
Universal algebraic extensions

Aaron Mazel-Gee

Abstract

This note records an in-progress attempt to provide a rigorous answer to the question: “What does it mean
to say that θ-algebras capture all the structure of the p-adic K-theory of an E∞-ring?” We propose a categorical
framework in which this notion is encoded as a universal property.

This attempt would not have reached its current stage without the helpful conversations we’ve had with
Martin Frankland, Justin Noel, Herman Stel, and Karol Szumilo. Of course, any of the remaining faults (and
there are sure to be many) are ours alone.
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1 Definitions.

Let L : C � D : R be an adjunction of “topological” categories, and let F : C → A be a functor to an “algebraic”
category. We define a new category AlgEx = AlgExF,LaR of algebraic extensions of F along L a R as follows.

• An object of AlgEx consists of a tuple (X,GX , LX , RX , η
restr
X , ηenrX ). Here, GX : D → X is a functor and

LX : A� X : RX is an adjunction, and these fit into the diagram

C
L -�
R

D

A

F

? LX -�
RX

X.

GX

?

The last two elements are:

– a natural isomorphism ηrestrX : RXGX ⇒ FR ∈ Fun(D,A), and

– a natural transformation ηenrX : LXF ⇒ GXL ∈ Fun(C,X).

The datum ηrestrX ensures that GX restricts to the original functor F , and for c ∈ C an RL-algebra the datum

ηenrX enriches F (c) from simply an object of A to an RXLX -algebra1. Explicitly, if c ∈ AlgRL via RL(c)
α−→ c,

then F (c) ∈ AlgRXLX via

RXLX(F (c))
RX(ηenrX (c))−−−−−−−−→ RXGXL(c)

ηrestrX (L(c))−−−−−−−−→ FRL(c)
F (α)−−−→ F (c).

1Should we be restricting to the case of a monadic adjunction (i.e., R : D
∼−→ AlgRL,C) for any reason?
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Given a diagram of categories and adjunctions as above, there is a bijection

HomFun(D,A)(FR,RXGX) ∼= HomFun(C,X)(LXF,GXL)

under which two corresponding natural transformations are said to be mated. We require that (ηrestrX )−1

and ηenr are mated. Of course, this means that we could equivalently specify just one of ηrestrX and ηenrX ;
in particular, for expository reasons we might like to keep only ηrestrX , so that we are very clearly asking for
nothing more than a factorization of FR through some potentially richer category. But already in the “transfer
of algebra structure” formula we have seen that both are useful, so we stick to the present formulation. We
justify this requirement in the section below entitled The mates requirement.

• A morphism f : (X,GX , LX , RX , η
restr
X , ηenrX ) → (Y,GY , LY , RY , η

restr
Y , ηenrY ) in AlgEx consists of a tuple

(Lf , Rf , λf , ρf , χf , εf ). Here, Lf : X � Y : Rf is an adjunction, which fits into the diagram2,3

C
L -

�
R

D
idD,L-

�
idD,R

D

A

F

? LX -
�

RX
X

GX

?

Y.

GY

?

==============

L
f

R
f

========================

L
Y

R
Y

The last four elements are:

– a left weakening natural transformation λf : LfLX ⇒ LY ∈ Fun(A, Y ),

– a right weakening natural transformation ρf : RXRf ⇒ RY ∈ Fun(Y,A),

– a compatibility natural isomorphism χf : RfGY ⇒ GX idD,R ∈ Fun(D,X), and

– an extension natural transformation εf : LfGX ⇒ GY idD,L ∈ Fun(D,Y ).

These natural transformations are required to satisfy:

– the compatibility condition that

RXRfGY ==================
IdRX ◦ χf ⇒ RXGX idD,R

RYGY

ρf ◦ IdGY�
wwwwwwww

=========
ηrestrY

⇒ FR = FRidD,R

ηrestrX ◦ IdidD,R�
wwwwwwww

commutes in Fun(D,A), and

– the extension condition that

LfLXF ===================
IdLf ◦ ηenrX ⇒ LfGXL

LY F

λf ◦ IdF�
wwwwwwww

========
ηenrY

⇒ GY L = GY idD,LL

εf ◦ IdL�
wwwwwwww

commutes in Fun(C, Y ).

2We use two lines in this diagram since our diagrams package can’t pile diagonal arrows. Of course this will be amended in a future
version. By convention, left adjoints are labeled above and right adjoints are labeled below.

3We use idD,L and idD,R to keep things clear, but we draw the line before distinguishing between the two copies of D in the diagram.
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We also require that (χf )−1 and εf are mated.

Note that such a morphism can therefore be thought of as precisely the data of:

• an object (Y,GY , Lf , Rf , χf , εf ) ∈ AlgExGX ,idD,LaidD,R
, along with

• a weakening of the composite adjunction LfLX a RXRf via λf and ρf to some possibly more relaxed
adjunction LY a RY , satisfying

• the conditions necessary to make the composite rectangle into an object of AlgExF,idD,LLaRidD,R
= AlgExF,LaR.

In particular, we should think of Y as a richer category than X through which we are factoring FR. This motivates
us to define a universal algebraic extension of F along L a R to be a terminal object of AlgEx.4,5

2 Examples.

Here are the examples we have in mind. The first is something of a testing ground since it is so simple, and we will
revisit it in the section The mates requirement in some detail.

Example 1. Let C = AbGrp and D = CRing, with the usual monadic adjunction Sym∗ : AbGrp � CRing : (−,+).
Then we can consider the forgetful functor U+ : AbGrp → Set. We have the evident string of morphisms Set →
AbSemigrp→ AbMon in AlgEx.6 We expect that AbMon is universal.

This example reflects the intuition that if an abelian group is secretly a commutative ring, then even if we forget
the abelian group structure, we still have an abelian monoid.

Before we get to the real examples of interest, we note with some amusement that we can flip this first example
around.

Example 2. Let C = AbMon and D = CRing, with the usual monadic adjunction Z[−] : AbMon � CRing : (−,×).
Then we can consider the forgetful functor U× : AbMon → Set. We have the evident string of morphisms Set →
AbSemigrp→ AbMon→ AbGrp in AlgEx. We expect that AbGrp is universal.

Of course, this example reflects a “dual” intuition compared to the first example.

We now turn to some examples of a topological flavor.

Example 3. Let C = D = Top∗,0 be the category of pointed connected7 spaces, and take L = R = idTop∗,0
.

Then we can consider π∗ : Top∗,0 → GrSet to be the graded homotopy set functor (in positive dimensions). We
then have the evident string of morphisms GrSet → GrGrp → π1-Mod → π1-Mod

Wh → Π-Alg in AlgEx (where Wh

denotes that we add the structure of Whitehead products), and we conjecture that Π-Alg is the universal algebraic
extension.8 If this is true, then it will probably follow from Yoneda’s lemma, along with the following fact: if
{nβ}β∈B is a set of nonnegative integers9 and FΠ : GrSet → Π-Alg denotes the free Π-algebra functor, then

π∗

(∨
β∈B S

nβ
)
∼= FΠ ({nβ}β∈B) as Π-algebras (where of course we consider {nβ}β∈B as a graded set by saying

that at level n it consists of the set {β ∈ B : nβ = n}).

Example 4. Let C = Spectra and D = E∞-Rings with the usual operadic-monadic adjunction P : Spectra �
E∞-Rings : U . Then we can consider K∗ : Spectra → MoravaMod, where K∗ denotes p-adic K-theory. We
have the algebraic extension K∗ : E∞-Rings → θ-Alg, and we’ve seen it implied that this is universal. For

4Note that (A,FR, idA, idA, IdFR, F (η)) is an initial object, where η : idC ⇒ RL is the unit of the adjunction; one might therefore
call this a “trivial” algebraic extension.

5In our examples, our algebraic adjunctions will indeed be monadic. This implies, for instance, that the right adjoint is conservative
(i.e. it creates isomorphisms) and that it takes reflexive coequalizers to split coequalizers. Thus our right adjoints really are simply
forgetting structure, and so it really does make sense for us to consider a terminal object universal.

6Recall that an abelian semigroup is a set equipped with a commutative associative binary operation, and an abelian monoid is an
abelian semigroup which has an identity element. We forbear the inclusion of such categories as “magmas”, which are primarily of
interest these days as first examples of algebras over an operad.

7Possibly one could generalize from Π-algebras to Π-algebroids.
8Recall that a Π-algebra is a Set-valued product-preserving functor off the opposite of the category Π of arbitrary wedges of positive-

dimensional spheres and based homotopy classes of maps.
9or more precisely, a function B → N0 – of course we may have nβ = nβ′ for β 6= β′
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instance, in Goerss-Hopkins’s Moduli Problems for Structured Ring Spectra, they make this claim prosaically as
a lead-up to their theorem 2.2.11. In our terminology and notation, that theorem says that this is indeed an
algebraic extension, and moreover that if c ∈ Spectra is cofibrant and K∗c ∈ MoravaMod is torsion free, then
ηenrθ-Alg(c) : Lθ-AlgK∗(c)→ K∗P(c) is an isomorphism.10,11

Example 5. Let E be any (not necessarily structured) ring spectrum such that E∗E is a flat E∗-module. Then
we can take C = D = Spectra, L = R = idSpectra, and we can consider the functor E∗ : Spectra → ModE∗ . We
have the algebraic extension E∗ : Spectra→ ComodE∗E , and this is probably universal too.

3 The Yoneda follies: why this project isn’t trivial.

There is one very important word which has not entered into the main discussion yet: Yoneda. Namely, suppose we
have our generic situation L : C � D : R and F : C → A. To determine all the structure that the target of F carries
(i.e. to try to understand AlgExF,idC,LaidC,R

), one might pass to the category PreshA(C) of A-valued presheaves

on C. Assuming A is tensored over Set (i.e. assuming it has a terminal object), C embeds into PreshA(C) via
the covariant Yoneda functor; in this way, we can consider F as being on an equal footing with the objects of C.
Then it is tempting to declare that by Yoneda’s lemma, all the possible structure on the functor represented by F
is encoded in EndPreshA(C)(F ). Going further, one might also declare that all the possible structure on the image
of the pullback of F along ι : AlgRL → C is encoded in EndPreshA(AlgRL)(ι

∗F ).

However, there are three reasons why we are not satisfied by this perspective.

• First of all, while this might seem to answer the question, as far as we are aware it gives virtually no concrete
understanding whatsoever: in a field so propelled by down-to-earth computations as algebraic topology, this
should not be considered a computable solution.

• The second reason is somewhat more damning: End(F ) doesn’t carry all the structure on the image of F . Let
us return to the example of Π-algebras. The functor π∗ : Top∗,0 → GrSet is corepresented inHo(Top∗,0) at level
n by the object Sn. Thus, End(π∗) ∼=

∏
n≥1[Sn, Sn]∗. We can recognize this product of hom-sets as a product

of monoids (under composition) isomorphic to Z. On the other hand, if we happen to remember that there
are interesting degree-shifting transformations, then (up to determining a suitable method of bookkeeping)
we obtain an action of all the (unstable) homotopy groups of spheres. But by the failure of excision for
homotopy groups – that is, because in general [Sm,

∨
β∈B S

nβ ]∗ 6∼=
∏
β∈B [Sm, Snβ ]∗ – there is strictly more

information encoded in a Π-algebra.12 Of course, this might suggest that in general, we should simply study
HomFun(Cm,A)(F

m, F ) for all m. But the fact remains that our initial reliance on Yoneda’s lemma led us
astray, and there is no a priori reason (as far as we can see, at least) that perhaps we’re not still being dense
and there’s some even further refinement of which we’re simply not aware.

• But it is the third reason that truly drives the nail into the coffin, we think: End(F ) really doesn’t carry all
the structure on the image of F ! Suppose we are still looking at Π-algebras, but we decide to be clever –
positive-dimensional homotopy sets are groups, after all – and begin with the functor π∗ : Top∗,0 → GrGrp.
Then we would completely miss most of the Π-algebra operations: unless a morphism in Π happens to be a
map of co-H-spaces, then it will not induce a group homomorphism. Note that in our definition of a morphism
in AlgEx, the presence of the weakening natural transformations λf and ρf allows for the existence a morphism
GrGrp→ Π-Alg.

This might seem artificial, but consider the case that A is no longer a concrete category. Then it would be
impossible to know13 whether A is sufficiently initial that we can extend forward as far as is truly possible:
we might be able to “extend backwards in order to extend forwards”. We immediately acknowledge that
our setup currently suffers from this deficiency too; however, in a future revision we plan to expand on the

10Of course, this reminds us that we should expand our theory to include the case that L a R is a Quillen adjunction. Perhaps not
much will need to be changed.

11This suggests a possible general criterion for universality, namely that ηenrX (c) is an isomorphism for some suitably large class of
objects c ∈ C.

12We note here that since spheres are ℵ0-compact objects in Ho(Top∗,0), a Π-algebra is equivalent to an algebra (in sets) over the
symmetric colored operad whose colors are given by the natural numbers and whose set of multimorphisms (n1, . . . , nk)→ m is given
by [Sm,

∨
1≤i≤k S

ni ]∗.
13as far as our own limited knowledge of category theory takes us, at least
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observation that morphisms are also objects in a different category of algebraic extensions, so that we can
recognize our current framework as a relative version of a more general absolute theory.

We hope that these reasons convince the reader that the motivating question for this project is not adequately
resolved by Yoneda’s lemma.

4 The mates requirement.

In this section, we justify the requirements in the definition of AlgEx that various pairs of natural transformations
be mated. We do this through the use of an illuminating example.

Let us write Sym∗ : AbGrp � CRing : (−,+) for the usual monadic adjunction. We would like to study algebraic
extensions of the functor U+ : AbGrp→ Set. In particular, we study the algebraic extension (X,GX , LX , RX , η

restr
X , ηenrX ) =

(AbMon, (−,×),N0{−}, U×, ηrestrX , ηenrX ), where ηrestrX : U×(−,×) ⇒ U+(−,+) is the evident natural isomorphism
and ηenrX : N0{U+(−)} ⇒ (Sym∗(−),×) is the natural transformation which acts as the identity function on gener-
ators and extends using the monoid structures.

To make our point, it will be useful for us to explicitly check that this is an object of AlgEx, i.e. that (ηrestrX )−1

and ηenrX are indeed mated. The mating bijection takes (ηrestrX )−1 to

AbGrp

AbGrp �
(−,+)==

==
==

==
==

==
==

=

idAb
Gr
p

⇓
η

CRing

Sym∗

?

⇒
(ηrestrX )−1

Set

U+

?
�

U×
AbMon

(−,×)

?

AbMon

N0{−}

?==
==

==
==

==
==

==
==

⇓
ε
′

idAb
Mo
n

(where η denotes the unit of Sym∗ a (−,+) and ε′ denotes counit of N0{−} a U×), considered as a natural
transformation in

HomFun(AbGrp,AbMon)(N0{U+(−)}, (Sym∗(−),×)).

To see what this natural transformation is, let A be an arbitrary abelian group. Then we carry out the vertical
compositions

N0{−} ◦ U+ ◦ idAbGrp

⇓ IdN0{−} ◦ IdU+
◦ η

N0{−} ◦ U+ ◦ (−,+) ◦ Sym∗

⇓ IdN0{−} ◦ (ηrestrX )−1 ◦ IdSym∗

N0{−} ◦ U× ◦ (−,×) ◦ Sym∗

⇓ ε′ ◦ Id(−,×) ◦ IdSym∗

idAbMon ◦ (−,×) ◦ Sym∗
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on A, using underline for simplicity to denote underlying set, as

N0{A} �
N0{−}

A �
U+

A �
idAbGrp

A

IdN0{−} IdU+
η

N0{Sym∗(A)}

n·a7→n·1·a

?
�N0{−}

Sym∗(A)

a 7→1·a

?
�U+

(Sym∗(A),+)

a 7→1·a

?
�(−,+)

Sym∗(A) �
Sym∗

A

wwwwwwwwww
IdN0{−} (ηrestrX )−1 IdSym∗

N0{Sym∗(A)}

id

?
�N0{−}

Sym∗(A)

id

?
�U× (Sym∗(A),×) �

(−,×)
Sym∗(A)

id

?
�Sym∗

A

wwwwwwwwww
ε′ Id(−,×) IdSym∗

(Sym∗(A),×)

n·f(ai)7→f(ani )

?
� idAbMon

(Sym∗(A),×)

id

?
�(−,×)

Sym∗(A)

id

?
�Sym∗

A.

wwwwwwwwww
(Here, f(ai) ∈ Sym∗(A) denotes an arbitrary polynomial.) Therefore, our new natural transformations evaluated

on A yields the morphism in HomAbMon(N0{A}, (Sym∗(A),×) given by

n · a 7→ n · 1 · a 7→ n · 1 · a 7→ 1 · an.

This is indeed ηenrX .

Now, we can finally explain the origin of the mates requirements. Let us temporarily write AlgEx? for the category
whose objects and morphisms are all the same as those of AlgEx but without the mates requirements. Then we can
define an object Y k? ∈ AlgEx?

U+,Sym∗a(−,+) to be exactly the same as the object X ∈ AlgExU+,Sym∗a(−,+) above,

except that we define ηenrY k? by n · a 7→ 1 · akn for some fixed k ≥ 1. Then X and Y k? determine precisely the same
factorizations of U+(−,+) : CRing→ Set, but there is an obvious (nontrivial and noninvertible for k > 1) morphism
X → Y k? in AlgEx?; one can easily check as we have done above that ηenrY k? is mated to the natural transformation
in HomFun(CRing,Set)(U+(−,+), U×(−,×)) given by r 7→ rk. Thus, X = Y 1? is initial among the Y k?. This should
be a more general phenomenon: if we are given a fixed natural isomorphism ηrestr, then among all the ηenr that
we might pair it with in AlgEx?, its mate is initial.

Thus, the mates requirement for objects of AlgEx allows for our category to have a terminal object, as we would
hope.14 Otherwise, more or less all of our objects will admit nontrivial endomorphisms, and our desired universal
algebraic extension will only have the much weaker universal property that it admits a morphism from every other
object. (And of course, once we have made this decision for our objects, clearly we must have it for our morphisms
as well.)

14We see a vague analogy AlgEx? : AlgEx :: suspension spectra : Ω-spectra, since in both pairs, the latter category has a requirement
that certain morphisms be adjoint to equivalences. We note that there might be a possibility of something like a model structure on
AlgEx?, where AlgEx is the (probably full) subcategory of cofibrant objects; note that applying such a replacement on the source would
give an inverse to X → Y k? when we take derived maps. But we haven’t looked into this very much. Note that the axioms for a model
category imply the existence of a terminal object, so a priori it’ll be at least as hard to prove we have a model category as it will be to
show that universal algebraic extensions exist.
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