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ABSTRACT. We compute the homotopy quotient of the G-action on a category of G-objects and nonequivariant mor-
phisms. We begin with a 1-category; a priori this process may yield a higher category, but this turns out not to be the
case. Though we don’t explicitly pursue it, the argument generalizes readily to∞-categories enriched in G-spaces. As a
corollary, it follows immediately that when the category is a one-object groupoid, the homotopy quotient constructs the
semidirect product for the action of G on the automorphism group.

1. GROUPS AND CATEGORIES

For the record, we discuss a few different possible interactions of a discrete group G with a category C .
The strongest thing we might ask for is that G act on each object of C . This is equivalent to giving a homo-

morphism G→ End(c) = hom(c , c) for every c ∈ C .1 We refer to C as a category of G-objects (and nonequivariant
morphisms).

In fact, this automatically yields a left action of G on the entire categoryC , in which case we callC a G-category.
To define this, for any g ∈G and f ∈ hom(c1, c2) we must have a commutative diagram

c1 c2

g · c1 g · c2

f

g · − g · −

g ? f

(where we use a star to visually distinguish the G-actions on morphisms from those on objects). Of course, G fixes
the objects of C , so that g · c1 = c1 and g · c2 = c2. So in fact we have g ? f ∈ hom(c1, c2) as well – that is, each
individual hom-set carries a natural G-action – and this is given by g ? f = g · ( f (g−1 · −)).2 Moreover, the action
distributes over composition of morphisms. This may all be summarized by saying that C is enriched in G-sets.

Thus, we have taken a category C of G-objects, attempted to extract the data of a G-category, and noticed that
in fact C is also enriched in G-sets. The general situation is described by the following sequence of irreversible
implications:

¨

C is a category
of G-objects

« ¨

C is enriched
in G-sets

«

¦

C is a G-category
©

.

The second is given by defining the G-action on C to fix objects. Of course, this suggests an obvious example of
its irreversibility. For any right G-set T , we can build the associated action groupoid, denoted T //G: its objects are
the elements of T , and its morphisms are given by hom(t1, t2) = {g ∈G : t1 · g = t2}.3 Obviously this cannot come
from a category enriched in G-sets, because in that case the objects would be fixed.

The irreversibility of the first implication is slightly more subtle. To construct a minimal example, let G′ be
any group and set C = pt//G′. Then, to say that C is enriched in G-sets is to give an action of G on G′, i.e. a

1Note that this corresponds to a left action of G on c , which is in this sense more natural than a right action (which would be given by a
homomorphism Go p → End(c)) – inasmuch as we follow the standard notation for composition of morphisms, at least.

2Note that the conjugation G-action on hom(c1, c2) is forced upon us.
3We choose T to have a right action so that the category T //G admits an action of G on the left.
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homomorphism G→Aut(G′). This arises as a homomorphism G→G′ (i.e. a G-action on the unique object ofC )
exactly when this homomorphism factors through the subgroup of inner automorphisms of G′.4

2. MODEL CATEGORICAL NONSENSE

Suppose that C is a category of G-objects. Then we can consider C as a G-category, and we would like to com-
pute the homotopy quotientChG . To make sense of this notion, we considerC as a quasicategory (by identifying it
with its nerve) and work in simplicial sets with the Joyal model structure. That is, we’d like to extract a homotopy
colimit of the diagram C : BG→ sSetJoyal, where BG = pt//G. We work in the projective model structure, so that
we can compute this as the left derived functor of the colimit, which is a left Quillen functor. Explicitly, we claim
that in this model structure, C × EG→C is a cofibrant replacement, where EG =G//G.

First of all, recall that the identity functor induces a Quillen adjunction sSetJoyal� sSetQuillen. Now, our map is
an acyclic fibration in sSetQuillen since these are preserved under products, and EG→ pt is an acyclic fibration since
EG is the nerve of a contractible groupoid, while every identity map is an acyclic fibration. Thus, considered in
sSetJoyal, this map is again an acyclic fibration; in particular, it’s a weak equivalence.

Then, to see thatC ×EG is cofibrant, note that the projective model structure on a category of BG-diagrams has
its generating cofibrations given by the product of G with the generating cofibrations of the base model category.
Since the generating cofibrations of sSetJoyal are the same as those of sSetQuillen, we see that the cofibrant BG-diagrams
are exactly those simplicial G-sets which are levelwise free. This property is of course the defining characteristic of
EG, and so C × EG has this property too. Thus, we can compute ChG ' (C × EG)/G.

3. THE COMPUTATION

We begin by studying C × EG. Its objects are pairs (c , g ) of an object c ∈ C and an object g ∈ EG, and
hom((c1, g1), (c2, g2)) = hom(c1, c2)×{g−1

1 g2}. Composition is determined by the commutative diagram

hom((c , g1), (c2, g2))×hom((c2, g2), (c3, g3)) hom((c1, g1), (c3, g3))

�

hom(c1, c2)×{g−1
1 g2}
�

×
�

hom(c2, c3)×{g−1
2 g3}
�

hom(c1, c3)×{g−1
1 g3},

in which the lower map is just composition in each factor.
Now, the G-action on C × EG is given by g · (c1, g1) = (c1, g g1). Thus, g acts on morphisms as the upper map

in the commutative diagram

hom((c1, g1), (c2, g2)) hom((c1, g g1), (c2, g g2))

hom(c1, c2)×{g−1
1 g2} hom(c1, c2)×{(g g1)

−1(g g2)}

hom(c1, c2)×{g−1
1 g2}.

g · −

(g ?−)× id

4Surely there’s a general obstruction theory governing this question of descent. (There’s probably even a name for it.)
2



From here, we can see that the objects of (C × EG)/G are precisely the objects of C , although we’ll denote the
equivalence class {(c , g ) : g ∈G} by [c] for clarity. Moreover, from this we can also compute that

hom([c1],[c2]) =







∐

g1,g2∈G

hom((c1, g1), (c2, g2))







,

G

=







∐

g1,g2∈G

hom(c1, c2)×{g
−1
1 g2}







,

G.

By what we have just seen, in the latter identification G fixes the second coordinate, and so this decomposes as

hom([c1],[c2]) =
∐

g0∈G













∐

g0=g−1
1 g2

hom(c1, c2)×{g
−1
1 g2}







,

G






.

That is, the G-action permutes the various hom((c1, g1), (c2, g2)) with the same “G-slope” g0 = g−1
1 g2; we can equiv-

alently write these collectively as hom((c1, g1), (c2, g1 g0)), where g0 is fixed and g1 varies. As stated above, if we
identify these all with hom(c1, c2), the action becomes precisely the G-action; that is, the diagram

hom((c1, g1), (c2, g1 g0)) hom((c1, g ′1), (c2, g ′1 g0))

hom(c1, c2)×{g0} hom(c1, c2)×{g0}

(g ′1 g−1
1 ) · −

((g ′1 g−1
1 ) ?−)× id

commutes. So finally, we simply have that

hom([c1],[c2]) = hom(c1, c2)×G,

where the second coordinate records the G-slope g0 and where we choose the distinguished representative hom((c1, e), (c2, e g0))
for the first coordinate.

However, composition is where things get interesting. We begin to unwind this as

hom([c1],[c2])×hom([c2],[c3]) hom([c1],[c3])

(hom(c1, c2)×G)× (hom(c2, c3)×G) hom(c1, c3)×G.

Now, suppose we would like to compose the elements ( f1, h1) and ( f2, h2). We can consider ( f1, h1) ∈ hom((c1, g1), (c2, g1h1))
for any g1 and ( f2, h2) ∈ hom((c2, g2), (c3, g2h2)) for any g2. For these to be composable in C × EG, we therefore
take g2 = g1h1. Then, we have the composition

hom((c1, g1), (c2, g1h1))×hom((c2, g1h1), (c3, g1h1h2)) hom((c1, g1), (c3, g1h1h2))

(hom(c1, c2)×{h1})× (hom(c2, c3)×{h2}) hom(c1, c3)×{h1h2},

where the lower arrow is given by composition in each factor. But here’s the (literal) twist: given the way we’ve
chosen to represent the first coordinate of hom([c1],[c2]), in that coordinate we’re now composing the elements
g1 ? f1 and (g1h1) ? f2. This simplifies as

((g1h1) ? f2) ◦ (g1 ? f1) = (g1 ? (h1 ? f2)) ◦ (g1 ? f1) = g1 ? ((h1 ? f2) ◦ f1),

which corresponds to the element ((h1 ? f2) ◦ f1, h1h2) in the target. (As expected, this is independent of g1 and g2.)
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4. REMARKS

Note that, preserving the set of objects as it does, this presentation of the Borel construction (for 1-types) is
far, far smaller than the usual one (in topological spaces). If one were feeling philosophical, one might say that this
construction trades off fattening up the space for introducing (more) local monodromy. But we aren’t, so we won’t.5

Note also that, as promised, this argument generalizes almost immediately to the case whereC is an∞-category
enriched in G-spaces; it only remains to remove any reference to specific morphisms.

5This might be a little cavalier anyways, since the induced G-action on the fundamental groupoid of a space with a nontrivial G-action won’t
fix objects anyways. Maybe the real point is just that groupoids are always a cleaner way of presenting 1-types. But in any case, the fact remains
that it’s much clearer what the Borel construction is actually doing here.
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