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1. Motivation: Integrals

We wish to do integrals on a finite-dimensional, compact, connected, orientable manifoldX
of dimension N . Normally, we integrate an n-form µ over X, but we can replace the de Rham
complex Ω•(X) with the complex of alternating multi-vector fields V•. This is a graded com-
mutative algebra, just as Ω• is. Moreover, any choice of volume form µ on X gives an isomor-
phism Vn−• ∼= Ω• which is simply given by Y1 ∧ Y2 ∧ · · ·Yk 7→ µ(Y1, Y2, · · · , Yk,−,−, · · · ,−).
We can transfer the de Rham differential d to the complex V• to get a degree -1, square-zero
operator ∆µ. (V•,∆µ) is not a differential-graded algebra since ∆µ is actually a second-order
differential operator: in local coordinates where µ = dx1∧· · · dxn and we define ξi := ∂i, then
∆µ =

∑
i

∂2

∂ξi∂xi
. The reason that this happens is that whereas the de Rham differential has

a multiplication by a form in its definition, the dual operation on the space of multivector
fields is to differentiate with respect to the corresponding multivector field. Now, suppose we
want to compute the zeroth homology group of the complex V•. By construction, this is just
the n-th de Rham cohomology group of Ω•. Since X is compact and connected, the n-th de
Rham cohomology of X is 1-dimensional, and the map V0 → R given by f 7→

∫
X
fµ descends

to an isomorphism on H0(V•). We see, therefore, that integration of functions with respect
to the volume form µ corresponds to computing the zeroth homology group of the complex
V•. In physics, we’re interested in integration over an infinite-dimensional manifold. On an
infinite-dimensional space, there’s no such thing as a top form and the de Rham complex
and V• are no longer isomorphic; thinking about V0 is our best alternative to thinking about
volume forms.

· · · d
// Ωn−1 d

// Ωn ∫
((

R ∼= H0(V•) ∼= H0
dR(M)

· · ·
∆µ

// V1

∼

OO

∆µ
// V0

∫
µ

66

∼

OO

Figure 1. The de Rham and divergence complexes

Moreover, the volume form of interest in QFT looks like e−S/~µ, where S is some function
on X, and we wish to compute the expectations of functions:

〈f〉 :=
[f ]

[1]
=

∫
X
fe−S/~µ∫

X
e−S/~µ

.

1



2 AARON MAZEL-GEE & EUGENE RABINOVICH

In the quantum field theory context, these are the expectation values of operators, which
can be used to give the scattering probabilities of different physical processes. Now, let us
assume S has a single minimum and non-degenerate Hessian; then, as ~ → 0, the measure
e−S/~µ is supported only near the minimum of S. We can choose local coordinates such that
the minimum of S is at 0 and the measure µ is just dx1 ∧ · · · dxn. In these coordinates, we
can write s(x) = s(0) + 1

2

∑
ai,jxixj − b(x) for some symmetric, positive-definite a and b(x)

vanishing at least to order 3; furthermore,

−~∆exp(−S/~)µ =
N∑
i=1

aijxi
∂

∂ξj
−

N∑
i=1

∂b(x)

∂xi

∂

∂ξi
− ~

N∑
i=1

∂2

∂xi∂ξi
.

Expanding b in a “Taylor” series around 0 (i.e. computing in a formal neighborhood of
zero), and computing the homology of the complex (V•,∆exp(−S/~)µ) order by order in ~ leads
us to the homological problem we consider next.

2. Statement of the General Problem

Motivated by the example of finite-dimensional integration, we consider the complex V• :=
R[[x1, · · · , xN , ξ1, · · · , ξN , ~]] with the ξ’s in degree 1 and all other variables in degree 0. Given
a symmetric, positive-definite 2-tensor (N × N matrix) aij and a b(x) ∈ R[[x1, · · · , xN ]]
consisting of only cubic and higher terms, we can define the following homological degree -1,
square-zero operator

Q =
N∑

i,j=1

aijxi
∂

∂ξj
−

N∑
i=1

∂b(x)

∂xi

∂

∂ξi
− ~

N∑
i=1

∂2

∂xi∂ξi
.

V• represents the structure of a formal neighborhood of M , with the aij and b(x) repre-
senting the power series expansion of S, and is a graded-commutative algebra. Q is not a
derivation, so (V•, Q) is not a dga. (As an aside, we can compute the failure of Q to be
a derivation; this is called the Schouten-Nijenhuis bracket and gives a Poisson bracket on
V•). Since everything in the motivating case above was ~-linear, we should expect that the
homology of this complex should be R[[~]] in degree 0, since it was R in the motivating case.
We elevate this to an ansatz. Now, Q cannot create power series that don’t have at least a
linear term; in particular, this means that 1 ∈ V0 is not exact. Using this and our ansatz,
we can define 〈f〉 ∈ R[[~]] for any f ∈ V0 by [f ] = 〈f〉[1]. 〈f〉 is the homological analog of
computing the expectation of f via integration. We wish to manage to the combinatorics of
computing 〈f〉 in some easily enumerable way. This is where Feynman diagrams come in.
But first, let’s do a simple example.

3. Wick’s Lemma

Set b = 0 and consider the problem of finding [xi1xi2 · · ·xin ]. To this end, we compute a
specific boundary element of V0:

Q

(∑
k=1

ξk(a
−1)ki1xi2xi3 · · ·xin

)
=
∑
i,j

xi(a
−1)ji1aijxi2xi3 · · ·xin − ~

n∑
α=1

(a−1)i1iαxi2xi3 · · · x̂iα · · ·xin

= xi1xi2 · · ·xin − ~
n∑

α=1

(a−1)i1iαxi2xi3 · · · x̂iα · · ·xin ,
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where the hat indicates removing that variable from the product. So, we see that the homol-
ogy class of xi1 · · ·xin is the same as the homology class of ~ times all ways of “contracting”
xi1 with another xia and replacing the product with (a−1)i1ia . When n = 1, this formula
actually implies that 〈xi〉 = 0. By induction, the expectation value of any product of an odd
number of xi’s is zero. On the other hand, for a product of an even number of xi’s, we can
use induction to show that

〈xi1xi2 · · ·xi2n〉 = ~n
∑

pairings {1π(1)}{2π(2)}···{2nπ(2n)}

(a−1)i1iπ(1)(a
−1)i2iπ(2) · · · (a

−1)iniπ(n)

We can represent the above equation as an equality between two sums of diagrams:

(1)
. . .

2n

=
∑

pairings

. . .

π(1)

1

2n
π(2n)

On the left-hand side, we have a diagram with one marked vertex and 2n half-edges ema-
nating from that vertex. The external half-edges represent the xi’s. The RHS is a sum of
diagrams, where each diagram is a possible way of pairing off the 2n half-edges of the LHS
diagram and making a loop from those two half-edges. Each loop contributes a factor of
~ and each internal edge contributes an a−1 factor. In this case, we don’t really need the
diagrammatic approach, but when b 6= 0, we’ll see how the diagrams can greatly simplify
our work.

4. Feynman Diagrams

Consider now the case N = 1, b = x3/6. Let’s try to apply our recursive approach here.
We compute:

Q(xnξ) = axn+1 − 1

2
xn+2 − n~xn−1.

Rearranging, we notice that

(2) [xn+1] =
1

2a
[xn+2] +

n~
a

[xn−1].

Let’s try to use this relation to find [x] (so we start with n = 0):

[x] =
1

2a
[x2] =

1

2a

(
1

2a
[x3] +

~
a

[1]

)
=

(
1

2a

(
1

2a
[x4] +

2~
a

[x]

)
+

~
a

[1]

)
.

It’s easy to see that this will get very complicated very fast; we already have a second
appearance of [x] on the RHS of the above equation. We can bring the term involving [x]
to the LHS, but this doesn’t help very much. We might try to interpret this as an equation
for [xn+2] in terms of strictly lower powers of x, but for completely arbitrary b, we can
have infinitely many terms replacing [xn+2]. Thus, we need to understand the combinatorics
of the process much better to get any further. To this end, let us drop the assumption
N = 1, b = x3/6 and instead work with completely general b and N . First write

b(x) =
∞∑
n=1

∑
~ı∈{1,2,··· ,N}n

b
(m)
~ı

m!
xi1 · · ·xin ,
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where b(m) is the completely symmetric tensor of m-th order partial derivatives of b at zero.
Then, a very simple modification of the arguments we’ve seen already shows that

(3) Q

∑
i,~ı

fi,~ı x~ı (a
−1)i,j ξj


=
∑
i,~ı

fi,~ı xixi1 · · ·xin −
∞∑
m=2

∑
i,~ı,j,~

1

m!
b

(m+1)
j,~ xj1 · · ·xjm (a−1)i,j fi,~ı xi1 · · ·xin

− ~
∑
i,~

n∑
k=1

fi,~ (a−1)i,jkxj1 . . . x̂jk . . . xjn

for any n-tensor f .
This is kind of a mess. To clean up the mess, we define a combinatorial/topological object

that’ll help us handle the recursion relations much better. This object is called a Feynman
diagram Γ, which consists of the following data:

• A finite set V = Vint
∐
{?} of vertices, of which we distinguish one by the star.

• A finite set HE of half-edges of the diagram.
• A map i : HE → V assigning to each half-edge the vertex on which it’s incident.
• An involution σ : HE → HE. We will call the fixed points of the involution external
half-edges and the non-fixed points the internal half-edges. The size two orbits
of σ are called internal edges.
• An ordering of i−1(?).

We define the valence of a vertex v to be the size of i−1(v) and denote it by val(v). We
require as part of the definition that val(v) to be at least 3 for all non-starred vertices v. We
can also make the following definitions:

• The in degree of a Feynman diagram Γ is val(?). We denote this by din(Γ).
• The out degree of a Γ is the number of external half-edges. We denote this by
dout(Γ).
• An embedding of Feynman diagrams Γ′ ↪→ Γ is a pair of injective maps f1 : HE ′ →
HE and f2 : V ′ → V on vertices such that i ◦ f1 = f2 ◦ i′ (the maps preserve the
incidence relations), elements of the same orbit under σ′ get taken to elements of the
same orbit under σ, and f2(?′) = ?; we also require that din(Γ′) = din(Γ) and that f1

preserve the ordering on the half-edges incident on ?.
• An isomorphism Γ′ → Γ of Feynman diagrams is a bijection on half-edges and

vertices that preserves the incidence relations and pairings of half-edges, as well as
the ordering of the half-edges at the marked vertex. An automorphism is defined
similarly.
• A Feynman diagram is closed if all of the σ orbits are of size 2, i.e. there are no

external half-edges.
• The Betti number of a Feynman diagram is its first Betti number, which can be

computed as the number of orbits of σ minus the number of unmarked vertices in Γ.
• A corolla is a Feynman diagram with such that V = {?} and all half-edges are

external. A corolla is depicted on the LHS of equation 1.
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We note that this combinatorial data is equivalent to the specification of a 1-dimensional
CW complex with some extra structure. We call a Feynman diagram connected if it’s
connected as a CW complex. We assume that all Feynman diagrams are connected from
now on. Figure ?? gives an example of a Feynman diagram.

|Aut| = 48

(a) A Feynman diagram with din = 2, dout = 4,
and Betti number 1.

(b) An embedding of Feynman diagrams. Note
that external half-edges can be identified with in-
ternal half-edges.

Figure 2. A Feynman diagram and an embedding of Feynman diagrams.

We now re-express equation 3 in terms of Feynman diagrams. Let F̃D denote the
set of Feynman diagrams with orderings of the external half-edges. The ordering of the
external half-edges will prove to be useful in what follows. Given a power series f ∈
R[[x1, · · · , xN ]], we can define a function evf : F̃D → V0 as follows. First, we define the
function for a homogeneous polynomial f and extend by linearity to arbitrary f . So, let
f =

∑
~ı∈{1,··· ,N}n+1 f~ı xi1 · · ·xin+1 . We define evf (Γ) to be zero unless din(Γ) = n + 1. If

din(Γ) = n+1, we define evf (Γ) by first labeling the half-edges of Γ by numbers in {1, · · · , N}.
To a Feynman diagram labeled thus, we form the product of factors:

• For the marked vertex, a factor f~ı, where ~ı is the vector of labels on the half-edges
incident to the starred vertex, read off in the ordering given to those half-edges.
• For each internal edge with labels i, j on the half-edges, a factor a−1

ij .
• For each external half-edge with label i, a factor xi.

• For each internal vertex with valence m, a factor b
(m)
~ı , where ~ı is the vector of labels

formed by reading the labels on the half-edges incident on the vertex in any order
(b(m) is a symmetric tensor).

Then, evf (Γ) is the sum over all possible labellings of Γ in this way. Note that if f is a degree
n homogeneous polynomial, then evf (·)~β(·) evaluated on the n-fold corolla gives f again.

We can also define two types of operations, ∆µ
m and ∆κ

k, on QF̃D. Given Γ ∈ F̃D with
n+1 external half-edges, ∆µ

m(Γ) is the graph gotten from Γ by attaching the n+1-th external
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half-edge of Γ to some half-edge of a vertex of valence m+ 1. The m new external half-edges
created in this way are given some ordering n+ 1, · · · , n+m. On the other hand, ∆κ

k takes
the k-th and n+ 1-th external half-edges and pairs them off into a loop (notice that we need
1 ≤ k ≤ n for this to make sense). Figure ?? illustrates these operations. Now, consider the

set QF̃D of all Q-formal sums of elements of F̃D.

Γ

. . .

. . .

n+1

,

Γ

. . .
. . .

. . .

n
m

,

Γ

. . .

n−1

k

Figure 3. A Feynman diagram Γ, ∆µ
m(Γ), and ∆κ

k(Γ). Whatever is inside
the gray box is the same across all three diagrams.

We define the function E : QF̃D → QF̃D by

Γ 7→
∞∑
m=2

1

m!
∆µ
m(Γ) +

n∑
k=1

∆κ
k(Γ)

when Γ has n + 1 > 0 external half-edges and Γ 7→ Γ when Γ is closed. We extend to all

of QF̃D by linearity. Then, equation 3 tells us that the following diagram commutes, since
the Betti number remains unchanged under a ∆µ operation and goes up by one under a ∆κ

operation:

QF̃D E
//

evf (·)~β(·)
��

QF̃D

evf (·)~β(·)
��

V0

%% %%

V0

yyyy

H0(V•, Q)

Strictly speaking, evf (·)~β(·) is only a function on Feynman diagrams, but we can extend it

to QF̃D by linearity.
So, if we start with an n+1-fold corolla Ψ, which computes the homology class of degree n+

1 homogeneous polynomials, we can apply the operation E without changing the homology
class corresponding to the new diagrams created by E, i.e.

[evf (Ψ)~β(Ψ)] = [evf (E
kΨ)~β(EkΨ)]

for all k ≥ 0, and if we start with a degree n+ 1 homogeneous polynomial f , we have

(4) [f ] = [evf (Ψ)~β(Ψ)] = [evf (E
kΨ)~β(EkΨ)].

EkΨ is a sum over all possible diagrams obtained from Ψ by a sequence of k ∆ op-
erations (of type ∆µ or ∆κ), with each diagram obtained thus weighted by a factor of(∏

v∈Vint(val(v)− 1)!
)−1

, since every time E creates an internal vertex of valence of m + 1
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by a ∆µ
m operation, it’s with a factor of 1/m!. In the power series topology, the k → ∞

limit of evf (E
kΨ)~β(EkΨ) is a sum over only closed diagrams with din = n + 1, since large

numbers of external vertices correspond to very high-degree polynomials and these give a
small contribution in the power series topology. evf (·)~β(·) is a polynomial in ~ for closed
diagrams, so to compute 〈f〉 for any degree n + 1 polynomial we simply need to figure out
which isomorphism classes of closed diagrams contribute to the above sum and with what
weights. In fact, our main result is

Theorem 4.1. If f is a homogeneous degree n+ 1 polynomial, then

〈f〉 =
∑

Γ

evf (Γ)~β(Γ)

|Aut(Γ)|
,

where the sum is over representatives of isomorphism classes of closed (and connected) Feyn-
man diagrams Γ with din(Γ) = n+ 1.

Proof. It will suffice to show the following three things:

(1) Every isomorphism class of closed Feynman diagrams appears in this sum.
(2) We have only finitely many contributions to the sum at each order in ~.
(3) Each isomorphism class appears with weight |Aut(Γ)|−1.

The proof of (1) will follow from the methods used in the proof of (3). To see (2), note
that for a closed Feynman diagram, all σ-orbits are size 2 and therefore the Betti number is
1
2
|HE|− |Vint|. But the marked vertex contributes n+ 1 half-edges, and each internal vertex

contributes at least 3 half-edges (all internal vertices are at least trivalent), so

β(Γ) ≥ n+ 1

2
+
|Vint|

2
.

Thus, the Betti number gives a bound on the number of internal vertices, so there are finitely
many isomorphism classes of graphs with any given Betti number. This proves (2).

Now, we only need to prove (3) (and (1) along the way). First note that Γ appears in the
sum only if Γ (or, strictly speaking, a Feynman diagram isomorphic to Γ) can be constructed
from the n+1-fold corolla by a sequence of ∆κ and ∆µ operations. For any Γ, let κ(Γ) be the
number of different ways Γ can be constructed in this way; we call this the construction
number of Γ. Then, by the discussion after equation 4, each isomorphism class of closed
Feynman diagrams appears with weight

κ(Γ)

 ∏
v∈Vint(Γ)

(val(v)− 1)!

−1

.

If we show that this factor is |Aut(Γ)|−1, then we’re done, because we will have in particular
shown that κ(Γ) 6= 0. Now, a separate cyclic ordering of the half-edges incident on each
internal vertex of Γ gives rise to a construction of a diagram isomorphic to Γ by the following
iterative method. Given a Feynman diagram Γ′ with an ordering of the external half-edges
and an embedding Φ : Γ′ ↪→ Γ, we can create a new Feynman diagram ν(Γ) with the
same attributes by looking at the highest ordered external half-edge v of Γ′ and asking
whether i(σ(Φ(v))) is a vertex in Γ that is identified with a vertex of Γ′. If so, perform a ∆κ

operation and connect v with the half-edge corresponding to σ(Φ(v)). Otherwise, perform
a ∆µ

m operation with m = val(i(σ(Φ(v)))) − 1, using the cyclic ordering of the half-edges
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given by Γ to order the newly created external half-edges. Now, we see that starting with
Γ′ = Ψ, the n + 1-fold corolla, this method gives rise to a diagram isomorphic to Γ after
some (finite) number of iterations, because such a construction goes through constructs
each vertex of Γ exactly once and pairs off the half-edges of Γ appropriately. Figure ??
illustrates an example. We call this newly constructed Feynman diagram Γ′′ and note that
we have an isomorphism Γ′′ → Γ handed to us by the iterative method used to produce
Γ′′. Moreover, any construction of Γ gives a cyclic ordering on the half-edges incident on
the vertices of Γ′′ induced from the total ordering that the half-edges received when their
vertex was constructed by a ∆µ operation; we can pull back this cyclic ordering to Γ, and
it’s easy to see that this cyclic ordering will construct the same Γ′′. In other words, we have
the following map

(5) Ω

����

M,

where Ω is the set of cyclic orderings of half-edges incident on each of the vertices of Γ and
M is the set of constructions of Γ.

Figure 4. A cyclic ordering gives rise to a construction of Γ, depicted here as
a sequence of embeddings into Γ. In the first picture, the numbers indicate the
cyclic ordering on the half-edges incident at each vertex (except at the starred
vertex, where we simply have an ordering). In the subsequent diagrams, we’ve
only numbered the external half-edges of the embedded diagram.

The size of Ω is precisely
∏

v∈Vint(Γ) (val(v)− 1)! and the size of M is κ(Γ). The automor-

phisms of Γ act on Ω in the natural way (we push the ordering forward via the isomorphism);
if we can show that this action is fiberwise, and free and transitive on the fibers, then we’ll
have shown that

κ(Γ) =

∏
v∈Vint(Γ) (val(v)− 1)!

|Aut(Γ)|
,

then we’ll be done. (In more geometric terms, Ω→M is a principal Aut(Γ) bundle.) To see
that this action is fiberwise, note that an automorphism is a way of permuting the half-edges
and vertices of a Feynman diagram without changing the information of which half-edges
are connected to each other and which half-edges are incident on a given vertex. Another
way to say this is that if we name the vertices and half-edges, an automorphism might move
vertex A to the spot where vertex B was, but it won’t change the fact that half-edge 1 of
vertex A is attached to half-edge 4 of vertex C. Moreover, the way that Aut(Γ) acts on Ω
guarantees that (e.g.) if half-edge 3 of vertex A is succeeded by half-edge 1 and preceeded by
half-edge 2 in a particular cyclic ordering, then under an automorphism this will still be true
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Figure 5. The automorphism exchanging the two top edges of Γ gives rise
to a cyclic ordering distinct from the one in figure ??. It does, however, give
rise to the same construction.

in the new cyclic ordering. Thus, since this is the only information we needed to uniquely
determine an element of M , Aut(Γ) acts fiberwise (see figure ??).

To see that the action is transitive on the fibers, let p, q be two different cyclic orderings of
the half-edges incident on the vertices of Γ that give rise to the same construction of Γ. Note
that both of these constructions will give two (possibly different) isomorphisms Γ′′ → Γ,
with Γ′′ being the same in both cases since the construction was the same. Composing one
isomorphism with the inverse of another gives an automorphism of Γ; we need to check
that it takes the cyclic ordering p to the cyclic ordering q. But this is a consequence of an
argument we made above: the fact that the two isomorphisms Γ′′ → Γ arose from the same
sequence of ∆ operations means that the cyclic ordering induced on the half-edges incident
at each vertex of Γ′′ by the sequence of ∆ operations pulls back under the two isomorphisms
to p and q. Therefore, the automorphism Γ → Γ takes p 7→ q. Finally, we show that the
Aut(Γ) action is free on the fibers. Suppose φ ∈ Aut(Γ) fixes a cyclic ordering. Then, unless
φ = e, there must be some vertex v ∈ Γ such that φ fixes v but not all half-edges incident on
v; this is because if φ fixed all half-edges incident on all vertices that it fixes, then since φ has
to fix the starred vertex and all half-edges incident on it by the definition of automorphism,
it would have to fix all vertices connected by an edge to the starred vertex, and it would
have to fix all half-edges incident on those vertices and fix the vertices attached to those
half-edges and so on, and so φ would therefore be the identity. Since Γ is connected, this
shows that φ must fix at least one vertex v but not the half-edges incident on it. Thus, φ
must change the cyclic ordering at v; but this is a contradiction, so we must have φ = e and
therefore the Aut(Γ) action on Ω is free. This completes the proof. �


