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Abstract

Much of chromatic homotopy theory organizes around the chromatic tower, a tower of certain Bousfield
localizations of a given spectrum; the chromatic convergence theorem asserts that the limit of the tower recovers
the original spectrum in many cases. After reviewing this background, we’ll discuss the proof of the chromatic
convergence theorem and then examine the individual layers of the tower.

0 Notation

Everything is ∞-categorical, and S denotes the category of spectra.

1 Introduction

Recall that 〈E(n)〉 = 〈K(0) ∨ · · · ∨K(n)〉; this implies that there are natural transformations id → · · · → L2 →
L1 → L0, and applying these to a space X to a space gives the chromatic tower for the space X. As the following
theorem makes precise, this tower encodes a good deal of information about X.

Theorem 1 (Chromatic convergence). If X is a finite p-local spectrum, then X
∼−→ limLnX.

Remark 2. The chromatic convergence theorem closely mirrors a corresponding phenomenon in algebraic geometry,
namely that we can understand a sheaf on a variety via its behavior on a nested sequence of open subvarieties. In
this analogy, the variety corresponds to the moduli stack MFG,p-typ of p-typical formal group laws, and the open
subvarieties correspond to the open substacks M<n

FG,p-typ of formal groups with height less than n.

Remark 3. It’s unambiguous to say “E-local finite spectrum” versus “finite E-local spectrum” (i.e. a complex
built out of finitely many E-local spheres and disks) if and only if LE is an arithmetic localization. Otherwise, LES
has new self-maps, which already give rise to “exotic Moore spectra”.

Remark 4. The chromatic tower might be thought of as a “Postnikov-type tower”, only with respect to a much
subtler filtration than dimension, namely the chromatic filtration. In fact, for all n <∞ the Bousfield class 〈K(n)〉
is minimal. This implies that the chromatic tower is unrefineable: there is no localization functor that sits between
Ln and Ln−1.

It seems that we’ve all made our peace with the fact that stable homotopy theory is generally done “one
prime at a time”. If we’re additionally willing to grant that rational homotopy theory is some sort of “0th degree
approximation” to stable homotopy theory (in the sense that π∗SQ is concentrated in dimension 0), then the
chromatic tower gives a maximal factorization of the rationalization map, and the convergence theorem may be
interpreted as saying that this assignment is faithful on finite p-local spectra.

In this talk, we’ll first discuss the proof of the chromatic convergence theorem and then explore in some depth
the levels of the chromatic tower.

2 Proof of chromatic convergence

Reduction 1. The class ChromConv of finite p-local spectra for which the chromatic convergence theorem holds is
thick. Thus, to prove the chromatic convergence theorem it suffices to prove that S(p) ∈ ChromConv.
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Proof. Clearly ChromConv is closed under weak equivalences.

To see that ChromConv is closed under taking cofibers, suppose X,Y ∈ ChromConv and suppose we have some

X
f−→ Y . Then we have

X Y cofib(f)

limLnX limLnY cofib(limLnf),

f

o o

limLnf

and the dashed arrow is an equivalence by comparing long exact sequences in homotopy. Moreover,

cofib(limLnf) ' Σ fib(limLnf) ' Σ lim fib(Lnf) ' lim Σ fib(Lnf) ' lim cofib(Lnf) ' limLncofib(f).

To see that ChromConv is closed under retracts, suppose that A ↪→ X is the inclusion of a retract and suppose
that X ∈ ChromConv. Since any functor preserves retracts, we have the diagram

A X

limLnA limLnX

o

where both rows are retract diagrams. Choosing a homotopy inverse for the right vertical arrow and chasing the
resulting diagram yields that A

∼−→ limLnA.

Remark 5. Actually, we don’t need to rely on the thick subcategory theorem to prove Reduction 1. The local-
izations Ln are smashing (although all localizations are smashing on for finite spectra anyways), and moreover
smashing with finite spectrum commutes with limits. Of course, this is just the essence of the argument used above
to show that ChromConv is closed under cofibers, which proves Reduction 1 by itself anyways.

Now, we will actually rephrase the chromatic convergence theorem slightly. Let us define the functor Cn =
fib(id→ Ln), so that for any X we have a commutative diagram of fiber sequences

limCnX · · · C2X C1X C0X

X · · · X X X

limLnX · · · L2X L1X L0X

Then we have the following reduction.

Reduction 2. To prove that S(p) ∈ ChromConv, it suffices to prove that for all m ≥ 0, {πmCnS(p)}n≥0 → {0}n≥0
is a pro-isomorphism of towers of abelian groups.

Proof. This pro-isomorphism implies that limCnS(p) is weakly contractible, which implies that S(p)
∼−→ limLnS(p).

Remark 6. Note that a tower may be pro-trivial even if it is nontrivial at all levels. For instance, to prove that
the tower of groups · · · → A2 → A1 → A0 is pro-trivial it suffices to prove that for any n, the map An+s → An is
trivial for all sufficiently large s. This is what we will show to hold for the tower {πmCnS(p)}n≥0.

We now make a further reduction. We take as a black box the following theorem, which marks the entrance of
MU into the story.

Theorem 7. The natural map CnS(p) → Cn−1S(p) induces the zero map MU∗CnS(p) →MU∗Cn−1S(p).
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Proof sketch. Writing L for the Lazard ring, inductively define the L-modules Mn by M−1 = L(p) and Mn =
v−1n Mn−1/Mn−1. One computes directly that there is a canonical isomorphism MU∗CnS(p)

∼= Mn, and that the
induced map MU∗CnS(p) →MU∗Cn−1S(p) is indeed zero.

Remark 8. In fact, this computation is roughly the starting point for the chromatic spectral sequence. We’ll
discuss this later.

To show why this implies the pro-isomorphism statement of Reduction 2, we introduce the following terminology.

Definition 1. Write MU = fib(S
η−→MU). The natural map MU

ε−→ S induces a sequence

· · ·
ε∧id

MU∧3−−−−−−−→MU
∧3 ε∧id

MU∧2−−−−−−−→MU
∧2 ε∧idMU−−−−−→MU

ε−→ S.

Then, we define the Adams–Novikov filtration on π∗X, denoted

· · · ⊆ F3π∗X ⊆ F2π∗X ⊆ F1π∗X ⊆ F0π∗X = π∗X,

by defining Fsπ∗X to be the image of π∗MU
∧s ∧X π∗ε

◦s

−−−→ π∗X. (This is the filtration coming from the normalized
MU -Adams resolution of X.)

Lemma 1. If X
f−→ Y induces the zero map MU∗X

MU∗f−−−−→ MU∗Y , then π∗X
π∗f−−→ π∗Y raises Adams–Novikov

filtration degree.

Proof. Suppose we are given the solid arrows in the diagram

Sm

X MU
∧s ∧X MU ∧MU

∧s ∧X

MU
∧(s+1) ∧ Y

Y MU
∧s ∧ Y MU ∧MU

∧s ∧ Y.

x
x

f id
MU∧MU∧s∧f

We claim that π∗(idMU∧MU
∧s ∧ f) is the zero map, from which it follows that the dashed arrow exists. This is

equivalent to the statement that the map MU
∧s ∧X

id
MU∧s∧f−−−−−−−→MU

∧s ∧Y is MU∗-null. From the MU∗-long exact
sequence for MU → S →MU , we see that MU∗MU is a free MU∗-module, and so we get Künneth isomorphisms

MU∗(MU
∧s ∧ X) ∼= (MU∗MU)⊗s ⊗MU∗ MU∗X and MU∗(MU

∧s ∧ Y ) ∼= (MU∗MU)⊗s ⊗MU∗ MU∗Y . Since we
assumed that MU∗f = 0, the claim follows.

This allows us the following further reduction.

Reduction 3. To prove that {πmCnS(p)}n≥0 → {0}n≥0 is a pro-isomorphism, it suffices to prove that the Adams–
Novikov filtration on each πmCnS(p) is finite (i.e. there is some s = s(m,n) such that FsπmCnS(p) = 0).

Proof. By Theorem 7, the image of π∗Cn+sS(p) → π∗CnS(p) lands in Fsπ∗CnS(p). Hence, the only endomorphism
of the pro-object {π∗CnS(p)}n≥0 is the zero map, which implies the claim.

To reduce this even further, we introduce a bit more terminology.

Definition 2. A map X
f−→ Y is called phantom below dimension n, or n-phantom, if for any finite spectrum F

with dimF ≤ n, [F,X]
f◦−−−−→ [F, Y ] is zero. (So by definition, a phantom map is a map which is n-phantom for all

n.)
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Definition 3. X is called MU -convergent if for every n there is some s = s(n) such that MU
∧s ∧ X → X is

n-phantom. (This implies that {π∗MU
∧s ∧X}s≥0 → {π∗X}s≥0 is a pro-isomorphism.) We will write MU-Conv

for the the class of MU -convergent spectra.

We can now give our final reduction.

Reduction 4. To prove that the Adams–Novikov filtration on each πnCmS(p) is finite, it suffices to prove that if
X is connected (i.e. πiX = 0 for i ≤ 0), then CmX ∈MU-Conv for all m.

Proof. Of course S(p) is connected, and so if CmS(p) ∈ MU-Conv and we choose s = s(n) as in the definition of
MU -convergence then we obtain that FsπnCmS(p) = 0.

Finally, we can prove the hypothesis of Reduction 4. It is an immediate consequence of the following three facts.

1. If X is connective (i.e. πiX = 0 for i < 0), then X ∈MU-Conv.

2. MU-Conv is thick.

3. For any X, LnX ∈MU-Conv.

We prove these facts in turn.

Fact 1. If X is connective, then X ∈MU-Conv.

Proof. Suppose X is connective, and choose any integer n. Since MU is connected, it follows that MU
∧(n+1)∧X is

n-connected. So if F is finite and dimF ≤ n, then [F,MU
∧(n+1)∧X] = 0, so certainly [F,MU

∧(n+1)∧X]→ [F,X]
is zero. Thus we can take s = n+ 1.

To prove Fact 2, we need the following lemma.

Lemma 2. If X → Y is n-phantom and W is connective, then X ∧W → Y ∧W is also n-phantom.

Proof. Suppose that F is finite with dimF ≤ n and that we are given a map F → X ∧W . If we write W as a
filtered colimit of finite connective spectra Wα, then there exists a factorization

F X ∧W Y ∧W

X ∧Wα Y ∧Wα.

Thus, it suffices to show that X ∧Wα → Y ∧Wα is n-phantom; that is, we may additionally assume that W is
finite. Now, since W is connective then dimDW ≤ 0, so dimDW ∧ F ≤ n. Thus in the commutative diagram

[F,X ∧W ] ∼= [DW ∧ F,X]

[F, Y ∧W ] ∼= [DW ∧ F, Y ],

the right map is zero since X → Y is n-phantom, so the left map is also zero.

Fact 2. MU-Conv is thick.

Proof. Clearly MU-Conv is closed under weak equivalences.

To see that MU-Conv is closed under cofibers, clearly it is closed under suspension, so it suffices to show that
if X → Y → Z is a cofiber sequence with X,Z ∈MU-Conv then Y ∈MU-Conv. So, fix any integer n, and choose

s such that MU
∧s ∧ X → X and MU

∧s ∧ Z → Z are both n-phantom. We will show that MU
∧2s ∧ Y → Y is
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n-phantom. First, by Lemma 2, since MU is connective then MU
∧2s ∧ Z → MU

∧s ∧ Z is also n-phantom. Now
for any finite F with dimF ≤ n, applying [F,−] to the diagram

MU
∧2s ∧ Y MU

∧2s ∧ Z

MU
∧s ∧X MU

∧s ∧ Y MU
∧s ∧ Z

X Y

yields the diagram

[F,MU
∧2s ∧ Y ] [F,MU

∧2s ∧ Z]

[F,MU
∧s ∧X] [F,MU

∧s ∧ Y ] [F,MU
∧s ∧ Z]

[F,X] [F, Y ].

The middle row is exact, and both the top right vertical arrow and the bottom left vertical arrow are zero by
assumption; hence, the claim that the composition of the middle two vertical arrows is indeed zero follows from an
easy diagram chase. So Y ∈MU-Conv.

To see that MU-Conv is closed under retracts, suppose that A ↪→ X is the inclusion of a retract and suppose

that X ∈MU-Conv. Given any n, choose s such that MU
∧s ∧X → X is n-phantom. Then so is MU

∧s ∧A→ A,
since if F is finite with dimF ≤ n then we have the commutative diagram

[F,MU
∧s ∧A] [F,MU

∧s ∧X]

[F,A] [F,X],

and a retract of a zero map is zero. So A ∈MU-Conv.

Fact 3. For any X, LnX ∈MU-Conv.

Proof. By the smash product theorem, the natural map {LnX}m≥0 → {TotmE(n)∧(•+1)∧X}m≥0 is an equivalence
of towers. So there exists some m such that LnX ↪→ TotmE(n)∧(•+1) ∧ X is the inclusion of a retract. Since
MU-Conv is thick, it suffices to show that TotmE(n)∧(•+1) ∧ X ∈ MU-Conv. This is defined as a finite limit
of E(n)-modules, hence of MU -modules, so again since MU-Conv is thick it suffices to show that if M is an
MU -module, then M ∈MU-Conv. In fact, we can see that MU ∧M →M is null via the diagram

MU ∧M M MU ∧M

M,

so in the definition of MU -convergent we can take s(n) = 1 (since null implies n-phantom for all n).

3 The levels of the tower

There are a number of interrelated ways to try to understand the levels of the chromatic tower.
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3.1 The chromatic fracture square

First, the map LnX → Ln−1X fits into a natural pullback square

LnX LK(n)X

Ln−1X Ln−1LK(n)X,

called the chromatic fracture square. This also mirrors a corresponding phenomenon in algebraic geometry, namely
that there is a Mayer–Vietoris principle to reconstruct a sheaf from its restrictions to a formal neighborhood of a
closed subvariety and its open complement along with the appropriate gluing data.

Remark 9. As a converse to the chromatic fracture square, it’s not hard to see that if Y is E(n − 1)-local, Z is
K(n)-local, and we are given a map Y → Ln−1Z, then X = lim(Y → Ln−1Z ← Z) is E(n)-local (and the pullback
square is indeed the chromatic fracture square for X = LnX). This implies that we can recover the category LnS
via the pullback diagram

LnS LK(n)S

Arr(Ln−1S) Ln−1S,

LK(n)

Ln−1(ηLK(n)
) Ln−1

target

where Arr denotes the arrow category. (We’re keeping track of the map Y → Ln−1Z, and the choice of localization
map Z → Ln−1Z is swept into the definition of a homotopy pullback.) One might say that this gives a “semi-
orthogonal decomposition” LnS ' Ln−1S o LK(n)S. All together, this gives us the diagram

Sfin(p)

limLnSfin

...

LnSfin LK(n)Sfin

Arr(Ln−1Sfin) Ln−1Sfin

Ln−1Sfin LK(n−1)Sfin

Arr(Ln−2Sfin) Ln−2Sfin

Ln−2Sfin

...

fully faithful (and essentially surjective???)

LK(n)

Ln−1(ηLK(n)
)

Ln−1

Ln−1

target

source
LK(n−1)

Ln−2(ηLK(n−1)
)

Ln−2

Ln−2

target

source
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in which the parallelograms are pullbacks. (It seems plausible that Sfin(p) → limLnSfin might be an equivalence,

but a priori there might be some infinite p-local spectrum whose E(n)-localizations are all equivalent to E(n)-
localizations of various finite spectra.)

3.2 The monochromatic and K(n)-local categories

If we define Mn = fib(Ln → Ln−1), then MnX is called the nth chromatic layer of X. Since LnLK(n) ' LK(n), the
right vertical arrow in the chromatic fracture square is actually a map in the chromatic tower for LK(n)X; the fact
that it’s a pullback square implies that MnLK(n)X 'MnX.

On the other hand, since LK(n)Ln−1 ' pt and LK(n)Ln ' LK(n), then the fiber sequence obtained by applying
LK(n) to the fiber sequence MnX → LnX → Ln−1X yields that LK(n)X ' LK(n)MnX.

So, MnLK(n) 'Mn and LK(n)Mn ' LK(n). It is in this sense that monochromatic layers and K(n)-localizations
determine each other; indeed, LK(n) : MnS � LK(n)S : Mn defines an equivalence of categories. (Note that Mn –
while not a localization – is a smashing functor, since it’s defined as the fiber of two smashing functors. It follows
that it is indeed an idempotent functor.) In fact, with a little fussing one can even check that this is an monoidal
equivalence. [the “internal” homotopy groups are equivalent, but the internal ones in LK(n)S are the
same as the external ones, while the internal ones in MnS are distinct.]

Remark 10. Recall that π∗S contains periodic families of elements coming from vn-self maps of finite spectra of
type n. In fact, this same method generalizes very cleanly to any π∗MnX.

Let us write I = (i0, . . . , in−1) ∈ Nn. By the periodicity theorem, for some cofinal set of I ∈ Nn there exist

“generalized Moore spectra” M(I) = M(pi0 , . . . , v
in−1

n−1 ) (with top cell in degree 0), defined inductively by the cofiber
sequence

M(pi0 , . . . , v
in−1

n−1 )→M(pi0 , . . . , v
in−2

n−2 )
v
in−1
n−1−−−−→ Σ−in−1·|vn−1|M(pi0 , . . . , v

in−2

n−2 ).

Then we can present the nth monochromatic layer of X as MnX ' colimI∈Nn LnX ∧M(I).

Now, if we are given some α ∈ πmMnX, then by the small object argument there exists a factorization

Sm MnX

LnX ∧M(I)

α

α̃

for some I = (i0, . . . , in−1). Hence for any vn-self map Σin·|vn|M(I)
vinn−−→ M(I) we can define a family of elements

αs·in ∈ πm+s·in·|vn|MnX (beginning with α0 = α), where αs is given as the composite

Sm+s·in·|vn| Σs·in·|vn|LnX ∧M(I) LnX ∧M(I) MnX.
α̃ (vinn )◦s

One can check that the maps Σs·in·|vn|LnX ∧ M(I) → LnX ∧ M(I) are all equivalences (since vinn is a K(n)-
equivalence and the smash product of an E(n)-local spectrum with a finite spectrum of type n is K(n)-local); this
doesn’t imply that nontriviality of α guarantees nontriviality of the αt, but at least it’s some indication that this
isn’t too naive of an operation. Note also that by the asymptotic uniqueness and centrality of vn-self maps, the αt
are asymptotically independent of the choices of I and vinn .

4 All the spectral sequences

There are a bunch of spectral sequences running around, all computing related things. In this section we attempt
to organize them.

4.1 The chromatic spectral sequence

As we mentioned above, the computation that MU∗CnS(p) → MU∗CnS(p) is the zero map is roughly the starting
point for the chromatic spectral sequence, aside from the small point that rather than apply MU∗ to p-local spectra
we simply apply BP∗ instead.
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To construct the chromatic spectral sequence, we will want to use the chromatic tower, but we must amend
it slightly so that it gives a resolution of S(p) instead of L0S(p). Actually, so that we don’t have to keep making
exceptions at the low levels, we replace the bottom of the chromatic tower with

...

M2S(p) L2S(p)

M1S(p) L1S(p)

L0S(p)

M0S(p) S(p)/p
∞

ΣS(p)

(Note that M0S(p) ' L0S(p) ' SQ = p−1S(p).) For notational convenience, we denote the levels of this tower by
LnS(p); that is, we set LnS(p) = LnS(p) for n ≥ 1, and then we set L0S(p) = S(p)/p

∞ and L−1S(p) = S(p). We
retain the MnS(p), although note that M1S(p) → L1S(p) → L0S(p) is not a fiber sequence.

We begin with the fact that the fiber sequence S(p) → LnS(p) → ΣCnS(p) induces a short exact sequence in
BP∗, which is split for n ≥ 1. Thus in that case, BP∗LnS(p)

∼= BP∗ ⊕ BP∗CnS(p), and in fact the aforementioned
computation can be used to show that for n ≥ 2, the map BP∗LnS(p) → BP∗Ln−1S(p) is an isomorphism on the
first summands and zero on the second summands. At the bottom, we have that BP∗L0S(p)

∼= BP∗/p
∞ and that

BP∗L−1S(p)
∼= ΣBP∗, and that the maps BP∗L1S(p) → BP∗L0S(p) and BP∗L0S(p) → BP∗L−1S(p) are both zero.

Now, returning to the modified chromatic tower, this all implies that for n ≥ 2 the fiber sequence Σ−1Ln−1S(p) →
MnS(p) → LnS(p) induces a short exact sequence 0→ ΣB̃P ∗Ln−1S(p) → BP∗MnS(p) → B̃P ∗LnS(p) → 0 (where by

an abuse of notation we write B̃P ∗LnS(p) to mean BP∗CnS(p), despite the fact that the homology of a spectrum isn’t

ever really unreduced). However, letting B̃P ∗L0S(p) = BP∗L0S(p) and B̃P ∗L−1S(p) = BP∗L−1S(p) for notational
convenience, we actually have this short exact sequence for all n.

Then, taking cohomology (i.e. Ext in BP∗BP -comodules) yields the exact couple⊕
i,j,nH

i,j(B̃P ∗LnS(p))
⊕

i,j,nH
i,j(B̃P ∗LnS(p))

⊕
i,j,nH

i,j(BP∗MnS(p)),

(i,j,n) (i+1,j+1,n−1)

(i,j+1,n−1) (i,j,n)(i,j,n) (i,j,n)

and the associated spectral sequence – the chromatic spectral sequence – abuts to H?,?(B̃P ∗L−1S(p)), i.e. to the
E2-page of the Adams–Novikov spectral sequence for π∗S(p). (This exact couple gives the E1-page of the chromatic
spectral sequence, and so we have dr : Ei,j,nr → Ei,j−r,n+rr .)

4.2 Another route to π∗S(p)

If we apply π∗ to the chromatic tower, we get a spectral sequence π∗M∗S(p) ⇒ π∗S(p). This also might reasonably
be called the “chromatic spectral sequence” – though it isn’t, so we’ll refer to the usual chromatic spectral sequence
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as the algebraic chromatic spectral sequence and the present spectral sequence as the topological spectral sequence
(even though these aren’t exactly analogs of each other in the algebraic and topological worlds or anything like
that).

To get at the topological chromatic spectral sequence, we have Adams–Novikov spectral sequencesH∗,∗(BP∗MnS(p))⇒
π∗MnS(p). Note that the input to these is the same as the input to the chromatic spectral sequence.

Remark 11. Let En denote the Morava E-theory spectrum obtained from the height-n Honda formal group
over Fp, and let Gn = Aut(Hn) o Gal(Fp/Fp) denote the nth extended Morava stabilizer group. By the Morava
change-of-rings theorem, the Adams–Novikov spectral sequences for MnS and LK(n)S take the form

H∗cts(Gn; (En)∗/(p
∞, . . . , u∞n−1)) ⇒ π∗MnS

H∗cts(Gn; (En)∗) ⇒ π∗LK(n)S.

In fact, there is a topological refinement of the second statement: Gn can be made to act by E∞-ring maps on
En, and then the unit map S → En induces an equivalence LK(n)S

∼−→ EhGn
n . That is, the spectrum LK(n)S itself

is the (hyper)cohomology of the group Gn with coefficients in the spectrum En. (Given this, the above spectral
sequence for π∗LK(n)S can also be viewed as a descent spectral sequence.)

[mention Galois extensions?]
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