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I should probably begin by saying that I'm really not very well-prepared for this talk.

0 Introduction

0.1 History

Goerss—Hopkins actually announce a relative version of their obstruction theory, but in fact this won’t be more
general after all. They begin with an &4-ring spectrum R and a map E,R = A — B of ®-algebras, and then they
look for the space of realizations of A — B as a map of &x-ring spectra off of R. But this is really just doing the
absolute obstruction theory in the category of R-algebras.

If we have access to the Dyer—Lashof algebra for a homotopy commutative and associative ring spectrum F,
then (since E is E-local) we can use GHOsT with respect to E, to put an &u-structure on FE itself!

0.2 Overview

0.3 Motivation
1 Blanc-Dwyer—Goerss obstruction theory

1.1 Categorical generalities

In any (co-)topos, the initial object is empty (in the categorical sense), which is why we topologists generally only
think about cobased objects in pointed categories. (Motivic spaces don’t form a topos, but they’re a localization
thereof, and in particular their initial object is still empty.)

We'll write S# for an arbitrary element of G, even though it’s really the set of finite coproducts of generators.
The 6 in P stands for “discrete”.

Note that A is really nothing more or less than the category of models (in Set) for the multi-sorted algebraic
theory G°P.

Usually IT-algebras are defined to be product-preserving presheaves of sets on ho(II) instead of just on II, but
since Set is a 1-category then these notions are equivalent.

We'll see that even in the enriched case, when sA is no a category of certain simplicial presheaves, we can still
define the appropriate model structure (or really, we’ll still be able to describe the appropriate co-category).

Note that the category A is pointed since the objects of § are cobased.

1.2 The big picture

To justify the claim about the fibers of the map BAut(A, M) — %"*2(14, Q" A), note that the group action fixes
the path component of 0 € H"*2, but can permute the others.



1.3 The E?-model structure

The trivial model structure on sSet can be equivalently described as the Reedy model structure with respect to
the trivial model structure on Set, which is its unique model structure which presents the homotopy category of
0-types.

In the definition of K AY, we need Y to be cobased. This is immediate if C is pointed.

Note that the functor % — SK N SP preserve coproducts up to weak equivalence since a homotopy coproduct
is just the coproduct of cofibrant replacements of the individual objects.

1.4 The spiral exact sequence

The first method of constructing the E'-page — and specifically, the subtlety that this was all taking place in the
Reedy model structure on sC, with which the Quillen model structure on sSet isn’t compatible — had me confused
for a really, really long time. I'd like to use this podium for just a moment to implore of you all: PLEASE do not
tell people that spaces and simplicial sets are the same thing!!

By definition, the natural homotopy groups are corepresentable in ho(sC B2 ). In fact, the classical homotopy
groups m,T, are corepresentable for all n # 1. At n = 0 this is true only because mym, = 7( ., and for n > 2 we

can make a rather weird construction (that involves putting certain cells in 2 simplicial dimensions below, which is
where the restriction comes from) that ends up corepresenting them.

1.5 Obstruction theory

The reason for the grading shift — that is, the fact that the “continuous n'" k-invariant map” runs ., _(A) —

H "+2(A,Q"A) — is due to the definition of an n-stage, which recall had nontrivial classical homotopy in degrees 0
and n + 2.

2  From Blanc-Dwyer—Goerss to Goerss—Hopkins

Goerss informs me that the original Goerss—Hopkins paper wasn’t ultimately published because they wanted a
diagrams version.

Contrary to what one might expect, stability does not play any crucial role in Goerss—Hopkins obstruction
theory. Well, it wouldn’t play any role if we were still using homotopy instead of homology. But as we’ll see, it will
be crucial for us that homology is given by smashing with a spectrum and then taking homotopy. But if this were
our chosen algebraic invariant (which would then be very non-linear!) in an unstable category, then everything else
would go through identically.

2.1 The key ideas

We don’t just want to work in the “E,-E?-model structure” on sC directly; we really do need to have our hands on
explicit generators.

Relatedly, we could just resolve everything using § (whose E-homology is of course free and hence projective),
but using Qg will be more natural because it builds in a way of recovering E-homology (by taking colimits).

We have to be careful in defining the functor Alg,(s€) — Alg,(C): note that if Y € Alg,(sC), then we have
Y; € Algr, (C): these constituents are algebras over different operads.

The Y-freedom of the operads T, first of all implies that the one doesn’t need to worry about the difference
between the quotient and the homotopy quotient. But also, when a group action isn’t free, then there’s a homotopy
orbits spectral sequence for the homology or homotopy of the homotopy quotient, and we certainly don’t want to
have to mess around with that.

More loosely, we could replace our assumption on 7' by the more abstract condition that we have a monad Tg
on sA such that we have a functor E, : Algy(sC) — Algyp, (sA) that preserves cofibrancy.



We have to be careful with what we mean by cofibrancy in Algs, (sA): now that 7" is involved, we can no longer
give explicit projective generators on the algebra side. So, we have to work in the usual model structure on sA,
which is of course fine but technically speaking slightly less clean.

We need for ® to commute with colimits in the left variable so that T), being Y-free implies that X acts freely
on T, (k) @ X%k,

2.2 Complications

3 GHOST for oo-categories

Okay, I lied: actually I'll talk just a little bit about how complicated the model-categorical version gets.

3.1 oo-categorical generalities

Presentable oo-categories are equivalent to cofibrantly generated model categories, in the appropriate sense.

Of course, usually our monoidal structure on € will be symmetric, and will commute with colimits in both
variables.

To have our left localizations, we’ll probably actually need our monoidal product on € to commute with colimits
in both variables, since equivalences will actually be created by F ® — : € — C.

We need to identify A C PL(S4) as a full subcategory. Identifying it as the subcategory of sheaves for some
topology is actually pretty natural; I have no idea how one would expect to do this otherwise, anyways.

These Py, categories are also called homotopy varieties (in the sense of universal algebra), and have been studied
by Rosicky under that name.

~

Writing D” for the Ind-completion of D, the equivalence Z5,(D") — Px(Dypyo;) is induced from the Yoneda

embedding Dgroj — P (Dproj) by the universal property of .@2_0.
I have no idea how to do all this unstably for homology, unless we can somehow get a handle on the functor
X — Q®F ® X. Note that Q°° is a right adjoint, so won’t preserve the decomposition F =~ colim F,,.

This isn’t mentioned explicitly in the slides, but we’ll of course need functorial Postnikov truncations. These
localizations exist (and are essentially unique) for abstract reasons, but in fact one can also construct them by taking
the “fundamental” map to the appropriate Eilenberg—MacLane object and then taking its fiber. (This is actually
what makes the Postnikov tower convenient, is that its maps are all fiber inclusions: that is, up to homotopy it
is the inclusion of the fiber of a fibration.) On the other hand, note that one cannot take the usual functorial
construction where one cones off all possible maps in from high-dimensional spheres: to be totally invariant, we
can only say that co-categories are only enriched in the co-category of spaces. (On the other hand, any oco-category
can be presented as a topological category, and once we’ve made this (noncanonical) choice then we do get such a
functorial construction of Postnikov towers.)

3.2 Model co-categories

We need model co-categories in a pretty serious way to identify the various module structures as the expected ones
(and their various maps as maps of modules); in turn, we need these module structures to know what André-Quillen
cohomology groups we need to compute!

But also, note that without knowing that Ps(7T(SE)) underlies Algy(s€) g2, it’s pretty mysterious how one
Je

might hope to talk about T-algebras in Ps(G5): T itself is an honest simplicial object, but the objects of Ps(GE)
themselves are only noncanonically presentable as simplicial objects. This is another sense in which model oo-
categories are necessary to give a complete picture of what’s going on here.

Model co-categories are a model-independent notion! That is, they don’t depend on what you mean by “oco-
category”.



In re co/simplicial resolutions, originally from Dwyer—Kan’s Function complezes in homotopical algebra: really,
we only need a relative category (€, W), and we only need that all cosimplicial resolutions I'*(d;) and simplicial
resolutions A4 (dz2) determine functors

hom™ (I'*(dy), —) : (G, W) — (s8et, Wquilien) and  hom™ (—, A¢(d)) : (€, W) — (s8et, W Quilien)

of relative categories. But then of course, by far the easiest way to ensure these conditions is to just have an
extension of the relative category to a model structure in the first place.

To prove that given d ~— d’ we obtain homé') (d',dy) = hom% (d,ds), we actually need to be careful with
basepoints, since the E2-model structure is for based simplicial spaces. We can actually use Dwyer-Kan’s original
argument to show that this map is an isomorphism on 7, and then at any given basepoint in the source we can
use the argument alluded to in the slides to show that we have an E?-equivalence with respect to it.

Of course, the whole point is that the complete Segal space functor (taking W to be trivial) defines an equivalence
between oco-categories and simplicial spaces satisfying the Segal condition. The backwards functor is given by taking
a simplicial space X, to the coend fA Xe x [o] (taken in Cate).

3.3 Applications and generalizations

The inclusion Zi ax — Zs is the inclusion of a subsite assuming the stack 2" is separated — that is, its diagonal
map is closed. (This implies that the intersection of two affines is again affine.)

Well, enriching the obstruction theory should at least be purely formal when the enriching oco-category has
the cartesian monoidal structure. Otherwise, things get a lot crazier: this source of complication is what earned
Haugseng his PhD.

Note that discrete motivic spaces probably don’t form a topos. So, we need our various theories (e.g. of
André-Quillen cohomology group objects, and then later of operator categories) to be somewhat more general.

Via Elmendorf’s theorem, the equivariant analog of taking global sections is taking G-fixedpoints.

We might also hope to produce a version for algebraic theories (which are more general than operads). The
main thing to explore is the relationship between E.X and E,V X for V (the free functor of the monadic adjunction
associated to) an algebraic theory.



