Introduction to Supermanifolds

Aaron Mazel-Gee

27 September 2011 "Witten in the 80s" student seminar

This talk is an introduction to supermanifolds — these are supposed to encode "odd fuzz" on regular manifolds. What you do is you enlarge the notion of "functions": functions are usually sections of a trivial bundle, and we will instead enlarge that bundle.

1 Super Algebra

Definition: A super vector space is a $\mathbb{Z}/2$ -graded vector space (over \mathbb{R}) $V = V_0 \oplus V_0$, the even and odd parts. Morphisms are grading-preserving linear maps. There is a "parity reversing functor" Π , for which $(\Pi V)_0 = V_1$ and $(\Pi V)_1 = V_0$.

Renato: These are just the even maps? **Aaron:** You can reverse parity, which is how you can talk about the other maps.

This category has a \otimes structure, which makes it equivalent as a monoidal category to the usual category of representations of $\mathbb{Z}/2$. But we choose different *commutativity isomorphisms*:

$$c_{V,W}: V \otimes W \xrightarrow{\sim} W \otimes V$$

$$v \otimes w \mapsto (-1)^{|w| \cdot |v|} w \otimes v \qquad \text{(assuming } v, w \text{ homogenous)}$$

We can now talk about super algebras, commutative super algebras — use the commutativity isomorphism, so "commutative" means "skew commutative on odd things" —, super modules, super Lie algebras, etc. We can then talk about $\operatorname{Ssym}^{\bullet}(V)$ and $\operatorname{S}\Lambda^n(V)$.

We now introduce the Berezinian. It will connect with integration — it's a generalization of determinant, and when you change variables in an integral, you need to introduce a determinant.

Definition: A free module over a superalgebra A is a module which is free as an ungraded module, but we do ask there to exist a homogenous basis.

Example: $A^{p|q}$ is freely generated by $x_1, \ldots x_p$ even and $\theta_1, \ldots, \theta_q$ odd.

A morphism $T: \mathcal{A}^{p|q} \to \mathcal{A}^{r|s}$ will be given by a matrix

Given such a linear transformation, its *supertrace* is

$$\operatorname{STr}\left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \operatorname{Tr}(A) - \operatorname{Tr}(D)$$

This is an even element of the underlying algebra A.

Definition: Let L be a free module (of finite type) over a commutative superalgebra A. Then we get a notion as above of GL(L). The Berezinian is a homomorphism $Ber : GL(L) \to A_0^{\times}$. We ask it to satisfy:

- 1. If ϵ is even and $\epsilon^2 = 0$, then $Ber(1 + \epsilon T) = 1 + \epsilon STr(T)$.
- 2. If T is diagonalizable $T = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix}$ then $Ber(T) = (\det A)(\det D)^{-1}$.
- 3. If $0 \to L' \to L \to L' \to 0$ is a short exact sequence, and (T', T, T'') is an automorphism, then Ber(T) = Ber(T') Ber(T'').

Harold: Which is the definition? **Aaron:** You can do this for arbitrary A, B, C, D, and it satisfies all of those, and we think those are enough to nail down the function.

Oh, I should have said: the canonical example of a supervector space is $\Lambda^*(\mathbb{R}^q)$ — this is a commutative superalgebra, where the parity of the number of tensors is the grading.

2 Super Manifolds

The right way to do this is with locally ringed spaces. We will write $(|M|, \mathcal{O}_M)$, where |M| is the topological space, and \mathcal{O}_M is the sheaf of functions. We say that such a locally ringed space is a supermanifold of dimension p|q if it is locally modeled on $\mathbb{R}^{p|q}$. Here $\mathbb{R}^{p|q}$ is the sheaf on $|\mathbb{R}^{p|q}| = \mathbb{R}^p$ which assigns to an open set U the ring $\mathscr{C}^{\infty}(U) \otimes \Lambda^{\bullet}(\mathbb{R}^q)$. Sometimes you ask for Hausdorff, second countable, etc.

Given $M = (|M|, \mathcal{O}_M)$, the reduced supermanifold is $M^{\text{red}} = (|M|, \mathcal{O}_M/\text{Nil})$, where Nil is the (sheaf of) ideal of nilpotent elements. **Renato:** So this is a manifold that we're used to. **Aaron:** Yes, it's an ordinary manifold. Or rather it's a supermanifold of dimension p|0.

Zach: Is this really an ordinary manifold, or can it have twisting? **Aaron:** It is a locally ringed space modeled on \mathbb{R}^p .

We always have $M^{\text{red}} \hookrightarrow M$. This is the map that is the identity on topological spaces, and the quotient of rings.

Let $\mathbb{R}^q \hookrightarrow E \to X$ be a vector bundle over an ordinary manifold. Then ΠE is the "oddification" of the vector bundle. It is a supermanifold with $|\Pi E| = X$ and $\mathcal{O}_{\Pi E} = \Gamma(\Lambda^{\bullet} E^*)$, where E^* is the dual vector bundle, and so on. This has dimension p|q if dim X = p as an ordinary manifold.

Theorem (Batchelor '79): We already described Π : vector bundles \rightarrow supermanifolds. We define a map J in the other way, which sends M to the vector bundle over M^{red} , with sections $\Gamma(U, J(M)) = \text{Nil}(U)/(\text{Nil}(U))^2$.

The theorem is that $J \circ \Pi \cong \operatorname{id}$ is a natural isomorphism of functors. For each object M, $\Pi \circ J(M) \cong M$, but unnaturally so — so we get a bijection on objects between {vector bundles} and {supermanifolds}.

In fact, if dim M=p|q for $p\geq 1$ and $q\geq 2$, then there does not exist a contraction $M\to M^{\mathrm{red}}$ that is compatible with all automorphisms of M. There are more supermanifold-morphisms than vector bundle morphisms.

Theo: Is it right to say that $M^{\text{red}} \hookrightarrow M$ is a closed submanifold, and J(M) is the first-order neighborhood of M^{red} , like the pull back of the tangent bundle? **Aaron:** That sounds right.

Theo: Is Batchelor's theorem true in the analytic category? I see how to prove it in the smooth case, but my proof would require partitions of unity. **Aaron:** Nobody I've read said it wasn't true, but I'm not sure.

3 Functors of points

I gave a local characterization, but local things can be hard to work with.

Given S, M supermanifolds, we have a bijection between SuperMan $(S, M) \cong \text{SuperAlg}(\mathcal{O}_M(M), \mathcal{O}_S(S))$. This clearly only holds in the smooth category. We call the elements of SuperMan(S, M) the S-points of M.

We think of arbitrary functors Supermanifold \rightarrow Set as "generalized" supermanifolds. It's Yoneda's lemma that the generalized supermanifold corresponding to a supermanifold is no loss of data.

Example: SM(B,C) is the generalized supermanifold that sends A to $SM(A \times B,C)$.

I.e. $(C^B)^A = C^{A \times B}$. 3^2 is the number of maps from the 2-element set to the 3-element set.

Theorem: $\underline{SM}(\mathbb{R}^{0|1}, M) = \Pi TM$.

We will now define the right hand side.

First, and aside on vector bundles:

Definition: A super vector bundle over a supermanifold is a locally free sheaf \mathcal{E} of \mathcal{O}_M modules. This is the same as the usual non-super case.

 \Diamond

Example: $\mathcal{T}M$ the tangent bundle is the sheaf that on $U \in |M|$ gives $\mathrm{Der}(\mathcal{O}_M(U))$. An even derivation of a superalgebra is an even linear map D satisfying D(fg) = D(f)g + fD(g). An odd derivation is an odd map satisfying $D(fg) = D(f)g + (-1)^{|f|}fD(g)$. This gives the supermodule of derivations. \Diamond

Definition: The total space of \mathcal{E} has S-points $E(S) = \{(f,g) \text{ s.t. } f \in SM(S,M) \text{ and } g \in \Gamma(S,f^*\mathcal{E}^{\mathrm{ev}})\}.$

Then $\Pi : \text{SVECT}_M \to \text{SVECT}_M$ is the functor that reverses parities. It is $\Pi \mathcal{E} = \underline{\mathbb{R}^{0|1}} \otimes \mathcal{E}$, where $\mathbb{R}^{0|1}$ is the trivial bundle with fiber $\mathbb{R}^{0|1}$.

Renato: The reduced manifold of TM is TM^{red} . But you told me just a sheaf on M^{red} . Theo: He says that in general, a vector bundle over M is a sheaf over M^{red} . Then he said: any vector bundle has a total space, which might have a much larger reduced space than M has.

Example: The total space of TM is TM, and is 2p|2q-dimensional.

Proof (of theorem about TM):

$$\mathrm{SM}(S,\underline{\mathrm{SM}}(\mathbb{R}^{0|1})) = \mathrm{SM}(S \times \mathbb{R}^{0|1},M) \qquad \text{defn of } \underline{\mathrm{SM}}$$

$$\cong \mathrm{SUPERALG}(\mathcal{O}_M(M),\mathcal{O}_{S \times \mathbb{R}^{0|1}}(S \times \mathbb{R}^{0|1})) \qquad \text{proposition}$$

$$\cong \mathrm{SUPERALG}(\mathcal{O}_M(M),\mathcal{O}_S(S) \otimes \mathcal{O}_{\mathbb{R}^{0|1}}(\mathbb{R}^{0|1})) \qquad \text{defn of } M \times M'$$

$$\cong \mathrm{SUPERALG}(\mathcal{O}_M(M),\mathcal{O}_S(S) \otimes \mathrm{E}(\theta)) \qquad \mathrm{E}(\theta) = \text{exterior algebra on } \theta$$

Suppose $\phi: \mathcal{O}_M(M) \to \mathcal{O}_S(S) \otimes E(\theta)$. Write $\phi = f + \theta g$, where $f, g: \mathcal{O}_M(M) \to \mathcal{O}_S(S)$ are even,odd respectively linear maps. What is it to be an algebra map?

$$f(ab) + \theta g(ab) = \phi(ab) = \phi(a)\phi(b) = (f(a) + \theta g(a))(f(b) + \theta g(b)) =$$

$$= f(a)f(b) + \theta(g(a)f(b) + (-1)^{|f(a)||\theta|}f(a)g(b) = f(a)f(b) + \theta(g(a)f(b) + (-1)^{|a|}f(a)g(b))$$

So f is an algebra map, and g is an odd derivation with respect to f.

But
$$\operatorname{Der}_f^{\operatorname{odd}}(U) = \Pi(\mathcal{T}M)(U)$$
, so this is $\operatorname{SM}(S, \Pi(\mathcal{T}M))$.

The reason I like $\mathbb{R}^{0|1}$ is that it (conjecturally) connects to homotopy theory. One goal in this class is to gain homotopical information from functors on the bordism category.

Theorem:
$$0|1\text{-EFT}^n(M) = \begin{cases} \Omega_{\text{closed}}^{\text{even}}(M), n \text{ even} \\ \Omega_{\text{closed}}^{\text{odd}}(M), n \text{ odd} \end{cases}$$
. So we can define $0|1\text{-EFT}^n[M]$ by imposing

that 0|1-EFTⁿ is supposed to be a homotopy functor. You get even/odd de Rham cohomology of M, which is the same as that of M^{red} . So Euclidean Field Theories are a form of "cocycles" for de Rham cohomology.

Theorem (Stolz-Teichner): $1|1 - EFT^n[M] \cong K^*(M)$.

This is very tantelizing. De Rham cohomology and K-theory are the 0th and 1st rungs on a ladder, called "chromatic homology".

Conjecture (Stolz-Teichner): $2|1 - \text{EFT}^n[M] \cong \text{TMF}^*(M)$.