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main goal: use purely algebraic computations to obtain
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main goal: use purely algebraic computations to obtain
existence and uniqueness results for structured ring spectra.

E*
setup: C = A. (e.g. € = Exo-ring spectra; A the appropriate algebraic target)

question: Given A € A, is there X € € with E.X = A?
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Introduction

main goal: use purely algebraic computations to obtain
existence and uniqueness results for structured ring spectra.

E*
setup: C = A. (e.g. € = Exo-ring spectra; A the appropriate algebraic target)
question: Given A € A, is there X € € with E.X = A?

obstructions live in André—Quillen cohomology in A:

o to existence in H 7 (A, Q"A) for n > 1,

o to uniqueness in H,i (A, QA) for n > 1.
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higher-categorical perspective: write

c—= 4
I I
M (A) ——--- s A}

for the moduli space (i.e. co-gpd) of realizations of A.
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Introduction

higher-categorical perspective: write

c—FL A
I I
M(A) > {A}

for the moduli space (i.e. co-gpd) of realizations of A.
now, existence and uniqueness: ~~ asks about mo(.Z(A)).

higher data: are any two equivalences equivalent (i.e. homotopic)?
~~ asks about 1 (4 (A)).
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Introduction

higher-categorical perspective: write

c—E a4
7 7
M(A) ——-- s A}

for the moduli space (i.e. co-gpd) of realizations of A.
now, existence and uniqueness: ~~ asks about mo(.Z(A)).

higher data: are any two equivalences equivalent (i.e. homotopic)?
~~ asks about 1 (4 (A)).

GHOsT: can (try to) compute all m,(.#Z(A))!

spectral sequence Hj (A, Q*A) = m. (4 (A))
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sample application: “naive” theory of spectral alg geometry.

should have Spec : (Ex-rings)® < (spectral schemes).

Whatever a spectral scheme is, it should be “locally” Spec R for
some E.-ring R... so what does “locally” mean?
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sample application: “naive” theory of spectral alg geometry.

should have Spec : (Ex-rings)® < (spectral schemes).

Whatever a spectral scheme is, it should be “locally” Spec R for
some E.-ring R... so what does “locally” mean?

a priori: abstract definition coming from oo-topos theory.

“naive” def": (top space SpecmoR) + (Eco-structure sheaf).
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sample application: “naive” theory of spectral alg geometry.

should have Spec : (Ex-rings)® < (spectral schemes).

Whatever a spectral scheme is, it should be “locally” Spec R for
some E.-ring R... so what does “locally” mean?

a priori: abstract definition coming from oo-topos theory.
“naive” def": (top space SpecmoR) + (Eco-structure sheaf).
why this works: g : Zar(R) = Zar(moR).

key fact: AQ coh measures failure of smoothness...
but inclusions of Zariski opens are smooth.
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Introduction

sample application: “naive” theory of spectral alg geometry.

should have Spec : (Ex-rings)® < (spectral schemes).

Whatever a spectral scheme is, it should be “locally” Spec R for
some E.-ring R... so what does “locally” mean?

a priori: abstract definition coming from oo-topos theory.
“naive” def": (top space SpecmoR) + (Eco-structure sheaf).
why this works: g : Zar(R) = Zar(moR).

key fact: AQ coh measures failure of smoothness...
but inclusions of Zariski opens are smooth.

GHOSsT for co-cats ~» “naive” theory of DAG in other oo-cats
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Introduction

more motivation for GHOsT for co-categories

dogmatic: oo-cat : model cat :: manifold : atlas

Goerss—Hopkins worked very, very hard to get just the right
‘atlases’ when they set up GHOsT, but this shouldn’t be necessary.

~> GHOsT should be model-independent, i.e. construction itself
should descend to the underlying oo-category of spectra.
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Introduction

more motivation for GHOsT for co-categories

dogmatic: oo-cat : model cat :: manifold : atlas

Goerss—Hopkins worked very, very hard to get just the right
‘atlases’ when they set up GHOsT, but this shouldn’t be necessary.

~> GHOsT should be model-independent, i.e. construction itself

should descend to the underlying oo-category of spectra.

pragmatic: then, may as well do it for all co-categories, to get:

@ GHOsT in

e equivariant / motivic homotopy theory
o logarithmic E..-ring spectra
e cxes of qcoh sheaves (~ coeffs for factoriz" homology)

@ oo-categorical Rognes—Galois correspondence

@ et al.
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precursors / inputs to GHOsT
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Introduction

precursors / inputs to GHOsT

@ Hopkins—Miller obstruction theory for A..-ring spectra
simpler than GHOsT: X, acts freely on mo((Acc)n)

e Blanc-Dwyer—Goerss obstruction theory for Top,
yet simpler: no operad at all, use 7 instead of E.

(stability is nbd either way)
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Introduction

precursors / inputs to GHOsT

@ Hopkins—Miller obstruction theory for A..-ring spectra
simpler than GHOsT: X, acts freely on mo((Acc)n)

e Blanc-Dwyer—Goerss obstruction theory for Top,
yet simpler: no operad at all, use 7 instead of E.

(stability is nbd either way)

o E’-model structure of Dwyer—Kan—Stover on sTop,
a/k/a resolution model structure: generalizes the notion of “projective

resolutions” to nonabelian setting
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setup
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Obstruction theory

setup (for simplicity, just BDG obstr" theory; the GHOsT story is kind of scary.)
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Obstruction theory

setup (for simplicity, just BDG obstr" theory; the GHOsT story is kind of scary.)
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Obstruction theory

setup (for simplicity, just BDG obstr" theory; the GHOsT story is kind of scary.)

@ C a presentable homotopy theory;
@ G a set of generators;

@ define “homotopy” functor
C—s A

by
m X ={[S”, X]}soeg-

(by def" of “generators”, . detects equivalences.)
>1 n
example: C=Top, , §={5"}n>1.
example: C = Spectra, § = {5"},ez.
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Obstruction theory

goal: given A € A, want to understand .Z(A) C C.

key tool: Postnikov methods.
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Obstruction theory

goal: given A € A, want to understand .Z(A) C C.

key tool: Postnikov methods.

problem: 7, not necessarily bounded-below: nowhere to start.
(e.g. htpy groups of spectra are Z-graded.)
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Obstruction theory

goal: given A € A, want to understand .Z(A) C C.

key tool: Postnikov methods.

problem: 7, not necessarily bounded-below: nowhere to start.
(e.g. htpy groups of spectra are Z-graded.)

solution: “flip Z's worth of 7, on its side” and resolve “upwards”
in a new simplicial direction.
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Obstruction theory

So, work in sC. We have a homotopy spectral sequence
E? = m, (7™ X) = m|X].

question: When does X € sC have |X| € .Z(A)?
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Obstruction theory

So, work in sC. We have a homotopy spectral sequence
E? = m, (7™ X) = m|X].
question: When does X € sC have |X| € .Z(A)?

easiest answer: When the spectral sequence collapses!

E2 — 0
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Obstruction theory

call such an X € sC an oco-stage for A.

sC ¢
] T
(oo-stages) -------- y M(A)

recall: want to study .#(A) ~» want this to be an equivalence!
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Obstruction theory

call such an X € sC an oco-stage for A.

sC ¢
] T
(oo-stages) -------- y M(A)

recall: want to study .#(A) ~» want this to be an equivalence!

obviously false as stated: a map X — Y of co-stages can be an iso
on E? = m,(7™(=)) (so that |X| =5 |Y]) even if it's not a
levelwise equivalence, i.e. an iso on E! = 7!%(—).
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Obstruction theory

call such an X € sC an oco-stage for A.

sC ¢
] T
(oo-stages) -------- y M(A)

recall: want to study .#(A) ~» want this to be an equivalence!

obviously false as stated: a map X — Y of co-stages can be an iso
on E? = m,(7™(=)) (so that |X| =5 |Y]) even if it's not a
levelwise equivalence, i.e. an iso on E! = 7!%(—).

~ invert such “E2-equivalences” ~» E2-model structure on sC

~~» moduli space .#(A) C sCg2 of co-stages for A
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Obstruction theory

It turns out that this is just what we need:

|
sCpp ——

moral reason: oco-stages only have w7 at i =0

~» maps between them are totally determined by behavior on mom"

great!
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Obstruction theory

It turns out that this is just what we need:

|
sCpp ——

moral reason: oco-stages only have w7 at i =0

~» maps between them are totally determined by behavior on mom"

great!

step 2: find a Postnikov decomposition of .#Z..(A).

“global” version of Postnikov tower
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Obstruction theory

Define an n-stage for A to be X € sC with

n+2 Qrtla
E2 — S8
0 A

(really, n-truncation of the “hidden” part of the exact couple for an co-stage)

~~ moduli space .#,(A) C sCg2 of n-stages for A.
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Obstruction theory

Define an n-stage for A to be X € sC with

n+2 Qrtla
E2 — S8
0 A

(really, n-truncation of the “hidden” part of the exact couple for an co-stage)
~~ moduli space .#,(A) C sCg2 of n-stages for A.

Pn—1

—— Mn-1(A), and

have “truncation” functors .Z,(A)

MA) & Moo(A) 2 (A B (A B at5(A).
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Obstruction theory

climbing the tower: where does the AQ coh come from?
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Obstruction theory

climbing the tower: where does the AQ coh come from?

A, i=0
we just saw: if Y € #,_1(A), then m(=x¥y)=<{ QA i=n+1
0, otherwise.

however, for Y to extend to an n-stage, actually need to have a
weak equivalence (1) TVY ~ A x (Q"A)[n+ 1] in sA.

(as always, the abstract m«-iso isn't enough: need a map inducing it.)
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Obstruction theory

climbing the tower: where does the AQ coh come from?

A, i=0
we just saw: if Y € #,_1(A), then m(x¥y)=~{ QA i=n+1
0, otherwise.

however, for Y to extend to an n-stage, actually need to have a
weak equivalence () ™Y ~ A x (Q"A)[n+ 1] in sA.

(as always, the abstract m«-iso isn't enough: need a map inducing it.)
in sA,/, we have Loops(A x M[K]) ~ A x M[k —1].

have algebraic Postnikov theory in sA, giving ho-p.b. square

vy — A

P:'gl J

Az PE(rY) —— Ax (Q"A)n +2]
ka
~ need k3'® to be trivial, i.e. to represent 0 € HAL? (A, QA).

~~ obstr" to existence really do lie in Hf\gz(A, Q"A)!
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Obstruction theory

climbing the tower: where does the AQ coh come from?

A, i=0
we just saw: if Y € #,_1(A), then m(x¥y)=~{ QA i=n+1
0, otherwise.

however, for Y to extend to an n-stage, actually need to have a
weak equivalence () ™Y ~ A x (Q"A)[n+ 1] in sA.

(as always, the abstract m«-iso isn't enough: need a map inducing it.)
in sA,/, we have Loops(A x M[K]) ~ A x M[k —1].

have algebraic Postnikov theory in sA, giving ho-p.b. square

vy — A

P:'gl J

Az PE(rY) —— Ax (Q"A)n +2]
ka
~ need k3'® to be trivial, i.e. to represent 0 € HAL? (A, QA).

~~ obstr" to existence really do lie in Hf\gz(A, Q"A)!  0)
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Obstruction theory

towards a GHOsT for oco-categories
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Obstruction theory

towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)
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Obstruction theory

towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)

problem: The setup of GHOsT uses the actual 1-category sM —

and its E2-model structure — to make computations in sM[WE21 .
How can we do this in the co-categorical context?
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Obstruction theory

towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)

problem: The setup of GHOsT uses the actual 1-category sM —
and its E2-model structure — to make computations in sM[WE21 .
How can we do this in the co-categorical context?

solution: We need an “E2-model structure” on the co-category sC
which presents the co-category Px(9)!
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towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)

problem: The setup of GHOsT uses the actual 1-category sM —
and its E2-model structure — to make computations in sM[WE21 .
How can we do this in the co-categorical context?

solution: We need an “E2-model structure” on the co-category sC
which presents the co-category Px(9)!

~» two ingredients in generalizing GHOsT to oo-categories:
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Obstruction theory

towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)

problem: The setup of GHOsT uses the actual 1-category sM —
and its E2-model structure — to make computations in sM[WE21 .
How can we do this in the co-categorical context?

solution: We need an “E2-model structure” on the co-category sC
which presents the co-category Px(9)!

~» two ingredients in generalizing GHOsT to oo-categories:
@ a theory of model co-categories.
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Obstruction theory

towards a GHOsT for oco-categories

recall: for M a model category, obstr" thy takes place in sMg:.

fact: if M ~~ C, then sMgz ~~ Px(G) = Fung(9°, 8), the
oo-category of product-preserving presheaves of spaces on §.
(WLOG, the set G (of generators of C) is closed under finite coproducts)
(a/k/a the nonabelian derived co-category of C)

problem: The setup of GHOsT uses the actual 1-category sM —
and its E2-model structure — to make computations in sM[WE21 .
How can we do this in the co-categorical context?

solution: We need an “E2-model structure” on the co-category sC
which presents the co-category Px(9)!

~» two ingredients in generalizing GHOsT to oo-categories:
@ a theory of model ~o-categories.
@ plagiarism.



3. Model oco-categories

GHOsT for co-categories



Model co-categories

A model structure on a category M allows us to effectively
compute the hom-sets

hommw-1(x, y)-
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Model co-categories

A model structure on an co-category M allows us to effectively
compute the hom-spaces

homygw-1) (X, ).
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A model structure on an co-category M allows us to effectively
compute the hom-spaces

homygw-1) (X, ).
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Model co-categories

A model structure on an co-category M allows us to effectively
compute the hom-spaces

homygw-1) (X, ).

axioms: almost identical, but careful with lifting axiom: instead of
asking for an epimorphism of sets, want an effective epimorphism
of spaces (i.e. mp-surjection).
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Model co-categories

A model structure on an co-category M allows us to effectively
compute the hom-spaces

homygw-1) (X, ).

axioms: almost identical, but careful with lifting axiom: instead of
asking for an epimorphism of sets, want an effective epimorphism
of spaces (i.e. mp-surjection).

N.B.: oco-categories are already homotopically well-behaved.

~> has more to do with interesting mathematical structures
(namely, with resolutions) than with eliminating pathologies (e.g.
replacing spaces with C\W-cxes).
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Model co-categories

first examples
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Model co-categories

first examples

@ trivial model structure; W =M=, C =F = M.
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Model co-categories

first examples

@ trivial model structure; W =M=, C =F = M.

@ model 1-categories.
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Model co-categories

first examples

@ trivial model structure: W =M=, C=F =M.
@ model 1-categories.

@ Reedy and E? model structures on sC.
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Model co-categories

first examples

@ trivial model structure: W =M=, C=F =M.
@ model 1-categories.
@ Reedy and E? model structures on sC.

o left localiz" L: M &= LM : i gives model structure on M
presenting LM ~ M[W™1]. this has M = M, M = i(LM).
(eg. 7<p:8% 8=n, Lo :8=8q, |—|:s8 =8 :const, Lg : 8p = LgSp)
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Model co-categories

first examples

@ trivial model structure: W =M=, C=F =M.
@ model 1-categories.
@ Reedy and E? model structures on sC.

o left localiz" L: M &= LM : i gives model structure on M
presenting LM ~ M[W™1]. this has M = M, M = i(LM).
(eg. 7<p:8% 8=n, Lo :8=8q, |—|:s8 =8 :const, Lg : 8p = LgSp)

e ...and dually (so all obj's fib"). (eg. $2"=8:75,)
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Model co-categories

first examples

@ trivial model structure: W =M=, C=F =M.
@ model 1-categories.
@ Reedy and E? model structures on sC.

o left localiz" L: M &= LM : i gives model structure on M
presenting LM ~ M[W™1]. this has M = M, M = i(LM).
(eg. 7<p:8% 8=n, Lo :8=8q, |—|:s8 =8 :const, Lg : 8p = LgSp)

e ...and dually (so all obj's fib"). (eg. $2"=8:75,)

~» a model structure is a simultaneous generalization of the
notions of left and right localizations.
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Model co-categories

first examples

@ trivial model structure: W =M=, C=F =M.
@ model 1-categories.
@ Reedy and E? model structures on sC.

o left localiz" L: M &= LM : i gives model structure on M
presenting LM ~ M[W™1]. this has M = M, M = i(LM).
(eg. 7<p:8% 8=n, Lo :8=8q, |—|:s8 =8 :const, Lg : 8p = LgSp)

e ...and dually (so all obj's fib"). (eg. $2"=8:75,)

~» a model structure is a simultaneous generalization of the
notions of left and right localizations.

~> another perspective: model structures on oo-categories can
compute the composition of total derived functors of (classical)
left and right Quillen functors.

(e.g. sC— sG[WEQI] ~ Py (9) is a right adjoint followed by a left adjoint)



Model co-categories

computing hom-spaces
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Model co-categories

computing hom-spaces

model 1-categories: start with a set of maps, quotient by
relations to obtain a set of “homotopy classes of maps”.

taking a quotient goes against the core thesis of higher category
theory: instead, remember the relations, build them into a space
of “homotopy classes of maps”.
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Model co-categories

computing hom-spaces

model 1-categories: start with a set of maps, quotient by
relations to obtain a set of “homotopy classes of maps”.

taking a quotient goes against the core thesis of higher category
theory: instead, remember the relations, build them into a space
of “homotopy classes of maps”.
recall: in a model 1-category, a cylinder for x € M is a factoriz"
xUx — cyl(x) = x,
and a path for y € M is a factoriz"
y = path(y) = y x y.
model co-categories: don't truncate these co/simplicial objects!

~ a cylinder obj is cyl®(x) € cM, a path obj is path,(y) € sM.
(“cofib® W-cohypercover” and “fib® W-hypercover”, resp.)
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Model co-categories

1-topos theory : quotient by an equiv®® rel" ::

oo-topos theory : geom realiz" of a simplicial object

~ define space of left htpy classes of maps by

/
homy:(x, y) = |homt(cyl®(x), )|

and space of right htpy classes of maps by

homiyi(x, y) = |homb(x, path,(y))]
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Model co-categories

fundamental theorem of model oco-categories

if x cofib® and y fib®, then for any cylinder/path obj’s,

! r
homy(x,y) —— homyqw-11(x, ¥) +———— homjy(x,y).
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Model co-categories

fundamental theorem of model oco-categories

if x cofib® and y fib®, then for any cylinder/path obj’s,

! r
homy(x,y) —— homyqw-11(x, ¥) +———— homjy(x,y).

proof uses model two important model co-categories:
o the Quillen model structure on s8,
@ the Thomason model structure on Cat.,.

(can’t use fund thm here: must prove things in these model co-cats by hand!)
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Model co-categories

Quillen model structure on s8
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Model co-categories

Quillen model structure on s8

model 1-cats enriched in sets ~» sSetq plays a distinguished role.
model oo-cats enriched in spaces ~~ s8q plays a distinguished role.

both give "presentations of spaces” via geometric realization.
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Model co-categories

Quillen model structure on s8

model 1-cats enriched in sets ~» sSetq plays a distinguished role.
model oo-cats enriched in spaces ~~ s8q plays a distinguished role.

both give "presentations of spaces” via geometric realization.
write

o : sS = s8et : 5, /Q = {8A" — An}nzo, JQ = {/\:1 — An}0§;§n>o.

(for sSetq, lq = generating cofib™ and Jq = generating acyclic cofib™.)
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Model co-categories

Quillen model structure on s8

model 1-cats enriched in sets ~» sSetq plays a distinguished role.
model oo-cats enriched in spaces ~~ s8q plays a distinguished role.

both give "presentations of spaces” via geometric realization.
write

7o 158 2 s8et: 6, lq={0A" = A"} >0, Jo = {A] = A"}o<i<n>o-
(for sSetq, lq = generating cofib™ and Jq = generating acyclic cofib™.)

then, s8quillen is cofibth generated too:
o 1§ =6(lq) and J§ = 6(Jq);
o Wq = Wjim created by colim = |—| : s§ — 8.
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Model co-categories

Quillen model structure on s8

model 1-cats enriched in sets ~» sSetq plays a distinguished role.
model oo-cats enriched in spaces ~~ s8q plays a distinguished role.

both give "presentations of spaces” via geometric realization.
write

7o 158 2 s8et: 6, lq={0A" = A"} >0, Jo = {A] = A"}o<i<n>o-
(for sSetq, lq = generating cofib™ and Jq = generating acyclic cofib™.)

then, s8quillen is cofibth generated too:
o 1§ =6(lq) and J§ = 6(Jq);
o Wq = Wjim created by colim = |—| : s§ — 8.

id
s8q = s8etq a Quillen equive®! (derived adjunction is 8§ = §8.)
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Model co-categories

comparison with analogous results on sS from model 1-cats
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Model co-categories

comparison with analogous results on sS from model 1-cats

Q. eq.
Moerdijk model structure: diag, : sSetq = ss8etmoer : diag”,

Ivoer = {OA" K OA" — AT X A"}

v s in 88, rlp ({0A" X Sl L AT pt}) € Wq = Weolim.
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Model co-categories

comparison with analogous results on sS from model 1-cats

Q. eq.
Moerdijk model structure: diag, : sSetq = ss8etmoer : diag”,

Ivoer = {OA" K OA" — AT X A"}

v s in 88, rlp ({0A" X Sl L AT pt}) € Wq = Weolim.

These maps have serious geometric content!

o i ° ° s °

n=2 J N 7 #aN\ /\ — /.\
0O < o o« o o« o o e o
aA" K 571 5(A") 5(0A") 5(A")

~> only needing to check rIp(léS) is a substantial improvement.
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Model co-categories

comparison with analogous results on sS from model 1-cats

Q. eq.
Moerdijk model structure: diag, : sSetq = ss8etmoer : diag”,

Ivoer = {OA" K OA" — AT X A"}

v s in 88, rlp ({0A" X Sl L AT pt}) € Wq = Weolim.

These maps have serious geometric content!

o 8 ° ° e °
n=2 7N 7> 4.\ /\ — /.\
O <= O o = o o - o o - o
oA" K 51 5(A") 5(0A") 5(a")
~> only needing to check rIp(léS) is a substantial improvement.
similarly: ‘dreaded’ 7.-Kan condition for ho-p.b.'s in s(sSet)Rreedy;
replace with “htpy-coherent mp-Kan condition”.
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Model co-categories

comparison with analogous results on sS from model 1-cats

Q. eq.
Moerdijk model structure: diag, : sSetq = ss8etmoer : diag”,

Ivoer = {OA" K OA" — AT X A"}

v s in 88, rlp ({0A" X Sl L AT pt}) € Wq = Weolim.

These maps have serious geometric content!

o 8 ° ° e °
n=2 7N 7> 4.\ /\ — /.\
O <= O o = o o - o o - o
oA" K 51 5(A") 5(0A") 5(a")
~> only needing to check rIp(léS) is a substantial improvement.
similarly: ‘dreaded’ 7.-Kan condition for ho-p.b.'s in s(sSet)Rreedy;
replace with “htpy-coherent mp-Kan condition”.

moral: working with model co-cats allows us to replace maps in
from spheres with homotopy-coherent maps in from points.
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Model co-categories

Thomason model structure on Cat.,
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Model co-categories

Thomason model structure on Cat.,

cofib™y gend, lifted directly along sSq = 88 ~ Cat,,, which is a
Quillen equiv®® (so this model co-cat also presents §).

Ccss =l o . (—)ed
~> Wy, created by Cat,o — s§ —> §, i.e. by Catoe —— 8.

~ fibrant objects are exactly the oco-groupoids.
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Model co-categories

Thomason model structure on Cat.,

cofib™y gend, lifted directly along sSq = 88 ~ Cat,,, which is a
Quillen equiv®® (so this model co-cat also presents §).

Ccss =l o . (—)ed
~> Wy, created by Cat,o — s§ —> §, i.e. by Catoe —— 8.

~ fibrant objects are exactly the oco-groupoids.

image of C € Cat L sSetq or C € Cateo g) s8q is fibrant iff C is a groupoid.
note: 1-gpds only model 1-types, but co-gpds model all spaces.
~~» Cattp, can only be lifted along

ho o sd? : sSetq = sSet = sSet = Cat : Ex? o N,

at least if we want this to be a Quillen equivalence.
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Model co-categories

Q.: why is this useful?
A.: the Grothendieck construction, just as with Catry,.
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Model co-categories

Q.: why is this useful?
A.: the Grothendieck construction, just as with Catry,.

eg.: if C £ (Cateo)Th, then Gr(F) ~ hocolim(F), i.e.
(—)ed

Gr(F)8Pd ~ colim (G LN Catoo — S) .

(think of F as “presenting” a C-shaped diagram in 8.)
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Model co-categories

Q.: why is this useful?
A.: the Grothendieck construction, just as with Catry,.

eg.: if C i (Catog)Th, then Gr(F) = hocolim(F), i.e.
(-

Gr(F)8Pd ~ colim (G LN Catoo — S) .

(think of F as “presenting” a C-shaped diagram in 8.)
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Model co-categories

Q.: why is this useful?
A.: the Grothendieck construction, just as with Catry,.

eg.: if C i (Catog)Th, then Gr(F) = hocolim(F), i.e.
(-

Gr(F)8Pd ~ colim (G LN Catoo — S) .

(think of F as “presenting” a C-shaped diagram in 8.)

e -5 eate F(x) — Gr(F)
e.g.: if \\A 7 thenVxeC, | | isaho-p.b.
WTh {X} —C

F(x)2Pd — Gr(F)epd
in (Catoo)Th, i.€. | | is a p.b.in 8.

{x}epd — cerd

(compare with Quillen’s Theorem B.)
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Model co-categories

Q.: why is this useful?
A.: the Grothendieck construction, just as with Catry,.

eg.: if C i (Catog)Th, then Gr(F) = hocolim(F), i.e.
(-

Gr(F)8Pd ~ colim (G LN Catoo — S) .

(think of F as “presenting” a C-shaped diagram in 8.)

e -5 eate F(x) — Gr(F)
e.g.: if \\A 7 thenVxeC, | | isaho-p.b.
Wy, {X} —C

F(x)2Pd — Gr(F)epd
in (Catoo)Th, i.€. | | is a p.b.in 8.

{x}epd — cerd

(compare with Quillen’s Theorem B.)
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Model co-categories

proof of fundamental theorem of model oco-cats
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Model co-categories

proof of fundamental theorem of model oco-cats

ces

set up s8q, then prove string of equiv®®® in § following Dwyer—Kan.
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Model co-categories

proof of fundamental theorem of model oco-cats

ces

set up s8q, then prove string of equiv®®® in § following Dwyer—Kan.

eventually, need to access hom-space homyw-1j(x, ¥)-
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Model co-categories

proof of fundamental theorem of model oco-cats

set up s8q, then prove string of equiv®®

in & following Dwyer—Kan.
eventually, need to access hom-space homyw-1] (x,y). do so using

localiz" thm for model co-cats:
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Model co-categories

proof of fundamental theorem of model oco-cats

<€ in 8 following Dwyer—Kan.

set up s8q, then prove string of equiv
eventually, need to access hom-space homyw-1] (x,y). do so using

localiz" thm for model oo-cats: define CSS(M, W), € s§ by
| . y
CSS(M, W), = (Fun([n],20")*, [ 1 |

(following Rezk's “classification diagram” functor RelCat — s(sSet)).
then: CSS(M, W), is actually a complete Segal space, and

(CSS(M)s — CSS(M,W),) € €88 v (M — M[W1]) € Cate..
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Model co-categories

proof of fundamental theorem of model oco-cats

set up s8q, then prove string of equiv®®® in § following Dwyer—Kan.
eventually, need to access hom-space homyw-1] (x,y). do so using

localiz" thm for model oo-cats: define CSS(M, W), € s§ by

CSS(M,W),,:(Fun([n],M)W)gpd, RN

(following Rezk's “classification diagram” functor RelCat — s(sSet)).

then: CSS(M, W), is actually a complete Segal space, and
(CSS(M)s — CSS(M,W),) € €SS« (M — M[W1]) € Cato..

proof: set up (Catoo)Thomason, then follow Barwick—Kan.
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Thanks for listening!
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Thanks for listening!

references:
@ Goerss—Hopkins, Moduli problems for structured ring spectra.
@ Rezk, Notes on the Hopkins—Miller theorem.
@ Blanc—Dwyer—Goerss, The realization space of a MN-algebra: a moduli problem in
algebraic topology.
@ Dwyer-Kan-Stover, An E? model category structure for pointed simplicial
spaces.

@ Dwyer—Kan, Function complexes in homotopical algebra.
@ Barwick—Kan, From partial model categories to co-categories.

this talk:

http://math.berkeley.edu/~aaron/writing/ytm-cghost-beamer.pdf

greatly expanded version:

http://math.berkeley.edu/~aaron/writing/thursday-cghost-beamer.pdf
/thursday-cghost-talk-notes.pdf
/BDG-diagram-beamer . pdf
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