan.

set up sS_Q , then prove string of equiv^{ces} in S following Dwyer–Kan. eventually, need to access hom-space $hom_{M[\mathbf{W}^{-1}]}(x,y)$.

set up sS_Q , then prove string of equiv^{ces} in S following Dwyer–Kan. eventually, need to access hom-space $hom_{\mathcal{M}[\mathbf{W}^{-1}]}(x,y)$. do so using localizⁿ thm for model ∞ -cats:

set up sS_Q , then prove string of equiv^{ces} in S following Dwyer–Kan. eventually, need to access hom-space $\hom_{\mathfrak{M}[\mathbf{W}^{-1}]}(x,y)$. do so using

localizⁿ thm for model ∞ -cats: define $\mathit{CSS}(\mathfrak{M}, \mathbf{W})_{\bullet} \in \mathit{sS}$ by

(following Rezk's "classification diagram" functor $\Re el \Re t \to s(s \Re t)$).

then: $\mathit{CSS}(\mathcal{M}, \mathbf{W})_{ullet}$ is actually a complete Segal space, and

$$(\mathit{CSS}(\mathfrak{M})_{\bullet} \to \mathit{CSS}(\mathfrak{M}, \mathbf{W})_{\bullet}) \in \mathfrak{CSS} \quad \leftrightsquigarrow \quad (\mathfrak{M} \to \mathfrak{M}[\mathbf{W}^{-1}]) \in \mathfrak{C}at_{\infty}.$$

set up sS_Q , then prove string of equiv^{ces} in S following Dwyer–Kan. eventually, need to access hom-space $\hom_{\mathcal{M}[\mathbf{W}^{-1}]}(x,y)$. do so using localizⁿ thm for model ∞ -cats: define $CSS(\mathcal{M},\mathbf{W})_{\bullet} \in sS$ by

$$CSS(\mathcal{M}, \mathbf{W})_n = \left(\operatorname{Fun}([n], \mathcal{M})^{\mathbf{W}}\right)^{\operatorname{gpd}}, \qquad \downarrow^{n} \downarrow^{n} \downarrow^{n} \downarrow^{n} \downarrow^{n}$$

(following Rezk's "classification diagram" functor $\Re el \Re t \to s(s \Re t)$).

then: $\mathit{CSS}(\mathcal{M}, \mathbf{W})_{ullet}$ is actually a complete Segal space, and

$$(\mathit{CSS}(\mathcal{M})_{\bullet} \to \mathit{CSS}(\mathcal{M}, \mathbf{W})_{\bullet}) \in \mathtt{CSS} \quad \leftrightsquigarrow \quad (\mathcal{M} \to \mathcal{M}[\mathbf{W}^{-1}]) \in \mathtt{Cat}_{\infty}.$$

proof: set up $(Cat_{\infty})_{Thomason}$, then follow Barwick–Kan.

Thanks for listening!

Thanks for listening!

references:

- Goerss-Hopkins, Moduli problems for structured ring spectra.
- Rezk, Notes on the Hopkins-Miller theorem.
- Blanc-Dwyer-Goerss, The realization space of a Π-algebra: a moduli problem in algebraic topology.
- Dwyer-Kan-Stover, An E² model category structure for pointed simplicial spaces.
- Dwyer-Kan, Function complexes in homotopical algebra.
- Barwick–Kan, From partial model categories to ∞-categories.

this talk:

```
\verb|http://math.berkeley.edu/\sim|aaron/writing/ytm-cghost-beamer.pdf|
```

greatly expanded version:

```
http://math.berkeley.edu/~aaron/writing/thursday-cghost-beamer.pdf
/thursday-cghost-talk-notes.pdf
/BDG-diagram-beamer.pdf
```

