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Abstract

Goerss–Hopkins obstruction theory via model ∞-categories

by

Aaron Mazel-Gee

Doctor of Philosophy in Mathematics

University of California, Berkeley

Peter Teichner, Chair

We develop a theory of model ∞-categories – that is, of model structures on ∞-
categories – which provides a robust theory of resolutions entirely native to the
∞-categorical context. Using model ∞-categories, we generalize Goerss–Hopkins
obstruction theory from spectra to an arbitrary (presentably symmetric monoidal
stable) ∞-category. We give a sample application of this generalized obstruction
theory in the setting of motivic homotopy theory, where we construct E∞ structures
on the motivic Morava E-theories and compute their automorphism spaces (as E∞
algebras).
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Chapter 0

Introduction

The bulk of this introductory chapter is split into three sections.
In §0.1, we provide an expository overview of abstract homotopy theory. In

the interest of accessibility to a broad mathematical audience, we begin with the
motivation provided by abelian categories. In order to set the stage for the following
section, we place particular emphasis on model categories and ∞-categories.

Next, in §0.2, we describe the theory of model∞-categories which is introduced in
this thesis. This provides a robust theory of resolutions entirely native to the world
of ∞-categories. The context provided by §0.1 makes this a fairly straightforward
endeavor. We also describe a number of auxiliary results that we establish in ∞-
category theory that serve as input to the theory of model ∞-categories.

Then, in §0.3 we describe our generalization of Goerss–Hopkins obstruction theory
from spectra (in the sense of stable homotopy theory) to an arbitrary sufficiently nice
∞-category. This is a powerful tool for constructing “highly structured” objects (e.g.
E∞ algebras) out of purely algebraic data.

The original obstruction theory is based in a point-set model category of spec-
tra satisfying a host of technical assumptions, which makes its direct generalization
rather difficult. Thus, our generalization relieves the original construction of unnec-
essary point-set technicalities. However, as it turns out, relieving the construction of
point-set technicalities is not the same thing as relieving it of model structures: as
we will see, the obstruction theory relies crucially on the notion of a resolution, and
so our generalization necessitates the use of the full strength of the theory of model
∞-categories.

This section begins with an introduction to spectra (as the “nonabelian derived
∞-category of sets”) and to stable ∞-categories more generally. It then proceeds
to give an impressionistic survey of derived algebraic geometry and chromatic ho-
motopy theory, which provide context for some of the most important applications
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of Goerss–Hopkins obstruction theory to date, most notably the construction of the
cohomology theory tmf of topological modular forms. After describing the obstruc-
tion theory itself (in two passes), it closes by describing our sample application. This
comes from motivic homotopy theory, which is a homotopical context for studying
algebraic varieties and their various cohomology theories. Our application concerns
the motivic Morava E-theories, which are certain “higher chromatic analogs” of (mo-
tivic) algebraic K-theory.

Finally, in §0.4 we say a few words regarding our conventions (which are spelled
out in full detail in §A), and in §0.5 we express our acknowledgments.

0.1 A brief history of derived categories,

nonabelian derived categories, and abstract

homotopy theory

In this expository section, we provide a broad overview of abstract homotopy the-
ory. In the interest of accessibility to a wide mathematical audience, we center our
discussion around the theme of (derived) functors between abelian categories. We
place particular emphasis on the theories of model categories and of ∞-categories,
since the intuition surrounding them will play a prominent role in the remainder of
this introduction (especially in §0.2).

0.1.1 Derived categories, derived functors, and resolutions

In studying abelian categories, one immediately encounters the inescapable fact that
not every functor

F : A→ B

among them is exact: some are only left-exact (i.e. preserve kernels), some are only
right-exact (i.e. preserve cokernels), and some are neither left- nor right-exact. For
example, if we take A = B = ModR for a commutative ring R, then for an arbitrary
R-module M the functor

M ⊗R − : ModR → ModR

will always be right-exact but will not generally be left-exact.
In his groundbreaking “Tôhoku paper” [Gro57], Grothendieck introduced an or-

ganizational framework for understanding and quantifying these failures of exactness,
based on the category Ch(A) of chain complexes in A. This category provides a home
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for resolutions of objects of A: these are objects which are “weakly equivalent” to
our original objects of A, but which are better behaved with respect to our given
functor of interest (in a sense to be described shortly). One would now like to define
the derived functor of F to be the value of the induced functor

Ch(F ) : Ch(A)→ Ch(B)

on an appropriately chosen resolution.
However, such resolutions – and thence their values under the functor Ch(F ) –

are generally only well-defined up to weak equivalence (a/k/a “quasi-isomorphism”).
There are two ways of remedying this situation.

• One may take homology of these values in Ch(B) to obtain well-defined objects
of B. For example, this technique leads to the definition of TorR∗ (M,−) as the
derived functor of M ⊗R −.

• Alternatively, writing Wq.i. ⊂ Ch(B) for the subcategory of quasi-isomorphisms,
one can consider the derived functor of F as taking values in the derived cate-
gory of B, i.e. the localization D(B) = Ch(B)[W−1

q.i.].

In fact, the first approach can always be recovered from the second: by the definition
of quasi-isomorphism, homology descends along the canonical localization functor
Ch(B)→ D(B).

Of course, a derived functor should in particular be a functor, but it is not
immediately obvious that the process we have described defines one. In fact, our
desired functoriality will be a consequence of our definition of “resolution”. The
appropriate notion will vary from one application to another, but in any case the
crucial property will be that the restriction

Ch(A)res ↪→ Ch(A)
Ch(F )−−−→ Ch(B)

to the full subcategory of “resolutions” preserves weak equivalences. For example,
given anyR-moduleN , any weak equivalence P•

≈→ Q• between projective resolutions
of N induces a weak equivalence

M ⊗R P•
≈→M ⊗R Q•

upon tensoring with M .1 Moreover, every object should admit a resolution: indeed,
in many cases (such as with model categories, as we will see in §0.1.2), the inclusion

1On the other hand, these objects are not generally weakly equivalent to M ⊗R N : this is the
entire point of resolving N in the first place.
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Ch(A)res ↪→ Ch(A) even induces an equivalence

Ch(A)res[W−1
q.i.]

∼−→ Ch(A)[W−1
q.i.] = D(A)

on localizations. In such a situation, we then obtain the derived functor D(F ) of the
original functor F as an extension in the commutative diagram

A B

Ch(A)res Ch(A) Ch(B)

Ch(A)res[W−1
q.i.] D(A) D(B)

F

Ch(F )

∼ D(F )

of categories (which is well-defined up to natural isomorphism). The resulting com-
posite

A→ D(A)
D(F )−−−→ D(B)

is sometimes referred to as the total derived functor of F (recovering as it does the
“ith derived functor” of F upon postcomposition with the functor Hi : D(B)→ B).

0.1.2 Model categories

By definition, the derived category D(A) = Ch(A)[W−1
q.i.] of an abelian category A is

the universal recipient of homological invariants. For example, the derived category
DR = D(ModR) is the target of the derived functor

ModR → DR
D(M⊗R−)−−−−−−→ DR

of the functor
M ⊗R − : ModR → ModR.

Correspondingly, the derived category enjoys a universal property as a category.
However, it tends to be quite difficult to make computations within the derived
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category. In effect, this is because its universal property takes place “one category-
level higher” than do its actual objects and morphisms themselves.

In order to discuss this phenomenon, it is convenient to introduce the notion
of a relative category : this is a (strict) category R equipped with a distinguished
subcategory W ⊂ R of “weak equivalences” which is required to contain the subcat-
egory R

∼= ⊂ R of isomorphisms. The category RelCat of relative categories admits a
localization functor

RelCat→ Cat

to the category Cat of (strict) categories (which we have already referred to in §0.1.1),
which is by definition left adjoint to the “minimal relative category structure” functor
C 7→ (C,C

∼=). Given a relative category (R,W), its localization R[W−1] – which is
also in some contexts called its “homotopy category” – is therefore equipped with a
canonical localization functor

R→ R[W−1]

with the universal property that for any category C ∈ Cat, the restriction map

homCat(R[W−1],C)→ homCat(R,C)

defines an isomorphism onto the set of functors R → C which take the subcategory
W ⊂ R of weak equivalences into the subcategory C

∼= ⊂ C of isomorphisms.2 At
one extreme, the localization R[(R

∼=)−1] of the minimal relative category structure
is therefore simply R itself, while at the other extreme, the localization R[R−1] of
the “maximal” relative category structure recovers the groupoid completion of the
category R.

Using this language, we can now illustrate the difficulty of making computations
within the localization of a relative category, such as the derived category D(A) =
Ch(A)[W−1

q.i.] of an abelian category A.
We begin with the smallest possible example. Recall that a category with a

single object is completely specified by the monoid of endomorphisms of its object;
given a monoid G0, we write BG0 for the corresponding one-object category. Under
this correspondence, the group completion G of the monoid G0 corresponds to the
groupoid completion of BG0: that is, there is a canonical isomorphism

BG ∼= BG0[(BG0)−1]

in Cat. But while the groupoid BG is easy to characterize by means of its universal
property, it is hopelessly difficult to describe in concrete terms. Indeed, understand-
ing composition in BG amounts to understanding the multiplication law of G, but

2The term “localization functor” is certainly overloaded, but it should always be clear what is
meant in any given situation.
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this is an intractable (in fact, computationally undecidable) task, closely related to
the so-called “word problem” for generators and relations in abstract algebra.

More generally, given a relative category (R,W) and any two objects x, y ∈ R,
morphisms from x to y in the localization R[W−1] will be represented by equivalence
classes of “zigzags”

x
≈← • → • ≈← · · · ≈← • → • ≈← y

in (R,W) from x to y.3,4 In particular, note that elements of homR[W−1](x, y) will
generally fail drastically to be represented by elements of homR(x, y).

It was against this backdrop that Quillen introduced the general theory of model
categories in his seminal work [Qui67]. A model category M consists of a relative
category equipped with certain additional data that are collectively called a model
structure, which in particular specify full subcategories

Mc ↪→M←↩Mf

of cofibrant objects and of fibrant objects. Moreover, the axioms dictate that every
object of M is weakly equivalent to a cofibrant object and is also weakly equivalent to
a fibrant object. Thus, the following fundamental theorem of model categories
provides a direct and computable method of accessing the hom-sets in the localization
M[W−1].

Theorem 0.1.1 (Quillen). Let M be a model category, and suppose that x ∈ M is
cofibrant and that y ∈M is fibrant. Then the canonical map

homM(x, y)→ homM[W−1](x, y)

is a surjection, which moreover becomes an isomorphism after applying either equiv-
alence relation of “left homotopy” or “right homotopy” to the source.

Thus, cofibrant objects should be thought of as being “good for mapping out of”,
while fibrant objects should be thought of as being “good for mapping into”.5

3Strictly speaking, we should really be referring to the images of x and y under the localization
functor R → R[W−1], but (since we are speaking strictly) this induces an isomorphism on sets of
objects and so there is no real ambiguity.

4As an example of the equivalence relation on zigzags, if one of the backwards-pointing weak
equivalences happens to be an isomorphism, then the displayed zigzag must be declared equivalent
to the one obtained by replacing this weak equivalence with its (forwards-pointing) inverse and then
composing with any adjacent forwards-pointing arrows.

5For example, the relative category (ChR,Wq.i.) admits a model structure in which bounded-
below complexes of projective R-modules are cofibrant and all objects are fibrant, and the “ho-
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Beyond providing direct access to computations in derived categories, the theory
of model categories moreover bears directly on the construction of derived functors.
Given two model categories M and N, a Quillen adjunction between them is an
adjunction

F : M� N : G

satisfying certain conditions related to their respective model structures, and a
Quillen equivalence is a Quillen adjunction satisfying a further condition. These
notions are immensely useful for both constructing and computing derived functors,
as a consequence of the following result.

Theorem 0.1.2 (Quillen). Given a Quillen adjunction F : M � N : G, the left
adjoint F preserves weak equivalences between cofibrant objects of M and the right
adjoint G preserves weak equivalences between fibrant objects of N. These induce
derived functors via the commutative diagram

Mc[W−1] M[W−1] N[W−1]

Mc M N Nf

M[W−1] N[W−1] Nf [W−1]

∼ LF

F

G

RG ∼

of categories, which moreover participate in a canonical derived adjunction

LF : M[W−1]� N[W−1] : RG

motopy” relations can be computed via the usual notion of chain homotopy. In fact, this same
relative category admits another model structure, in which bounded-above complexes of injectives
are fibrant and all objects are cofibrant. The existence of these two distinct model structures
is responsible e.g. for the fact that we can compute Ext∗R(M,N) either by applying the functor

homR(−, N) to a projective resolution P•
≈→ M or by applying the functor homR(M,−) to an

injective resolution N
≈→ I•.
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on localizations. If this Quillen adjunction is moreover a Quillen equivalence, then
the derived adjunction is an adjoint equivalence of categories.

Thus, more generally, cofibrant objects should be thought of as left resolutions, while
fibrant objects should be thought of as right resolutions.

0.1.3 Nonabelian derived categories

Let us return to our discussion of functors F : A → B between abelian categories.
Recall that in good cases, the derived functor of F can be computed by passing to
the induced functor

Ch(F ) : Ch(A)→ Ch(B)

on categories of chain complexes and then restricting to a subcategory of “resolu-
tions” (whose precise nature depends on the situation at hand).

Let us restrict our attention for a moment to the subcategory Ch≥0(A) ⊂ Ch(A)
of nonnegatively-graded chain complexes. Then, there is an equivalence

Ch≥0(A) ' sA

with the category of simplicial objects in A, i.e. the category sA = Fun(∆op,A) of
A-valued presheaves on the category ∆ of finite nonempty totally-ordered sets.

This leads to an enormously fruitful idea: if we are interested in resolving ob-
jects of a nonabelian category C, then the category sC = Fun(∆op,C) of simpli-
cial objects in C provides a reasonable substitute for the (nonexistent) category of
“nonnegatively-graded chain complexes in C”. Moreover, the category sC still comes
equipped with a subcategory W ⊂ sC of weak equivalences (which reduces to that of
quasi-isomorphisms in the abelian case), allowing us to form the nonnegatively-graded
nonabelian derived category of C as the localization

D≥0(C) = sC[W−1].

(We will explain how to recover the full nonabelian derived category D(C) in §0.3.1.)6

As a first example, let us take C = Set to be the category of sets. Now, the
category sSet of simplicial sets admits a geometric realization functor

|−| : sSet→ Top

to the category of topological spaces: this uses a simplicial set as a recipe for assem-
bling a simplicial complex, with the structure maps between the various constituent

6Actually, this is all a very slight simplification, which we will elide for now but return to in
§0.3.4.
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sets specifying the gluing data between topological simplices. In this case, the sub-
category W ⊂ sSet is pulled back from the subcategory Ww.h.e. ⊂ Top of weak
homotopy equivalences, and moreover the geometric realization functor induces an
equivalence

D≥0(Set) = sSet[W−1]
∼−→ Top[W−1

w.h.e.].

In other words, the nonnegatively-graded nonabelian derived category of sets is noth-
ing other than the classical homotopy category of topological spaces! In this sense,
the category sSet of simplicial sets can be seen as a combinatorial presentation of the
homotopy category Top[W−1

w.h.e.] of topological spaces, and simplicial sets themselves
can be seen as combinatorial presentations of homotopy types.

In fact, the geometric realization functor participates in an adjunction

|−| : sSet� Top : Sing(−)•

with the singular simplicial set functor: given a topological space X ∈ Top, the
corresponding simplicial set Sing(X)• ∈ sSet = Fun(∆op, Set) is given by taking the
object [n] = {0, . . . , n} ∈∆op to the set

Singn(X) = homTop(∆n
top, X)

of continuous maps into X from the standard topological n-simplex ∆n
top.7 Moreover,

there exist model structures on these two relative categories – the Kan–Quillen model
structure on sSet and the Quillen–Serre model structure on Top – making this ad-
junction into a Quillen equivalence.8 In particular, the category sSet is not merely a
combinatorial presentation of the homotopy category Top[W−1

w.h.e.]: its Kan–Quillen
model structure moreover allows for extremely efficient computations therein.

0.1.4 The homotopy theory of homotopy theories

In their radical and innovative paper [DK80c], Dwyer–Kan turned the lens of abstract
homotopy theory onto itself, introducing a derived functor of the localization functor

7The functoriality of Sing(X)• : ∆op → Set arises from pulling back along certain continuous
functions between the various topological simplices, which are defined by mimicking the behavior of
the corresponding morphisms in ∆ on vertices and then extending linearly. In fact, these assemble
into a cosimplicial object ∆•top : ∆→ Top, and we can consider the functor

Sing(−)• = homlw
Top(∆•top,−)

as arising from taking “levelwise maps” out of this cosimplicial topological space.
8The derived left adjoint of this Quillen equivalence recovers the equivalence described above:

all objects of sSetKQ are cofibrant, so the restriction to the subcategory sSetcKQ ⊂ sSetKQ (as in
the statement of Theorem 0.1.2) is already implicit.
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RelCat→ Cat: this is a functor

RelCat→ CatsSet

landing in the category of simplicially-enriched categories, i.e. in the category of
categories enriched in the category sSet of simplicial sets.9,10 As simplicial sets can
be considered as presentations of homotopy types, objects of CatsSet can be considered
as presentations of “categories enriched in homotopy types”.11

Of course, such a viewpoint immediately suggests a notion of “weak equivalence”
among simplicially-enriched categories; weak equivalence classes of objects of CatsSet

came to be known colloquially as homotopy theories, and the corresponding localiza-
tion

CatsSet[W
−1]

came to be known as the homotopy theory of homotopy theories.
As we have seen, such a definition is of rather limited use in and of itself: it is

generally extremely difficult to make computations in a localization. However, in
[Ber07], Bergner drastically improved the state of affairs by constructing a model
structure on CatsSet extending this relative category structure, providing the first
model category presenting the homotopy theory of homotopy theories.

Given a relative category (R,W), we denote its derived localization – also known
as its underlying homotopy theory – by

RJW−1K ∈ CatsSet[W
−1].

This power series notation is meant to indicate that the derived localization con-
tains “higher-order” information than does the ordinary localization R[W−1] ∈ Cat.
Indeed, the “homotopy category” functor

CatsSet → Cat

9Simplicially-enriched categories are not quite the same thing as simplicial objects in Cat: rather,
CatsSet ⊂ s(Cat) defines a full subcategory on those objects whose “simplicial set of objects” is
constant.

10Their technique falls squarely in line with the “simplicial objects as resolutions” paradigm
described in §0.1.3: the derived localization functor is defined as the composite

RelCat→ s(RelCat)→ CatsSet

of a “free simplicial resolution” functor followed by a levelwise application of the ordinary localiza-
tion functor RelCat→ Cat.

11Actually, this is not quite correct: a simplicially-enriched category also contains “homotopy-
coherence data” for its composition (in a sense to be described in §0.1.5) which are not present in
a category enriched in homotopy types.
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(which takes each hom-simplicial set (considered as a homotopy type) to its set of
path components) takes the subcategory W ⊂ CatsSet of weak equivalences into the
subcategory W ⊂ Cat of equivalences of categories, and the induced diagram

RelCat CatsSet[W
−1]

Cat[W−1]

(R,W)7→RJW−1K

(R,W)7→R[W−1]

ho

commutes (up to natural isomorphism).

0.1.5 The zen of ∞-categories

Since the work of Bergner, there has been a proliferation of model categories which are
Quillen equivalent to (CatsSet)Bergner and thus likewise present the homotopy theory of
homotopy theories (by virtue of Theorem 0.1.2). Purely as a matter of terminology,
objects of any of these model categories – or more precisely, their weak equivalence
classes – have come to be referred to as ∞-categories.

In fact, some of these other model categories of ∞-categories enjoy better tech-
nical properties than does (CatsSet)Bergner (or does its close cousin (CatTop)Bergner),
making them far more useful in practice.12 However, in addition to these technical
advantages, certain of these other model categories admit philosophical advantages.
In essence, the idea is that ∞-categories should not really be thought of as being
strictly enriched – in topological spaces, or simplicial sets, or anything else: rather,
they should be thought of as being enriched in the ∞-category of spaces, namely the
equivalence class

S ∈ CatsSet[W
−1]

of either equivalent derived localization

TopJW−1
w.h.e.K ' sSetJW−1

KQK
12The issue is that the model category (CatsSet)Bergner behaves poorly with respect to products:

the product of two cofibrant objects will not generally be cofibrant. This is a major issue, for it
obstructs a clean construction of a “homotopically correct” internal hom-object. At the level of
the homotopy category CatsSet[W

−1], this should be an object hom(C,D) with represented functor
given by

E 7→ homCatsSet[W−1](E,hom(C,D)) ∼= homCatsSet[W−1](E× C,D).

But since it’s not straightforward to obtain a cofibrant representative of the product E × C at the
level of the model category (CatsSet)Bergner, it becomes difficult to naturally construct an object at
that level that descends through the localization CatsSet → CatsSet[W

−1] to represent the functor
homCatsSet[W−1]((−)× C,D).
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of a relative category.13 In other words, the ∞-category S of spaces plays an analo-
gous role in ∞-category theory to the one played by the category Set in 1-category
theory. In order to illustrate this idea, we briefly survey the theory of quasicategories.

We begin by recalling the nerve construction, which is a functor

N(−)• : Cat→ sSet.

By definition, the category ∆ is a category of posets, which are particular examples
of categories; thus there is an inclusion functor ∆ ↪→ Cat. Then, the nerve functor
is given by the restricted Yoneda embedding: for any C ∈ Cat and any [n] ∈ ∆, we
define

N(C)n = homCat([n],C).

So the set N(C)n of n-simplices is the set of sequences of n composable morphisms
in C (with N(C)0 simply the set of objects), and for instance the morphism {0, 1} →
{0, 1, 2} in ∆ given by 0 7→ 0 and 1 7→ 2 determines a function N(C)2 → N(C)1 which

takes a pair of composable morphisms (c0
ϕ−→ c1, c1

ψ−→ c2) to its composite (c0
ψϕ−→ c2).

Thus, a 2-simplex of N(C)• may be thought of as encoding a commutative triangle

c1

c0 c2

ψϕ

ψϕ

in C, and we may therefore think of it as a “witness” to the fact that the morphism
ψϕ is the composite of the morphisms ϕ and ψ. As composition in the category C

is uniquely defined, it follows that for any two “composable 1-simplices” of N(C)•
(such as ϕ and ψ as above), there exists a unique 2-simplex extending them (such as
the 2-simplex above).

Now, in the setting of simplicially-enriched categories, the nerve functor can be
enhanced to the homotopy-coherent nerve functor, denoted

Nhc(−)• : CatsSet → sSet.

Rather than describe this in full, we will simply indicate its values in the bottom
few dimensions. For a simplicially-enriched category C ∈ CatsSet, we once again have
that the set Nhc(C)0 of 0-simplices is given by the set of objects of C, and that the

13In fact, the∞-category of spaces admits various universal characterizations which make no ref-
erence whatsoever to topological spaces or to simplicial sets: for instance, it is the free cocompletion
of the terminal ∞-category.
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set Nhc(C)1 of 1-simplices is given by the set of morphisms of C (i.e. the 0-simplices
of its various hom-simplicial sets, or equivalently the morphisms in its underlying
unenriched category). However, the set Nhc(C)2 of 2-simplices is more interesting:

for any three morphisms c0
ϕ−→ c1, c1

ψ−→ c2, and c0
ρ−→ c2 in C, a 2-simplex

c1

c0 c2

ψϕ

ρ

is determined by a 1-simplex in the simplicial set homC(c0, c2) connecting the 0-
simplices ψϕ and ρ. Thinking of such a 1-simplex as a “path” in this “hom-space”, we
may therefore think of such a 2-simplex as a witness to the homotopy commutativity
of this triangle.

Of course, one such 2-simplex of Nhc(C)• can be obtained simply by taking ρ = ψϕ
(and by taking the “path” to be the constant one). Thus, any two “composable
1-simplices” of Nhc(C)• admit some 2-simplex extending them. However, in the ab-
stract simplicial set Nhc(C)•, it is no longer possible to tell which 2-simplices arose
from “strict composition” and which 2-simplices arose from “homotopy-coherent
composition”. And indeed, this is the entire point: any of the possible 2-simplex ex-
tensions of our two composable 1-simplices should be considered to be “just as good”
as any other. In other words, the strict composition of composable 1-simplices in
this simplicial set is not even well-defined.

The homotopy-coherent nerve Nhc(C)• is the canonical example of a quasicategory.
This is nothing other than a simplicial set C in which, for all n ≥ 2, any string of
n composable 1-simplices admits some extension to an n-simplex. If this string is
selected by a morphism(

∆{0,1} q
∆{1}
· · · q

∆{n−1}
∆{n−1,n}

)
→ C

of simplicial sets, then such an n-simplex ∆n → C may be thought of as a witness to
the fact that its 1-subsimplex

∆{0,n} → ∆n → C

is a composite of the string. Of course, in general such an extension will not be
unique: indeed, all such extensions (for all strings of all lengths) will be unique pre-
cisely when C is the nerve of an ordinary category. Nevertheless, there is a strong
sense in which such an extension is “essentially unique”: the set of extensions of a
string naturally extends to a simplicial set, which will always be contractible when
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considered as a space (i.e. as an object of the ∞-category S ' sSetJW−1
KQK). Quasi-

categories are the fibrant objects of the Joyal model structure on the category sSet,
to which the homotopy-coherent nerve functor defines a right Quillen equivalence

sSetJoyal ← (CatsSet)Bergner : Nhc(−)•.

Of course, the ∞-category of spaces is a rather abstract object. By contrast, its
objects can be presented by topological spaces or by simplicial sets, both of which
notions are quite concrete. For instance, one can speak of the “underlying set” of
a topological space, whereas a space admits no such notion: a weak equivalence
between topological spaces will not generally respect their underlying sets.

It would therefore appear to afford much more control to work directly with
topologically- or simplicially-enriched categories, rather than considering them only
as being enriched in the ∞-category of spaces (e.g. so that one can speak of the
“underlying set” of a hom-space). Thus, the idea that an∞-category should only be
considered as being enriched over spaces runs directly against intuition, and against
deeply-ingrained human urges for control.

However, the sheer power of this idea is impossible to overstate .
To illustrate this striking phenomenon, we give two examples. For concreteness,

both will concern the relationship between the 1-category Top of topological spaces
and the ∞-category S of spaces. For the present purposes, it will be convenient
to consider the ∞-category of spaces as being presented by the homotopy-coherent
nerve of the topologically-enriched category of CW complexes (although we only
really consider it as a quasicategory at all to emphasize the non-strictness of its
composition).14,15

14Both functors in the adjunction |−| : sSet� Top : Sing(−)• preserve finite products; applying
them “locally” (i.e. to each hom-object individually) therefore defines an adjunction CatsSet �
CatTop, and one can define the homotopy-coherent nerve of a topologically-enriched category simply
by precomposing with its right adjoint.

15There is a notion of a model category being compatibly enriched over a given monoidal model
category (the definition of which itself requires certain compatibilities between the model structure
and the monoidal structure); for instance, both TopQS and sSetKQ are compatibly self-enriched.
Given a model category M which is compatibly enriched over either TopQS or sSetKQ and writing
M for its underlying unenriched model category, the underlying ∞-category MJW−1K is presented
by the TopQS- or sSetKQ-enriched category Mcf of bifibrant (i.e. cofibrant and fibrant) objects. In
particular, if either x ∈ M is not cofibrant or y ∈ M is not fibrant, then the enriched hom-object
homM(x, y) will not generally have the “correct” weak equivalence class. In TopQS, all objects are
fibrant and CW complexes are cofibrant. In fact, they are not all of the cofibrant objects (these
are “cell complexes and retracts thereof”), but their full inclusion into the topologically-enriched
category Topcf

QS
is a weak equivalence (and hence presents an equivalence of∞-categories), so we’ve

just restricted to them for simplicity of terminology.
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Our first example of the power of∞-categorical thinking illustrates the following
paradigm: working ∞-categorically, it’s impossible to say the wrong thing.

Given a based CW complex X, its suspension is defined to be the pushout

X CX

CX ΣX

with itself of the inclusion of X into the cone CX = (X × [0, 1])/(X × {1}) (as the
subspace X × {0}). This is an extremely useful construction in homotopy theory:
for instance, it participates in a suspension isomorphism

H̃i(X) ∼= H̃i+1(ΣX)

in (reduced) homology.
However, this definition itself is clearly not the “true” thing. After all, the cone

CX is contractible, and indeed any other two contractible CW complexes into which
X maps as closed inclusions would function just as well: more precisely, the resulting
pushout would be weakly equivalent to the suspension ΣX. One gets the distinct
sense that this “wants to be” the pushout

X pt

pt ΣX

along the unique terminal maps into (what end up being) the two cone points of
ΣX – the only problem being that this diagram of topological spaces simply doesn’t
commute, let alone define a pushout.

On the other hand, this canonically defines a commutative diagram

X pt

pt ΣX

'

'

in the∞-category of spaces! First of all, the map X → ΣX is given by the equatorial
inclusion. Then, the homotopy-commutativity of each of the two triangles is selected
by the canonical homotopy

X × [0, 1]→ CX
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given by the formula
(x, t) 7→ (x, t).

That is, this postcomposes to define homotopies

X × [0, 1]→ CX → ΣX,

which select canonical paths in the hom-topological space homTop(X,ΣX) between
the equatorial inclusion and the inclusion of one or the other cone point.

Even better, this commutative square is a pushout in the ∞-categorical sense.
Working ∞-categorically, the universal property of a pushout

A C

B B q
A
C

has no choice but to read: “an object which, when mapped into a test object Y ,
corepresents the data of a map B → Y , a map C → Y , and a path witnessing the
agreement of the two composites A→ B → Y and A→ C → Y ”. Returning to our
original example, we see that this is precisely the functor that the suspension ΣX
was born to corepresent all along.

Finally, we reach our “impossible to be wrong” paradigm: for any contractible
CW complexes B and C and any pair of mapsX → B andX → C, the∞-categorical
pushout

X C

B B q
X
C

is canonically equivalent (in the∞-category of spaces) to the suspension ΣX. This is
in stark contrast to the situation in the 1-category Top of topological spaces, where
one must demand that the maps X → B and X → C be closed inclusions. From
this point of view, we learn the additional lesson that working 1-categorically makes
us want to force something which is naturally homotopy-coherent to be unnaturally
strict.

A pushout among CW complexes in which the two maps are closed inclusions is
an example of a homotopy pushout in the model category TopQS, which is in turn a
particular example of a homotopy colimit. The theory of homotopy colimits in general
model categories is well-studied, but it is fairly subtle and unreasonably technical:
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for instance, a homotopy colimit in a model category M over an indexing category I

should be the left derived functor of the colimit functor

colim : Fun(I,M)→M,

but the requisite model structure needed to actually obtain this (i.e. a model structure
on Fun(I,M) for which this is a left Quillen functor) need not even exist. But
more importantly, even in the extremely simple case of homotopy pushouts, these
point-set considerations obscure the true and essential∞-categorical meaning of the
suspension construction X 7→ ΣX, which – tying everything together – actually gives
a conceptual explanation for the suspension isomorphism in the first place.

Our second example of the power of∞-categorical thinking illustrates the follow-
ing paradigm: homotopy-coherence appears everywhere, and working∞-categorically
sweeps homotopy-coherence into the ambient machinery.

Given a based topological space X = (X, x), its based loopspace is the topological
space

ΩX = {γ : [0, 1]→ X : γ(0) = γ(1) = x},
or equivalently the topological space homTop∗

(S1, X) of based maps from the circle

S1 = [0, 1]/(0∼1)

into X.16 By adjunction, there is a natural isomorphism

π0(ΩX) ∼= π1(X)

between the set of path components of ΩX and the fundamental group of X. More-
over, the group structure on the fundamental group π1(X) comes from concate-
nation of (homotopy classes of) based loops. For instance, given two based loops
γ1, γ2 ∈ ΩX, we can define a new based loop (γ1 ∗ γ2) ∈ ΩX to be given by the
formula

(γ1 ∗ γ2)(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2
γ2(2t− 1), 1/2 ≤ t ≤ 1.

However, this formula is just the most straightforward option: any choice of “pinch
map”

S1 ∆−→ S1 ∨ S1

gives rise to a concatenation operation

ΩX × ΩX
µ−→ ΩX

16In fact, this is a completely dual object to the suspension ΣX: it’s the ∞-categorical pullback
of the diagram {x} → X ← {x}.
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which defines the same group structure on the set π0(ΩX) of path components.
These considerations strongly suggest that the based loopspace ΩX should itself

be some manner of “group”, in which the multiplication law is given by concatenation
of loops. However, a moment’s reflection reveals that it is impossible to make this
concatenation operation strictly associative, no matter which pinch map we choose.

On the other hand, in a sense, this failure of associativity is not so severe. Suppose
that we fix a pinch map ∆ on S1 inducing a multiplication map µ on ΩX. Then,
the associativity diagram

(ΩX)×3 (ΩX)×2

(ΩX)×2 ΩX

idΩX×µ

µ×idΩX µ

µ

does not strictly commute, but it commutes up to homotopy : in order to specify
such a homotopy, it suffices to choose once and for all a homotopy witnessing the
homotopy-commutativity of the diagram

S1 S1 ∨ S1

S1 ∨ S1 S1 ∨ S1 ∨ S1,

∆

∆ idS1∨∆

∆∨idS1

and this can be done straightforwardly (in essentially the same manner that one
proves that the fundamental group is associative – it can be slightly easier to visualize
the analogous picture with intervals instead of wedges of circles).

This is concordant with the core philosophy of higher category theory :
rather than merely positing the existence of a homotopy witnessing the homotopy-
commutativity of the associativity diagram, we should instead keep track of such a
homotopy as additional data.

These observations are sufficient for producing the group structure on π0(ΩX),
but they do not yet allow us treat ΩX as a “group” itself. For instance, suppose
that we would like to concatenate four loops γ1, γ2, γ3, γ4 ∈ ΩX. So far, we have
only chosen a multiplication

µ : pt→ homTop((ΩX)×2,ΩX)

along with an “associator”, i.e. a path

µ3 : [0, 1]→ homTop((ΩX)×3,ΩX)
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between the two resulting composites µ ◦ (idΩX × µ) and µ ◦ (µ× idΩX). As it turns
out, µ determines five iterated multiplication maps (ΩX)×4 → ΩX, which are in turn
related by application of the associator at various stages: these can be schematically
organized into the famous “Mac Lane pentagon”

((ab)c)d

(a(bc))d (ab)(cd)

a((bc)d) a(b(cd))

in which the arrows indicate “front-to-back” associations (xy)z → x(yz).17 This can
in turn be organized as a map from the boundary of a pentagon (thought of as a
1-dimensional simplicial complex) into the enriched hom-topological space

homTop((ΩX)×4,ΩX).

As this may a priori select a nontrivial loop, it is clear that we cannot yet declare
our multiplication µ to be “unambiguously associative up to homotopy”.

In his thesis [Sta61], Stasheff uncovered a strong sense in which the multiplication
µ on ΩX is indeed “unambiguously associative up to homotopy”, using what are now
called the Stasheff associahedra. This is a sequence of convex polytopes {(A∞)n}n≥2:
it begins with (A∞)2 = pt and (A∞)3 = [0, 1], and so far we have observed maps

µ2 : (A∞)2 → homTop((ΩX)×2, X)

and
µ3 : (A∞)3 → homTop((ΩX)×3, X),

where the value of µ3 on the boundary of (A∞)3 is determined by µ2. Moreover,
(A∞)4 is precisely the (filled-in) pentagon we have seen above, and we can similarly
choose a map

µ4 : (A∞)4 → homTop((ΩX)×4, X)

17This diagram appeared in Mac Lane’s foundational study of monoidal categories [ML63], hence
the name.
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(which can likewise be determined “universally” by studying the pinch map ∆ and its
iterates) which extends the map on the boundary of (A∞)4 determined by µ2 and µ3.
As (A∞)4 is convex and in particular contractible, this gives a precise sense in which
all four-fold multiplications are equivalent, up to contractible ambiguity. Of course,
this pattern continues: the maps µ2, . . . , µn−1 determine a map from the boundary
of (A∞)n into homTop((ΩX)×n,ΩX), and it is possible to (universally) choose an
extension over this contractible topological space. The relationships between these
polytopes which inductively determine the maps on their boundaries assemble into
certain structure maps which makes them into an operad (namely the A∞ operad),
and the compatible sequence of maps

{µn : (A∞)n → homTop((ΩX)×n,ΩX)}

makes the topological space ΩX into an algebra over this operad.18,19

In fact, not only does the based loopspace of a based topological space carry
the structure of an A∞ algebra, but in a sense this structure characterizes based
loopspaces: after we restrict to connected based spaces for obvious reasons, the
based loopspace functor

Ω : Top≥1
∗ → Top∗

defines an equivalence

Ω : Top≥1
∗ [W−1

w.h.e.]
∼−→ Alggp

A∞(Top∗)[W
−1
w.h.e.]

onto the homotopy category of grouplike A∞ topological spaces, i.e. those A∞ alge-
bras Y ∈ Top∗ for which the induced multiplication on π0(Y ) makes it into a group
(instead of just a monoid). In other words, a grouplike A∞ structure on a topological
space allows us to construct a delooping of that topological space (up to weak homo-
topy equivalence). The analogous result is false for “grouplike h-spaces”, i.e. group
objects in Top[W−1

w.h.e.], for which we are only assured the existence of a homotopy
making the associativity diagram commute (in the homotopy category). Thus, it
is indeed only by keeping track of the homotopies making the (higher) associativity
diagrams commute that we can construct a delooping.

18Actually, we have only parametrized n-fold multiplications for n ≥ 2, whereas operads begin
in degree 0. To extend this to a true A∞ algebra structure, we should additionally specify the
map (A∞)0 = pt → homTop((ΩX)×0,ΩX) ∼= ΩX selecting the basepoint (which functions as the

“identity element” for the multiplication) as well as the map (A∞)1 = pt→ homTop((ΩX)×1,ΩX)
selecting the identity map on ΩX (the “1-fold multiplication”).

19Operads were introduced by May in his landmark work [May72], in which he characterized all
iterated loopspaces. As we will see presently, the A∞ operad completely governs 1-fold loopspaces;
this is also called the E1 operad, and more generally the En operad completely governs n-fold
loopspaces for all n (including n =∞, in a suitable sense).
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Now, the A∞ operad is an example of a (“non-symmetric”) operad in topological
spaces. Another example of an object in this category is the associative operad,
denoted Ass ∈ Opns(Top). This object is much simpler than A∞: for all n ≥ 0,
we simply have Assn = pt. In other words, Ass parametrizes strictly associative
multiplications.

In fact, the category Opns(Top) of these itself admits a model structure, in which
the weak equivalences are determined “level by level” (in TopQS). Moreover, Ass
is the terminal object of Opns(Top), and the unique map A∞ → Ass is a cofibrant
replacement (and in particular, a weak equivalence).

This is relevant for the following reason. First of all, any object Y ∈ Top deter-
mines an endomorphism operad

Endns(Y ) ∈ Opns(Top)

given by
Endns(Y )n = homTop(Y ×n, Y ).

Moreover, as suggested by the above discussion, for an arbitrary operad O ∈ Opns(Top),
one can define an O-algebra structure on Y to be a morphism

O→ Endns(Y )

of operads. Thus, to say that A∞ is “good for mapping out of” (in a way that Ass is
not) is to say that certain topological spaces (e.g. and i.e. based loopspaces) “want”
to be associative algebras, but are in fact only A∞ algebras.

In fact, the term “A∞ operad” has come to refer to any cofibrant replacement
of the associative operad. Moreover, a weak equivalence between cofibrant operads
induces a Quillen equivalence between their model categories of algebras. Thus, we
see that the point-set A∞ operad in topological spaces is not the “true” thing: the
homotopy category of based loopspaces can be organized as the homotopy category
of grouplike algebras over any cofibrant replacement of the associative operad.

By now, the punch line should be clear: based loopspaces are associative alge-
bras, but only when considered in the ∞-category of spaces! Moreover, the above
equivalence of homotopy categories lifts to an equivalence

Ω : S≥1
∗

∼−→ Alggp
Ass(S) = Grp(S)

of ∞-categories. Thus, as advertised, the homotopy-coherence inherent in the very
foundations of ∞-categories turns a complicated and un-“true” assertion about not-
even-canonical point-set operads into the simple, canonical, and compelling state-
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ment that we were really after all along: based loopspaces of pointed spaces deter-
mine group objects in spaces.20

On the other hand, there is another approach to studying the homotopy category
of based loopspaces: in fact, it turns out that the canonical map A∞ → Ass also
induces an equivalence

Alggp
Ass(Top)[W−1

w.h.e.]
∼−→ Alggp

A∞(Top)[W−1
w.h.e.]

of homotopy categories (even though Ass ∈ Opns(Top) is not cofibrant). In par-
ticular, any grouplike A∞ algebra in Top is weakly equivalent (as an A∞ algebra)
to a topological group. Thus, one can also study the homotopy category of based
loopspaces by studying the homotopy category of topological groups.

However, it is only due to the simplicity of the A∞ operad that such strictification
is possible. For instance, a cofibrant replacement of the commutative operad

Comm ∈ Op(Top)

(which can only be defined as a “symmetric” operad – in fact, it is likewise the
terminal object of Op(Top)) is called an “E∞ operad”, and restriction along the
canonical map E∞ → Comm determines a functor

AlgComm(Top)→ AlgE∞(Top)

which does not induce an equivalence on homotopy categories. In particular, the
induced functor

AlgComm(Top)[W−1
w.h.e.]→ AlgE∞(Top)[W−1

w.h.e.]

on homotopy categories is not essentially surjective: not every topological space
equipped with a homotopy-coherently commutative and associative multiplication
can be rigidified to one with a strictly commutative and associative multiplication.

From a more philosophical perspective, we posit that it should feel morally repre-
hensible to attempt to force a based loopspace to be something which it is not: it is
truly and essentially a homotopy-coherent object, and its strictifiability is ultimately
just an intriguing coincidence.

In fact, recall from §0.1.2 that a one-object category is completely specified by the
monoid of endomorphisms of its unique object. In an identical fashion, a one-object
topologically-enriched category is completely specified by the topological monoid of

20The fact that this induces an equivalence when we restrict to connected based spaces is a
homotopical form of Koszul duality, which features prominently in the study of deformation theory.
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endomorphisms of its unique object. Thus, the coincidence that based loopspaces
can be rectified to topological groups is (up to questions of grouplikeness) nothing
other than a “one-object” version of the coincidence that topologically-enriched cate-
gories present∞-categories! We may therefore view this connection as justifying our
philosophical assertion that we never should have considered ∞-categories as having
strictly associative composition in the first place.21

Of course, these two examples of the power of ∞-categorical thinking are merely
toys, which we chose in order to highlight the differences between working strictly and
working homotopy-coherently. The real fun begins when one actually starts to use
∞-category theory, at which point the world becomes a magical place: one’s power to
make new definitions is limited only by one’s imagination, and one’s ability to prove
new theorems is limited only by the clarity of one’s understanding (at least as far as
the purely formal aspects are concerned). The many fussy details that arise when one
attempts to use point-set techniques to work homotopy-coherently simply melt away:
they were in fact irrelevant all along to the true and underlying mathematics, and
their disappearance into the ambient machinery brings with it a harmony that is only
possible when intuition and language are once again aligned. Thus, paradoxically,
by discarding such emotional crutches as underlying sets and strict composition and
by embracing the apparent chaos and uncontrol of homotopy-coherence, we acquire
a measure of power of which previous generations of mathematicians could barely
have dreamed.

0.1.6 The praxis of ∞-categories

In case it was not evident from the discussion of §0.1.5, we now make an explicit clar-
ification: in reality, a large number of users of∞-categories throughout mathematics

21Recall that before extolling the philosophical advantages of homotopy-coherent models for
∞-categories (over strict ones), we actually began this subsection by mentioning certain technical
advantages that they also enjoy. In fact, it turns out that these technical advantages can them-
selves be seen as arising from the fact∞-categories fundamentally “want” to be homotopy-coherent
objects. Thus, these technical and philosophical advantages are actually two sides of the same coin.

In order to see this, recall that the technical disadvantages e.g. of simplicially-enriched categories
are ultimately due to the failure of the cartesian product of two cofibrant objects to again be
cofibrant. Indeed, this failure is in turn due to the fact that the “correct” hom-set must encode
all homotopy-coherent functors. If the target object already accounts for this homotopy-coherence
(as does e.g. a quasicategory), then the source object doesn’t need to (and indeed, all objects of
sSetJoyal are cofibrant). But if the target object is forced to be strict (as is e.g. a simplicially-enriched
category), then to get the correct hom-set we need to account for our desired homotopy-coherence
in the source. As taking a product generally introduces new composites that weren’t present in
either factor individually (e.g. consider the product [1] × [1]), it should come as no surprise that
products of cofibrant simplicially-enriched categories don’t generally remain cofibrant.
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do not actually choose any particular model category of them, instead working in a
purely formal manner and only making reference to universal constructions (such as
limits, colimits, adjoint functors, etc.).

Most pragmatically, this (absence of) choice can be justified by declaring that
such manipulations are “secretly” taking place among quasicategories. Indeed, al-
though quasicategories are in the end nothing more than certain simplicial sets,
they collectively assemble into a quasicategory of quasicategories, in which e.g. it is
only possible to speak of homotopy-coherent composition of functors between them.
Moreover, the theory of quasicategories has been developed extensively, most notably
by Joyal and Lurie. As a result, nearly any 1-categorical maneuver one might wish to
imitate (e.g. an appeal to the adjoint functor theorem) can be rigorously performed
in the quasicategorical setting.22

The “underlying ∞-category” of this quasicategory – or indeed, of e.g. either
relative category sSetJoyal or (CatsSet)Bergner – is denoted Cat∞ and is referred to as
the ∞-category of ∞-categories.

0.1.7 Model categories and ∞-categories

A technically advantageous model category of∞-categories is absolutely essential for
the full and rigorous development of the theory of∞-categories. Thus, the theory of
∞-categories rests firmly on the theory of model categories.

However, both can be used as frameworks for abstract homotopy theory. On the
one hand, a model structure on a relative category (M,W) ∈ RelCat provides an
efficient method of making computations not just in its localization

M[W−1] ∈ Cat

but in its derived localization

MJW−1K ∈ Cat∞

(which is indeed its localization when considered as a relative ∞-category). On
the other hand, essentially every ∞-category of lasting interest can be presented
by a model category M in this sense. It is therefore often analogized that model
categories are to ∞-categories as atlases are to manifolds: a model category is a

22For a beautiful and compelling introduction to quasicategories, we refer the interested reader
to [Lur09b, Chapter 1].
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convenient presentation of an ∞-category, but not every operation that one might
like to perform in an ∞-category can be presented within a given model category.23

By no means does the theory of ∞-categories render the theory of model cat-
egories obsolete, even beyond the obvious issue of logical reliance. To wit, model
categories are still an indispensable component of the homotopical toolkit because it
is essentially impossible to perform any non-formal computations using ∞-category
theory alone.

To give an example of this, we return to the original thread with which our story
began. Given an abelian category A, the relative category (Ch(A),Wq.i.) is the
natural home of “resolutions” of objects of A. Out of this, we can form the derived
∞-category of A, namely the ∞-categorical localization

Ch(A)JW−1
q.i.K ∈ Cat∞

of this relative category. This admits a canonical functor

Ch(A)JW−1
q.i.K→ Ch(A)[W−1

q.i.],

which witnesses the ordinary localization Ch(A)[Wq.i.] as the homotopy category
of the ∞-categorical localization (obtained by applying the functor π0 : S → Set
“locally” (i.e. to each hom-space individually)); the derived ∞-category of A is thus
a refinement of the ordinary derived category, and we will henceforth reappropriate
the notation

D(A) = Ch(A)JW−1
q.i.K

accordingly.
Now, suppose we are given two objects M,N ∈ A, and suppose we would like to

understand the hom-space
homD(A)(M,N).

Though it arises from a modern construction, this space is often of classical interest:
for instance, if A = ModR, then its homotopy groups are precisely the Ext groups
Ext∗R(M,N). However, we are once again faced with precisely the same issue that we
confronted in §0.1.2: the derived ∞-category admits a universal characterization as
an∞-category, but this abstract characterization takes place at the wrong “category-
level” for direct computation within it to be even remotely possible. Rather, it
remains as necessary as ever to take resolutions, i.e. to make use of a model structure

23However, the analogy breaks down quickly: for example, the existence of a model category
presenting an ∞-category implies the existence of all limits and colimits in the latter (or at least
the finite ones, depending on which variant of the definition “model category” one chooses). As a
result, not every ∞-category can be presented by a model category.



26

on the relative category (Ch(A),Wq.i.). For instance, if A = ModR, then it is
necessary to take either a projective resolution of M or an injective resolution of
N .24

On the other hand, ∞-categories make possible a number of obviously desirable
maneuvers which model categories do not accommodate (or do not easily accommo-
date). The consideration of functors is surely the most important example.

Given two ∞-categories C and D, it is utterly straightforward to define the ∞-
category Fun(C,D) of functors from C to D (whose morphisms are natural trans-
formations). For example, if C and D are quasicategories which respectively present
C and D, then the ∞-category Fun(C,D) is presented by the internal hom-object
homsSet(C, D) in simplicial sets. As an∞-category, this represents the desired functor

E 7→ homCat∞(E,Fun(C,D)) ' homCat∞(E× C,D);

there’s nothing more to it.
By contrast, almost without exception the only meaningful “morphisms” between

model categories are given by Quillen adjunctions. Moreover, a Quillen adjunction

M� N

between model categories induces not just a derived adjunction M[W−1]� N[W−1]
(as described in Theorem 0.1.2) but an ∞-categorical adjunction

MJW−1K� NJW−1K

between underlying ∞-categories (as a special case of Theorem 0.2.3 below). Thus,
model categories provide an acutely restrictive framework if one is interested in non-
adjoint functors between underlying ∞-categories.25

However, given a diagram category I and a model category M, it is sometimes
possible to endow the functor category Fun(I,M) with a “pointwise” model structure
(i.e. one whose weak equivalences are precisely those natural transformations whose
components are all weak equivalences in M). For example, under certain (often-
satisfied) restrictions on M, there exists a projective model structure Fun(I,M)proj,

24On the other hand, it must also be said that many operations in the literature which happen
to be performed within model categories are actually essentially formal and hence could be done
equally well – or perhaps better, in the interest of conceptual clarity – in their underlying ∞-
categories.

25Actually, the key to Goerss–Hopkins obstruction theory is the homotopical control of a certain
functor between model (∞-)categories which is not a Quillen adjoint (see §0.3.4). But this actually
also presents a left adjoint functor between ∞-categories, and in any case it is an extremely rare
exception.



27

while under certain (still often-satisfied) further restrictions on M there also exists an
injective model structure Fun(I,M)inj. When they exist, these model structures can
be used to compute homotopy co/limits, as they participate in Quillen adjunctions

colim : Fun(I,M)proj �M : const

and
const : M� Fun(I,M)inj : lim .

Alternatively, if I is a Reedy category (which condition is quite restrictive but is
satisfied for a reasonably large class of examples of practical interest, including e.g.
the categories ∆ and ∆op), then for any model category M there exists a Reedy model
structure Fun(I,M)Reedy. However, in general the Reedy model structure need not be
compatible with either the colimit functor or the limit functor in the sense described
above.

As should be clear from the complexity of this discussion, in practice these point-
wise model structures can be a nuisance. For instance, there does not generally
exist such a model structure on Fun(I,M) which is compatible with both the colimit
functor and the limit functor, and so as a result one must pass through the Quillen
equivalence

id : Fun(I,M)proj � Fun(I,M)inj : id

to mediate between the opposite “handedness” of these two model structures. More-
over, this entire discussion only allows I to be a diagram 1-category : it is extremely
difficult to work with diagrams in a model category which are meant to present
diagrams indexed by a more general ∞-category.

0.2 Model ∞-categories

In this thesis, we take the novel perspective that the apparent dichotomy between
model categories and∞-categories of §0.1.7 is actually ill-founded. More precisely, we
posit that the notion of a model structure remains one of fundamental importance
within the context of ∞-categories . This is due to the more primitive fact that
resolutions remain a pertinent and effective technique.

We never actually completely defined model categories in §0.1, and correspond-
ingly we will not completely define model∞-categories here.26 However, having just

26The eager reader is welcome to jump directly to Definition 1.1.1, but it is safe to say that the
definition should be completely unsurprising to anyone who is familiar both with model categories
and with ∞-categories.
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thoroughly contextualized model categories, we can straightforwardly explain the es-
sential features of model∞-categories and indicate the computations and maneuvers
that they make possible, providing references throughout to the precise results that
are proved in the main body of this thesis.

We will discuss our primary motivation for the introduction of this theory in §0.3:
suffice it to say that this application rests crucially on the existence of a good theory
of resolutions in ∞-categories.

0.2.1 Main results

A relative∞-category is an∞-category R equipped with a subcategory W ⊂ R which
contains the subcategory R' ⊂ R of equivalences (which are the direct∞-categorical
analog of “isomorphisms” in an ordinary category). Then, a model ∞-category
is a relative ∞-category (M,W) equipped with certain additional data that are
collectively called a model structure, which in particular specify full subcategories

Mc ↪→M←↩Mf

of cofibrant objects and of fibrant objects. The axioms dictate that every object of
M is weakly equivalent to a cofibrant object and is also weakly equivalent to a fibrant
object. Thus, the following fundamental theorem of model ∞-categories –
an analog (and generalization) of Theorem 0.1.1 – provides a direct and computable
method of accessing the hom-spaces in the localization MJW−1K.

Theorem 0.2.1 (6.1.9). Let M be a model ∞-category, and suppose that x ∈ M is
cofibrant and that y ∈M is fibrant. Then the canonical map

homM(x, y)→ homMJW−1K(x, y)

is an “∞-categorical surjection”, which moreover becomes an equivalence after ap-
plying either “∞-categorical equivalence relation” of “left homotopy” or “right ho-
motopy” to the source.

In the ∞-categorical setting, the appropriate notion of “applying an equivalence
relation” is taking the geometric realization – that is, the ∞-categorical colimit – of
a simplicial object. In order to show why this might be reasonable, we first recall
that the category ∆ admits a “generators and relations” presentation as depicted in
the diagram

[0] [1] · · · ,
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in which each “upwards” map is a section of any adjacent “downwards” maps. More-
over, in the∞-category of spaces, a “surjection” is simply a map which is a surjection
on π0. Thus, a simplicial space X• : ∆op → S in particular determines a pair of sur-
jections

X1 ⇒ X0

of spaces. Under the two maps, a point x ∈ X1 will be sent to points d0(x), d1(x) ∈
X0. Thus, taking the colimit

|X•| = colim∆op X• = colim
(
· · · X1 X0

)
forces those two points to become equivalent under the canonical map X0 → |X•|.27

From here, we see that the space X2 should be thought of as encoding “equiva-
lences between equivalences”, that the space X3 should be thought of as encoding
“equivalences between equivalences between equivalences”, and so on.

So, the∞-categorical equivalence relations appearing in Theorem 0.2.1 are really
objects of the ∞-category sS = Fun(∆op, S) of simplicial spaces, and to apply these
equivalence relations amounts to applying the colimit functor

|−| : sS→ S

down to the ∞-category of spaces. Thus, in order to prove this theorem, it is
necessary to have a good handle on the ∞-category sS as it relates to S via this
functor. In other words, if we write

W|−| ⊂ sS

for the subcategory of morphisms between simplicial spaces which become equiva-
lences of spaces upon geometric realization, then it is necessary to have a good handle
on the relative ∞-category (sS,W|−|).

In fact, a completely analogous problem already appears in the setting of ordinary
model categories: these have hom-sets instead of hom-spaces, and so one must cor-
respondingly have a good handle on the category sSet of simplicial sets as it relates
via the composite functor

sSet ↪→ sS
|−|−→ S

27In contrast with ordinary equivalence relations on sets, in this higher-categorical setting, a
point x ∈ X1 is not redundant if its two images d0(x), d1(x) ∈ X0 are already equivalent. Indeed,
in the ∞-groupoid X0, one can only speak of a path between two points which witnesses their
equivalence. Moreover, even if there already exists an equivalence d0(x) ' d1(x) in X0, taking the
geometric realization will freely adjoin a new equivalence (i.e. path) between them.
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to the ∞-category of spaces.28 Moreover, this problem has already been solved: the
resulting subcategory W|−| ⊂ sSet of weak equivalences is precisely that of the Kan–
Quillen model structure introduced in §0.1.3; in other words, the above composite is
an ∞-categorical localization

sSet→ sSetJW−1
|−|

K ' S,

and moreover this∞-categorical localization is controlled by the Kan–Quillen model
structure.

And beautifully so: the Kan–Quillen model structure enjoys excellent technical
properties, and is hence extremely convenient to work with. Notably, it is proper,
and it is cofibrantly generated by the sets

IKQ = {∂∆n → ∆n}n≥0

of “boundary inclusions” and

JKQ = {Λn
i → ∆n}0≤i≤n≥1

of “horn inclusions”.29 In our ∞-categorical setting, pursuing this analogy (and
a proof of Theorem 0.2.1), we construct a Kan–Quillen model structure on
the ∞-category of simplicial spaces , which likewise presents the∞-category of
spaces.

28This explanation is ahistorical but accurate: this new geometric realization functor is compat-
ible with the one

|−| : sSet→ Top

defined in §0.1.3 in the sense that they participate in a commutative diagram

sSet Top

sS S

|−|

|−|

of ∞-categories (in which the right vertical map is the ∞-categorical localization functor Top →
TopJW−1

w.h.e.K ' S). (This is because our original “geometric realization” functor is actually a
homotopy colimit, in the sense that it takes a simplicial set ∆op → Set to a homotopy colimit of
the composite ∆op → Set ↪→ TopQS.) In particular, this abuse of notation is actually quite slight,
and should introduce no real confusion if for no other reason than because we will essentially never
again mean to refer to the one landing in Top.

29The reader unfamiliar with this terminology should feel free to ignore the specific details.
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Theorem 0.2.2 (1.4.4). There is a proper model structure on the relative ∞-
category (sS,W|−|) presenting the ∞-category S, which is cofibrantly generated by
the same sets IKQ and JKQ of morphisms in sSet ⊂ sS (i.e. considered as discrete
simplicial spaces).

Via geometric realization, simplicial spaces have been used pervasively through-
out algebraic topology as resolutions of spaces (notably in algebraic K-theory and in
loopspace theory). Theorem 0.2.2 represents a dramatic improvement over compa-
rable preexisting results in the literature, many of which can in retrospect be seen
as pale shadows of its full strength. For more on this point, we refer the reader to
§1.0.2.

Intriguingly, it does not appear that Theorem 0.2.2 can be proved completely
formally. Our own proof is quite technical, and ultimately relies on rather involved
manipulations within the model category s(sSetKQ)Reedy (which presents the ∞-
category sS).

We also mention in passing that in §1.6.3, we define an Ex∞ fibrant replacement
functor for sSKQ in analogy with Kan’s classic Ex∞ fibrant replacement functor for
sSetKQ, and we establish that it enjoys various corresponding convenient properties.

Now, recall that model categories do not exist in isolation, but can be related by
Quillen adjunctions and Quillen equivalences. Model ∞-categories can be related in
completely identical ways, and we prove the following analog (and generalization) of
Theorem 0.1.2.

Theorem 0.2.3 (5.1.1 and 5.1.3). A Quillen adjunction F : M � N : G between
model ∞-categories induces a canonical derived adjunction

LF : MJW−1K� NJW−1K : RG

on localizations. If this Quillen adjunction is moreover a Quillen equivalence, then
the derived adjunction is an adjoint equivalence of ∞-categories.

We established the restriction of Theorem 0.2.3 to model 1-categories (but still ap-
plying to their ∞-categorical localizations) in [MG16]. This had been previously
been known under various (restrictive but often satisfied) hypotheses.

We now list the more specialized results that we establish surrounding model∞-
categories. These concern straightforward generalizations of various concepts from
model 1-categories; thus, we expect them to be of interest mainly to readers already
familiar with their model 1-categorical counterparts. We will therefore content our-
selves with simply stating the results, without defining (or even introducing) the
terms involved. We also note here that a number of these results are new even when
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restricted to model 1-categories (see Remark 5.0.2 for a precise account). Indeed, the
classical statements (involving 1-categorical localizations) are fairly straightforward
to prove, but the more refined statements (involving∞-categorical localizations) are
decidedly not – at least, not as far as we are aware. Of course, the distinction lies in
the crucial difference between ignorance and incorporation of homotopy-coherence.

Theorem 0.2.4 (5.4.6). A two-variable Quillen adjunction between model ∞-
categories induces a canonical two-variable derived adjunction on their localizations.

Theorem 0.2.5 (5.5.4 and 5.5.6). The localization of a (resp. symmetric) monoidal
model ∞-category is canonically a closed (resp. symmetric) monoidal ∞-category.

Theorem 0.2.6 (5.6.7). If M is an enriched model ∞-category over a monoidal
model∞-category V, then its localization MJW−1K is canonically enriched and biten-
sored over VJW−1K.

Our key example of a (symmetric) monoidal model∞-category is sSKQ, equipped
with the cartesian symmetric monoidal structure. Via Theorem 0.2.5, this presents
the symmetric monoidal ∞-category S of spaces, equipped with the cartesian sym-
metric monoidal structure: geometric realization of simplicial spaces commutes with
finite products.

In turn, via Theorem 0.2.6, a compatible enrichment of a model ∞-category M

over sSKQ necessarily presents the tautological enrichment of its localization MJW−1K
over the localization sSJW−1

KQK ' S. This can be extremely convenient in practice,
as it provides an even more direct way of computing hom-spaces in the localization
MJW−1K than does Theorem 0.2.1: as soon as x is cofibrant and y is fibrant, we
obtain a canonical equivalence

|homM(x, y)| ∼−→ homMJW−1K(x, y).

Of course, this is a model ∞-categorical counterpart to the classical theory of
simplicial model categories (i.e. model categories that are compatibly enriched over
sSetKQ), which history has shown to be likewise extremely convenient. In fact, the
results that we describe in §0.3 all turn on the resolution model structure (on the∞-
category sC of simplicial objects in a suitable∞-category C), and use in an essential
way the fact that it is compatibly enriched over the model ∞-category sSKQ.

We end this subsection by mentioning that we also establish in §5.1 the basics
of the theory of homotopy co/limits in model ∞-categories (including analogs of the
standard “pointwise” model structures mentioned in §0.1.7).
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0.2.2 Auxiliary results

In this subsection, we highlight some auxiliary results contained in this thesis that
are used to prove the various foundational theorems regarding model ∞-categories
described in §0.2.1. Once again, we refer the reader to the main body of the thesis
for precise definitions and statements.

As the theory of model ∞-categories ultimately concerns localizations of relative
∞-categories, it is necessary to have a good handle on the localization functor. To
this end, we prove the following general result.

Theorem 0.2.7 (2.3.8 and 2.3.9). For any relative ∞-category (R,W), its ∞-
categorical Rezk nerve

NR
∞(R,W) ∈ sS

is taken to the localization
RJW−1K ∈ Cat∞

under the composite functor

sS
LCSS−−→ CSS

N−1
∞−−→
∼

Cat∞,

where
N∞(−)• = homlw

Cat∞([•],−) : Cat∞
∼−→ CSS

denotes the equivalence from the ∞-category of ∞-categories to the ∞-category of
complete Segal spaces. Moreover, this behaves well in families: the composite

RelCat∞
NR
∞−−→ sS

LCSS−−→ CSS
N−1
∞−−→
∼

Cat∞

is canonically equivalent to the localization functor on relative ∞-categories.

A complete Segal space is essentially the homotopical analog of the nerve of a
1-category; indeed, complete Segal spaces provide a model for the ∞-category of
∞-categories (internal to the theory of ∞-categories). As the Rezk nerve functor
NR
∞ is relatively explicit, it should not really be expected that the Rezk nerve of an

arbitrary relative ∞-category would already be a complete Segal space: localization
is a fundamentally difficult and complicated procedure.

Much like Theorem 0.2.2, it does not appear to be possible to prove Theorem 0.2.7
in a completely formal manner; its proof likewise relies on delicate manipulations
involving bisimplicial sets, this time also using the model structure s(sSetJoyal)Reedy

(which presents the ∞-category s(Cat∞)).
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We also require a number of results concerning various colimit and limit oper-
ations; these are contained in Chapter 3. We mention here three results contained
there.

We begin with a result which encodes, for a cocomplete∞-category C, the simul-
taneous and interwoven functoriality of colimits

• for natural transformations – that is, for maps in Fun(D,C), where D is any
diagram ∞-category – and

• for pullbacks along maps of diagram∞-categories – that is, for maps in (Cat∞)/C.

Theorem 0.2.8 (3.2.12). If C is a cocomplete ∞-category, then there exists a global
colimit functor

Lax(C)→ C

from its lax overcategory. Dually, if C is complete, there exists a global limit functor

opLax(C)op → C

from the opposite of its oplax overcategory.

We then have an∞-categorical analog of the classical Bousfield–Kan formula for
homotopy colimits in model categories.

Theorem 0.2.9 (3.5.8). Let C be a cocomplete ∞-category, and let D
F−→ C be a

diagram. Then there is a canonical equivalence

colimD F ' |srep(F )•|

in C between the colimit of the diagram F and the geometric realization of its sim-
plicial replacement

srep(F )• : ∆op → C.

Thirdly, we have the following generalization of certain 1-categorical results of
Barwick–Kan and Dwyer–Kan–Smith, which are themselves vast generalizations of
Quillen’s Theorem B.

Theorem 0.2.10 (3.4.23 and 3.4.26). Let C, D, and E be ∞-categories. If a functor
D→ C has property Bn, then for any functor E→ C the (not generally commutative)
square

(F (D) ↓n G(E)) D

E C
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of ∞-categories induces a (commutative) pullback square

(F (D) ↓n G(E))gpd Dgpd

Egpd Cgpd

of spaces upon groupoid completion. Moreover, if C has property Cn, then any functor

D
F−→ C has property Bn.

We end this subsection by mentioning two results which go into the proof of the
fundamental theorem of model ∞-categories (0.2.1). Both rely on the notion of a
relative ∞-category admitting a homotopical three-arrow calculus, which is a slight
variation on a classical definition of Dwyer–Kan (for relative 1-categories).

The first of these is in fact a generalization of the main theorem regarding this
notion, the 1-categorical version of which is due to Dwyer–Kan.

Theorem 0.2.11 (4.3.4). Given a relative∞-category (R,W) admitting a homotopi-
cal three-arrow calculus, the hom-spaces in the underlying∞-category of its hammock
localization admit a canonical equivalence

3(x, y)gpd ∼−→
∣∣homLH(R,W)(x, y)

∣∣
from the groupoid completion of the ∞-category of three-arrow zigzags x

≈← • → • ≈←
y in (R,W).

The simplicial space homLH(R,W)(x, y) is a refinement of the “quotient of zigzags”
procedure described in §0.1.2. As these zigzags can be arbitrarily long and the
equivalence relations that must be imposed on them are generally difficult to control,
Theorem 0.2.11 provides a substantial simplification of the hammock localization of
a relative ∞-category.

The second result, which generalizes our joint work with Low [LMG15], provides
sufficient conditions on a relative ∞-category for its Rezk nerve to be a (complete)
Segal space.

Theorem 0.2.12 (4.5.1). Given a relative ∞-category (R,W), its Rezk nerve

NR
∞(R,W) ∈ sS

• is a Segal space if (R,W) admits a homotopical three-arrow calculus, and
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• is moreover a complete Segal space if moreover (R,W) is saturated and satisfies
the two-out-of-three property.

It is a direct procedure to extract hom-spaces from a Segal space – that is, to
extract hom-spaces corresponding to the∞-category that it presents (via completion
to a complete Segal space). As any model∞-category M admits a homotopical three-
arrow calculus, the combination of Theorems 0.2.7 and 0.2.12 is ultimately what
allows us to compute the hom-spaces in its localization MJW−1K, and Theorem 0.2.11
provides a key intermediate step.

In fact, it follows a posteriori from Theorem 0.2.1 that any model ∞-category
is saturated. As the two-out-of-three property is part of the definition of a model
∞-category, Theorem 0.2.12 then implies that the Rezk nerve of a model∞-category
is not just a Segal space but is in fact a complete Segal space.

0.3 Goerss–Hopkins obstruction theory

In this section, we outline and contextualize our primary application of the theory
of model ∞-categories discussed in §0.2, namely Goerss–Hopkins obstruction theory.

First, in §0.3.1, we begin by giving some background on spectra and their corre-
sponding extraordinary co/homology theories.

Next, in §0.3.2, we briefly survey the (intimately related) fields of derived algebraic
geometry and chromatic homotopy theory, which are the ambient context for some
of the most important and compelling applications of Goerss–Hopkins obstruction
theory to date.

Then, in §0.3.3, we proceed to describe Goerss–Hopkins obstruction theory itself.
Here we describe it purely as a black box, in terms of its input and output.

As a follow-up, in §0.3.4, we explain the internal workings of Goerss–Hopkins
obstruction theory, albeit still in somewhat broad strokes. This explanation reveals
the motivation for a good theory of resolutions internal to the world of∞-categories.
Even though it still only provides an overview, this subsection is quite technical and
may be safely skipped (or merely skimmed).

Finally, in §0.3.5, we briefly introduce motivic homotopy theory and describe our
sample application of our generalized Goerss–Hopkins obstruction theory.

0.3.1 Stable ∞-categories, spectra, and co/homology
theories

Let us begin by recalling our discussion of nonabelian derived categories from §0.1.3.
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Given an abelian category A, the category Ch(A) is the home of resolutions of
objects of A; these are well-defined up to quasi-isomorphism, and the localization
Ch(A)[W−1

q.i.] is called the derived category of A. Moreover, we have an equivalence

Ch≥0(A) ' sA

between the categories of nonnegatively-graded chain complexes and of simplicial
objects in A; this leads us to define, for any category C, the nonnegatively-graded
nonabelian derived category of C to be the localization

sC[W−1],

where the definition of the subcategory W ⊂ sC is a natural extension of that of the
subcategory

Wq.i. ⊂ Ch≥0(A) ' sA

of quasi-isomorphisms.
Of course, we will be working with ∞-categorical (rather than 1-categorical)

localizations, in which setting we obtain the derived ∞-category

D(A) = Ch(A)JW−1
q.i.K

of A and the nonnegatively-graded nonabelian derived ∞-category

D≥0(C) = sCJW−1K

of C. (Again, these ∞-categories admit universal characterizations making no ref-
erence to either chain complexes or simplicial objects.) In the case that C = Set,
the subcategory W ⊂ sSet of weak equivalences is precisely that of the Kan–Quillen
model structure, which immediately furnishes an equivalence

D≥0(Set) ' S

between the nonnegatively-graded nonabelian derived ∞-category of Set and the
∞-category of spaces.

Now, the full derived ∞-category D(A) of an abelian category A enjoys certain
properties not shared by its nonnegatively-graded variant D≥0(A). The key difference
between these is that the former is an example of a stable ∞-category, while the latter
is not. In fact, stable ∞-categories are themselves a sort of ∞-categorical analog of
abelian categories. Their definition is so simple that we cannot help but give it in
full: an ∞-category C is called stable if

• it admits a zero object 0 ∈ C (i.e. an object which is both initial and terminal),
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• a commutative square

X Y

0 Z

ϕ

ψ

is a pushout square (i.e. ψ is the cofiber of ϕ) if and only if it is a pullback
square (i.e. ϕ is the fiber of ψ), and

• every morphism in C admits both a fiber and a cofiber.30

Crucially, if C is a stable ∞-category, then the suspension/loop adjunction

Σ : C� C : Ω

is an adjoint equivalence. For this reason, when working in a stable ∞-category it
is common to write Σ−1 = Ω for the loop functor. In the case of the derived ∞-
category D(A), these adjoints are simply the “shift” functors, often denoted Y 7→

30In fact, stable ∞-categories are a robust enhancement of a more classical notion, namely
that of a triangulated category. These were introduced by Verdier in his thesis [Ver96] (which was
written in 1963 but only published in 1996), appropriately entitled Des catégories derivées des
catégories abéliennes (“On derived categories of abelian categories”): the canonical example of a
triangulated category is the derived category Ch(A)[W−1

q.i.] of an abelian category A. From our
original example D(A) of a stable ∞-category, we recover this derived category as its homotopy
category : the canonical functor

D(A) = Ch(A)JW−1
q.i.K→ Ch(A)[W−1

q.i.]

from the derived∞-category of A is obtained simply by collapsing the hom-spaces in D(A) onto their
sets of path components, which are the corresponding hom-sets in the derived category. In fact, the
homotopy category of any stable ∞-category is canonically triangulated (with the “distinguished
triangles” given equivalently by the cofiber sequences or the fiber sequences), and indeed essentially
every triangulated category of interest is (in retrospect) defined as the homotopy category of a
stable ∞-category.

It has long been held that triangulated categories are “not the true thing”; in particular, it has
long been observed as a flaw in their definition that cofibers (or fibers) are not unique up to unique
isomorphism. In fact, this flaw is completely repaired by the use of stable ∞-categories, in which
there exists a contractible space of cofibers (or fibers) of a given map. Moreover, the so-called
“octahedral axiom” for triangulated categories is both complicated and rather difficult to motivate,
but from the perspective of stable ∞-categories it becomes a straightforward consequence of the
fact that pushout squares can be “composed” (a/k/a “pasted”) into another pushout square. (This
observation also indicates that the octahedral axiom should in fact be just the first in an infinite
hierarchy of such axioms, illustrating the further suboptimality of the definition of a triangulated
category.)
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Y [±1] in the literature.31 This illustrates why the nonnegatively-graded derived ∞-
category D≥0(A) cannot be stable. Namely, the inclusion D≥0(A) ↪→ D(A) admits
a right adjoint τ≥0, called the connective cover or 0th cotruncation functor, and the
suspension/loop adjunction

Σ : D≥0(A)� D≥0(A) : Ω

has its left adjoint computed in D(A) but its right adjoint computed by the composite

D≥0(A)
τ≥0←−− D(A)

Ω←− D(A)←↩ D≥0(A).

That is, the suspension functor in D≥0(A) is simply given by “shifting up”, but the
loop functor in D≥0(A) is given by “shifting down and then cotruncating away any
negative-dimensional homology”.

We can now proceed to indicate how to recover the full nonabelian derived ∞-
category D(C) of an arbitrary category C. For this, we will draw on intuition coming
from the relationship between D(A) and D≥0(A) in the abelian case. Namely, we
will ponder the question: how can we describe an object X ∈ D(A) while making
reference only to objects of D≥0(A)?

In answering this question, the first thing we will do is extract the 0th contrun-
cation

X0 = τ≥0X ∈ D≥0(A),

though clearly this will not generally suffice to recover X itself.32 On the other hand,
to do slightly better we can instead extract the −1st contruncation τ≥−1X, but then
suspend it once to obtain another object

X1 = Σ(τ≥−1X) ∈ D≥0(A).

Of course, these two objects of D≥0(A) will be compatible in a certain sense: the
map

ΣX0 → X1

will be adjoint to an equivalence

X0
∼−→ ΩX1

31We prefer the topologically motivated notation Σ a Ω since it is more descriptive, and because
the underlying mathematical meaning is independent of whether one chooses to use homological
grading conventions or cohomological ones.

32This subscript notation is motivated by the aim of the discussion. Although perhaps mildly
confusing, it is at least not technically abusive: it is impossible to speak of the “object of A in
homological degree 0” of the object X ∈ D(A), just as it is impossible to speak of the “underlying
set” of an object of S.
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in D≥0(A). In other words, the−1st cotruncation τ≥−1X “remembers one more layer”
of X than does the 0th cotruncation τ≥0X, and when we strip off that bottommost
layer then they become equivalent. From here, the general pattern is clear: the
object X ∈ D(A) is entirely recovered by the sequences of objects

Xn = Σn(τ≥−nX)

and of equivalences
Xn

∼−→ ΩXn+1

in D≥0(A) (indexed over n ≥ 0). In fact, this assembles into an equivalence

D(A)
∼−→ lim

(
· · · Ω−→ D≥0(A)

Ω−→ D≥0(A)
Ω−→ D≥0(A)

)
of ∞-categories: the functor from D(A) to the nth-from-rightmost copy of D≥0(A)
is given by the composite

D(A)
τ≥−n−−−→ D≥−n(A)

Σn−→
∼

D≥0(A).

Motivated by this, for any ∞-category D admitting a terminal object, we define
the ∞-category of spectrum objects in D to be the limit

Sp(D) = lim
(
· · · Ω−→ D∗

Ω−→ D∗
Ω−→ D∗

)
of ∞-categories.33 Going a step further back, for any (not necessarily abelian) cate-
gory C, we define its (full) nonabelian derived ∞-category to be the∞-category

D(C) = Sp(D≥0(C))

of spectrum objects in its nonnegatively-graded nonabelian derived∞-category D≥0(C).
As a special case, the ∞-category of spectra is by definition

Sp = Sp(S) ' Sp(D≥0(Set)) = D(Set),

the full nonabelian derived ∞-category of the category of sets. This ∞-category is
the setting of the field of stable homotopy theory .

33We work with pointed objects in D in order to obtain a sensible “loop” functor; if the terminal
object of D is already also initial (and hence is a zero object), then the forgetful functor determines
an equivalence D∗

∼−→ D.
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Whereas stable∞-categories are a homotopical analog of abelian categories, spec-
tra are a homotopical analog of abelian groups. Indeed, there is a fully faithful
embedding

H : Ab→ Sp,

the Eilenberg–Mac Lane spectrum functor: this takes an abelian group A to the
spectrum HA determined by the Eilenberg–Mac Lane spaces {K(A, n)}n≥0 and the
canonical equivalences K(A, n)

∼−→ K(A, n+1). Moreover, the∞-category Sp admits
a symmetric monoidal structure – alternately called the smash product (and denoted
∧) or the tensor product (and denoted ⊗), depending on the desired emphasis – and
with respect to this the Eilenberg–Mac Lane spectrum functor H is lax symmetric
monoidal. It follows that an associative (resp. commutative) ring R gives rise to an
associative (resp. commutative) ring spectrum HR.

Just as sets give rise to abelian groups via the free/forget adjunction

FAb : Set� Ab : UAb,

so do spaces give rise to spectra: there is an adjunction

Σ∞ : S∗ � Sp : Ω∞,

which can be extended to unbased spaces simply by precomposing with the free/forget
adjunction

(−)+ : S� S∗ : U+.

The left adjoint (either on S∗ or restricted to S) is called the suspension spectrum
functor, and should be thought of as a homotopical analog of the “free abelian group”
functor (with the basepoint serving as the “identity element”).

Of central importance among suspension spectra is the sphere spectrum

S = Σ∞S0 ' Σ∞+ pt,

which is the unit of the symmetric monoidal∞-category (Sp,⊗). For any n ∈ Z, we
also write Sn = ΣnS, and refer to these objects collectively as the sphere spectra; for
n ≥ 0 we have Sn ' Σ∞Sn, but these are no longer suspension spectra for n < 0.
Then, for any spectrum E and any n ∈ Z, we define the nth homotopy group of E to
be the abelian group

πnE = [Sn, E]Sp = homho(Sp)(Sn, E)

of homotopy classes of maps from the n-fold suspension ΣnS. For a based space
X ∈ S∗, the homotopy groups π∗(Σ

∞X) are called the stable homotopy groups of X.
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Homotopy groups create the equivalences among spectra: that is, a map of spectra
is an equivalence if and only if it induces isomorphisms on all homotopy groups.

It is no accident that the Eilenberg–Mac Lane spaces {K(A, n)}n≥0 simultane-
ously assemble into a spectrum HA and represent the singular cohomology theory
H∗(−;A). In fact, any spectrum E ∈ Sp represents a(n extraordinary) cohomol-
ogy theory , given by defining

EnX = [Σ∞−n+ X,E]Sp
∼= [S−n, homSp(Σ∞+X,E)] = π−n

(
homSp(Σ∞+X,E)

)
for any n ∈ Z. Moreover, E also defines a(n extraordinary) homology theory as
well, given by setting

EnX = πn(E ⊗ Σ∞+X) = [Sn, E ⊗ Σ∞+X]Sp

for any n ∈ Z.34 In a precise sense, these formulas define all co/homology theories:
this is the Brown representability theorem, introduced in its original form in [Bro62].
We observe that these formulas continue to make sense if we replace the suspension
spectrum Σ∞+X by an arbitrary spectrum Y : that is, we can define its E-cohomology
groups to be

EnY = [Σ−nY,E]Sp
∼= π−n

(
homSp(Y,E)

)
and its E-homology groups to be

EnY = πn(E ⊗ Y ).

If the spectrum E carries additional structure, this endows the homology theory
E∗ with corresponding additional structure. For instance, if E carries an associative
(resp. commutative) algebra structure in the homotopy category ho(Sp), this endows
the Z-graded abelian group E∗ = π∗E with the structure of a Z-graded associative
(resp. commutative) ring, and moreover we obtain a lift of the homology theory E∗
to the category ModE∗ of E∗-modules.

In fact, if we have E ∈ CAlg(ho(Sp)) and moreover E∗E is flat as an E∗-module,
then the pair (E∗, E∗E) becomes a Hopf algebroid (i.e. E∗E becomes a Hopf algebra
over E∗), and moreover we obtain a canonical lift

Comod(E∗,E∗E)

Sp ModE∗E∗

34The term “extraordinary” is meant to emphasize the fact that they satisfy all of the Eilenberg–
Steenrod axioms characterizing ordinary (i.e. singular) co/homology, except for possibly the dimen-
sion axiom.
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of the E-homology functor to the category of comodules over this Hopf algebroid.35

In this case, we may simply refer to the object E ∈ CAlg(ho(Sp)) as “flat”. We
may also refer to objects of Comod(E∗,E∗E) as “E∗E-comodules”, or even simply as
“comodules” if the choice of E is clear.

Now, just as we have seen in §0.1.5, there is a world of difference between carrying
multiplicative structure in the ∞-category Sp and carrying multiplicative structure
in its homotopy category ho(Sp): the latter only requires the existence of homotopies
making various structure diagrams commute, whereas the former demands coherent
choices of witnesses to the homotopy-commutativity of an infinite hierarchy of higher
structure diagrams.

Despite the fact that we are working ∞-categorically, we will sometimes refer
to associative (resp. commutative) algebra objects in the ∞-category Sp as “A∞
ring spectra” (resp. “E∞ ring spectra”).36 This is partly for historical reasons,
since these objects were studied long before∞-categories existed (so that they could
only be defined as algebras over such a cofibrant operad in a model category of
spectra (i.e. a model category presenting the ∞-category Sp)). However, this will
also be for emphasis: for instance, if E is an E∞ ring spectrum, we obtain a truly
vast amount of additional structure on its corresponding cohomology theory E∗,
collectively referred to as power operations.37 A prototypical example is the family
of Steenrod operations on mod-p singular cohomology, which arise from the E∞ ring
structure on the Eilenberg–Mac Lane spectrum HFp. Conversely, for emphasis we
may refer to an object of Alg(ho(Sp)) (resp. CAlg(ho(Sp))) as a homotopy associative
(resp. commutative) ring spectrum.

Power operations are an extremely valuable tool in the project of algebraic topol-
ogy, which is after all precisely the study of topological objects via algebraic invari-
ants. If we refine the target of a topology-to-algebra functor, this imposes further

35In the language of algebraic geometry, a Hopf algebroid is precisely a groupoid object in the
category of affine schemes. This represents a groupoid-valued functor, and comodules over the
Hopf algebroid can be profitably thought of as quasicoherent sheaves on its associated stack. This
perspective on flat extraordinary homology theories (as taking values in sheaves on stacks) plays
a fundamental role in chromatic homotopy theory, which beautiful research area we will briefly
describe in §0.3.2.

36However, we will nevertheless write Alg(Sp) (resp. CAlg(Sp)) for the ∞-category of A∞ (resp.
E∞) ring spectra.

37Power operations are a rare example of a homotopy-invariant phenomenon which is perhaps
strictly easier to see from a model-categorical point of view than from an ∞-categorical one. For
example, given an E∞ ring spectrum E and a space X, there is a power operation E0X → E0(BΣn×
X) for each n ≥ 0, which effectively arises from the point-set structure of the E∞ operad (say in
TopQS), which in level n is a contractible topological space EΣn equipped with a free Σn-action
(so that its quotient recovers a classifying space BΣn). For a comprehensive treatment of power
operations, we refer the interested reader to [BMMS86].
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conditions on morphisms in the algebraic category; this generally implies the exis-
tence of fewer morphisms there, which then can be used to draw conclusions back
upstairs in the world of topology.

0.3.2 Derived algebraic geometry and chromatic homotopy
theory

Let us return our attention to the Eilenberg–Mac Lane spectrum functor

H : Ab→ Sp.

Recall that its lax symmetric monoidality implies that an associative (resp. commu-
tative) ring R gives rise to an associative (resp. commutative) ring spectrum HR. In
fact, more is true: it implies that we obtain a lift

ModR(Ab) ModHR(Sp)

Ab Sp,

H

UR UHR

H

i.e. the Eilenberg–Mac Lane spectra of R-modules are naturally HR-module spec-
tra.38 Even better, there exists a canonical equivalence

DR ' ModHR(Sp)

between the derived ∞-category of R and the ∞-category of HR-module spectra
(which is symmetric monoidal if R is commutative). Thus, for instance, for any
R-modules M and N , we obtain canonical identifications

TorRn (M,N) ∼= πn(HM ⊗HR HN)

and
ExtnR(M,N) = π−n (homHR(HM,HN)) .

In summary, embedding ordinary algebra into spectral algebra naturally brings its
derived aspects to the fore. This observation lies at the heart of the field of derived
algebraic geometry .

In order to illustrate this philosophy and the power it affords, let us draw an
example from intersection theory.

38Everything here must be suitably interpreted (in the evident way) in the associative case.
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Suppose that Z is a smooth variety over a field k, and that X, Y ⊂ Z are
smooth subvarieties of complementary dimensions. It has long been recognized that
if one counts intersection points in the naivest possible way, it is only when X and
Y intersect transversely that one obtains the “correct” number (say, the number
corresponding to the cup product in cohomology).

On the other hand, by passing from varieties to schemes, it is often possible to
directly obtain the correct intersection as a geometric object. This is much better
than simply knowing how to attach the correct multiplicities to intersection points:
it allows us to continue doing geometry with their correct intersection.

For instance, suppose that we take

Z = A2
k = Spec k[x, y]

to be the affine plane,

X = Spec k[x, y]/(y) ∼= Spec k[x]

to be the x-axis, and
Y = Spec k[x, y]/(y − x2)

to be the standard parabola. Then, the naive set-theoretic intersection of X and Y is
just a single point, namely the origin of Z. This is the wrong number: generically, a
line and a parabola intersect in two points. On the other hand, the scheme-theoretic
intersection is given by the intersection

X ×
Z
Y = Spec

(
k[x, y]/(y) ⊗

k[x,y]
k[x, y]/(y − x2)

)
∼= Spec k[x]/(x2).

Indeed, this is one of the major selling points of scheme theory: this geometric object
intrinsically keeps track of the fact that this intersection point has multiplicity 2.

However, even the scheme-theoretic intersection does not always give the correct
answer. For simplicity, let us assume that set-theoretically, X and Y only intersect
at a single point p ∈ Z. Then, the Serre intersection formula, introduced in [Ser65],
asserts that the correct intersection multiplicity is given by the alternating sum∑

i

(−1)i dim
(

Tor
OZ,p
i (OX,p,OY,p)

)
.

However, as we have just seen, this is nothing other than the Euler characteristic of
the derived tensor product

OX,p

L
⊗

OZ,p

OY,p,
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i.e. the tensor product in the derived ∞-category

DOZ,p ' ModOZ,p(Sp).

Thus, by passing further from schemes to derived schemes, we can always obtain
the correct intersection as a geometric object, namely as the derived intersection

X
R
×
Z
Y = Spec

(
OX,p

L
⊗

OZ,p

OY,p

)
.

Now, much of the work done in derived algebraic geometry takes place over a
field k (i.e. within the derived ∞-category Dk ' ModHk(Sp)), often even under the
assumption that k has characteristic 0. This is not without reason: such assumptions
drastically simplify matters, but are nevertheless sufficiently general to encompass
many of the desired applications.

However, the observation that the derived ∞-category of a ring R can be found
“inside” of Sp (that is, is monadic over it) suggests an extremely tantalizing direction
of investigation: by passing to spectra, it is possible to work under SpecZ.39

Now, the unit object – namely, the sphere spectrum S – is the initial object of the
∞-category CAlg(Sp) of commutative ring spectra. Thus, at least within spectral
algebraic geometry (i.e. derived algebraic geometry, but emphatically not necessarily
over an ordinary commutative ring), SpecS is the deepest possible base with respect
to which one might work.

Spectral algebraic geometry is absolutely full of mysteries – not the least of which
is that we’re not even totally sure what the right definition of “SpecS” should be. As
it turns out, direct generalizations of the classical definition of the Zariski spectrum
(in terms of prime ideals) don’t really give the desired answer.40 Instead, what
appears to work better is a mild generalization, which still recovers the usual Zariski
spectrum in the classical case.

39Such a world has long been sought: for instance, it has been a continual source of inspiration
that the Riemann hypothesis might admit a “geometric” proof, if only one could make rigorous
sense of the expression “SpecZ×Spec F1

SpecZ” (in analogy with Weil’s proof for the case of curves
over finite fields). To be clear, we do not necessarily mean to assert that spectra provide a suitable
context for attacking the Riemann hypothesis, though that would be mildly satisfying. On the
other hand, let us recall that the reigning (but very possibly overly naive) sense is that a “finitely
generated projective module over F1” should be nothing other than a finite pointed set. Via the
discussion of §0.3.1, it would follow that the ∞-category Spω of compact spectra is a compelling
candidate for “the ∞-category of perfect complexes on SpecF1”. Thus, if nothing else, one might
consider the sphere spectrum S to be Morita equivalent to F1.

40In fact, “ideals” of ring spectra are themselves a poorly behaved notion. For instance, given a
commutative ring spectrum R and an element f ∈ π0R, the quotient R/(f) = cofib(f : R → R) is
rarely another commutative ring spectrum.
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To explain this, we must introduce some terminology. In essence, the idea will
be to treat a presentably symmetric monoidal stable ∞-category as a cate-
gorification of a commutative ring. Let us first explain this terminology.

To begin, an∞-category is called presentable if it is “generated by a small subcat-
egory”. More precisely, for a regular cardinal κ, the functor Indκ of freely adjoining
κ-filtered colimits defines an equivalence

Indκ :


small

κ-cocomplete
∞-categories

 ∼−→
{
κ-compactly generated

∞-categories

}
,

and a presentable∞-category is one which is κ-compactly generated for some regular
cardinal κ. (It is then also κ′-compactly generated for any regular cardinal κ′ ≥ κ.)
In these settings, if κ = ω is countable then one often omits the cardinal unless
it is meant to be emphasized. So for example, the category Set of sets is the Ind-
completion of its subcategory of finite sets, and the category Ab of abelian groups is
the Ind-completion of its subcategory of finitely generated abelian groups. In prac-
tice, most ∞-categories of lasting interest are presentable (often even ω-compactly
generated).

Next, an∞-category which is both presentable and symmetric monoidal is called
presentably symmetric monoidal if its symmetric monoidal structure distributes over
colimits separately in each variable. This may be thought of as a categorification of
the usual distributivity axiom in a commutative ring. The above equivalence Indκ
refines to an equivalence

Indκ :


small

κ-cocompletely s.m.
∞-categories

 ∼−→


κ-compactly generated

presentably s.m.
∞-categories

 .

In practice, most symmetric monoidal∞-categories of lasting interest are presentably
symmetric monoidal (again often even coming from a small ω-cocompletely symmet-
ric monoidal ω-cocomplete ∞-category).

We can now describe the notions that will participate in our categorified notion
of the Zariski spectrum.

First, suppose that C is a symmetric monoidal ∞-category. A full subcategory
I ⊂ C is called an ideal if it is “contagious” under the symmetric monoidal structure,
i.e. if X ⊗ Y ∈ I whenever X ∈ C and Y ∈ I . Then, a subcategory P ⊂ C is
called a prime ideal if it is a proper ideal and moreover if X ⊗ Y ∈ P then either
X ∈P or Y ∈P.

Next, suppose that D is a stable∞-category. A full subcategory K ⊂ D is called
a stable subcategory if it is stable and its inclusion is exact (i.e. the co/fiber sequences
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in K agree with those of D). In this case, we can form the Verdier quotient of D
by K as the pushout

K D

0 D/K

in the∞-category of stable∞-categories (and exact functors between them). Under
the composite

K → D→ D/K ,

all of the objects of K are sent to the zero object of D/K . However, the objects of
D that are sent to the zero object of D/K are precisely the retracts of objects of the
subcategory K ⊂ D. Motivated by this, we define a thick subcategory of D to be a
stable subcategory which is closed under retracts. Any stable subcategory K ⊂ D

can be idempotent-completed to a thick subcategory K ∧ ⊂ D with the same Verdier
quotient.

If our stable ∞-category D is presentable, then we can say more. For starters,
the quotient functor D → D/K must then admit a fully faithful right adjoint: in
other words, it participates in a reflective localization

LK : D� D/K : UK .

Moreover, from this adjunction, we can recover the idempotent completion K ∧ ⊂ D

of K as the full subcategory of acyclic objects for the reflective localization, i.e.
those that are sent to the zero object of D/K . We thus obtain an order-reversing
isomorphism

{thick subcategories of D} ∼= {reflective localizations of D}op

of posets.
Let us now suppose further that our presentable stable ∞-category D is in fact

presentably symmetric monoidal (i.e. a “categorified commutative ring”). Then, a
thick subcategory K ⊂ D will be an ideal precisely if the corresponding reflective
localization

LK : D→ D/K

is compatible with the symmetric monoidal structure of D, in the sense that for all
X, Y ∈ D, the canonical dotted factorization

X ⊗ Y LK (X)⊗ LK (Y ) LK (LK (X)⊗ LK (Y ))

LK (X ⊗ Y )
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is an equivalence. In this case, the presentable stable ∞-category D/K inherits a
completed symmetric monoidal structure defined by

X⊗̂Y = LK (X ⊗ Y ),

with respect to which it and the reflective localization become presentably symmetric
monoidal. Thus, we obtain a restricted isomorphism

{thick ideal subcategories of D} ∼=
{

presentably s.m.
reflective localizations of D

}op
of posets, in direct analogy with the isomorphism

{ideals of R} ∼= {surjective ring homomorphisms from R}op

for a commutative ring R.
Finally, taking a cue from commutative algebra, let us say that a presentably

symmetric monoidal stable∞-category is integral if whenever X⊗Y ' 0 then either
X ' 0 or Y ' 0. It is immediate from this definition that our isomorphism restricts
further to an isomorphism

{
thick prime ideal

subcategories of D

}
∼=


integral

presentably s.m.
reflective localizations of D


op

of posets.
Forgetting the poset structure (which we only kept track of to indicate the order-

reversal), we can endow the above set with a topology, with basis given by the
subsets

UX =

{
P ⊂ D a thick prime

ideal subcategory
: X ∈P

}
for X ∈ D.41 We denote the resulting topological space by

SpecD,

and refer to it as the (Zariski or prime) spectrum of the presentably symmetric
monoidal stable ∞-category D.42 This definition still makes sense if D is instead a

41The condition defining UX is reversed from what might be expected from commutative algebra;
this can be attributed to Hochster duality (see [Hoc69] as well as the recent [KP]).

42The analogous construction in the setting of tensor triangulated categories has been studied
extensively; for an overview, see Balmer’s prominent work [Bal10].
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small κ-cocompletely symmetric monoidal stable ∞-category, and we double-book
the notation accordingly.43,44,45 Although the analogy with ordinary scheme theory
is clearest in the setting of presentably symmetric monoidal∞-categories, this latter
version actually appears to be better behaved.46

Let us now describe how this recovers the usual Zariski spectrum. Suppose that
X is a qcqs scheme. Let us write DX for its derived ∞-category (of quasicoher-
ent sheaves), and let us write Dω

X ⊂ DX for its subcategory of compact objects
(i.e. perfect complexes). This is a small ω-cocompletely symmetric monoidal stable
∞-category. The fact to which we have been alluding is that this gives rise to a
homeomorphism

X ∼= Spec Dω
X

of topological spaces.
For an explicit example, let us take X = SpecZ: its derived ∞-category is the

presentably symmetric monoidal stable ∞-category

DX ' DZ ' ModHZ(Sp).

Then, the subcategory ModHZ(Sp)ω of compact objects has its poset of thick prime
ideal subcategories given by the usual diagram

P(0)

P(2) P(3) P(5) P(7) · · · ,

where for any prime p we write

P(p) = ker
(

ModHZ(Sp)ω
HFp⊗−−−−−→ ModHZ(Sp)ω

)
43In this latter version, it seems appropriate to require that D be idempotent-complete (which

is actually already automatic unless κ = ω).
44In this latter version, the Verdier quotients of D corresponding to the points of SpecD will not

generally be reflective localizations, since the right adjoint comes from the adjoint functor theorem
(which requires presentability).

45In either version, it is possible to endow the topological space SpecD with a structure sheaf,
but we will not pursue that point here.

46If a presentable∞-category D is κ-compactly generated, then ideals of its subcategory Dκ ⊂ D

of κ-compact objects are in bijective correspondence with κ-compactly generated ideals of D whose
inclusions preserve κ-compact objects. So in general, the presentable version will have more points.
Of course, one could also modify the definition in the presentable case along these lines.
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for the thick prime ideal subcategory of p-torsion-free complexes, and we write

P(0) = ker
(

ModHZ(Sp)ω
HQ⊗−−−−−→ ModHZ(Sp)ω

)
for the thick prime ideal subcategory of torsion complexes. At the level of pre-
sentably symmetric monoidal stable ∞-categories, these respectively correspond to
the integral presentably symmetric monoidal reflective localizations

ModHZ(Sp)� ModHFp(Sp)

and
ModHZ(Sp)� ModHQ(Sp),

which at the level of algebraic geometry are precisely the sheaf-theoretic adjunctions
corresponding to the inclusions of the respective subschemes SpecFp ⊂ SpecZ and
SpecQ ⊂ SpecZ.

We can now describe our candidate for Spec S: as we have ModS(Sp) ' Sp, we
simply define

Spec S = Spec Spω

to be the Zariski spectrum of the small ω-cocompletely symmetric monoidal stable
∞-category of compact spectra. The beautiful thick subcategory theorem of Hopkins–
Smith (see [HS98]) asserts that this takes the form

Spec S = N∞0 ∧ SpecZ,

the smash product of the poset

N∞0 = {0 < 1 < 2 < · · · <∞}

(equipped with the basepoint 0) and the poset

SpecZ

(equipped with the basepoint (0)).47 This is illustrated in Figure 0.1, where we write

Pn,(p) = ker
(
Spω

K(n,p)⊗−−−−−−−→ Spω
)

47The thick subcategory theorem is intimately related to the equally beautiful nilpotence theorem
of Devinatz–Hopkins–Smith (see [DHS88]); together, these two works resolved most of the Ravenel
conjectures, which were put forth in the deeply influential paper [Rav84].



52

P(0)

P1,(2) P1,(3) P1,(5) P1,(7)

P2,(2) P2,(3) P2,(5) P2,(7)

P3,(2) P3,(3) P3,(5) P3,(7)

...
...

...
...

P∞,(2) P∞,(3) P∞,(5) P∞,(7)

· · ·

· · ·

· · ·

· · ·

· · ·

SpecZ

N∞0

Figure 0.1: Spec S.

for the kernel of the nth Morava K-theory at the prime p, and similarly to above we
write

P(0) = ker
(
Spω

HQ⊗−−−−−→ Spω
)

;

it is often convenient to set K(0, p) = HQ for any prime p.48 The elements of N∞0 are
referred to as chromatic heights, and the study of stable homotopy theory through
the lens of this stratification is the field of chromatic homotopy theory .49 In
fact, we have K(∞, p) ' HFp: in other words, the canonical map

SpecZ→ Spec S
48It seems likely that this picture of Spec S should also be recoverable from a noncommutative

version of spectral algebraic geometry. The Morava K-theories are generally only associative ring
spectra, but their homotopy groups nevertheless happen to form commutative rings, which makes
their algebro-geometric manipulation substantially more tractable than that of arbitrary associative
ring spectra. (This property is sometimes cheekily referred to as “E11

2
”, a term attributed to

Hopkins.)
49The field of chromatic homotopy theory, which finds its origins in Morava’s celebrated paper

[Mor85], is so named for its basis in certain periodicity phenomena in the ring π∗S of stable ho-
motopy groups of spheres: the word “chromatic” is meant to evoke a connection with periods and
wavelengths. This terminology inspires the names of the redshift and blueshift conjectures, which
(in rough terms) respectively assert that algebraic K-theory “raises chromatic height” and that
Tate cohomology “lowers chromatic height”.
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cuts out the locus at chromatic height∞ (along with the generic point). Thus, most
of Spec S does indeed live “under SpecZ”.

Now, for any prime p, the containments

P∞,(p) ⊂ · · · ⊂Pn,(p) ⊂Pn−1,(p) ⊂ · · · ⊂P1,(p) ⊂P(0)

are tantamount to saying that for any compact spectrum X ∈ Spω and for any n ≥ 1,
if K(n, p)⊗X ' 0 then K(n−1, p)⊗X ' 0. However, this relationship need not hold
for noncompact spectra. On the other hand, for any n ≥ 0 and any prime p, there
exists a spectrum En,p, the nth Morava E-theory at the prime p, such that for any
spectrum Y ∈ Sp, we have En,p⊗Y ' 0 if and only if K(i, p)⊗Y ' 0 for all 0 ≤ i ≤ n.
(At n = 0, we once again simply set E0,p = HQ (or perhaps a 2-periodification
thereof).) Thus, the Morava E-theories govern arbitrary quasicoherent sheaves on
Spec S, in a manner which may be referred to as chromatic globalization .

This state of affairs naturally leads one to wonder about the possibility of arith-
metic globalization. Of course, at chromatic height 0, the question is trivial. But
in fact, there is an obvious candidate for such an “arithmetically global” theory at
chromatic height 1 as well: the Morava E-theory E1,p is nothing other than the p-
completed complex K-theory spectrum KU∧p . Clearly, these are all recovered from
the uncompleted complex K-theory spectrum KU , which may therefore be deemed
to be arithmetically global of chromatic height 1 .

In order to explain how this generalizes upwards, we briefly indicate the intimate
connection between chromatic homotopy theory and the theory of formal groups (in
the sense of formal algebraic geometry). A complex orientable cohomology theory is
one which “admits a theory of Chern classes”; a complex orientation is a choice of
“coordinate” for such a theory. Given a complex orientation, the formula for the
first Chern class of a tensor product of line bundles then provides a formal group
law, and changing the complex orientation preserves the underlying formal group.
For example, the classical equation

c1(L1 ⊗ L2) = c1(L1) + c1(L2)

implies that singular cohomology theories correspond to the additive formal group
Ĝa. In fact, the chromatic height of a complex orientable cohomology theory is by
definition the height of its corresponding formal group.50 In particular, the Morava
K-theory K(n, p) corresponds to the height-n Honda formal group at the prime p,
while the Morava E-theory En,p corresponds to its universal deformation, also called
the height-n Lubin–Tate formal group at the prime p.

50Actually, the notion of the “height” of a formal group only makes sense in positive character-
istic; for convenience, we simply declare the height of (Ĝa)|Q to be 0.
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This perspective provides a more primordial explanation for why the height-1
Morava E-theories admit such a straightforward “integral model”. Namely, at any
prime p, the height-1 Lubin–Tate formal group can be more concretely identified as
the multiplicative formal group (Ĝm)|Z∧p over the ring Z∧p of p-adic integers. These are

all pulled back from the absolute formal multiplicative group Ĝm = (Ĝm)|Z, which in
turn corresponds to KU . Recasting this situation in rough algebro-geometric terms,
we can consider the scheme SpecZ as being equipped with a sheaf Ĝm of formal
groups and a compatible quasicoherent sheaf KU∼ of commutative ring spectra,
such that their evaluations on the object

Spf Z∧p → SpecZ

gives the corresponding Lubin–Tate formal group

(Ĝm)|Z∧p ∼= Ĝm⊗̂ZZ∧p

and the Morava E-theory spectrum

E1,p ' KU⊗̂ZZ∧p .

This, then, suggests our upwards generalization: we would like to find some
algebro-geometric object equipped with a sheaf of formal groups which naturally
contains the height-2 Lubin–Tate formal groups at all primes, and we would like
to enhance this sheaf of formal groups to a compatible sheaf of commutative ring
spectra.

In fact, at chromatic height 2, the moduli stack of elliptic curves Mell is just such
an object. Among elliptic curves (over a field of positive characteristic), there are
the ordinary ones whose formal groups have height 1, and there are the supersingular
ones whose formal groups have height 2; moreover, the Serre–Tate theorem of [ST68]
implies that the deformation theory of a supersingular elliptic curve is equivalent to
that of its formal group. However, in this case, it is much more difficult to construct
the relevant sheaf Oder of commutative ring spectra: the moduli stack Mell is not
affine, and so it is far from sufficient to merely specify a single commutative ring
spectrum (as we merely specified KU previously at height 1). Nevertheless, it can
be done.

Locally, the homotopy groups of the sheaf Oder of commutative ring spectra en-
compass both the structure sheaf of Mell as well as the sheaf of invariant differentials
and all of its tensor powers. Its commutative ring spectrum of global sections is
therefore denoted

tmf = Oder(Mell)
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and referred to as topological modular forms : its homotopy groups may be
thought of as something like “derived modular forms”, and indeed they agree with
the ring of ordinary modular forms as soon as we invert 6 ∈ Z.51,52 Up to taking
fixedpoints by stabilizer groups, the local sections of Oder are given by the various
Morava E-theories E0,p, E1,p, and E2,p at all primes p. Thus, tmf may be deemed to
be arithmetically global of chromatic height 2 .53

0.3.3 Goerss–Hopkins obstruction theory: the black box

In broad terms, an obstruction theory is a machine which provides algebraic criteria
for determining the possibility of some topological construction. For example, the
obstructions to the triviality of a vector bundle are given by its characteristic classes.

Perhaps the most sophisticated obstruction theory in all of algebraic topology is
Goerss–Hopkins obstruction theory . Suppose we are given a flat homotopy
commutative ring spectrum

E ∈ CAlg(ho(Sp))

satisfying Adams’s condition, which we will describe in §0.3.4; we will refer to the
its corresponding homology theory E∗ as our “detecting” homology theory. Suppose
moreover that we are given a commutative algebra

A ∈ CAlg(Comod(E∗,E∗E))

in comodules. Then, Goerss–Hopkins obstruction theory provides a method for com-
puting the moduli space of (E-local) realizations of A as an E∞ ring spectrum

51We are actually being slightly sloppy here, in a few different ways: regarding periodic versus
connective spectra, and regarding compactifications of Mell. However, it doesn’t seem useful clarify
this point here, and we will remain imprecise in this way throughout this introduction.

52In his forthcoming alternative construction of tmf , Lurie takes a different approach to the one
we have described (which is admittedly rather ad hoc in comparison), viewing tmf as originating
fundamentally in spectral algebraic geometry. Namely, rather than take the ordinary moduli stack
of elliptic curves and endow it with a sheaf of commutative ring spectra, he defines a spectral stack
of (oriented) spectral elliptic curves: its global sections are then tmf , and in fact its truncation
recovers the “spectrally enhanced ordinary stack” that we have described. For an overview of this
approach, we refer the reader to [Lur09a].

53At present, the question of arithmetic globalization at chromatic heights greater than 2 is
wide open. In particular, there are not really even any candidates for analogous arithmetically
global ring spectra at higher heights. An apparent primary obstruction is the (current) absence
of a connection between higher-dimensional formal groups and chromatic homotopy theory. In
what represents the current state of the art, Behrens–Lawson construct a spectrum of topological
automorphic forms at a prime p in [BL10], which they accomplish by considering moduli stacks
of higher-dimensional abelian varieties that are equipped with enough extra structure that their
formal completions canonically split off 1-dimensional summands.
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– the first question being whether it is nonempty.54 Let us explain this all in more
detail.

First of all, a realization of A is an E∞ ring spectrum X for which there exists an
isomorphism E∗X ∼= A (of algebras in comodules). These are our objects of interest.
Note that we do not require the existence of a spectrum realizing the underlying
comodule of A: that is, we start with purely algebraic data.

Next, an E-equivalence is a map X → Y of spectra that induces an isomorphism

E∗X
∼=−→ E∗Y of E∗E-comodules (or equivalently of E∗-modules). In a universal

way, we can invert the E-equivalences in the ∞-category of spectra to form the ∞-
category LE(Sp) of E-local spectra. The terminology stems from the fact that this
localization actually participates in a reflective localization

LE : Sp� LE(Sp) : UE,

i.e. an adjunction whose right adjoint is fully faithful; in particular, we can con-
sider LE(Sp) ⊂ Sp as a full subcategory.55,56 In other words, E-local spectra are
just particular sorts of spectra, but E-equivalences between them are necessarily
equivalences.

Finally, the moduli space of E-local realizations of A is the full subgroupoid

MA ⊂ CAlg(LE(Sp))

on the E-local E∞ ring spectra which are realizations of A; its morphisms are the
E-equivalences (which are also equivalences) between them. As indicated above, we
will generally leave the descriptor “E-local” implicit.

Of course, this necessarily only produces E-local spectra. Thus, if one is interested
in obtaining an E∞ ring structure on a particular spectrum X ∈ Sp, one must choose
a detecting homology theory E∗ for which X is E-local. On the other hand, this
locality is not so hard to satisfy in practice: crucially, any E-module is necessarily E-
local. Note that this is a relatively weak (and in particular, unstructured) hypothesis:
we have only assumed that E is a homotopy commutative ring spectrum, and thus
by “module” we can only possibly mean an object X ∈ ModE(ho(Sp)).

54In fact, the obstruction theory applies to algebras in spectra over any operad O, though this
changes the nature of the algebraic object in comodules that we must consider. For the purposes
of this overview, we will focus on the E∞ case, which is of central interest.

55This is in fact a presentably symmetric monoidal reflective localization of the presentably
symmetric monoidal stable∞-category Sp of spectra, as described in §0.3.2. Under the contravariant
isomorphism of posets described there, this corresponds to the thick ideal subcategory of E-acyclic
spectra, i.e. those objects X ∈ Sp such that E ⊗X ' 0.

56This is the underlying ∞-categorical content of the theory of Bousfield localization of spectra,
as introduced in the classic paper [Bou79].
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In particular, it follows that E is E-local. This implies the nearly unbelievable
conclusion that if we would like to endow a homotopy commutative ring spectrum
E ∈ CAlg(ho(Sp)) with an E∞-structure, then E can itself serve as the detecting
homology theory!

In fact, this was precisely the technique employed by Goerss–Hopkins as the very
first application of their newly minted obstruction theory: they proved that the
Morava E-theory spectra En,p described in §0.3.2 admit unique E∞ structures, and
that their automorphism spaces (as such) are in fact discrete.

Even more spectacularly, Goerss–Hopkins obstruction theory is also the key in-
gredient of the construction of the sheaf Oder over Mell whose global sections are tmf .
This actually uses a relative version of the obstruction theory (which in our descrip-
tion we have left implicit): it is necessary to construct not just the local sections
along with their actions of the automorphisms groups of elliptic curves, but also the
more general restriction maps between them.

Let us now explain what we mean when we say that Goerss–Hopkins obstruction
theory allows us to “compute” the moduli space MA of realizations of our chosen
object A.

First of all, given our commutative algebra A in comodules, one can speak of
modules over A (in comodules); we mention now that for any n ≥ 1 one can define
a canonical A-module ΩnA, which will play a role in our story shortly. For any
A-module M and any augmented commutative algebra

X ∈ CAlg(Comod(E∗,E∗E))/A

in comodules, we can define the corresponding André–Quillen cohomology groups
H∗(X;M). In fact, these are given by the homotopy groups of a certain spectrum

H (X;M) = {H n(X;M)}n≥0,

in the sense that

Hn(X;M) = π−nH (X;M) ∼= π0H
n(X;M) ∼= π1H

n+1(X;M) ∼= · · ·

for any n ≥ 0 (or really for any n ∈ Z: this spectrum has vanishing positive-
dimensional homotopy groups, not unlike homSp(Σ∞+X,E) for any X ∈ S and any
E ∈ Sp). The group

Aut(A,M)

of automorphisms of the pair (A,M) (whose elements are pairs of an isomorphism

ϕ : A
∼=−→ A and an isomorphism M → ϕ∗M) naturally acts on this spectrum. In

particular, it acts on each constituent space H n(X;M), and we write

Ĥ n(X;M) = (H n(X;M))Aut(A,M)
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for the (homotopy) quotient. This action fixes the basepoint of H n(X;M) (whose
path component corresponds to the zero element 0 ∈ Hn(X;M)), and so the inclusion
of the basepoint is Aut(A,M)-equivariant and hence determines a map

BAut(A,M)→ Ĥ n(X;M)

on quotients. We note for future reference that this map, whose source is connected,
lands entirely in the path component selected by the composite

pt
0−→H n(X;M)→ Ĥ n(X;M).

Now, as we will describe in more depth in §0.3.4, our understanding of the moduli
space MA actually comes from a sequence of moduli spaces Mn(A) of “n-stage
approximations” to a realization of A. These moduli spaces are related by pullback
squares

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA)

(for all n ≥ 1), in which the left vertical map is induced by an “(n− 1)st Postnikov
trunction” functor and the lower map is induced by an “nth k-invariant” functor

Mn−1(A)
χn−→H n+2(A; ΩnA).

Moreover, we have a canonical identification

MA
∼−→ lim (· · · →M2(A)→M1(A)→M0(A))

of our moduli space of realizations as the limit of the resulting tower. Finally, as the
base for our inductive understanding, we have an equivalence

M0(A) ' BAut(A).

We can now describe the sense in which we can “compute” the moduli space MA.
Observe that the above pullback square implies that an (n−1)-stage X can be lifted
to an n-stage if and only if the k-invariant

[χn(X)] ∈ Hn+2(A; ΩnA)
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vanishes: this is the only case in which there exists a nonempty fiber in the diagram

BAut(A,ΩnA)

pt Mn−1(A) H n+2(A; ΩnA) Ĥ n+2(A; ΩnA),
X χn

which is necessary and sufficient for there to exist a nonempty fiber in the diagram

Mn(A)

pt Mn−1(A).
X

Of course, this is most useful in the “étale” case, i.e. when the relevant André–
Quillen cohomology groups all vanish. Under this assumption, the entire tower col-
lapses to an equivalence

MA
∼−→M0(A) ' BAut(A).

This is visibly the case with Goerss–Hopkins’s original application to the Morava
E-theories. In fact, after enough algebraic manipulation, it also becomes the case
in the construction of the sheaf Oder (but these manipulations are themselves not
completely trivial).

In fact, this is also the case in another prominent application of Goerss–Hopkins
obstruction theory as well. In his inspiring monograph [Rog08], Rognes develops
the Galois theory of E∞ ring spectra. This may be seen as the study of covering
spaces among affine spectral schemes, and provides a remarkably effective framework
for the organization of chromatic homotopy theory from the viewpoint of spectral
algebraic geometry. Just as classical Galois theory, this is governed by a Galois
correspondence, i.e. a contravariant equivalence of posets. In order to prove this
fundamental theorem, Rognes uses Goerss–Hopkins obstruction theory to obtain the
desired intermediate Galois extension from a subgroup of the Galois group.

In addition to the applications we have mentioned, Goerss–Hopkins obstruction
theory finds frequent and crucial use throughout the literature on structured ring
spectra.

0.3.4 Goerss–Hopkins obstruction theory: under the hood

In order to explain the inner workings of Goerss–Hopkins obstruction theory and our
generalization thereof, we must first explain what exactly we mean by the expression
“D≥0(C)” for a (1- or ∞-)category C.
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In fact, our notation has been very slightly misleading: this construction does not
depend on the ∞-category C alone. Rather, we must first choose a full subcategory
G ⊂ C which is closed under finite coproducts, which should be thought of as a
subcategory of “projective generators”. Out of this, we define

D≥0(C) = D≥0(C,G) = PΣ(G) = Fun×(Gop, S)

to be the ∞-category of product-preserving presheaves of spaces on G, i.e. the full
subcategory of Fun(Gop, S) on those contravariant functors that take finite coproducts
in G to finite products in S.57

The connection with the discussion of §0.1.3 is as follows. There, we considered
the category sC of simplicial objects in a 1-category C, and we asserted that it comes
with a canonical subcategory W ⊂ sC of weak equivalences. After choosing the
subcategory G ⊂ C, this subcategory is pulled back from the equivalences under the
functor

sC
X• 7→(Y 7→| homlw

C (Y,X•)|)
−−−−−−−−−−−−−−−→ PΣ(G),

which can equivalently be thought of as the composite

sC
s(ょ)−−→ s(Fun(Gop, Set)) ' Fun(Gop, sSet)

Fun(Gop,|−|)−−−−−−−→ Fun(Gop, S)

of the levelwise restricted Yoneda embedding followed by a pointwise application of
the geometric realization functor

|−| : sSet→ sSetJW−1
KQK ' S.

In fact, suppose we are given a cocomplete 1-category C admitting a set of pro-
jective generators; assume without loss of generality that this set is closed under
finite coproducts, and denote the full subcategory it determines by G ⊂ C. Then,
in [Qui67, §II.4], Quillen defined a model structure on sC which (in hindsight) is
precisely a presentation of the ∞-category PΣ(G). If we take C = Set and G = Fin,
this recovers the standard Kan–Quillen model structure sSetKQ (which, finally, ex-
plains the example given in §0.1.3). In general, cofibrant replacements in these model
structures may thus be thought of as nonabelian projective resolutions .

57The secondary notation PΣ(G) is commonly used in the literature, and stems from the notation
P(G) = Fun(Gop, S) for the ∞-category of all presheaves of spaces on G (the inclusion of PΣ(G) into
which admits a left adjoint). We will generally prefer the notation D≥0(C,G), which emphasizes
the analogy with the classical setting as well as the fact that this ∞-category should be thought
of as being that of “G-projective resolutions of objects of C”, even though the larger ∞-category C

actually plays no direct role in the definition. If the subcategory G ⊂ C contains a set of generators,
then the corresponding restricted Yoneda functor C→ D≥0(C,G) is (by definition) fully faithful.
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In fact, this same idea has been carried further in homotopy theory. In [DKS93],
Dwyer–Kan–Stover defined a resolution model structure on the category sTop∗ of
simplicial pointed topological spaces based on the set of generators

{Sn ∈ Top∗}n≥1,

and in [Bou03] Bousfield generalized this to a general (pointed, right proper) model
category equipped with a set of h-cogroup objects satisfying certain conditions. In
both cases, the restriction to h-cogroup objects is motivated by the desire for spec-
tral sequences converging to the “homotopy groups” (with respect to the generators
and their finite coproducts) of the geometric realization of an object (in the model-
categorical sense). The levelwise weak equivalences are weak equivalences in these
model structures, but there are strictly more of the latter.

From the perspective of model ∞-categories, it is clear that these model 1-
categories are fairly inefficient: it is wholly unnecessary to distinguish between ob-
jects which are levelwise weakly equivalent. On the other hand, the resolutions that
these model structures afford are necessary – indeed, they are the entire point. Thus,
one might expect to freely invert the levelwise weak equivalences while keeping track
of the remaining resolution weak equivalences. To this end, we have the following
theorem.

Theorem 0.3.1 (7.1.19 and 7.1.22). Let C be a presentable∞-category, let {Zα ∈ C}
be a set of compact objects, and write G ⊂ C for the full subcategory generated by
the objects Zα and their finite coproducts. Then there exists a resolution model
structure on the ∞-category sC, denoted sCres. This model structure is simplicial
(i.e., it is compatibly enriched over sSKQ). Moreover, it participates in a Quillen
adjunction

Fun(G, sSKQ)proj � sCres,

whose derived adjunction (as guaranteed by Theorem 0.2.3) is precisely the canonical
adjunction

P(G)� PΣ(G).

This is indeed much more efficient than its 1-categorical analogs. For example,
every object in sCres is fibrant; by contrast, in the resolution model structures of
Dwyer–Kan–Stover and Bousfield, the fibrant objects are precisely the Reedy fibrant
objects. (This is by no means a decisive advantage, but it seems worth pointing out
nonetheless.)

Let us now turn to the inner workings of Goerss–Hopkins obstruction theory;
of course, what we have just discussed will become relevant shortly. Given every-
thing that we have explained so far, we can in fact proceed to directly explain our
generalization, which is one of the central goals of this thesis.
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Thus, let us begin with a presentably symmetric monoidal stable ∞-category
C. This replaces a model 1-category of spectra, which in the original construction
must be assumed to satisfy a long list of technical assumptions. We assume that
C is equipped with a full subcategory G ⊂ C of generators, which we assume to be
sufficiently nice (e.g. its objects must all have inverses with respect to the symmetric
monoidal structure – thereafter, our assumptions will imply that its objects are
compact). This generalizes the set of sphere spectra. These generators define a
“homotopy groups” functor π>.

We now discuss our detecting homology theory, which we assume to be given
by a flat homotopy commutative algebra E ∈ CAlg(ho(C)). We can now explain
the all-important Adams’s condition (which was mentioned in §0.3.3). This is the
requirement that E be obtainable as a filtered colimit

colimJEα
∼−→ E

of dualizable objects Eα, such that their duals DEα have projective E-homology.
This condition allows us to treat E-homology as being given by “homotopy groups
with respect to these duals”. More precisely, our assumptions guarantee that for any
generator Sβ ∈ G we have a string of isomorphisms

colimα∈J[Σ
βDEα, X]C ∼= colimα∈J[S

β, Eα ⊗X]C ∼= [Sβ, colimα∈J(Eα ⊗X)]C
∼= [Sβ, colimα∈J(Eα)⊗X]C ∼= [Sβ, E ⊗X]C = EβX

(where we suggestively write Σβ for the functor Sβ⊗−). Therefore, if a map X → Y
induces “DEα-homotopy” isomorphisms

[ΣβDEα, X]C
∼=−→ [ΣβDEα, Y ]C

for all Sβ ∈ G and all α ∈ J, then it induces an isomorphism on E-homology. On the
other hand, the converse will not generally hold. This subtlety can be handled with
a little bit of care (or with a lot of care, in the original model 1-categorical case),
and we will return to it in due time.

Let us write GEC ⊂ C for the full subcategory generated by the subcategory G and
the objects DEα under finite coproducts. Then, our resolutions will be based on the
nonnegatively-graded nonabelian derived ∞-category

D≥0(C,GEC ).

However, we will need to make computations using actual simplicial resolutions (i.e.
objects of sC) instead of their images under the functor

sC→ PΣ(GEC ) = D≥0(C,GEC ),
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and for this we will use the resolution model structure provided by Theorem 0.3.1.
As we will explain shortly, we will not actually be using this model ∞-category

directly, but rather a generalization of it. However, even in this special case we
can point out an essential feature of the story. Let us write Ã for the category of
(E>, E>E)-comodules, and let us write GÃ ⊂ Ã for the full subcategory on objects
of the form E>S

ε for some Sε ∈ GEC ; by our assumptions, these will be projective
as E>-modules. As we have assumed that C is presentably symmetric monoidal, it
follows that the induced functor

E> : GEC → GÃ

preserves finite coproducts. It follows formally that the induced functor

PΣ(E>) : PΣ(GEC )→ PΣ(GÃ)

preserves all colimits. Ultimately, this fact will be (a shadow of) the reason that our
topological obstructions can be computed purely algebraically. At the level of model
∞-categories, this can be seen as resulting from the fact that the functor

Elw
> : sCres → sÃres

preserves cofibrations between cofibrant objects relative to an analogous resolution
model structure on sÃres.

We now proceed to discuss multiplicative structures. We henceforth use the ter-
minology “operad” to refer to a (single-colored) ∞-operad; the ∞-category Op of
operads is presented by the relative category Op(sSetKQ) (as well as by the relative
category Op(TopQS)), whose weak equivalences are determined levelwise on underly-
ing objects (i.e. ignoring the symmetric group actions). This relative category struc-
ture enhances to a Boardman–Vogt model structure, which (using a generalization
of Theorem 0.3.1) we incidentally generalize to the ∞-category Op(sV) of internal
operads (for a suitable symmetric monoidal ∞-category V) as Proposition 7.3.23.

Now, our obstruction theory can be used to construct (E-local) O-algebras in C,
for any operad O ∈ Op. Given a choice of O, however, we must choose a monad Φ on
Ã which will parametrize our “algebraic structures”: in other words, we must have
a lift

AlgO(C) AlgΦ(Ã)

C Ã

E>

UO
UΦ

E>
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of our E-homology functor. For instance, in the special case where O = Comm = E∞
that we described in §0.3.3, we also took Φ = Comm. However, even in the case
that we take O = Comm, it can be useful – essential, even – to have this added
generality.58

So of course, we will not be interested in resolving objects of C, but rather objects
of AlgO(C). However, it will not suffice to simply resolve them by simplicial objects of
AlgO(C): at no point will this allow us to gain control over their levelwise E-homology
(in the model category sÃres).

On the other hand, there is a special case in which this does hold, namely when
the operad O is π0-S-free: by definition, this means that for every n ≥ 0, the
symmetric group Sn acts freely on the set π0(O(n)) of path components of the nth

constituent space of O. When this is the case, the “free O-algebra” functor

X 7→
∐
n≥0

(O(n)�X⊗n)Sn

simplifies dramatically. Even better, if we assume that E>X is projective – such as
when X = DEα –, then the Künneth spectral sequence for the E-homology of this
free O-algebra (which is guaranteed by Adams’s condition) immediately collapses!

Thus, a key insight of Goerss–Hopkins obstruction theory (over its predecessors)
was, for a general operad O, to take a simplicial resolution T• ∈ sOp by π0-S-free
operads. Amusingly, this can be achieved by choosing a cofibrant representative of
O in the model category Op(sSetKQ)BV via the embedding

Op(sSet) ' s (Op(Set)) ↪→ sOp.

A simplicial operad can be made to act on simplicial objects in C, and from here we
obtain (as Theorem 7.3.13) a lifted resolution model structure through the adjunction

FT : sCres � AlgT (sC)res : UT

58The construction of tmf (via the sheaf Oder on Mell), which was spelled out in full detail by
Behrens in [DFHH14], makes essential use of such generality. In order to construct the height-1
component of the sheaf (which is necessary in order to “interpolate” between the supersingular loci
at distinct primes, and which is by far the most technical aspect of the construction), one must
take the p-adic complex K-theory spectrum KU∧p as the detecting homology theory, and one must
enhance the nature of the algebraic input from a commutative algebra in comodules to what is
called a θ-algebra (which structure is canonically present on the p-adic K-theory of an E∞ ring
spectrum).
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This is the model ∞-category we have been seeking. On the one hand, its objects
are resolutions of O-algebras in C: we have a canonical lift

AlgT (sC) AlgO(C)

sC C

|−|

UT UO

|−|

of the geometric realization functor. On the other hand, we will assume enough so
that there is a monad T̃E on sÃ admitting a lift

AlgT (sC) AlgT̃E(sÃ)

sC sÃ.

Elw
>

UT UT̃E

Elw
>

Just as our unstructured functor

Elw
> : sCres → sÃres

preserves cofibrations between cofibrant objects, so will this lifted functor Elw
> (with

respect to an analogously lifted resolution model structure AlgT̃E(sÃ)res), which cru-
cially implies that its localization

Elw
> : AlgT (sC)JW−1

resK→ AlgT̃E(sÃ)JW−1
resK

preserves colimits. Although there will be one more small wrinkle that must be
smoothed out, this fact is very nearly the true reason that our topological obstruc-
tions can be computed purely algebraically.

Given our algebraic object A ∈ AlgΦ(Ã), we can now explain that our “n-stage
approximations” to A will be objects of the ∞-category AlgT (sC)JW−1

resK, and our
André–Quillen cohomology spaces will be certain mapping spaces extracted from the
∞-category AlgT̃E(sÃ)JW−1

resK. However, these facts are technically true but slightly
misleading.

To clarify both at once, let us recall for the sake of analogy that in the∞-category
C, a map becoming an isomorphism under all of functors [ΣβDEα,−]C implies that it
also becomes an isomorphism under the functor E>, but that the converse is generally
false. Then, in the algebraic case, note that there exists a forgetful functor

AlgT̃E(sÃ)
UT̃E−−→ sÃ

s(U
Ã

)
−−−→ sSet∗,
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which takes the subcategory Wres ⊂ AlgT̃E(sÃ) into the subcategory WKQ ⊂ sSet∗,
but not only this subcategory; defining

Wπ∗ ⊂ AlgT̃E(sÃ)

to be the pullback of WKQ ⊂ sSet∗, we obtain a reflective localization

AlgT̃E(sÃ)JW−1
resK� AlgT̃E(sÃ)JW−1

π∗ K.

Similarly, in the topological case, the functor

Elw
> : AlgT (sC)→ AlgT̃E(sÃ)

takes the subcategory Wres ⊂ AlgT (sC) into the subcategory Wπ∗ ⊂ AlgT̃E(sÃ), but
not only this subcategory; defining

WElw
>
⊂ AlgT (sC)

to be the pullback of Wπ∗ ⊂ AlgT̃E(sÃ), we obtain a reflective localization

AlgT (sC)JW−1
resK� AlgT (sC)JW−1

Elw
>

K.

Now, we can clarify that in that the moduli spaces of n-stages for A are naturally
subgroupoids

Mn(A) ⊂ AlgT (sC)JW−1
Elw

>
K ⊂ AlgT (sC)JW−1

resK

of the reflective localization, while the relevant André–Quillen cohomology spaces are
computed by mapping in AlgT̃E(sÃ)JW−1

resK to an object of the reflective subcategory

AlgT̃E(sÃ)JW−1
π∗ K ⊂ AlgT̃E(sÃ)JW−1

resK. Moreover, these two reflective localization
functors participate as the downwards arrows in a commutative square

AlgT (sC)JW−1
resK AlgT̃E(sÃ)JW−1

resK

AlgT (sC)JW−1
Elw

>
K AlgT̃E(sÃ)JW−1

π∗ K,

Elw
>

Elw
>

in which the dotted arrow exists by the universal property of localization and pre-
serves colimits by an easy diagram chase. This, finally, is the true reason that our
topological obstructions can be computed purely algebraically. However, in order to
explain this, we must introduce the spiral exact sequence.
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Given a simplicial object X ∈ sC, there are two sorts of E-homology groups that
one might extract: the classical E-homology groups

πnE
lw
β X = πn[Sβ, E ⊗X]lwC

and the natural E-homology groups

E\
n,βX = πn

(
homD≥0(C,GE

C
)(S

β, (E ⊗X)lw)
)
.

These serve dual purposes.
On the one hand, the classical E-homology groups assemble into the E2 page of

a spectral sequence
E2 = πnE

lw
β X ⇒ E∞ = Eβ+n|X|,

where we write Sβ+n = Sβ ⊗Sn = ΣnSβ. Of course, this spectral sequence allows us
to obtain control over the E-homology of the geometric realization |X|.

On the other hand, the natural E-homology groups are by their very definition
much more directly related to the ∞-category

D≥0(C,GEC ) ' sCJW−1
resK.

Thus, they participate in a “cells and disks” obstruction theory within this ∞-
category. In order to explain this, we introduce the notation

Dn
∆ = ∆n/Λn

0 ∈ (sSet∗)KQ

and
Sn∆ = ∆n/∂∆n ∈ (sSet∗)KQ.

There are evident cofibrations
Sn∆ � Dn+1

∆

in (sSet∗)KQ, which present the maps

Sn → Dn+1 ' pt

in S∗. Moreover, for any K ∈ sS∗ and any X ∈ sC, there exists a “based tensor”
object K�X ∈ sC, which is compatible with the canonical enrichment of sC over
sS∗ (where the basepoint is given by the zero morphism). Writing Sε ∈ GEC for an
arbitrary object, the fact that the model ∞-category sCres is simplicial implies that
the “cells” given by

Sn∆�const(Sε) ∈ sCres
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and the “disks” given by
Dn

∆�const(Sε) ∈ sCres

together control the theory of Postnikov towers in sCJW−1
resK.59

Now, the (“localized”) spiral exact sequence relates these two types of E-
homology, running

· · · πi+1EβX E\
i−1,β+1X E\

i,βX πiEβX · · ·

· · · E\
0,β+1X E\

1,βX π1EβX 0.

δ δ

δ

Note that it is two-thirds natural E-homology, and one-third classical E-homology.60

Thus, via the spiral exact sequence, by controlling the natural E-homology groups
(via “cells and disks”) we can also control the classical E-homology groups (which
assemble into the E2 page of the spectral sequence).

We can now explain the connection with “n-stages” for our chosen object A ∈
AlgΦ(Ã) of which we are interested in realizations. First of all, an ∞-stage for A is
an object of AlgT (sC)JW−1

Elw
>

K whose E2 page is simply given by A, concentrated in

the bottom row; these assemble into a moduli space

M∞(A) ⊂ AlgT (sC)JW−1
Elw

>
K.

We then have the following result, which cements the relationship between realiza-
tions of A and their (approximate) resolutions.

Theorem 0.3.2 (7.7.5). The geometric realization functor

|−| : AlgT (sC)JW−1
Elw

>
K→ AlgO(LE(C))

induces an equivalence
M∞(A)

∼−→MA.

We emphasize that the moduli space M∞(A) ⊂ AlgT (sC)JW−1
Elw

>
K will not generally

contain all of the objects whose geometric realizations are realizations of A: rather,

59Examining the structure maps of the simplicial sets Dn
∆ and Sn∆, one sees that they may be

seen as corepresenting the nonabelian n-cycles and nonabelian normalized n-chains objects of an
object X ∈ sC (via a “based cotensor” bifunctor −t− : sS∗ × sC → C which we will not make
precise here).

60In fact, these long exact sequences are what organize into the exact couple defining the above
spectral sequence.
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it only contains those whose geometric realizations are realizations of A “for obvious
reasons” (namely that their spectral sequences collapse immediately).

Let us now move to the bottom of the tower. A 0-stage for A is an object
X ∈ AlgT (sC)JW−1

Elw
>

K whose natural E-homology is given by

Ei,>X ∼=
{
A, i = 0
0, i > 0.

As the natural E-homology groups govern cellular approximations in AlgT (sC)JW−1
Elw

>
K,

the following result should be plausible.

Theorem 0.3.3 (7.7.8). The moduli space of 0-stages for A admits a canonical
equivalence

M0(A) ' BAut(A).

Now, if X ∈ AlgT (sC)JW−1
Elw

>
K is a 0-stage for A, then its natural E-homology is

extremely simple. On the other hand, as dictated by the spiral exact sequence, its
classical E-homology – and hence its E2 page – is not quite correct for it to be an
∞-stage: instead, we will have

πiE
lw
> X
∼=


A, i = 0
ΩA, i = 2
0, i /∈ {0, 2}.

In fact, more generally, if X is an n-stage for A, then we will have

πiE
lw
> X
∼=


A, i = 0
Ωn+1A, i = n+ 2
0, i /∈ {0, n+ 2}.

Thus, to move upwards through the tower of moduli spaces is to push the failure of
X to be an ∞-stage “further and further away”.61 However, we emphasize that the
above identification of natural homotopy groups does not alone imply that X is an
n-stage: it must also have the correct k-invariants (or equivalently, it must also have
the correct natural E-homology).

We now explain why this iterative topological procedure is indeed governed by
algebraic computations. (In fact, a somewhat simpler argument will also justify
Theorem 0.3.3.) This is where we will use the cocontinuity of the functor

Elw
> : AlgT (sC)JW−1

Elw
>

K→ AlgT̃E(sÃ)JW−1
π∗ K

61In fact, the spectral sequence for an n-stage will collapse after the En+2 page, directly after
cancelling out the entire (n+ 2)nd row with the corresponding entries of the 0th row.
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between presentable ∞-categories.62

Suppose that X ∈ AlgT (sC)JW−1
Elw

>
K is an (n − 1)-stage for A. As we have just

seen, its image
Y = Elw

> X ∈ AlgT̃E(sÃ)JW−1
π∗ K

will have its homotopy concentrated in degrees 0 and n + 1: for brevity, we simply
write

π∗Y ∼= A× (ΩnA)[n+ 1].

We are interested in modifying X to obtain an n-stage for A: this entails simul-
taneously peeling off this copy of (ΩnA)[n + 1] and replacing it with a copy of
(Ωn+1A)[n + 2], all in a way that behaves correctly with respect to the natural
E-homology groups.

In order to address this question, we first examine the levelwise E-homology ob-
ject Y = Elw

> X. Now, in the ∞-category AlgT̃E(sÃ)JW−1
π∗ K, homotopy groups alone

do not characterize equivalence classes: just as with (based) spaces, one must also
keep track of the k-invariants. In this case, since Y only has potentially nonvanish-
ing homotopy in dimensions 0 and (n+ 1), it participates in a uniquely determined
pullback square

Y KA

A KA(ΩnA, n+ 2)
χn(Y )

in AlgT̃E(sÃ)JW−1
π∗ K, in which the objects on the right are algebraic Eilenberg–

Mac Lane objects with π∗KA
∼= A and π∗KA(ΩnA, n + 2) ∼= A × (ΩnA)[n + 2],

the right vertical map between them is an isomorphism on π0, and the map χn(Y )
is the unique potentially nontrivial k-invariant of Y . This defines a class

[χn(Y )] ∈ Hn+2(A; ΩnA)

in the indicated André–Quillen cohomology group, and taken over all (n− 1)-stages
X ∈Mn−1(A) this defines a map

Mn−1(A)
χn−→H n+2(A; ΩnA)

to the indicated André–Quillen cohomology space.

62The adjoint functor theorem implies that this functor admits a right adjoint. However, it
appears extremely unlikely that this lifts to the level of model ∞-categories. And even if it does,
the functor Elw

> will not generally be a left Quillen functor, since it generally only preserves weak
equivalences between cofibrant objects (instead of all acyclic cofibrations between arbitrary objects).
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Returning to topology, we now come to the crucial point: for any object Z ∈
AlgT̃E(sÃ)JW−1

π∗ K, the composite functor

AlgT (sC)JW−1
Elw

>
Kop

Elw
>−−→ AlgT̃E(sÃ)JW−1

π∗ K
op

hom
Alg

T̃E
(sÃ)JW−1

π∗ K
(−,Z)

−−−−−−−−−−−−−−−→ S

preserves limits (i.e. takes colimits in AlgT (sC)JW−1
Elw

>
K to limits in S) and so must be

representable (by presentability). When Z = KA or Z = KA(ΩnA, n+ 2), we obtain
topological Eilenberg–Mac Lane objects, which we respectively denote by BA

and BA(ΩnA, n+ 2).

Now, if there exists an n-stage X̃ liftingX, then Postnikov theory in AlgT (sC)JW−1
Elw

>
K

implies that it must fit into a pullback square

X̃ BA

X BA(ΩnA, n+ 2),

in which the right vertical map classifies the standard map KA → KA(ΩnA, n + 2).

Conversely, if we define X̃ to be such a pullback, then it will be an n-stage if and
only if the lower map corresponds to an equivalence

Elw
> X = Y

∼−→ KA(ΩnA, n+ 2).

As we have just seen, the equivalence class of Y is entirely classified by a k-invariant

[χn(Y )] ∈ Hn+2(A; ΩnA),

and it is not hard to show that such an equivalence Y
∼−→ KA(ΩnA, n + 2) exists if

and only this k-invariant vanishes.
All in all, an expansion of this argument can be used to prove the following.

Theorem 0.3.4 (7.7.9). For any n ≥ 1, there is a natural pullback square

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA).
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This is the final ingredient in our generalized Goerss–Hopkins obstruction theory,
which allows us to compute the purely algebraic obstructions to the inductive passage
up the tower of moduli spaces

MA M∞(A)

...

Mn(A) BAut(A,ΩnA)

Mn−1(A) Ĥ n+2(A; ΩnA)

...

BAut(A) 'M0(A).

∼

lim

0.3.5 Motivic Morava E-theories

The field of motivic homotopy theory was originally introduced by Voevodsky in
order to resolve the Milnor and Bloch–Kato conjectures (see [Voe03] and [Voe11]). In
short, the∞-category Smot of motivic spaces is the free (∞-categorical) cocompletion
of the category of smooth schemes over a fixed base, subject to Nisnevich descent and
to the A1-homotopy invariance condition that all projections X × A1 → X become
equivalences.63

From here, the ∞-category Spmot of motivic spectra is obtained by formally in-
verting the endofunctor

P1 ∧ − : Smot
∗ → Smot

∗

on pointed motivic spaces. The pushout square

Gm A1

A1 P1

63For an introduction to motivic homotopy theory, we refer the reader to [MV99].
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in ordinary schemes remains a pushout square in motivic spaces (because the open
inclusions Gm → A1 are cofibrations in the appropriate model structure), whereafter
since A1 becomes contractible by fiat we obtain an equivalence

ΣGm ' P1.

Thus, to invert the smash product with P1 is to invert both the smash product
with S1 (considered as a constant sheaf) – i.e. to stabilize in the sense described
in §0.3.1 – and the smash product with Gm (also considered as a sheaf). Thus,
among the motivic spectra which are invertible for the smash product are not just
the “topological” motivic sphere spectra ΣnΣ∞S0 for n ∈ Z (where S0 now denotes
two disjoint copies of the base scheme), but more generally the bigraded motivic
sphere spectra

Si,j = Σi−jΣ∞(Gm)∧j

for all i, j ∈ Z.
In contrast with the∞-category Sp of ordinary spectra, in the∞-category Spmot

of motivic spectra, one cannot generally detect the equivalences via bigraded homo-
topy groups (i.e. homotopy classes of maps out of bigraded spheres). However, there
exists a full subcategory Spmot

cell ⊂ Spmot of cellular motivic spectra, originally intro-
duced by Dugger–Isaksen in [DI05], which is by construction the largest subcategory
on which bigraded homotopy groups do detect equivalences.

As it turns out, the chromatic approach to studying the ∞-category of spectra
described in §0.3.2 lifts to the∞-category of motivic spectra. Though the global pic-
ture is much more mysterious and much less well understood, certain broad features
are known to persist. For example, the role of the complex cobordism spectrum MU
(which is implicit in the discussion of §0.3.2) is played by the algebraic cobordism
motivic spectrum MGL, while the role of the complex K-theory spectrum KU is
played by the (A1-homotopy invariant) algebraic K-theory spectrum KGL.

More generally, the classical Landweber exact functor theorem of [Lan76], a key
tool for constructing complex oriented cohomology theories, has been generalized
by Naumann–Spitzweck–Østvær in [NSØ09b] to the motivic setting. Whereas the
classical theorem builds these cohomology theories out of MU , the motivic version
builds these motivic cohomology theories out of MGL. As the motivic spectrum
MGL is cellular, by construction the motivic cohomology theories that this theorem
produces are cellular as well.

In particular, the motivic Landweber exact functor theorem produces motivic
Morava E-theory spectra, denoted Emot

n,p , for all n ≥ 0 and at all primes p. In
analogy with the classical case, at chromatic height 1 these can be identified as

Emot
1,p ' KGL∧p ,
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the p-completion of algebraic K-theory. Thus, the motivic Morava E-theories are
higher chromatic analogs of algebraic K-theory.

Now, the ordinary Landweber exact functor theorem only produces plain spectra,
rather than spectra with additional structure such as that of an E∞ ring spectrum.
Thus it was necessary for Goerss–Hopkins to use their obstruction theory in order
to endow the Morava E-theory spectrum En,p with an E∞ ring structure. As a
bonus, this technique showed that this E∞ structure is actually unique (subject to
the compatibility requirement that it recover the natural commutative ring structure
on homotopy groups), and that the automorphism group of the resulting E∞ ring
spectrum is discrete.

Analogously, the motivic Landweber exact functor theorem only produces plain
motivic spectra. Thus, we use our generalized Goerss–Hopkins obstruction theory
to prove the following.result.

Theorem 0.3.5 (8.1.1). The motivic Morava E-theory spectrum Emot
n,p admits a

unique E∞ structure that is compatible with the canonical commutative ring structure
on its bigraded homotopy groups. Moreover, the automorphism group of the resulting
motivic E∞ ring spectrum is discrete.

As in the case of ordinary spectra, an E∞ structure endows the corresponding motivic
co/homology theory with a vast amount of additional algebraic structure.

0.4 Conventions on ∞-categories and

model-independence

We take quasicategories as our preferred model for ∞-categories, and in general
we adhere to the notation and terminology of [Lur09b] and [Lur14]. In fact, our
references to these two works will be frequent enough that it will be convenient for
us to use the “code names” T and A for them, respectively. Thus, for instance, to
refer to [Lur09b, Theorem 4.1.3.1], we will simply write Theorem T.4.1.3.1. (Due to
the differences in their numbering systems, no ambiguity will arise between references
to [Lur14] and to §A here.)

However, we work invariantly to the greatest possible extent: that is, we primarily
work within the∞-category of∞-categories. Thus, for instance, we omit all technical
uses of the word “essential”, e.g. we use the term unique in situations where one might
otherwise say “essentially unique” (i.e. parametrized by a contractible space). For a
full treatment of this philosophy as well as a complete elaboration of our conventions,
we refer the interested reader to §A. The casual reader should feel free to skip this on
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a first reading; on the other hand, the careful reader may find it useful to peruse that
section before reading the main body of this thesis. For the reader’s convenience, we
also provide a complete index of the notation that is used throughout this thesis in
§B.
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Chapter 1

Model ∞-categories I: some
pleasant properties of the
∞-category of simplicial spaces

Both simplicial sets and simplicial spaces are used pervasively in homotopy theory
as presentations of spaces, where in both cases we extract the “underlying space” by
taking geometric realization. We have a good handle on the category of simplicial
sets in this capacity; this is due to the existence of a suitable model structure thereon,
which is particularly convenient to work with since it enjoys the technical properties
of being proper and of being cofibrantly generated. This chapter is devoted to showing
that, if one is willing to work ∞-categorically, then one can manipulate simplicial
spaces exactly as one manipulates simplicial sets. Precisely, this takes the form of a
proper, cofibrantly generated model structure on the∞-category of simplicial spaces,
the definition of which we also introduce here.

1.0 Introduction

1.0.1 Simplicial spaces and model ∞-categories

A simplicial space can be thought of as a resolution of a space, namely its homotopy
colimit; in nice cases this is computed by its geometric realization, and we will
henceforth blur the distinction. The operation of taking a homotopy colimit, being
homotopy invariant, descends to a functor |−| : sS → S of ∞-categories, from that
of simplicial spaces to that of spaces. The primary purpose of the present chapter
is to introduce a new framework for studying this functor. In particular, we give
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∞-categorical criteria for determining

(a) when a map of simplicial spaces becomes an equivalence upon geometric real-
ization, and

(b) when a homotopy pullback of simplicial spaces remains a homotopy pullback
upon geometric realization,

which we have found to be much easier to verify than their existing 1-categorical coun-
terparts. We hope that this encourages homotopy theorists grappling with simplicial
spaces to work ∞-categorically: even if a map of simplicial spaces or a homotopy
pullback of simplicial spaces began its life 1-categorically, these questions are homo-
topy invariant and hence inherently∞-categorical, and thus should be approachable
using the framework given here.

To set the stage, let us recall Quillen’s theory of model categories : given a
category C equipped with a subcategory W ⊂ C, a model structure on the category
C consists of additional data which provide an efficient and computable method of
accessing its localization C[W−1]. As a prime example, the Kan–Quillen model
structure on the category sSet of simplicial sets provides a combinatorial framework
for studying the homotopy category sSet[W−1] ' Top[W−1] of topological spaces.

Now, suppose that C is not merely a category but an∞-category, again equipped
with a subcategory W ⊂ C. We can analogously localize the ∞-category C at
the subcategory W, forming a new ∞-category CJW−1K equipped with a functor
C → CJW−1K, which is initial among those functors from C which invert all the
maps in W.1 A key example for us is sSJW−1

|−|
K ' S, where we denote by W|−| ⊂ sS

the subcategory spanned by those maps which become invertible upon geometric
realization.2

With this background in place, we can now explain the two goals of this chapter.

(1) Inspired by Quillen, we introduce the notion of a model ∞-category : given
an ∞-category C equipped with a subcategory W ⊂ C, a model structure
on the ∞-category C consists of additional data which provide an efficient
and computable method of accessing its localization CJW−1K. This provides a
theory of resolutions which is native to the∞-categorical context. As indicated
by the title of this chapter, the theory of model ∞-categories is developed in
subsequent chapters.

1Note that even if C is just a 1-category, this will generally differ from the more crude and
lossy 1-categorical localization C[W−1]: the canonical map CJW−1K → C[W−1] is precisely the
projection to the homotopy category ho(CJW−1K) ' C[W−1].

2For an explanation of this equivalence, see item (20) of §A.
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(2) In precise analogy with the Kan–Quillen model structure on the category sSet
of simplicial sets, we endow the∞-category sS of simplicial spaces with a Kan–
Quillen model structure , whose subcategory of weak equivalences is exactly
W|−| ⊂ sS, which allows us to access its∞-categorical localization sSJW−1

|−|
K '

S. This model structure is likewise proper, and is cofibrantly generated by the
sets IKQ, JKQ ⊂ sSet of boundary inclusions ∂∆n ⊂ ∆n and of horn inclusions
Λn
i ⊂ ∆n, considered as maps of simplicial spaces via the inclusion sSet ⊂ sS

of simplicial sets as the discrete simplicial spaces.

By way of illustrating some typical applications of the Kan–Quillen model struc-
ture, we now return to the criteria promised above.

(a) As the Kan–Quillen model structure on sS is cofibrantly generated, a map is
an acyclic fibration if it has the right lifting property against the set IKQ of
generating cofibrations. In particular, rlp(IKQ) ⊂W|−| .

(b) As the Kan–Quillen model structure on sS is right proper, then a pullback
in which at least one of the two maps is a fibration (i.e. has rlp(JKQ)) is a
homotopy pullback : that is, it remains a pullback under geometric realization.

However, far from providing just a few assorted tricks, the Kan–Quillen model
structure on sS gives a robust and extensive framework for understanding simplicial
spaces vis-à-vis their geometric realizations, which is further augmented by the gen-
eral theory of model ∞-categories. For instance, the theory of homotopy co/limits
in model ∞-categories furnishes criteria for comparing the co/limit of an arbitrary
diagram I → sS of simplicial spaces with the co/limit of the resulting diagram
I→ sS→ S obtained by componentwise geometric realization.

1.0.2 Relation to existing literature

Simplicial spaces and their geometric realizations play a key role in a number of
different areas of topology. Their study appears to have been initiated in loopspace
theory (see [Seg68], [Seg73], [Seg74], and [May72]). Relatedly, they find much use in
algebraic K-theory (see e.g. [Wal85] or [Wei13]).3 More recently, some of the results
in the present chapter provide key input to applications in algebraic L-theory (see
[Lur11b]) and in derived differential geometry (see [BEBdBP]).

3Many deep results in algebraic K-theory rely crucially on commuting certain pullbacks of
simplicial spaces with geometric realization. This commutation is generally “not purely formal”,
but is instead based in delicate simplicial manipulations. We are hopeful that our Kan–Quillen
model structure will prove useful in enabling (or at least streamlining) such arguments.
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In addition to the references already mentioned, hints of the Kan–Quillen model
structure abound in the literature. For instance, there is already explicit mention of
the “two homotopy theories” on the category of simplicial topological spaces – the
“topological” one corresponding to the interval object const([0, 1]), and the “alge-
braic” one corresponding to the interval object ∆1 – as early as [May72]. Moreover,
various scattered results bear anywhere between passing and striking resemblances
to aspects of the Kan–Quillen model structure. To illustrate this, we compare

• our criterion (a) with analogous criteria arising

– from the “Moerdijk model structure” (of [Moe89]) in Remark 1.7.3, and

– from the Cegarra–Remedios “W model structure” (of [CR07]) in Re-
mark 1.7.4;

• our criterion (b) with analogous criteria arising

– from Bousfield–Friedlander’s “π∗-Kan condition” (of [BF78]) and

– from Anderson’s notion of a simplicial groupoid being “fully fibrant” (of
[And78])

in Remark 1.6.13; and

• our notion of a fibration

– with Rezk’s “realization fibrations” – which sorts of maps have also at
times been called “sharp maps”, “fibrillations”, “right proper maps”,
“h-fibrations”, and “Grothendieck W-fibrations”, and which are closely
related to the classical notion of “quasifibrations” – (of [Rez14]) in Re-
mark 1.6.12, and

– with both of Seymour’s and Brown–Szczarba’s related but distinct “con-
tinuous” notions of Kan fibrations (of [Sey80] and [BS89] resp.) in Re-
mark 1.6.15.

Remark 1.0.1. These sundry results make abundantly clear the vast superiority of
the ∞-categorical perspective for the study of simplicial spaces and their geometric
realizations. The definition of the Kan–Quillen model structure on the ∞-category
of simplicial spaces is both straightforward and economical. By contrast, to de-
scribe it in purely model-categorical terms would require some sort of notion of a
“double model structure”, in which an “external” model structure would present
the underlying ∞-category, and then the actual model structure of interest thereon
would be presented by an “internal” model structure (whose distinguished classes of
maps would then have to be invariant under the homotopy relation generated by the
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“external” model structure; whose lifting axioms would need to be formulated in a
homotopy-coherent way relative to the “external” model structure; etc.). It seems
unlikely that the full extent of the Kan–Quillen model structure – or for that matter,
anything comparable to the general theory of model∞-categories – would ever have
been discovered in a purely model-categorical context.

1.0.3 Goerss–Hopkins obstruction theory for ∞-categories

As the present chapter is the first in this thesis, we spend a moment describing the
original motivation for the theory of model ∞-categories.

The overarching goal of this project is to generalize Goerss–Hopkins obstruc-
tion theory ([GH04, GHb]), a powerful tool for obtaining existence and uniqueness
results for E∞ ring spectra via purely algebraic computations, to the equivariant
and motivic settings. However, the original obstruction theory is based in a model
category of spectra satisfying a number of technical conditions, making it relatively
difficult to generalize directly. Relatedly, the foundations for its construction rely
on various point-set considerations, which appear for the sake of simplification but
play no real mathematical role.4 Thus, as the obstruction theory ultimately lives on
the underlying ∞-category of spectra anyways, we instead aim to generalize Goerss–
Hopkins obstruction theory to an arbitrary (presentably symmetric monoidal stable)
∞-category C; this will yield equivariant and motivic obstruction theories simply by
specializing to the ∞-categories of equivariant and motivic spectra.

Now, Goerss–Hopkins obstruction theory is constructed in the resolution model
structure (a/k/a the “E2 model structure”) on simplicial spectra, originally intro-
duced in [DKS93], which provides a theory of nonabelian projective resolutions.5

Correspondingly, suppose we are given a presentable∞-category C, along with a set
G of generators which we assume (without real loss of generality) to be closed under fi-
nite coproducts. Then, Goerss–Hopkins obstruction theory for C will take place in the
nonabelian derived ∞-category of C, i.e. the ∞-category PΣ(G) = Fun×(Gop, S)
of those presheaves on G that take finite coproducts in G to finite products in S,
originally introduced in §T.5.5.8. (If C is the underlying ∞-category of an appro-
priately chosen model category, then PΣ(G) will be the underlying ∞-category of
the resolution model structure on the category of simplicial objects therein.) This
admits a natural functor

sC→ PΣ(G),

4In fact, to those unfamiliar with the more nuanced techniques of model categories, these
considerations might even appear to amount to something like black magic.

5More precisely, it is actually constructed in a certain model category which is monadic over
simplicial spectra, whose model structure is lifted along the defining adjunction.
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given by taking a simplicial object Y• ∈ sC to the functor

Sβ 7→ | homlw
C (Sβ, Y•)|

(for any generator Sβ ∈ G, and writing “lw” to denote “levelwise”). In fact, this
functor is a localization: denoting by Wres ⊂ sC the subcategory spanned by those
maps which it inverts, it induces an equivalence

sCJW−1
resK

∼−→ PΣ(G).

From here, we can explain our motivation for the theory of model ∞-categories:
the definition of the ∞-category PΣ(G) is extremely efficient, but its abstract uni-
versal characterizations alone are insufficient for making the actual computations
within this ∞-category that are necessary to set up the obstruction theory. Rather,
computations therein generally rely on choosing simplicial resolutions of objects, i.e.
preimages under the functor sC→ PΣ(G), and then working in sC to deduce results
back down in PΣ(G).6 Thus, in order to organize these computations, we will pro-
vide a resolution model structure on the ∞-category sC, giving an efficient and
computable method of accessing the localization sCJW−1

resK ' PΣ(G).

Remark 1.0.2. In a sense, the ∞-categorical Goerss–Hopkins obstruction theory is
actually easier to set up than its classical counterpart. As described above, in the
latter, one must carefully choose an appropriate “ground floor” model category of
spectra on which to build the relevant resolution model structure (which depends
nontrivially on the ground floor model structure). By contrast, in the former, the
relevant resolution model structure on sC is built on the trivial model structure on
the ∞-category C, in which every map is both a cofibration and a fibration and the
weak equivalences are precisely the equivalences (see Example 1.2.2).

We view this state of affairs as falling squarely in line with the core philosophy of
∞-categories, namely that they are meant to isolate and dispense with exactly those
manipulations which ought to be purely formal. The usage of ∞-categories (and
model structures thereon) allows us to sidestep the point-set technicalities which
were ultimately of no homotopical interest in the first place, and hence to address
only the truly interesting aspect of the story: nonabelian projective resolutions.

Remark 1.0.3. As a sample application of the ∞-categorical Goerss–Hopkins ob-
struction theory, we prove the following result in Chapter 7. As background, recall
that the first application of Goerss–Hopkins obstruction theory was to prove that
the Morava E-theory spectra admit essentially unique E∞ structures, and moreover

6An important example is the “spiral exact sequence”, which is a key ingredient to setting up
the obstruction theory (see e.g. [GHb, Lemma 3.1.2(2)]).
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that their spaces of E∞ automorphisms are essentially discrete and are given by the
corresponding Morava stabilizer groups (see [GH04, §7]). Bootstrapping up their
arguments, we use Goerss–Hopkins obstruction theory in the ∞-category of motivic
spectra to prove

• that the motivic Morava E-theory spectra again admit essentially unique E∞
structures,

• that again their spaces of E∞ automorphisms are essentially discrete, but

• that they can admit “exotic” E∞ automorphisms not seen in ordinary topology.

(More precisely, their groups of E∞ automorphisms will generally contain the corre-
sponding Morava stabilizer groups as proper subgroups.)

1.0.4 Outline

We now provide a more detailed outline of the contents of this chapter.

• In §1.1, we define model ∞-categories, and we define the notions of Quillen
adjunctions and Quillen equivalences between them.

• In §1.2, we provide a host of examples of the objects introduced in §1.1. We
also speculate on the existence of other examples – some of a foundational
nature, some which would provide yet more models for the ∞-category of ∞-
categories, and one related to En deformation theory – whose verifications lie
beyond the scope of the current project.

• In §1.3, we define cofibrantly generated model ∞-categories and provide recog-
nition and lifting theorems analogous to the classical ones.

• In §1.4, we assert the existence of the Kan–Quillen model structure on the
∞-category sS of simplicial spaces. The proof (which we only outline, leaving
the real substance for §1.7) relies on the recognition theorem of §1.3. We also
define what it means for a model ∞-category to be proper.

• In §1.5, we collect some auxiliary results regarding spaces and simplicial spaces.
In particular, we state a particular result – Lemma 1.5.4 – which ultimately
represents the key piece of not-totally-formal input that makes the entire story
tick (but we defer its proof to §1.8).
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• In §1.6, we prove some convenient properties enjoyed by the fibrant objects
and the fibrations in the Kan–Quillen model structure on sS, and we define a
“fibrant replacement” endofunctor Ex∞ analogous to the classical one.

• In §1.7, we prove the main result: that the data described in §1.4 do indeed
define a proper, cofibrantly generated model structure on the ∞-category sS
of simplicial spaces.

• In §1.8, we prove Lemma 1.5.4, using the classical theory of model categories
and ultimately some rather delicate arguments regarding bisimplicial sets.
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1.1 Model ∞-categories: definitions

In this section, we define model∞-categories, Quillen adjunctions, and Quillen equiv-
alences. We will provide numerous examples of all of these concepts in §1.2.

1.1.1 The definition of a model ∞-category

Definition 1.1.1. We say that three wide subcategories W,C,F ⊂M – called the
subcategories of weak equivalences , of cofibrations , and of fibrations , respec-
tively, and with their morphisms denoted by the symbols

≈→,�, and�, respectively
– make an ∞-category M into a model ∞-category if they satisfy the following
evident ∞-categorical analogs of the usual axioms for a model category.
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M∞1 (limit) M is finitely bicomplete.

M∞2 (two-out-of-three) W satisfies the two-out-of-three property.

M∞3 (retract) W, C, and F are all closed under retracts.

M∞4 (lifting) There exists a lift in any commutative square

x z

y w

i p

in which (i is a cofibration, p is a fibration, and) either i or p is a weak equiv-
alence.

M∞5 (factorization) Every map in M factors via both F◦ (W∩C) and (W∩F)◦C.

To indicate that a morphism lies in one of these subcategories, we will use the sym-
bols

≈→, �, and �, respectively. We call W ∩C ⊂ M the subcategory of acyclic
cofibrations , and we call W ∩ F ⊂ M the subcategory of acyclic fibrations .

Morphisms lying in these subcategories are denoted by the symbols
≈
� and

≈
�, re-

spectively.

Notation 1.1.2. In order to disambiguate our notation associated to various model
∞-categories, we introduce the following conventions.

• We will always subscript the data associated to a “named” model ∞-category
with (an abbreviation of) its name. For instance, we write sSKQ to denote
the model ∞-category given by the Kan–Quillen model structure on the ∞-
category sS of simplicial spaces (see Definition 1.4.5), and we write FKQ ⊂ sS
to denote its subcategory of fibrations.

• On the other hand, for an “unnamed” model∞-category, we may subscript its
associated data with the name of the underlying ∞-category. For instance, if
M is a model ∞-category, we may write CM ⊂M to denote its subcategory of
cofibrations.

• When two different ∞-categories have model structures with the same name,
we may additionally superscript their associated data with the name of the
ambient ∞-category. For instance, we may write WsSet

KQ ⊂ sSet to denote the
subcategory of weak equivalences in the classical Kan–Quillen model structure
on the category sSet of simplicial sets (see Definition 1.4.1). However, when
no ambiguity should arise, we will generally omit this superscript.
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Definition 1.1.3. An object of a model ∞-category M is called

• cofibrant if its unique map from the initial object ∅M is a cofibration,

• fibrant if its unique map to the terminal object ptM is a fibration, and

• bifibrant if it is both cofibrant and fibrant.

We denote the full subcategories of these objects by Mc ⊂ M, Mf ⊂ M, and
Mcf ⊂ M, respectively. More generally, we will use these same superscripts to
denote the intersection of some other subcategory of M with the indicated subcat-
egory just defined, so that e.g. Wcf = W ∩Mcf ⊂ M denotes the subcategory of
weak equivalences between bifibrant objects.

Remark 1.1.4. As in the classical case, one should think of cofibrant objects as being
“good for mapping out of”, and of fibrant objects as being “good for mapping into”.
Indeed, the fundamental theorem of model∞-categories (6.1.9) asserts that if x ∈Mc

and y ∈Mf , then the natural map

homM(x, y)→ homMJW−1K(x, y)

is a surjection, and becomes an equivalence after applying either “∞-categorical
equivalence relation” of left homotopy or of right homotopy to the source (in a sense
made precise in §6.1).

Moreover, as in the classical case, factorization axiom M∞5 guarantees that any
object of M admits both

• a cofibrant replacement by an acyclic fibration and

• a fibrant replacement by an acyclic cofibration.

Taken together, these imply that every object of MJW−1K can even be represented
by a bifibrant object of the model ∞-category M.

Remark 1.1.5. In view of Remark 1.1.4, we see that if we are only interested in
computing hom-spaces in MJW−1K, then it suffices to know only which objects of M
are co/fibrant (as long as we also have some control over the left and right homotopy
relations). However, there are many other constructions that one might perform
in an ∞-category besides extracting hom-spaces, and from this point of view we
can think of the subcategories C,F ⊂ M as telling us which objects are relatively
co/fibrant, i.e. co/fibrant in some undercategory or overcategory (see Example 1.2.3).
Nevertheless, we may view the data of the subcategories W,Mc,Mf ⊂M as a “first
approximation” to the data of a model structure. As it can at times be quite difficult
to prove the existence of a model structure, in some examples below we will just
content ourselves to produce choices of co/fibrant objects corresponding to a given
class of weak equivalences.
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Remark 1.1.6. One of the most important constructions that one might perform
in a (1- or ∞-)category is the extraction of co/limits. Classically, the theory of
homotopy co/limits in a model 1-category gives a way of computing co/limits in its
∞-categorical localization (see e.g. Theorem T.4.2.4.1). (In contrast with the “first
approximation” of Remark 1.1.5, these certainly require the full model structure!)
We provide a theory of homotopy co/limits in model ∞-categories in §5.1.2.

Remark 1.1.7. The∞-categorical lifting axiom M∞4 encodes a homotopically coher-
ent version of the usual lifting axiom. It is strictly stronger than the usual lifting
axiom for hom-sets in the homotopy category (see Example 1.2.11).

Remark 1.1.8. Factorization systems in∞-categories (in which fillers are unique) are
studied in §T.5.2.8. These are distinct from what we study here, which might be
called weak factorization systems in ∞-categories.

Remark 1.1.9. When defining model categories, there are always the choices to be
made

• of whether to require that the factorizations be functorial, and

• of whether to require bicompleteness or only finite bicompleteness.

Of course, in defining model ∞-categories, these choices persist. With regards to
both of these, we have chosen the less restrictive option.

Remark 1.1.10. Since the opposite of a model ∞-category is canonically a model
∞-category, many of the statements that we make throughout this thesis have ob-
vious duals. For conciseness, we will often just make whichever of the pair of dual
statements is more convenient, and then we will simply refer to its dual if and when
we require it.

Remark 1.1.11. There are many basic facts about model categories which follow
easily and directly from the definitions; these generally remain true for model ∞-
categories. For instance, we will repeatedly use the facts

• that C = llp(W ∩ F),

• that W ∩C = llp(F),

• that F = rlp(W ∩C), and

• that W ∩ F = rlp(C).

(The proofs remains the same, see [Hir03, Proposition 7.2.3].) We also note here
that it follows from these characterizations that M' ⊂W∩C∩F ⊂M, i.e. that the
subcategory M' ⊂M of equivalences is contained in all three defining subcategories
of a model ∞-category.
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1.1.2 The definitions of Quillen adjunctions and Quillen
equivalences

Model categories are useful not just in isolation, but in how they relate to one another.
Following the classical situation, we make the following definition.

Definition 1.1.12. Suppose that M and N are two model∞-categories, and suppose
that

F : M� N : G

is an adjunction between their underlying∞-categories. We say that this adjunction
is a Quillen adjunction if any of the following equivalent conditions is satisfied:

• F preserves cofibrations and acyclic cofibrations;

• G preserves fibrations and acyclic fibrations;

• F preserves cofibrations and G preserves fibrations;

• F preserves acyclic cofibrations and G preserves acyclic fibrations.

(That these conditions are indeed equivalent follows immediately from Remark 1.1.11.)
In this situation, we call F a left Quillen functor and we call G a right Quillen
functor .

Remark 1.1.13. We prove as Theorem 5.1.1 that a Quillen adjunction

F : M� N : G

induces a canonical adjunction

LF : MJW−1
M K� NJW−1

N K : RG

on localizations, called its derived adjunction (see Definition 5.1.2).

Of course, we also have the following special case of Definition 1.1.12.

Definition 1.1.14. We say that a Quillen adjunction F : M� N : G is a Quillen
equivalence if for all x ∈Mc and all y ∈ Nf , the equivalence

homM(x,G(y)) ' homN(F (x), y)

induces an equivalence of subspaces

homWM
(x,G(y)) ' homWN

(F (x), y).

(Note that this condition can be checked on path components.)

Remark 1.1.15. Extending Remark 1.1.13, we prove as Corollary 5.1.3 that the de-
rived adjunction of a Quillen equivalence induces an equivalence of localizations.
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1.2 Model ∞-categories: examples

Having discussed the generalities of model ∞-categories, we now proceed to give
a number of examples. In §1.2.1 we give some examples of model ∞-categories,
in §1.2.2 we give some examples of Quillen adjunctions and Quillen equivalences
between model∞-categories, and in §1.2.3 we give some speculative examples whose
verifications lie beyond the scope of the current project. This section may be safely
omitted from a first reading.

1.2.1 Examples of model ∞-categories

In this subsection, we give a plethora of examples of model ∞-categories. They are
organized into subsubsections based on their nature:

• in §1.2.1.1 we begin with some general examples of model ∞-categories,

• in §1.2.1.2 we list some more specific examples model ∞-categories,

• in §1.2.1.3 we give examples of model structures on ∞-categories of diagrams
in a model ∞-category, and

• in §1.2.1.4 we explore some more exotic examples of model∞-categories (which
we have included primarily for their intrinsic interest).

1.2.1.1 General examples of model ∞-categories

Example 1.2.1. In the case that M is actually a 1-category considered as an ∞-
category with discrete hom-spaces, then Definition 1.1.1 recovers the classical defini-
tion of a model category. Thus, any model 1-category gives an example of a model
∞-category.

Example 1.2.2. Any finitely bicomplete ∞-category M has a trivial model struc-
ture, in which we set W = M' and C = F = M. We denote this model ∞-category
by Mtriv.

Example 1.2.3. If M is a model ∞-category and x ∈ M is any object, then both
the undercategory Mx/ and the overcategory M/x inherit the structure of a model
∞-category, where in both cases the three defining subcategories are created by the
forgetful functor to M. Iterating this observation, for any morphism x→ y in M we
obtain the structure of a model ∞-category on Mx//y.
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Example 1.2.4. The recognition theorem for cofibrantly generated model∞-categories
(1.3.11) gives general criteria for the existence of a cofibrantly generated model struc-
ture on an∞-category with respect to given choices of weak equivalences, generating
cofibrations, and generating acyclic cofibrations (see §1.3).

1.2.1.2 Specific examples of model ∞-categories

Example 1.2.5. The main purpose of this chapter is to define the Kan–Quillen
model structure on sS, which will be given as Definition 1.4.5, and which is denoted
by sSKQ.

Example 1.2.6. The ∞-category Cat∞ of ∞-categories admits a Thomason model
structure, described in Example 1.2.27, which is denoted by (Cat∞)Th.

Example 1.2.7. In future work, given a model∞-category M (with a chosen set of
generators), following [DKS93] and [Bou03] we will define a resolution model struc-
ture (a/k/a an “E2 model structure”) on the ∞-category sM which presents the
corresponding nonabelian derived ∞-category of M, which is denoted sMres.

1.2.1.3 Examples of model structures on functor ∞-categories

Example 1.2.8. Given a model∞-category M and an∞-category C, there is some-
times a projective model structure on the ∞-category Fun(C,M) (see §5.1.2), which
is denoted by Fun(C,M)proj.

Example 1.2.9. Given a model∞-category M and an∞-category C, there is some-
times a injective model structure on the∞-category Fun(C,M) (see §5.1.2), which is
denoted by Fun(C,M)inj.

Example 1.2.10. Given a model ∞-category M and a Reedy category C (see Defi-
nition 5.1.11), there is always a Reedy model structure on the∞-category Fun(C,M)
(see §5.1.3), which is denoted by Fun(C,M)Reedy.

1.2.1.4 Exotic examples of model ∞-categories

Example 1.2.11. If M is a model ∞-category and ho(M) is finitely bicomplete,
then the model structure on M descends to a model structure on ho(M). In fact,
the two-out-of-three, retract, and factorization axioms in M are even verifiable in
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ho(M). Moreover, the map

lim


homM(y, w)

homM(x, z) homM(x,w)

i∗

p∗

→ lim


homho(M)(y, w)

homho(M)(x, z) homho(M)(x,w)

i∗

p∗


is a surjection, so if the lifting axiom holds in M then it must hold in ho(M) as well.
Of course, this generalizes Example 1.2.1: if M is a 1-category, then the projection
M

∼−→ ho(M) is an equivalence. On the other hand, since for an arbitrary∞-category
M there is usually a complicated interplay between co/limits in M and co/limits
in ho(M), it does not appear possible to draw any general conclusions about the
relationship between these two model ∞-categories, or about the induced map

MJW−1K→ ho(M)Jho(W)−1K

on localizations. (Note that the functor M→ ho(M) is the unit of the left localization
ho : Cat∞ � Cat : UCat, but it is not generally itself an adjoint.)

As we will elaborate upon in Remark 1.2.18, the following example illustrates a
particularly “one-sided” sort of model ∞-category.

Example 1.2.12. Suppose that M is a finitely bicomplete ∞-category and that
L : M � LM : U is a left localization. This means that we may consider the right
adjoint U : LM ↪→M as the inclusion of the reflective subcategory of “local” objects,
and that for any x ∈M and any y ∈ LM ⊂M, the localization map x→ Lx induces
an equivalence

homM(Lx, y)
∼−→ homM(x, y).

This fits squarely into the “first approximation” rubric of Remark 1.1.5: we should
consider Mc = M and Mf = U(LM) ⊂ M (with trivial left/right homotopy rela-
tions). Hence, it is natural to guess that there might be a left localization model
structure ML on M, in which

• WL ⊂M is the subcategory of morphisms that become equivalences in LM,

• CL = M, and

• FL ⊂M is determined by the lifting condition FL = rlp((W∩C)L) = rlp(WL);

in this case, the left adjoint will coincide with the localization M→MJW−1
L K ' LM

(and moreover, the left homotopy relation will be visibly trivial (and hence the right
homotopy relation will be trivial as well)). What remains, then, is to check
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• the half of the lifting axiom asserting that (W∩F)L ⊂ rlp(CL) = rlp(M), and

• the half of the factorization axiom regarding FL ◦ (W ∩C)L = FL ◦WL.

Now, for a map to have rlp(M) in particular means that it has the right lifting
property against the identity map from itself, and this implies that the map is an
equivalence (with inverse given by the guaranteed lift). Thus, rlp(M) ⊂ M'. On
the other hand, clearly M' ⊂ rlp(M), so rlp(M) = M', and hence to satisfy the
lifting axiom it is both necessary and sufficient to have that (W ∩ F)L ⊂ M'. (Of
course, the reverse containment follows from the definitions, so it is also necessary
and sufficient to have that (W ∩ F)L = M'.)

The factorization axiom here is more subtle, and there does not appear to be a
general criterion for when this might hold. One possibility is that we might try to
use the factorization of an arbitrary map x→ y via the construction

x

Lx ×
Ly
y y

Lx Ly,

i.e. via the composite
x→ Lx ×

Ly
y → y.

In the case that the left localization L is additionally left exact, i.e. in the case that
it commutes with finite limits (see Remark T.5.3.2.3), then this does indeed produce
a factorization as FL ◦WL:

• the first map is in WL by the left exactness of L, and

• the second map is in FL since it is a pullback of the map Lx → Ly, which is
directly seen to have rlp(WL).

In fact, this does not require the full strength of left exactness, but is only using the
weaker notion of L being a locally cartesian localization (see [GK, 1.2]).7

In a different direction, the proof of [Sal, Proposition 2.9] (which actually only
uses finite bicompleteness) appears to generalize directly to show that whenever

7There are a number of results in the literature surrounding factorizations in 1-categories which,
if suitably generalized to ∞-categories, would give a much wider class of left localizations in which
the factorization axiom holds; a notable example is [CHK85, Corollary 3.4]. (Somewhat relatedly,
factorization systems in stable ∞-categories are explored in [FL].)



93

the subcategory LM ⊂ M is additionally “strictly saturated” (in the sense of [Sal,
Definition 2.7]), then the model ∞-category ML does indeed exist, and moreover

• the subcategory FL ⊂ M consists of precisely those maps which are pullbacks
of maps in the subcategory LM ⊂M, while

• (W ∩ F)L 'M'.

More broadly, [Sal] makes a detailed study of these left localization model category
structures and their evident duals (see Example 1.2.17), which should presumably
generalize naturally to model ∞-categories.

Example 1.2.13. A particular case where Example 1.2.12 does indeed give a model
structure is the left localization π0 : S � Set : disc. Here, we have that Fπ0 =
rlp(Wπ0) consists of precisely the étale maps of spaces, i.e. those maps which induce
π≥1-isomorphisms for every basepoint of the source. (Note that this condition is
independent from that of being 0-connected; in particular, such a map may be neither
injective nor surjective on π0.) It follows that (W ∩ F)π0 = S', and so we have the
required lifting condition. Moreover, the proposed factorization of Example 1.2.12 is
in this case precisely the standard epi-mono factorization, and this gives the required
factorization Fπ0 ◦Wπ0 . As S is certainly finitely bicomplete, we obtain a model ∞-
category Sπ0 with localization S→ SJW−1

π0
K ' Set.

Example 1.2.14. In fact, Example 1.2.13 generalizes to the left localizations τ≤n :
S� S≤n : U≤n. Using the notation of Example 1.3.10 below, we have that

Fτ≤n = rlp((IStriv)≥n+2) ∩ rlp′({Sn → ptS})

consists of precisely those maps which induce π≥n+1-isomorphisms for every base-
point in the source. So again (W ∩ F)τ≤n = S', and it is easy to check using the
long exact sequence in homotopy for a pullback square that again the suggestion in
Example 1.2.12 yields the factorization Fτ≤n ◦Wτ≤n . (Alternatively, an easy spheres-
and-disks construction yields this factorization as well.) Hence, we obtain a model
∞-category Sτ≤n with localization S→ SJW−1

τ≤n
K ' S≤n.

Remark 1.2.15. It is clear that Example 1.2.14 relies on the fact that there is a good
theory of cellular approximation in S (e.g., the fact that attaching an (n+ 2)-cell to
a space doesn’t change its n-truncation). Thus, it does not appear to immediately
generalize to an arbitrary ∞-topos: it is important that the generators be suitably
compatible with the truncation functors.

Remark 1.2.16. The Kan–Quillen model structure on sS of Definition 1.4.5 has its
weak equivalences created by the left adjoint |−| : sS → S, but it is not a left
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localization model structure (in the sense of Example 1.2.12). Indeed, this left adjoint
is certainly not left exact: the question of when limits commute with geometric
realizations is generally very difficult to answer. (However, in the case of pullbacks,
this question is addressed to some extent by Corollary 1.6.7 below; see also the
surrounding Remarks 1.6.6, 1.6.12, 1.6.13, and 1.6.14. The case of more general
limits will also be addressed in §5.1.2.)

Example 1.2.17. Given a right localization U : RM � M : R with M finitely
bicomplete, we obtain a dual story to that of Example 1.2.12. Now we should think
of every object as fibrant, and of the left adjoint as the inclusion of the coreflective
subcategory of cofibrant objects. In this case, the guess at a right localization model
structure MR on M has that

• WR ⊂M is the subcategory of morphisms that become equivalences in RM,

• FR = M, and

• CR ⊂M is determined by the lifting condition CR = llp(WR).

From here, it remains to check

• the lifting condition (W ∩C)R ⊂ llp(FR) = M', and

• the factorization condition for (W ∩ F)R ◦CR = WR ◦CR.

Now, the factorization condition will be implied by the right exactness of the right
localization R (or more generally, if the right localization is “locally cocartesian”).

Remark 1.2.18. Example 1.2.12 reinterprets a left localization as describing a model
∞-category in which all objects are cofibrant ; dually, Example 1.2.17 reinterprets a
right localization as describing a model ∞-category in which all objects are fibrant.
Since in an arbitrary model∞-category, not all the objects will be cofibrant and not
all the objects will be fibrant, we might think of the notion of a model ∞-category
as a sort of simultaneous generalization of the notions of left and right localizations.8

Example 1.2.19. As a simple case of Remark 1.2.18, we can obtain a “first ap-
proximation” (as in Remark 1.1.5) to a model structure on the ∞-category Sp of
spectra which would present the ∞-category Sp[m,n] of spectra that only have non-
trivial homotopy groups in some interval [m,n] ⊂ Z: the cofibrant objects would be
Sp≥m ⊂ Sp, while the fibrant objects would be Sp≤n ⊂ Sp. This example, though
illustrative, is somewhat degenerate, since any weak equivalence between bifibrant
objects is already an equivalence. Indeed, the “homotopy relations” would all be

8However, this is not to say that a model∞-category structure in which all objects are cofibrant
must determine a left localization (or dually); for instance, the localization sSetKQ → sSetJW−1

KQK '
S provides a counterexample, as it is obviously not a left adjoint.
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trivial, corresponding to the fact that we have an inclusion Sp[m,n] ⊂ Sp which is a
section to the projection τ≥m ◦ τ≤n ' τ≤n ◦ τ≥m : Sp→ Sp[m,n].

Remark 1.2.20. Analogously to Example 1.2.14, we might try to obtain a model
structure as in Example 1.2.17 from the right localization U≥n : S≥n∗ � S≥1

∗ : τ≥n.
However, the existence of such a model structure is much less clear.

We do still have the lifting condition. Indeed, suppose that x → y is in (W ∩
C)τ≥n . Since x → y is in Wτ≥n , it induces an isomorphism on π≥n. On the other
hand, obtaining a lift in the commutative square

x τ≤n−1x

y τ≤n−1y

(in which τ≥n applied to the right map yields idptS), we see that the map also induces
isomorphisms on π≤n−1.

But the factorization condition is trickier. Given a map x→ y in S≥1
∗ , the map

τ≥ny → τ≥ny qτ≥nx x

will not necessarily be a π≥n-isomorphism. For instance, when n ≥ 2 and x is a
1-type, then this map will just be the inclusion τ≥ny → τ≥ny ∨ x of the first wedge
summand, which will not generally induce a π≥n-isomorphism. (Of course, this
observation does not preclude the existence of suitable factorizations.)

Remark 1.2.21. While not exactly an example of a model∞-category, it seems worth
observing that given a model ∞-category M, the pair (Mc,Wc) gives an example
of the evident ∞-categorical analog of Waldhausen’s notion of a “category with
cofibrations and weak equivalences” (see [Wal85, §1.2]); moreover, a left Quillen
functor M→ N of model ∞-categories then gives rise to an “exact functor” of such.
Consequently, there is an evident definition of the algebraic K-theory of these objects,
visibly functorial for left Quillen functors (see [Wal85, §1.3]).

Note that this does not coincide with Barwick’s notion of a “Waldhausen ∞-
category” given as [Bara, Definition 2.7]. Rather, one recovers this latter notion as
a special case of an “∞-category with cofibrations and weak equivalences” in which
the weak equivalences are just the equivalences. On the other hand, it seems likely
that the algebraic K-theory of (Mc,Wc) in the above sense would simply compute
the algebraic K-theory of the localization McJ(Wc)−1K ' MJW−1K with respect to
its maximal pair structure in Barwick’s sense (as this is true for model 1-categories,
see [Bara, Proposition 9.15 and Corollary 10.10.3]).9

9This equivalence is given by (the dual of) Corollary 5.3.4.
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1.2.2 Examples of Quillen adjunctions and Quillen
equivalences

Example 1.2.22. As will be immediate from Definitions 1.4.1 and 1.4.5, the ad-
junction π0 : sSKQ � sSetKQ : disc (see Notation 1.4.3) between the Kan–Quillen
model ∞-category structures on sS and sSet is a Quillen equivalence.

Example 1.2.23. In Remark 1.6.23, we will see that the “subdivision” and “exten-
sion” endofunctors of [Kan57], suitably extended from sSet to sS (see §1.6.3), define
a Quillen equivalence sd : sSKQ � sSKQ : Ex.

Example 1.2.24. The lifting theorem for cofibrantly generated model∞-categories
(1.3.12) gives general general criteria for constructing Quillen adjunctions by lifting
a cofibrantly generated model structure along a left adjoint (see §1.3).

Example 1.2.25. If a left localization L : M � LM : U induces a left localization
model structure ML as in Example 1.2.12, then we obtain a Quillen adjunction
idM : Mtriv � ML : idM, whose derived adjunction is precisely the original left
localization L : M � LM : U. This is of course closely related to the theory of left
Bousfield localizations of model categories (see e.g. [Hir03, §3.3]). Dual statements
apply to the right localization model structures of Example 1.2.17.

Example 1.2.26. As a particular case of Example 1.2.25, the model ∞-category
Sτ≤n of Example 1.2.14 participates in a Quillen adjunction idS : Striv � Sτ≤n : idS,
whose derived adjunction is τ≤n : S� S≤n : U≤n.

Example 1.2.27. Recall that the∞-category CSS of complete Segal spaces sits as a
left localization sS� CSS, and moreover admits a natural equivalence CSS ' Cat∞
(see §2.2). We show as Theorem 3.6.1 that, as a particular case of Example 1.2.24, we
can transfer the Kan–Quillen model structure of Definition 1.4.5 along the adjunction
sS � CSS ' Cat∞ to obtain the Thomason model structure on the ∞-category
Cat∞ of ∞-categories. This Quillen adjunction is in fact a Quillen equivalence,
and hence Remark 1.1.15 implies that the Thomason model structure on Cat∞ once
again presents the∞-category S. As explained in Remark 3.6.6, this model structure
resolves some of the less satisfying aspects of the classical Thomason model structure
on Cat (which also presents S).

Example 1.2.28. Given a model ∞-category M and an ∞-category C, if both the
projective and injective model structures on Fun(C,M) exist (see Examples 1.2.8 and
1.2.9), then the identity adjunction defines a Quillen equivalence

idFun(C,M) : Fun(C,M)proj � Fun(C,M)inj : idFun(C,M)
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between them (see Remark 5.1.20).

Example 1.2.29. Given a model ∞-category M and a Reedy category C, if the
projective model structure on Fun(C,M) exists (see Example 1.2.8), then the identity
adjunction defines a Quillen equivalence

idFun(C,M) : Fun(C,M)proj � Fun(C,M)Reedy : idFun(C,M)

(see Remark 5.1.20).

Example 1.2.30. Given a model ∞-category M and a Reedy category C, if the
injective model structure on Fun(C,M) exists (see Example 1.2.9), then the identity
adjunction defines a Quillen equivalence

idFun(C,M) : Fun(C,M)Reedy � Fun(C,M)inj : idFun(C,M)

(see Remark 5.1.20).

Example 1.2.31. Given a model ∞-category M and an ∞-category C such that M
admits C-shaped colimits, the adjunction

colim : Fun(C,M)�M : const

is

• always a Quillen adjunction with respect to the projective model structure on
Fun(C,M) if it exists (see Remark 5.1.9)

• sometimes (but not always) a Quillen adjunction if C is additionally a Reedy
category and we equip Fun(C,M) with the Reedy model structure, e.g. in the
case that C has fibrant constants (see Definition 5.1.22).

Example 1.2.32. Given a model ∞-category M and an ∞-category C such that M
admits C-shaped limits, the adjunction

const : M� Fun(C,M) : lim

is

• always a Quillen adjunction with respect to the injective model structure on
Fun(C,M) if it exists (see Remark 5.1.9)

• sometimes (but not always) a Quillen adjunction if C is additionally a Reedy
category and we equip Fun(C,M) with the Reedy model structure, e.g. in the
case that C has cofibrant constants (see Definition 5.1.22).
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1.2.3 Speculative examples

Speculation 1.2.33. Let us temporarily refer to the model structure of Defini-
tion 1.4.5 as the “strong” Kan–Quillen model structure on sS: its subcategory
WKQ ⊂ sS of weak equivalences is created by the geometric realization functor
|−| : sS→ S, and it is cofibrantly generated by the sets

IKQstrong
= {∂∆n → ∆n}n≥0

and
JKQstrong

= {Λn
i → ∆n}0≤i≤n≥1.

Then, there should exist other Kan–Quillen model structures on sS: these would
have the same subcategory of weak equivalences, but would have more cofibrations.
For instance, we might define “medium” and “weak” Kan–Quillen model structures
by extending the set of generating cofibrations to be given by

IKQmedium
= IKQstrong

∪ {Si � ∂∆n → Si �∆n}i≥1,n≥0

and
IKQweak

= IKQmedium
∪ {Si �∆n → ptS �∆n}i≥1,n≥0,

with sets of generating acyclic cofibrations extended to match. There would then
exist Quillen equivalences

sSKQstrong
� sSKQmedium

� sSKQweak

(in which all underlying functors are idsS): moving to the right, more and more
maps become cofibrations, while moving to the left, more and more maps become
fibrations. This explains the terminology: the geometric realization functor (being a
colimit) already plays well with colimits, and hence it does not seem to be particularly
useful to identify more maps as cofibrations. On the other hand, these variants would
enjoy certain features not shared by sSKQstrong

.

• The model ∞-category sSKQmedium
would be obtained by closing up the gen-

erating sets under the tensoring, i.e. by performing an enriched small object
argument (see Remark 1.3.7), which would easily provide functorial factoriza-
tions.

• The model∞-category sSKQweak
would have all objects cofibrant, just as sSetKQ.

However, it seems that the primary importance of this fact is that it implies
left properness, so this may not be much of an advantage, since sSKQstrong

is
already left proper (for essentially trivial reasons).
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The existence of these alternate Kan–Quillen model structures almost follows
easily from the recognition theorem for cofibrantly generated model ∞-categories
(1.3.11) and our proof of Theorem 1.4.4 (the main theorem of this chapter, which
asserts the existence of sSKQstrong

); more precisely, using the results presented here,
it is straightforward to verify all the conditions given in Theorem 1.3.11 except
for condition (3). On the other hand, it seems eminently plausible that Smith’s
recognition theorem for combinatorial model categories (see Proposition T.A.2.6.8),
especially its simpler special case given by Lurie (see Proposition T.A.2.6.13), would
admit a straightforward generalization to the model ∞-categorical setting. From
here, a version of Proposition T.A.2.6.13 would guarantee that any set of maps
I ⊂ sS containing IKQstrong

would constitute a set of generating cofibrations for a
model structure on sS with subcategory of weak equivalences given by WKQ ⊂ sS.
(Condition (1) would be satisfied by a combination of variants of Example T.A.2.6.11
and Corollary T.A.2.6.12, condition (2) would be true (even without the assumption
that I ⊃ IKQstrong

) because geometric realization (being a colimit) commutes with
pushouts, and condition (3) would follow from the fact that rlp(I) ⊂ rlp(IKQstrong

) ⊂
WKQ.)

Remark 1.2.34. It seems that the model ∞-category sSKQweak
of Speculation 1.2.33

would be closely related to the Moerdijk model structure on ssSet described in
Remark 1.7.3. Moreover, a putative set of generating acyclic cofibrations

JKQstrong
∪ {Sj � Λn

i → Sj �∆n}j≥1,0≤i≤n≥1

seems closely related to our comparison with the π∗-Kan condition in Remark 1.6.13.

Speculation 1.2.35. There should exist a Kan–Quillen model structure on the
∞-category sSp of simplicial spectra. However, the “levelwise infinite loopspace”
functor sΩ∞ : sSp→ sS∗ isn’t conservative, and so it wouldn’t make much sense to
lift this from a Kan–Quillen model structure on sS∗.

10 (By contrast, the usual model
structure on simplicial abelian groups is lifted from sSetKQ.) This should give rise to
model structures e.g. on simplicial module spectra over a (simplicial) ring spectrum,
and in other stable contexts. Alternatively, the putative applications of such model
structures might all be handled sufficiently by resolution model structures.

Speculation 1.2.36. Given a simplicial model category M•, we can consider its
underlying sSet-enriched category as an ∞-category M• ∈ (CatsSet)Bergner in its own
right. Closing up the defining simplicial subcategories W•,C•,F• ⊂ M• to sub-
categories in the ∞-categorical sense should then determine a model ∞-category

10On the other hand, this issue would vanish if we were to restrict to connective spectra.
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structure (though there is some subtlety in ensuring that the model ∞-category
axioms continue to hold in the ∞-categorical sense).

As an illustrative example of this apparent phenomenon, let use consider the case
of the simplicial model category (sSet•)KQ. Let us write

Wh.e. ⊂Ww.h.e. ⊂ sSet

for the subcategories of homotopy equivalences and weak homotopy equivalences,
respectively (with respect to the Kan–Quillen model structure (so that by definition,
Ww.h.e. = WKQ)). Then, it is not hard to see that the canonical functor

sSet[W−1
h.e.]→ sSet[W−1

w.h.e.] ' ho(S)

on homotopy categories is a left localization. Moreover, every acyclic fibration in
sSetKQ is actually a homotopy equivalence, so that every map is simplicially ho-
motopic to a cofibration. Taking these two facts together, it seems reasonable to
guess that this procedure yields a left localization model structure (in the sense of
Example 1.2.12) corresponding to a left localization adjunction

sSetJW−1
h.e.K� sSetJW−1

w.h.e.K ' S.

Speculation 1.2.37. There should exist a model structure on simplicial objects
in algebras over an operad which accounts for free resolutions. For example, this
would recover as a special case the model structure on simplicial commutative rings
alluded to in [Qui, §2] (and laid out explicitly in [Sch97, §3.1]), and would provide a
framework organizing the “prove it for a free simplicial resolution, then prove that it
commutes with (sifted) colimits” arguments involving “B-structured n-disk algebras”
(e.g. En algebras) that appear throughout [AF].

Speculation 1.2.38. There should exist a Joyal model structure on sS, whose fibrant
objects are the “homotopical quasicategories”, namely those Y ∈ sS such that for
all n ≥ 0 and all 0 < i < n, the inner horn inclusion Λn

i → ∆n induces a surjection

Yn ' M∆n(Y )→ MΛni
(Y )

in S. This should moreover participate in a left Bousfield localization sSJoyal �
sSKQweak

with the “weak” Kan–Quillen model structure of Speculation 1.2.33.
The proof of the Joyal model structure on sS would presumably follow that of the

one on sSet fairly closely; a short and streamlined exposition of the latter is given in
[DS11, Appendix C] (in contrast with the one given in §T.2.2.5, which proceeds by
using the model category (CatsSet)Bergner.)

There should similarly exist other model∞-categories which present Cat∞ based
on model 1-categories that do, for instance
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• a Barwick–Kan model structure on the ∞-category of relative ∞-categories
(see Definitions 2.1.1 and 2.1.16),

• a Bergner model structure on the∞-category of sS-enriched∞-categories (see
Definition 4.1.12), and

• a Bergner model structure on “Segal pre-categories” in sS, i.e. those simplicial
spaces whose 0th space is discrete.

Speculation 1.2.39. The central theorem regarding formal moduli problems for En
algebras, described in [Lur10] (and made precise in [Lur11a]), posits an equivalence
between the ∞-categories of formal En moduli problems and of augmented En alge-
bras (see [Lur10, Theorem 6.20]). This equivalence takes an augmented En algebra
to its associated Maurer–Cartan functor.

The inverse equivalence is somewhat trickier to describe. When the formal En
moduli problem is affine or pro-affine (i.e. corepresented by a small En algebra or by
a pro-object in such), then this inverse equivalence is implemented by Koszul duality
(see [Lur10, Example 8.5 and Remark 8.9]). However, more generally one must
take a resolution of the given formal En moduli problem by a smooth hypercovering
consisting of pro-affine ones, apply Koszul duality levelwise to this simplicial object,
and then take the colimit. Thus, in general this inverse equivalence is implemented
by the derived functor of Koszul duality (in analogy with e.g. the statement that the
cotangent complex is the derived functor of derivations).

Hence, there should then exist a model structure on the∞-category of simplicial
objects in formal En moduli problems (presumably related to the model structure
of Speculation 1.2.37): appropriate levelwise pro-affine objects would be cofibrant,
smooth hypercoverings would be acyclic fibrations, and then e.g. for an arbitrary
formal En moduli problem, [Lur10, Proposition 8.19] would provide a cofibrant re-
placement by an acyclic fibration.

1.3 Cofibrantly generated model ∞-categories

In this section we discuss cofibrantly generated model∞-categories. As in the classi-
cal situation, these are model structures which are determined by a relatively small
amount of data, namely by a set of generating cofibrations and a set of generating
acyclic cofibrations, which simultaneously

• generate the subcategories C and W ∩C, respectively, in a suitable sense (as
their names suggest),
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• detect the subcategories W ∩ F and F, respectively, in accordance with Re-
mark 1.1.11, and

• are suited for obtaining the factorizations required by Definition 1.1.1.

In §1.4, we will use this setup to define the Kan–Quillen model structure on the
∞-category sS of simplicial spaces.

We begin with a sequence of definitions. They are all direct generalizations of
their 1-categorical counterparts (after replacing a set of maps with a set of homotopy
classes of maps), and it is routine to verify that they enjoy completely analogous
properties (see e.g. [Hir03, §10.4-5]). We also point out once and for all that these
definitions do not depend on choices of representatives for the elements of the given
set I of homotopy classes of maps.

Definition 1.3.1. Given a set I of homotopy classes of maps in C, the subcategory
I-inj ⊂ C of I-injectives is the subcategory of maps with rlp(I).

Definition 1.3.2. Given a set I of homotopy classes of maps in C, the subcategory
I-cof ⊂ C of I-cofibrations is the subcategory of maps with llp(rlp(I)).

Definition 1.3.3. Assume that C admits pushouts and sequential colimits. Given
a set I of homotopy classes of maps in C, the subcategory I-cell ⊂ C of relative
I-cell complexes is the subcategory of maps that can be constructed as transfinite
compositions of pushouts of elements of I. An object is called an I-cell complex
if its unique map from ∅C is a relative I-cell complex. Note that (I-cell)-inj = I-inj
and that I-cell ⊂ I-cof.

Definition 1.3.4. Given a cardinal κ, an object x ∈ C is called κ-small relative
to I if for every regular cardinal λ ≥ κ and every λ-sequence {yβ}β<λ of relative
I-cell complexes, colimβ<λ homC(x, yβ)

∼−→ homC(x, colimβ<λ yβ). An object of C is
called small relative to I if it is κ-small relative to I for some cardinal κ. An
object of C is called κ-small if it is κ-small relative to C, and is called small if it
is κ-small for some cardinal κ.

Definition 1.3.5. We say that a set I of homotopy classes of maps in C permits
the small object argument if the sources of its elements are small relative to I.

We now come to the key result on which the theory of cofibrantly generated model
∞-categories rests, which we refer to as the small object argument .

Proposition 1.3.6. Suppose that C is an ∞-category that admits pushouts and se-
quential colimits, and suppose that I is a set of homotopy classes of maps in C which
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permits the small object argument. Then every map in C admits a factorization into
a relative I-cell complex followed by an I-injective.

Proof. The proof runs identically to that of [Hir03, Proposition 10.5.16], except that
we take a coproduct over homotopy classes of commutative squares and we choose ar-
bitrary representatives for these classes when forming the pushout. (See also [Lur11a,
Proposition 1.4.7].)

Remark 1.3.7. Although the above definitions are analogous to the classical ones,
there is one wrinkle that appears in the ∞-categorical case. Namely, the classical
small object argument is visibly functorial: one simply takes a coproduct over the
set of commutative squares (and no choices of representatives of homotopy classes
is necessary). In an ∞-category, however, we instead have a space of commutative
squares. Thus, it would be more natural in some respects for us to instead carry out
an “S-enriched small object argument”, which would then be similarly functorial.
However, this has two drawbacks for us.

First of all, to do so would shrink the right class of the associated weak factor-
ization system. (Indeed, in enriched category theory, passing from an unenriched
lifting condition to an enriched lifting condition is equivalent to closing up the given
set of maps under tensors with the enriching category.) We will be making much
use of fibrations and acyclic fibrations (for instance in the model ∞-category sSKQ

of Definition 1.4.5), and so it is in our best interest to keep these classes as large as
possible; given that the stronger statement holds (i.e. that in our cases of interest, it
suffices to check an unenriched lifting condition), it seems reasonable to incorporate
it into the theory.

More crucially, however, a key feature of the resolution model structure is that,
given a model ∞-category M with chosen set of generators G, we will obtain a cofi-
brant replacement of an object X ∈M by an object Y• ∈ sMc

res which is given in each
level as a coproduct of elements of G (see [DKS93, 3.3 and 5.5], Lemma T.5.5.8.13,
and Proposition T.5.5.8.10(5)), as opposed to some more elaborate construction in-
volving tensorings with spaces. This is useful because, denoting by F : M → A

our topology-to-algebra functor of interest (for instance, a homology theory E∗), it
affords us an approximation of F (X) ∈ A by F lw(Y•) ∈ sA, which is only useful
inasmuch as it is algebraically accessible (for instance, a levelwise-projective simpli-
cial E∗-module). If we were to use an S-enriched small object argument to construct
the cofibrantly generated resolution model structure, we would cease to have any
control whatsoever over the value of the functor F lw : sMres → sA on these cofibrant
replacements.

We now come to the main definition of this section.
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Definition 1.3.8. A cofibrantly generated model ∞-category is a model ∞-
category M such that there exist sets of homotopy classes of maps I and J , respec-
tively called the generating cofibrations and the generating acyclic cofibra-
tions , both permitting the small object argument, such that W ∩ F = rlp(I) and
F = rlp(J). (It follows from Remark 1.1.11 that also C = I-cof and W∩C = J-cof.)

Example 1.3.9. Let Striv denote the trivial model structure of Example 1.2.2 on
the ∞-category S of spaces. Combined with a few basic observations coming from
the theory of CW complexes, Lemma 1.5.1 shows that Striv is cofibrantly generated
by the sets IStriv = {Sn−1 → ptS}n≥0 and JS

triv = ∅Set.

Example 1.3.10. Recall the model structure Sπ0 on the ∞-category S of Exam-
ple 1.2.13: Wπ0 is created by π0 : S → Set, Cπ0 = S, and Fπ0 = rlp(Wπ0). This
model structure is not cofibrantly generated (or at least, not obviously so), but we
nevertheless have that

Fπ0 = rlp((IStriv)≥2) ∩ rlp′({S0 → ptS}),

where

• we define

(IStriv)≥2 = {Sn−1 → ptS}n≥2 = {S1 → ptS, S
2 → ptS, . . .},

and

• by rlp′({S0 → ptS}), we mean to only require a lift in those commutative
squares for which the upper map factors through the terminal map S0 → ptS.

This observation generalizes to the model ∞-category Sτ≤n of Example 1.2.14, as
indicated there.

We have the following recognition theorem for cofibrantly generated model
∞-categories.

Theorem 1.3.11. Let M be an ∞-category which is both cocomplete and finitely
complete, and let W ⊂M be a subcategory which is closed under retracts and satisfies
the two-out-of-three property. Suppose I and J are sets of homotopy classes of maps
in M, both permitting the small object argument, such that

(1) J-cof ⊂ (I-cof ∩W),

(2) I-inj ⊂ (J-inj ∩W), and

(3) either
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(a) (I-cof ∩W) ⊂ J-cof or

(b) (J-inj ∩W) ⊂ I-inj.

Then the sets I and J define a cofibrantly generated model structure on M whose
weak equivalences are W.

Proof. With the small object argument in hand, the proof runs identically to that
of [Hir03, Theorem 11.3.1].

We also have the following lifting theorem for cofibrantly generated model
∞-categories.

Theorem 1.3.12. Let M be a cofibrantly generated model ∞-category with generat-
ing cofibrations I and generating acyclic cofibrations J , and let F : M � N : G be
an adjunction with N finitely bicomplete. If FI and FJ both permit the small object
argument and G takes relative FJ-cell complexes into WM, then FI and FJ define a
cofibrantly generated model structure on N in which WN is created by G. Moreover,
with respect to this lifted model structure, the adjunction F a G becomes a Quillen
adjunction.

Proof. The proof runs identically to that of [Hir03, Theorem 11.3.2].

1.4 The definition of the Kan–Quillen model

structure

We are now in a position to state the main result of this chapter (Theorem 1.4.4),
which gives a systematic way of manipulating simplicial spaces in their capacity as
“presentations of spaces” via the geometric realization functor. This sits in precise
analogy with the 1-category of simplicial sets, and so we begin with the following
recollection.

Definition 1.4.1. The Kan–Quillen model structure on sSet, denoted sSetKQ,
is the proper model structure which is cofibrantly generated by the sets IsSet

KQ =

{∂∆n → ∆n}n≥0 and JsSet
KQ = {Λn

i → ∆n}0≤i≤n≥1 (see e.g. [Hir03, Example 11.1.6
and Theorem 13.1.13]).

In order to be precise regarding model ∞-categories (and in case the reader has
forgotten the classical definition), we also give the following.
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Definition 1.4.2. A model∞-category is called left proper if its weak equivalences
are preserved under pushout along cofibrations, and dually is called right proper
if its weak equivalences are preserved under pullback along fibrations. A model
∞-category is called proper if it is both left proper and right proper.

The categories of simplicial sets and simplicial spaces are related in the following
way.

Notation 1.4.3. Recall the adjunction π0 : S � Set : disc. Applying Fun(∆op,−),
this induces an adjunction which we again denote by π0 : sS� sSet : disc. We will
generally omit this right adjoint from the notation unless we mean to emphasize it.

Using this terminology and notation, we can now state the main result of this
chapter.

Theorem 1.4.4. The sets IsSKQ = disc(IsSet
KQ ) and JsSKQ = disc(JsSet

KQ ) define a proper,
cofibrantly generated model structure on sS, in which the weak equivalences are cre-
ated by the geometric realization functor |−| : sS→ S.

Proof. We appeal to 1.3.11, verifying

• condition (1) in Proposition 1.7.1,

• condition (2) in Proposition 1.7.2,

• condition (3)(b) in Proposition 1.7.9, and

• that IsSKQ and JsSKQ both permit the small object argument in Corollary 1.5.3.

The weak equivalences are closed under retracts and satisfy the two-out-of-three
property because they are pulled back from a class of equivalences. Lastly, left
properness is immediate since the weak equivalences are created by a left adjoint
(which commutes with pushouts), and right properness is proved as Corollary 1.6.8.

Definition 1.4.5. In analogy with Definition 1.4.1, we also refer to the model struc-
ture on sS defined by Theorem 1.4.4 as the Kan–Quillen model structure , de-
noted sSKQ.

Remark 1.4.6. In the theory of model 1-categories, one of the most useful conse-
quences of right properness is that a pullback in which just one of the maps is a fi-
bration is already a homotopy pullback (and dually for left properness). This remains
true in the theory of model ∞-categories; with the theory of homotopy co/limits in
model ∞-categories in hand (see §5.1.2), the proof runs essentially identically (see
e.g. [Hir03, §13.3]). However, for the sake of self-containment, we will also directly
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prove this consequence of the right properness of sSKQ as Corollary 1.6.7. (In fact,
we use this as an input to the proof of right properness in Corollary 1.6.8.) On the
other hand, the dual corollary of the left properness of sSKQ is as trivial to verify as
the left properness of sSKQ itself.

Remark 1.4.7. In the theory of model 1-categories, there are many other adjectives
that one might attach to a model structure: combinatorial, cellular, tractable, etc.
The model∞-category sSKQ enjoys completely analogous properties to those enjoyed
by sSetKQ. However, we won’t need these observations for now, so we just leave
them here as a remark. (The model ∞-category sSKQ will also be a simplicial
model ∞-category, the analogous notion to that of a simplicial model 1-category
(see Definition 5.6.2). (This is simply to say that it is a symmetric monoidal model
∞-category (see Definition 5.5.5 and Example 5.5.3).))

Remark 1.4.8. Note that if we apply the small object argument for IsSKQ or JsSKQ to a
map in sS whose source is in sSet, then the intermediate object will also be in sSet. In
particular, by the usual transfinite induction arguments, rlp(IsSKQ) = rlp(disc(CsSet

KQ ))

and rlp(JsSKQ) = rlp(disc((W ∩ C)sSet
KQ )). We will use these facts without further

comment.

Remark 1.4.9. The adjunction π0 : sS � sSet : disc could be used to lift the cofi-
brantly generated Kan–Quillen model structure on sS to the one on sSet via the
lifting theorem (1.3.12), except of course that that would be totally circular: the
construction of sSKQ takes the existence of sSetKQ as input. As observed in Exam-
ple 1.2.22, this adjunction is even a Quillen equivalence, whose derived adjunction is
the identity adjunction on their common localization S.

Remark 1.4.10. In fact, extending Remark 1.4.9, note that all three defining subcate-
gories of the model category sSetKQ are pulled back from the corresponding defining
subcategories of the model ∞-category sSKQ along the inclusion sSet ⊂ sS.

To codify the observation of Remark 1.4.10, we introduce the following.

Definition 1.4.11. Let M be a model ∞-category. We say that a model structure
on a subcategory N ⊂M defines a model subcategory of M if we have

• WN = N ∩WM ⊂M,

• CN = N ∩CM ⊂M, and

• FN = N ∩ FM ⊂M.

Notation 1.4.12. As sSetKQ is a model subcategory of sSKQ by Remark 1.4.10, it
will usually be unambiguous to omit the superscripts sSet and sS from their defining
subcategories: we will usually just write WKQ, CKQ, or FKQ, leaving the ambient
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∞-category implicit unless we mean to draw specific attention to it, as promised
in Notation 1.1.2. (Of course, since the purpose of this chapter is to construct the
model ∞-category sSKQ, one would be safest to assume that we mean to refer to
the subcategories of sS instead of those of sSet when no superscript is included.)
Similarly, we will henceforth generally simply denote

• both IsSet
KQ and IsSKQ by IKQ, and

• both JsSet
KQ and JsSKQ by JKQ.

Notation 1.4.13. In the course of proving Theorem 1.4.4, it will be important to
take care in distinguishing which facts have been proved and which facts have not.
Otherwise, our arguments might appear to be circular (for example as discussed in
Remark 1.7.7). Thus, in order to be totally clear about this distinction, we take the
following conventions regarding maps of simplicial sets and of simplicial spaces.

• We will only decorate our arrows if the corresponding property is relevant to
the argument.

• We will only use the decoration
≈→ if we’ve actually proved that the map

becomes a weak equivalence upon geometric realization.

• When working in sSetKQ ⊂ sSKQ, we will use all standard results and notation.

• By the nature of the arguments, the only cofibrations in sSKQ that appear will
actually lie in the subcategory sSetKQ. On the other hand, rather than write

� or
≈
� for the indicated maps in sSKQ, we will instead label the arrows with

their lifting properties (so rlp(JKQ) or rlp(IKQ), respectively).

• For convenience, we will still write sSfKQ for those objects whose terminal map
has rlp(JKQ). (On the other hand, we will simply have sScKQ = sSet ⊂ sS.)

1.5 Auxiliary results on spaces and simplicial

spaces

In this section, we collect some auxiliary results regarding spaces and simplicial
spaces which will be necessary for our proof of Theorem 1.4.4 (the bulk of which will
be given in §1.7).

We begin with an easy folkloric result, which gives a criterion for a map of spaces
to be an equivalence.
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Lemma 1.5.1. Let Y
ϕ−→ Z be a map in S. Then ϕ is n-connected iff it has

rlp({Si−1 → ptS}0≤i≤n). In particular, ϕ is an equivalence iff it has rlp({Sn−1 →
ptS}n≥0).

Proof. First, note that if Y → Z has rlp({Si−1 → ptS}), then the map [Si−1, Y ]S →
[Si−1, Z]S is an inclusion. Since a map off of Si−1 is basedly nullhomotopic iff it’s freely
so, this means that for any basepoint y ∈ Y , the map πi−1(Y, y) → πi−1(Z, ϕ(y)) is
an inclusion.

On the other hand, considering the map Si−1 → ptS as the standard inclusion
Si−1 → Di, we see that if we begin with the constant map Si−1 → Y at some point
y ∈ Y , then an extension of the composite Si−1 → Y → Z over Si−1 → Di really just
selects a map Si → Z which is based at ϕ(y). So, if Y → Z has rlp({Si−1 → ptS}),
then also πi(Y, y)→ πi(Z, ϕ(y)) is a surjection for any basepoint y ∈ Y .

Combining these two consequences of Y → Z having rlp({Si−1 → ptS}) proves
both claims.

We now turn to simplicial spaces. We begin with the necessary smallness results.

Lemma 1.5.2. An object of sSet with finitely many nondegenerate simplices is ω-
small as an object of sS.

Proof. This follows from the fact that finite sets are small in S and from the inductive
definition of a map of simplicial objects.

Corollary 1.5.3. The sets IKQ and JKQ permit the small object argument.

Proof. This follows from Lemma 1.5.2.

Many of the remaining results of this chapter will rely critically on the following
one. Its proof is rather involved, and so we postpone it to §1.8. Roughly speaking,
this result concerns the inductive construction of a presentation of a map in S by a
map in sS whose source lies in sSet ⊂ sS.

Lemma 1.5.4. Suppose we are given any W ∈ sS, any K ∈ sSet, and any pushout

∂∆n K

∆n L
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in sSet. Suppose further that we are given any point of the pullback

lim


homsS(K,W )

homS(|L|, |W |) homS(|K|, |W |)

 .

Then there exists some i ≥ 0 such that if the front square in the cube

∂∆n K

sdi(∂∆n) K

∆n L

sdi(∆n) L′

≈

≈

is also a pushout in sSet, then L′
≈→ L in sSetKQ and the map

homsS(L
′,W )→ lim


homsS(K,W )

homS(|L′|, |W |) homS(|L|, |W |) homS(|K|, |W |)∼


in S is surjective onto the chosen point.

Remark 1.5.5. Lemma 1.5.4 is not as strong as one might hope. First of all, it would
be nice if the last map in its statement were actually a surjection, but to deduce
this we would need to be able to bound the number i as we run through the path
components of the pullback, which does not appear to be possible. But even more
seriously, if instead we have a cofibration K � L in sSetKQ which can only be
obtained through multiple pushouts of maps in IKQ, then Lemma 1.5.4 cannot be

made to guarantee the existence of an extension L′ → W in sS (for some L′
≈→ L in

sSetKQ) modeling the chosen extension |L| → |W | in S.
For instance, suppose that L = ∆1×∆1, and that the map K → L is the inclusion

of its boundary (so that K is a simplicial square, and the map K → L in sSetKQ
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presents the map S1 → ptS in S). The minimal way to present this as a composition
of pushouts of maps in IKQ is as

K �M � N � L,

whereM is the 1-skeleton of L and the latter two maps are each obtained by attaching
a 2-simplex. However, when we attempt to extend our given map K → W along
K → M using Lemma 1.5.4, we may need to subdivide the 1-simplex that we’re
attaching, and so we only obtain an extension M ′ → W in sS for some factorization
K → M ′ ≈→ M in sSetKQ. If any such subdivisions are required, then the two
remaining holes to be filled in M ′ will now have at least four edges each, and so we
are no closer to “filling the hole” than when we started.

On the other hand, in the case that the map K → L is ∅sSet → ∆0, then
no subdivisions are required (indeed, subdivision preserves both ∅sSet and ∆0, or
alternatively we can see this from the fact that the map W0 → |W | is a surjection).
Thus, if we are given any W ∈ sS and any map Sn → |W | in S, we can first present
the composite ptS → Sn → |W | in S by some map ∆0 → W in sS, and then taking
K = ∆0 and forming the pushout

∂∆n ∆0

∆n L

in sSet, we are guaranteed a factorization ∆0 → L′
≈→ L in sSetKQ and a map

L′ → W in sS presenting the chosen map |L| ' Sn → |W | in S. Since so many
arguments in S go by considering arbitrary maps into a space from a sphere (e.g.
recall Lemma 1.5.1), the existence of such a minimal model ∆n/∂∆n ∈ sSetKQ for
the object Sn ∈ S seems like a real stroke of luck.

In any case, we do not expect Lemma 1.5.4 to be particularly useful in the long
run: it is effectively supplanted by the fundamental theorem of model ∞-categories
(6.1.9). (In particular, see Corollary 1.6.2 (and Remark 1.6.3).)

1.6 Fibrancy, fibrations, and the Ex∞ functor

In this section, we undertake a study of

• the subcategory sSfKQ ⊂ sSKQ of fibrant objects in §1.6.1,

• the subcategory FKQ ⊂ sSKQ of fibrations in §1.6.2, and
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• an Ex∞ endofunctor on sS in §1.6.3.

As we will see, all of these behave quite analogously to their classical counterparts
in sSetKQ.

1.6.1 Fibrancy

We begin by studying fibrant objects. First of all, Lemma 1.5.4 admits a much
cleaner analog when W ∈ sSKQ is fibrant.

Lemma 1.6.1. In Lemma 1.5.4, if W ∈ sSfKQ then we may take i = 0. Hence, the
map

homsS(L,W )→ lim


homsS(K,W )

homS(|L|, |W |) homS(|K|, |W |)


is a surjection.

Proof. We will argue using the diagram in sSetKQ shown in Figure 1.1, in which
some of the objects and morphisms have yet to be constructed. First of all, recall

∆n L

sdi(∂∆n) ∂∆n K

M ′ L′′

sdi(∆n) M L′

≈

≈≈

≈

≈ ≈

Figure 1.1: The diagram in sSetKQ used in the proof of Lemma 1.6.1.

that the top square of the cube is a pushout by the definition of L. Also, observe
that we can also build L′ via the iterated pushout in the front two squares, where
we have sdi(∆n)

≈→ M since sSetKQ is left proper. Next, choose any acyclic object
M ′ ∈ sSetKQ admitting a cofibration from M

∐
∂∆n ∆n, and use it to form the left

face of the cube. (The maps from M and ∆n to this pushout are cofibrations, which
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is why the maps from M and ∆n to M ′ are also cofibrations.) Then, define L′′ by
declaring that the bottom square of the cube is a pushout; by an easy diagram chase,
the back square of the cube is therefore a pushout as well.

Now, since by assumptionW → ptsS has rlp(JKQ), we are guaranteed an extension

K W

L′

L L′′

≈

≈

in sS, and the composite map L → L′′ → W satisfies the same hypotheses as were
required of the map L′ → W . Thus, we may take i = 0, as claimed.

Carrying out this same argument for all path components of the pullback implies
that the indicated map is indeed a surjection.

Corollary 1.6.2. If W ∈ sSfKQ, then for any K � L in sSetKQ, the map

homsS(L,W )→ lim


homsS(K,W )

homS(|L|, |W |) homS(|K|, |W |)


is a surjection.

Proof. First, we present the map K � L as a transfinite composition of pushouts of
maps in IKQ. Then, the result follows by transfinite induction, applying Lemma 1.6.1
at each successor ordinal and using the universal property of the colimit (which here
is a colimit both in sSet and in sS) at each limit ordinal.

Remark 1.6.3. In the special case thatK = ∅sSet, Corollary 1.6.2 reduces to the state-
ment that for any L ∈ sSet = sScKQ and any W ∈ sSfKQ, the map homsS(L,W ) →
homS(|L|, |W |) is a surjection. This is a hint of the fundamental theorem of model
∞-categories (6.1.9) as applied to sSKQ (recall Remark 1.1.4).

Remark 1.6.4. Corollary 1.6.2 provides a basis for [BEBdBP, 30.10], which gives
a complete characterization of the subcategory Wf

KQ ⊂ sS of weak equivalences
between fibrant objects (and which is in turn the crucial ingredient of that paper).
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1.6.2 Fibrations

We now turn from fibrant objects to fibrations:

• in §1.6.2.1 we lay out some general results on the interplay between fibrations
and geometric realizations,

• in §1.6.2.2 we show that the left Quillen equivalence π0 : sSKQ → sSetKQ

preserves fibrations, and

• in §1.6.2.3 we give some comparisons with existing literature.

1.6.2.1 Fibrations and geometric realizations

The following result is crucial, and provides a basis for many of the convenient prop-
erties enjoyed by the model∞-category sSKQ. Its proof is relatively straightforward,
though somewhat long (although not as long as it looks, since it contains so many
diagrams).

Proposition 1.6.5. Suppose the map Y → Z in sS has rlp(JKQ), and suppose we

are given any point ptsS
z−→ Z. Let Fz ∈ sS be the fiber of Y → Z over z, and let

F|z| ∈ S be the fiber of |Y | → |Z| over |z|. Then the natural map |Fz| → F|z| is an
equivalence in S.

Proof. We use the criterion of Lemma 1.5.1. So, suppose that

Sn−1 |Fz|

ptS F|z|

is any commutative square in S, for any n ≥ 0. Since Fz → ptsS also has rlp(JKQ) as
this property is closed under pullbacks, by Corollary 1.6.2 we may present the upper
map in the above diagram as a map ∂∆n → Fz in sS.

From here, our argument will play back and forth between the diagrams shown
in Figures 1.2 and 1.3. The former takes place in sSKQ, while the latter takes place
in S; in both, many of the objects (and all of the dotted arrows) have yet to be
constructed. For clarity, we proceed in steps.
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(1) Given the composite map ∂∆n → Fz → Y in sS and its chosen extension

|∂∆n| |Fz| |Y |

|∆n| F|z|

in S, by Lemma 1.5.4 there exists a factorization ∂∆n → (∆n)′
≈→ ∆n in sSetKQ

and a dotted arrow (∆n)′ → Y as in Figure 1.2 which models this extension in
S.

(2) For expository convenience, we consider the object ∆0 ∈ sS with its unique

map ∆0 ∼−→ ptsS as selecting a composite map |∆0| ∼−→ |ptsS|
|z|−→ |Z|.

(3) Choose any vertex of (∆n)′, and use this to define (∆n)′′ ∈ sSet by the pushout
diagram

∂∆1 (∆n)′ t∆0

∆1 (∆n)′′

≈

≈

in sSetKQ. Observe that both induced maps ∆0 → (∆n)′′ and (∆n)′ → (∆n)′′

are in WKQ.

(4) Now, we have the solid commutative diagram in S of Figure 1.4, and hence we
can obtain a dotted arrow |(∆n)′′| → |Z| therein making the entire diagram
commute, as in Figure 1.3.

(5) Thus, we have a map (∆n)′ t∆0 → Z in sS and a chosen extension

|(∆n)′| t |∆0| |Z|

|(∆n)′′|

in S. (Note that the geometric realization functor |−| : sS → S commutes
with colimits (being a left adjoint), and in particular with coproducts.) So by

Lemma 1.5.4, there is a factorization (∆n)′ t∆0 → (∆n)′′′
≈→ (∆n)′′ in sSetKQ

and a dotted arrow (∆n)′′′ → Z as in Figure 1.2 which models this extension
in S.
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(6) It is easy to see that that in fact, we have (∆n)′
≈
� (∆n)′′′ in sSetKQ (for

instance because sSetKQ is left proper, and so the defining map to (∆n)′′′ from
some subdivision of ∆1 is in WKQ). Since the map Y → Z in sS has rlp(JKQ),
it follows that there exists a lift (∆n)′′′ → Y as in Figure 1.2.

(7) We now have the solid commutative diagram in sS of Figure 1.5, and so by
the universal property of the pullback we can obtain a dotted arrow ∆0 → Fz
making the entire diagram commute, as in Figure 1.2.

(8) Now, taking geometric realization gives the entire diagram in S of Figure 1.3
(including the dotted arrows). In particular, we obtain the desired lift

|∂∆n| |Fz|

|∆n| F|z|

in S. (It is straightforward to see that this does indeed commute, as F|z| is
defined as a pullback.)

Remark 1.6.6. In either sSet or sS, one can always take the fiber of a map over a
given point in its target. However, inasmuch as we are interested in simplicial sets
and simplicial spaces as presenting spaces via geometric realization, we can view
Proposition 1.6.5 as saying that in either case, this fiber is only “homotopically
meaningful” – that is, it only computes the fiber in S – if the original map is a
fibration in the corresponding Kan–Quillen model structure.

While Proposition 1.6.5 only addresses the question of when taking fibers com-
mutes with geometric realization, we can use it to address the same question regard-
ing more general pullbacks.

Corollary 1.6.7. Suppose the map Y → Z in sS has rlp(JKQ). Then for any map
W → Z in sS, the natural map

|W ×Z Y | → |W | ×|Z| |Y |

is an equivalence in S, i.e. the pullback of Y → Z along any map commutes with
geometric realization.
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Proof. It suffices to show that in the diagram

|W ×Z Y | |Y |

|W | |Z|

in S, for every point of |W | the upper map induces an equivalence on the correspond-
ing fibers of the vertical maps.

To begin, note that by Lemma 1.5.4 (or since the map W0 → |W | is a surjection),
every point ptS → |W | in S is represented by a point ptsS ' ∆0 → W in sS. For
such a point ptsS

w−→ W , denote by Fw ∈ sS the fiber of the map W ×Z Y → W over
w.

Now, as rlp(JKQ) is closed under pullbacks, then the map W ×Z Y → W also has
rlp(JKQ). So in the diagram

Fw W ×Z Y Y

ptsS W Z

rlp(JKQ) rlp(JKQ)

w

in sSKQ, both the left square and the large rectangle are pullbacks, and by Proposi-
tion 1.6.5 these both remain pullbacks when we apply |−| : sS→ S. This proves the
indicated sufficient condition.

As stated in Remark 1.4.6, Corollary 1.6.7 already spells out one of the most useful
consequences of the right properness of sSKQ. However, for the sake of completeness,
since we have not actually proved that this model structure is right proper, we do so
now.

Corollary 1.6.8. WKQ is preserved under pullback along maps that have rlp(JKQ).

Proof. Suppose that we have a diagram

Y

W Z

rlp(JKQ)

≈
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in sSKQ. By Corollary 1.6.7, the induced diagram

|W ×Z Y | |Y |

|W | |Z|∼

in S is a pullback square. But this implies that the upper map is an equivalence in
S, i.e. that the map W ×Z Y → Y is in WKQ.

1.6.2.2 Fibrations are preserved by π0

We now proceed to give a necessary condition (Proposition 1.6.10) for a map to be
a fibration in sSKQ.

Lemma 1.6.9. For any Y ∈ sS and any K
≈
� L in sSetKQ, the canonical map

Y → π0(Y ) in sS induces a π0-isomorphism

ML(Y )→ lim


MK(Y )

ML(π0(Y )) MK(π0(Y ))


in S. In particular, for any Y ∈ sS, the canonical map Y → π0(Y ) has rlp(JKQ).

Proof. Letting J denote the collection of maps K → L in sS for which this induced
map in S is a π0-isomorphism, it suffices to prove that J contains the set JKQ =
{Λn

i → ∆n}0≤i≤n≥1. Note first that any map ∆i → ∆j is contained in J , since we
have an equivalence M∆n(−) ' (−)n in Fun(sS, S) and pullbacks over discrete spaces
commute with π0 : S → Set. Note too that J is closed under pushouts and has the
two-out-of-three property.

We now argue by induction: writing J≤n = {Λm
j → ∆m}0≤j≤m≤n ⊂ JKQ, we will

show that J≤n ⊂ J for all n ≥ 1. We have already shown that J≤1 ⊂ J , since both
maps Λ1

i → ∆1 are of the form ∆0 → ∆1. So, suppose that J≤(n−1) ⊂ J , and let
Λn
i → ∆n be any map in J≤n\J≤(n−1). Observe that the composite ∆{i} → Λn

i → ∆n

lies in J , and observe that the first map can be constructed as an iterated pushout of
maps in J≤(n−1) (note that pushouts along cofibrations in sSetKQ are also pushouts
in sS) and hence by assumption also lies in J since it is closed under pushouts. Since
J also has the two-out-of-three property, it follows that the second map lies in J as
well. This proves the claim.
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Proposition 1.6.10. If a map Y → Z in sS has rlp(JKQ), then so does π0(Y ) →
π0(Z).

Proof. A map Λn
i → ∆n in JKQ gives rise to a diagram

Zn π0(Zn)

Yn π0(Yn)

MΛni
(Z) MΛni

(π0(Z))

MΛni
(Y ) MΛni

(π0(Y ))

in S. All four horizontal maps in this cube are π0-isomorphisms by Lemma 1.6.9,
and moreover all of their targets are discrete since the inclusion Set ⊂ S commutes
with limits (being a right adjoint). Taking pullbacks of the cospans contained in the
left and right faces, we obtain a commutative square

Yn π0(Yn)

MΛni
(Y ) ×

MΛn
i

(Z)
Zn MΛni

(π0(Y )) ×
MΛn

i
(π0(Z))

π0(Zn)

in which the upper map is a π0-isomorphism and the lower map is a component of
the canonical comparison map

π0

(
limS(−)

)
→ limSet

(
πlw

0 (−)
)

in Fun(Fun(N−1(Λ2
2), S), Set). As this comparison map is a componentwise surjection,

the surjectivity of the left map in the commutative square implies that of its right
map. This proves the claim.

Remark 1.6.11. The proof of Proposition 1.6.10 clearly illustrates the reason that its
converse fails: the canonical comparison map

π0

(
limS(−)

)
→ limSet

(
πlw

0 (−)
)
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in Fun(Fun(N−1(Λ2
2), S), Set) is a componentwise surjection but not a componentwise

isomorphism. On the other hand, if its component at the object(
MΛni

(Y )→ MΛni
(Z)← Zn

)
∈ Fun(N−1(Λ2

2), S)

happens to be an isomorphism (for instance, if MΛni
(Z) ∈ Set ⊂ S), then π0(Y ) →

π0(Z) having the right lifting property against the map Λn
i → ∆n implies that Y → Z

has it as well. Assembling this observation over all maps in JKQ then gives a partial
converse to Proposition 1.6.10.

1.6.2.3 Comparisons with existing literature

Remark 1.6.12. In the unpublished note [Rez14], Rezk defines a realization fibration
to be a map Y → Z in sS such that all pullbacks commute with geometric realization
(see [Rez14, Definition 1.1]), and he completely characterizes them as being detected
by iterated pullbacks along all possible composites ∆{i} → ∆n → Z (see [Rez14,
Proposition 5.10]). In this language, we can restate Corollary 1.6.7 as asserting that
all maps in FKQ ⊂ sS are realization fibrations. On the other hand, as geometric
realization (being a sifted colimit) commutes with finite products in S, every terminal
map Y → ptsS is a realization fibration, but it clearly need not be in FKQ in general.

Remark 1.6.13. There are two results, both of which appeared in the literature in
1978, which are strongly reminiscent of Corollary 1.6.7:

• one introduced by Bousfield–Friedlander in [BF78, Appendix B] (and recapit-
ulated in [GJ99, §IV.4]) based on the notion of a simplicial space satisfying the
π∗-Kan condition,

• the other introduced by Anderson in [And78] based on the notion of a simplicial
groupoid being fully fibrant.

In fact, these two results are extremely similar to one another, and both rely on a
common construction: given a space Y ∈ S, a Grothendieck construction (see e.g.
§3.1) applied to the resulting the functor

Π1(Y )

∏
n≥2

πn(Y,−)

−−−−−−→ Grp

(from the fundamental (1-)groupoid of Y to the category of groups) yields a new
groupoid, which we will denote by Π≥1(Y ) ∈ Gpd. Using this, we can describe the
conditions appearing in these results as follows.
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• The π∗-Kan condition on a simplicial space Y ∈ sS demands of the simplicial

groupoid Π≥1(Y•) ∈ sGpd that for every horn inclusion Λn
i

≈
� ∆n in JKQ, the

induced map

Π≥1(Yn) ∼= M∆n (Π≥1(Y ))→ MΛni
(Π≥1(Y ))

is full.

• The demand that the simplicial groupoid Π≥1(Y )• ∈ sGpd be fully fibrant
amounts to the additional requirement that for every boundary inclusion ∂∆n�
∆n in IKQ, the induced map

Π≥1(Yn) ∼= M∆n (Π≥1(Y ))→ M∂∆n (Π≥1(Y )) = Mn (Π≥1(Y ))

is full.11

Of course, a map in Gpd is full precisely if the induced maps on automorphism
groups are all surjective, and so these conditions ultimately boil down to certain
lifting criteria among the various homotopy groups {πi(Yj)}j≥0,i≥1.

Then, [BF78, Theorem B.4] (resp. the main theorem of [And78]) asserts that if a
map Y → Z in sS has that

• the induced map π0(Y )→ π0(Z) lies in FKQ ⊂ sSet and

• both Y and Z satisfy the π∗-Kan condition (resp. both Π≥1(Y ) and Π≥1(Z)
are fully fibrant),

then the map Y → Z is a realization fibration (in the sense of Remark 1.6.12).
In light of Proposition 1.6.10 and Remark 1.6.11, it appears quite likely that these

results are actually somehow secretly asking for the map Y → Z to be a fibration
between fibrant objects, i.e. to lie in Ff

KQ ⊂ sS.12

11This additional requirement can be rephrased as requiring that the simplicial groupoid be
fibrant in s(Gpdcan)Reedy, the Reedy model structure built on the canonical model structure on Gpd
(which explains the presence of the word “fibrant” in the terminology “fully fibrant”). In turn,
the canonical model structure, which in fact seems to have first appeared in [And78, §5], has that
Wcan ⊂ Gpd consists of the equivalences of groupoids, Ccan ⊂ Gpd consists of those maps that
are injective on objects, and Fcan ⊂ Gpd consists of the isofibrations (i.e. those maps satisfying an
“isomorphism lifting property”).

12Anderson’s notion of an epifibration (introduced in [And78, §6]) provides a model-categorical
counterpart to our notion of a fibration in sSKQ (recall Remark 1.0.1), via which observation
[And78, Theorem 6.2] appears to more-or-less imply Corollary 1.6.7. Unfortunately, there seem to
be a number of issues with the proof given there. For instance, the two paragraphs following the
statement imply that epifibrations present maps in sS which have not just rlp(JKQ) but also have
rlp(IKQ). And then, the last sentence of the fourth paragraph of the proof of [And78, Lemma 6.5]
has a counterexample given by the inclusion ∆{i} ⊂ Λni .
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Both Bousfield–Friedlander and Anderson give classes of examples where their
respective criteria hold:

• on the one hand, Y ∈ sS satisfies the π∗-Kan condition

– if each Yn ∈ S is connected, or

– if each Yn ∈ S is simple and for all i ≥ 1 the map

[Si, Y•]
lw
S → [ptS, Y•]

lw
S
∼= π0(Y )

lies in FKQ ⊂ sSet, so in particular

∗ if it can be presented by a bisimplicial group,

while

• on the other hand, Y ∈ sS has that Π≥1(Y ) is fully fibrant

– if each Yn ∈ S is connected,

– if it lies in sSet ⊂ sS, or

– if it can be presented by a simplicial topological group.

Remark 1.6.14. It is well known that for a simplicial space which is levelwise con-
nected, taking loopspaces (with respect to any compatible choices of basepoints)
commutes with geometric realization. (This follows from the results discussed in Re-
mark 1.6.13, see e.g. [GJ99, Corollary IV.4.11].) In fact, any pullback in sS in which
the common target in the cospan is levelwise connected commutes with geometric
realization (see Lemma A.5.5.6.17). Of course, there are many interesting simplicial
spaces which are not levelwise connected – for instance, any nontrivial simplicial set
– and so this result is of somewhat limited use when manipulating simplicial spaces
and their geometric realizations.

Remark 1.6.15. There are two papers which study certain classes of maps which are
closely related to our notion of a fibration in sSKQ.

• In [Sey80], Seymour studies a continuous lifting condition – that is, an enriched
lifting condition with respect to the enrichment of sTop over Top – declaring

that a map x
i−→ y has the “left lifting property” with respect to a map z

p−→ w
if the induced map

homsTop(y, z)→ homFun([1],sTop)(i, p)

admits a section (instead of just being surjective). A “Kan fibration” in this
sense – which for disambiguation we’ll refer to as an “S-Kan fibration” – is
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then defined to be a map in sTop which satisfies this cotinuous right lifting
property against the usual set of horn inclusions JKQ = {Λn

i → ∆n}0≤i≤n≥1

in sSet ⊂ sTop. Thus, aside from issues of homotopy coherence (which can
presumably be handled using an appropriate model structure on sTop (recall
Remark 1.0.1)), it appears that these morphisms present a strict subset of those
in the subcategory FKQ ⊂ sS of fibrations.

The main result is then that S-Kan fibrations are stable under taking the
internal hom into them from any other object; taking that source object to be
∆1 ∈ sSet ⊂ sTop, a “covering homotopy theorem” immediately follows (see
[Sey80, Theorems 4.1 and 4.2]). Morally speaking, this is the case because the
“acyclic cofibrations” in this setup are closed under taking the product with
any identity map, a fact which is not true in sSKQ (but see Speculation 1.2.33
for an explanation of why this feature is in a certain sense undesirable).

• In [BS89], Brown–Szczarba study a continuous lifting condition which is similar
to that of [Sey80] but is yet more restrictive: they additionally require lifting
for all “sub-horns” (see [BS89, Definition 6.1]). Thus, it appears that their
resulting “fibrations” – which for disambiguation we’ll refer to as “BS-Kan
fibrations” – present a strict subset of even those morphisms in sS which are
presented by S-Kan fibrations.

First of all, Brown–Szczarba prove an analogous result to Seymour’s (see [BS89,
Theorem 6.2]). Moreover, given a BS-Kan object Y• ∈ sTop equipped with a

basepoint ptsTop

y−→ Y•, they define its “homotopy groups” to be those of the
underlying pointed simplicial set, so that πn(Y, y) is a quotient of the subset

{yn ∈ Yn : δn0 (yn) = δn1 (yn) = · · · = δnn(yn) = y} ⊂ Yn,

but is additionally topologized via the quotient topology. With respect to these
homotopy groups, they obtain a “continuous long exact sequence associated to
a fibration of Kan simplicial topological spaces” (in which the (strict) fiber is
also a BS-Kan object) (see [BS89, Theorem 6.5 and Proposition 6.6]). They
also develop notions of continuous (singular and de Rham) cohomology and of
real homotopy type. Of course, all but the first of these accomplishments lie
outside of the scope of what we seek to achieve here (and a comparison of the
first with the present work is no different from that given above).

1.6.3 The Ex∞ functor

We now return to the general theory. In the proof of Proposition 1.7.2 we will need
to have a version of the Ex∞ functor for simplicial spaces, so we take a moment to
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develop that now. For simplicial sets, this was originally defined and explored in
[Kan57, §3-4]; it is developed in more modern terminology in [GJ99, §III.4].

Definition 1.6.16. Recall that any ∆n ∈ sSet admits a subdivision , denoted
sd(∆n) ∈ sSet; this is the nerve of its poset of nondegenerate simplices. Recall
further that this admits a map sd(∆n)→ ∆n, called the last vertex map, induced
by the map of posets given by taking a simplex to its last vertex. Recall still further
that we can extend this definition to any K ∈ sSet by defining

sd(K) = colim
(∆n→K)∈

(
∆ ×
sSet

sSet/K

) sd(∆n),

and that we obtain an induced last vertex map sd(K) → K. We now extend this
even further to any Y ∈ sS by defining

sd(Y ) = colim
(∆n→Y )∈

(
∆×
sS
sS/Y

) sd(∆n);

in the same way, this also admits a last vertex map sd(Y )→ Y . Note that this does
indeed extend the functor sd : sSet → sSet, as sSet ⊂ sS is a full subcategory (so
that for any K ∈ sSet ⊂ sS, we have an equivalence

∆ ×
sSet

sSet/K
∼−→∆×

sS
sS/K

of ∞-categories). This clearly defines a functor sd : sS→ sS.

Definition 1.6.17. We define the extension of Y ∈ sS to be the object Ex(Y ) ∈ sS
defined by Ex(Y )n = homsS(sd(∆n), Y ), with simplicial structure maps corepresented
by the cosimplicial structure maps of sd(∆•) ∈ c(sSet). This defines a functor
Ex : sS → sS, which extends the usual functor Ex : sSet → sSet (again since
sSet ⊂ sS is a full subcategory).

Notation 1.6.18. For any i ≥ 0, we write sdi = sd◦i and Exi = Ex◦i for the iterated
composites of the indicated endofunctors on sS of Definition 1.6.16.

Lemma 1.6.19. The functors sd and Ex define an adjunction sd : sS � sS : Ex,
and hence the functors sdi and Exi define an adjunction sdi : sS� sS : Exi for any
i ≥ 0.

Proof. The first statement follows directly from the definitions and the fact that, as
in any presheaf category, any Y ∈ sS = Fun(∆op, S) is recoverable as a colimit

Y ' colim
(∆n→Y )∈

(
∆×
sS
sS/Y

) ∆n
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of representable presheaves. The second statement is obtained by composing the
adjunction i times.

Notation 1.6.20. By Lemma 1.6.19, for any Y ∈ sS the last vertex map sd(Y )→ Y
is adjoint to a map Y → Ex(Y ). We write

Ex∞(Y ) = colim(Y → Ex(Y )→ Ex2(Y )→ · · · ).

This defines an endofunctor Ex∞ : sS→ sS.

Remark 1.6.21. Using the classical theory of sSetKQ, we can see that Ex∞ cannot
be a right adjoint. For instance, it does not commute with the countably infinite
product of copies of the “simplicial infinite line”, i.e. the nerve of the poset (Z,≤).
(This product is not acyclic, but the countably infinite product of any acyclic Kan
complexes is again acyclic.)

We now give the result which we will need in the proof of Proposition 1.7.2.

Proposition 1.6.22. For any Y ∈ sS, Ex∞(Y ) ∈ sSfKQ.

Proof. The proof of [GJ99, Lemma III.4.7], given as it is by a universal computation
involving the map Λn

i → ∆n, works equally well in our setting to show that for any
Y ∈ sS and for any map Λn

i → Ex(Y ), there exists an extension

Λn
i Ex(Y )

∆n Ex2(Y ).

By Corollary 1.5.3, it follows that Ex∞(Y )→ ptsS is in rlp(JKQ), i.e. that Ex∞(Y ) ∈
sSfKQ.

Remark 1.6.23. Many of the usual results regarding the classical endofunctors sd :
sSet→ sSet and Ex : sSet→ sSet extend to our setting.

For instance, the functor Ex∞ : sS → sS (with its canonical map from idsS) is
a fibrant replacement functor in sSKQ. To see this, in light of Proposition 1.6.22
it suffices to show that the map Y → Ex∞(Y ) is in WKQ. Since the subcategory
WKQ ⊂ sS is closed under transfinite composition, it suffices to show that the map
Y → Ex(Y ) is in WKQ. For this, we first use the small object argument to produce
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a map Y ′ → Y in sS that has rlp(IKQ) with Y ′ ∈ sSet ⊂ sS. Then, we see that the
map Ex(Y ′)→ Ex(Y ) also has rlp(IKQ) since a commutative square

∂∆n Ex(Y ′)

∆n Ex(Y )

is adjoint to a commutative square

sd(∂∆n) Y ′

sd(∆n) Y,

rlp(IKQ)

and there is always a lift in the latter square (which is equivalent to a lift in the

former square). It follows from Proposition 1.7.2 below that we have both Y ′
≈→ Y

and Ex(Y ′)
≈→ Ex(Y ), and hence from the diagram

Y ′ Ex(Y ′)

Y Ex(Y )

≈

≈ ≈

we deduce that also Y
≈→ Ex(Y ) since WKQ satisfies the two-out-of-three property.

On the other hand, our choice to use an unenriched lifting condition (and hence
to be relatively restrictive about which maps are cofibrations) means that the map
Y → Ex(Y ) is not generally in CKQ.

From here, it is not hard to see that in fact we have a Quillen equivalence sd :
sSKQ � sSKQ : Ex. Indeed, it is straightforward to check that sd : sS→ sS preserves
both IKQ-cell and JKQ-cell, so that this adjunction is a Quillen adjunction. Then,
the condition for being a Quillen equivalence follows from the facts

• that sd(K)
≈→ K for any K ∈ sSet = sScKQ,

• that Y
≈→ Ex(Y ) for any Y ∈ sS (as shown above), and

• that WKQ ⊂ sS satisfies the two-out-of-three property.

One can similarly verify using standard arguments that Ex∞ preserves FKQ, finite
limits, filtered colimits, and 0th spaces.
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1.7 The proof of the Kan–Quillen model

structure

We now turn to the components of the proof of the main result of this chapter,
Theorem 1.4.4. Recall that this appeals to the recognition theorem for cofibrantly
generated model ∞-categories (1.3.11); we verify the various criteria in turn, as
itemized in the proof of Theorem 1.4.4 above.

Proposition 1.7.1. JKQ-cof ⊂ (I-cof ∩W)KQ.

Proof. First, since JKQ ⊂ IKQ-cell, then JKQ-inj ⊃ (IKQ-cell)-inj = IKQ-inj, so
JKQ-cof ⊂ IKQ-cof. So it remains to show that JKQ-cof ⊂WKQ.

To show that JKQ-cof ⊂WKQ, we claim that it suffices to show that JKQ-cell ⊂
WKQ; more precisely, we claim that any map in JKQ-cof is a retract of a map in
JKQ-cell, and so the result follows from the fact that WKQ is closed under retracts.
Indeed, by Corollary 1.5.3, we can apply the small object argument for JKQ to any
map in JKQ-cof to factor it as a map in JKQ-cell followed by a map in JKQ-inj. Then,
by the retract argument (in the form of [Hir03, Proposition 7.2.2(1)], whose proof
for 1-categories carries over verbatim to ∞-categories), it follows that the original
map in JKQ-cof is a retract of the map in JKQ-cell.

Finally, to see that JKQ-cell ⊂WKQ, since a sequential colimit of equivalences is
an equivalence, by transfinite induction it suffices to show that if we have a pushout
square

Λn
i Y

∆n Z

in sS, then |Y | ∼−→ |Z| in S. But this follows from the fact that geometric realization
(being a colimit) commutes with pushouts, so the induced square

|Λn
i | |Y |

|∆n| |Z|

∼

is a pushout in S.

Proposition 1.7.2. IKQ-inj ⊂ (J-inj ∩W)KQ.
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Proof. First, since JKQ ⊂ IKQ-cell, then IKQ-inj = (IKQ-cell)-inj ⊂ JKQ-inj. So it
remains to show that IKQ-inj ⊂WKQ.

So, suppose that the map Y → Z is in IKQ-inj, i.e. that it has rlp(IKQ). By
Lemma 1.5.1, it suffices to show that any diagram

Sn−1 |Y |

ptS |Z|

in S admits a lift, for any n ≥ 0. Using the observation in Remark 1.5.5, by
Lemma 1.5.4 there exists a factorization ∅sSet → K

≈→ (∆n−1/∂∆n−1) in sSetKQ

and a map K → Y in sS presenting the upper map in this diagram, where K has
only finitely many nondegenerate simplices.

Now, the above diagram gives us a nullhomotopy of the composite Sn−1 ' |K| →
|Y | → |Z| in S, and we would like to extend the composite K → Y → Z over
a cofibration from K into a acyclic object of sSetKQ in a way which presents this
nullhomotopy. To do this, we write M = (K × ∆1)/(K × ∆{1}) (with its natural
inclusion K ∼= K × ∆{0} � M in sSetKQ), and then by Proposition 1.6.22 and
Corollary 1.6.2 we conclude that there must exist an extension

K Z Ex∞(Z)

M

in sSKQ modeling the above nullhomotopy. However, since M also has only finitely
many nondegenerate simplices, then by Lemma 1.5.2 there must exist a factorization

K L Exi(Z) Ex∞(Z)

M

for some i <∞. Via the adjunction sdi : sS� sS : Exi of Lemma 1.6.19, the above
extension yields the extension

sdi(K) K

sdi(M) Z

≈
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in sSKQ, and plugging this back into the original diagram gives us the diagram

sdi(K) K Y

sdi(M) Z

≈

in sSKQ. Now, since by assumption Y → Z has rlp(IKQ), then there must exist a lift

sdi(K) K Y

sdi(M) Z

≈

in sSKQ, and upon extracting the outer rectangle and taking geometric realizations,
this yields the desired lift

Sn−1 |Y |

ptS |Z|

in S.

Remark 1.7.3. In the same spirit as Remark 1.6.13, the criterion of Proposition 1.7.2
is comparable to the lifting criterion coming from the generating cofibrations in the
Moerdijk model structure on ssSet (originally introduced in [Moe89, §1], but see also
[GJ99, §IV.3.3]). However, to actually make a direct comparison requires a bit of
care, and so we explain this in some detail.

First of all, the diagonal functor diag : ∆op → ∆op ×∆op induces an adjunction
diag! : sSet � ssSet : diag∗, and the Moerdijk model structure on ssSet is induced
by the standard lifting theorem (on which Theorem 1.3.12 is based) applied to the
model structure sSetKQ; in fact, this yields a Quillen equivalence diag! : sSetKQ �
ssSetMoer : diag∗. Denoting the external product by −�̂− : sSet× sSet→ ssSet, the
generating cofibrations for this model structure are thus given by

IssSet
Moer = {diag!(∂∆n → ∆n)}n≥0 = {∂∆n�̂∂∆n → ∆n�̂∆n}n≥0,

and we have that rlp(IssSet
Moer) ⊂WssSet

Moer.
Next, recall that we can present the ∞-category sS using the model category

s(sSetKQ)Reedy. Thus, any map Y → Z in sS can be presented as a map Y → Z in
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s(sSetKQ)Reedy. If the latter map happens to have rlp(IssSet
Moer), then we will have that

the induced map diag∗(Y) → diag∗(Z) will be in WsSet
KQ ; since in s(sSetKQ)Reedy the

diagonal always computes the homotopy colimit (see e.g. [GJ99, Exercise IV.1.6] or
Example T.A.2.9.31), then this map in sSetKQ presents the map |Y | → |Z| in S,
which is therefore an equivalence.

Now, observe that the maps in IssSet
Moer are cofibrations (between cofibrant objects)

when considered in the model category s(sSetKQ)Reedy. Moreover, note that if

• the maps A
i−→ B and Y

p−→ Z in sS are respectively presented by the maps

A
i
� B and Y

p

� Z in s(sSetKQ)Reedy,

• Z ∈ s(sSetKQ)fReedy, and

• p ∈ rlp({i}) in sS,

then p ∈ rlp({i}) in s(sSet). (This follows from the fact that under these hypotheses,
the model category (s(sSetKQ)Reedy)A//Z presents the ∞-category sSA//Z .) Together,
these imply that if the map Y → Z in sS has the right lifting property against the
set

IsSMoer = {Sn−1 � ∂∆n → ptS �∆n}n≥0 = {Sn−1 � ∂∆n → ∆n}n≥0,

then it can be presented by a map Y→ Z in the model category s(sSetKQ)Reedy which
has rlp(IssSet

Moer), and therefore |Y | ∼−→ |Z| in S. Hence, we obtain that rlp(IsSMoer) ⊂
WKQ. This, finally, allows us to make a direct comparison.

Of course, what we come to see now is that it appears much easier to have rlp(IsSKQ)

than to have rlp(IsSMoer). The sets IsSMoer and IsSKQ of homotopy classes of maps in sS are
illustrated in Figure 1.6, in which the various shapes and their positions are meant
to vaguely indicate the different simplicial levels at which these spaces live as well as
the simplicial structure maps between them:

• the maps in IsSMoer are obtained by simultaneously coning off a ∂∆n worth of
(n − 1)-spheres and adding a new nondegenerate point in the nth simplicial
level, while

• the maps in IsSKQ are simply maps of discrete simplicial spaces.

In particular, the maps in IsSMoer have real homotopical content, and thus it appears
that checking that a map has rlp(IsSMoer) is indeed much more difficult than checking
that it has rlp(IsSKQ).

Remark 1.7.4. There is also the “W model structure” on ssSet of [CR07], which
admits a left Quillen equivalence to ssSetMoer (see [CR07, Theorem 9]). However,
this is of course also inherently 1-categorical, and hence any ∞-categorical lifting
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criteria that come of it will likewise necessarily contain far more geometric content
than the maps in IKQ (compare with Remarks 1.7.3 and 1.7.5).

Remark 1.7.5. If one thinks of the 1-category of topological spaces or of simplicial sets
in place of the∞-category S, then Proposition 1.7.2 may seem somewhat implausible.
For instance, the functor disc : sSet → sS of ∞-categories is modeled in RelCatBK

by an evident functor const : sSettriv → s(sSetKQ)Reedy. On underlying 1-categories,
this functor participates in an adjunction const : sSet � ssSet : ((−)0)lw with the
“levelwise 0-simplices” functor, which takes each constituent simplicial set to its set
of 0-simplices. This right adjoint clearly doesn’t know anything about the higher
homotopical information in the bisimplicial set, and in particular cannot recover
its geometric realization. Hence, one might deduce that asking for the right lifting
property in sS against maps in the image of disc : sSet→ sS could not possibly tell
us about the functor |−| : sS→ S. However, asking for the 0-simplices of a simplicial
set isn’t a homotopical operation in sSetKQ, and so we cannot expect this maneuver
to tell us anything ∞-categorical. Indeed, the above right adjoint is certainly not a
relative functor, nor is it even a right Quillen functor (with respect to the indicated
model structures), corresponding to the fact that the functor disc : sSet → sS isn’t
a left adjoint.

Example 1.7.6. For a concrete nonexample of Proposition 1.7.2, we show that the
map const(S1) → const(ptS) ' ptsS in sS (which is not in WKQ) does not have
rlp({∂∆2 → ∆2}). This illustrates the capability of “simplicial” spheres to detect
“geometric” spheres in sSKQ.

The quickest way to proceed is to use the adjunction |−| = colim : sS� S : const.
This gives a canonical commutative square

∂∆2 const(S1)

∆2 const(ptS)

in sS which corresponds to the evident commutative square

|∂∆2| S1

|∆2| ptS

∼

∼

in S. Moreover, a lift in either square yields a lift in the other, but a lift in the latter
diagram would imply that its vertical maps are also equivalences, which is clearly
false.
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But we can also describe the above commutative square in sS more explicitly.
Namely, we can define the upper map ∂∆2 → const(S1) in sS by giving a weak
natural transformation of simplicial topological spaces, as illustrated in Figure 1.7
(using the same schematics as were employed in Figure 1.6). Let us parametrize the
circle as the group-theoretic quotient R/Z. Then, we begin at level 0 by sending
∆{0} to 0, ∆{1} to 1/3, and ∆{2} to 2/3. Since ∂∆2 is 1-skeletal, it remains to fill in
the commutative diagram

L1(∂∆2) (∂∆2)1 M1(∂∆2)

L1(const(S1)) const(S1)1 M1(const(S1))

in S. To do this, we map the degenerate elements of (∂∆2)1 so that the left square
commutes on the nose. Then, we map the nondegenerate elements of (∂∆2)1 to
const(S1)1 = S1 by sending ∆{01} to 1/6, sending ∆{12} to 1/2, and sending ∆{02}

to 5/6. To select a homotopy witnessing the homotopy commutativity of the right
square, for i 6= j we choose the evident paths of length 1/6 from the image of each ∆{ij}

to the images of ∆{i} and ∆{j} (as indicated by the squiggly arrows in Figure 1.7).
Again, it is clear that this map cannot be extended over ∆2.13

Remark 1.7.7. In the proof of Proposition 1.7.2 above, one might be tempted to
apply the small object argument for IKQ to the map K → Z to obtain a factorization
K → L → Z with the map K → L in IKQ-cell (so that L ∈ sSet ⊂ sS) and with
the map L → Z in IKQ-inj; then, we could proceed with the proof using standard
techniques in sSetKQ, using L ∈ sSetKQ as a replacement for Z ∈ sSKQ. If this
worked, it would allow us to sidestep the extension of the functor Ex∞ from sSet to
sS. However, such an argument would be circular: we can certainly obtain such a
factorization K → L→ Z, but to conclude that the map L→ Z is in WKQ because
it is in IKQ-inj uses precisely the result that we are trying to prove.

Remark 1.7.8. Whereas Proposition 1.7.2 only allows us to detect acyclic fibrations
in sSKQ, the “weak equivalence criterion” of [BEBdBP, 30.10] gives a complete char-

acterization of the subcategory Wf
KQ ⊂ sS of weak equivalences between fibrant

objects (and thence also a complete (albeit rather abstract) characterization of the
entire subcategory WKQ ⊂ sS of weak equivalences).

13This can also be realized as an actual natural transformation of simplicial topological spaces
if we’re willing to use a fatter model for the object ∂∆2 ∈ sS, despite the fact that the simplicial
topological space which is constant at the circle isn’t actually fibrant in the corresponding Reedy
model structure.
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In contrast with Remark 1.7.7, now that we have Proposition 1.7.2 in hand, we
can use this technique of reducing to sSetKQ. We employ it in proving the following
result, the last of this section.

Proposition 1.7.9. (J-inj ∩W)KQ ⊂ IKQ-inj.

Proof. Suppose that the map Y → Z in sS has rlp(JKQ) and geometrically realizes
to an equivalence in S. We must show that Y → Z also has rlp(IKQ), i.e. that any
commutative square

∂∆n Y

∆n Z

in sS admits a lift, for any n ≥ 0. We argue by constructing the diagram (and in
particular the dotted arrow, which solves the above lifting problem) in sSKQ given
in Figure 1.8, beginning with only the outermost square. For clarity, we proceed in
steps.

(1) We use the small object argument for IKQ to obtain the the factorization
∂∆n � Y ′ → Y in sSKQ, where Y ′ ∈ sSet ⊂ sS and the latter map has
rlp(IKQ); by Proposition 1.7.2, this latter map is also in WKQ.

(2) We use the small object argument for IKQ to obtain the factorization Y ′ �
Z ′ → Z in sSKQ of the composite map Y ′ → Y → Z, where Z ′ ∈ sSet ⊂ sS
and the latter map has rlp(IKQ); again by Proposition 1.7.2, this latter map is
also in WKQ.

(3) Since the map Z ′ → Z has rlp(IKQ), we are guaranteed a lift in the square

∂∆n Y ′ Z ′

∆n Z.

rlp(IKQ)

(4) We use the small object argument for JKQ to obtain the factorization Y ′
≈
�

Y ′′ � Z ′ in sSetKQ ⊂ sSKQ of the map Y ′ → Z ′.
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(5) Since the map Y → Z has rlp(JKQ), we are guaranteed a lift in the square

Y ′ Y

Y ′′ Z ′ Z.

≈

≈

rlp(JKQ)

Since WKQ has the two-out-of-three property, then this lift is in WKQ.

(6) Again since WKQ has the two-out-of-three property, the map Y ′′ → Z ′ must
be in WKQ.

(7) In sSetKQ we have that (W ∩ F)sSet
KQ = rlp(IsSet

KQ ), so we must have a lift in the
square

∂∆n Y ′ Y ′′

∆n Z ′,

≈

which gives us the dotted arrow in the diagram in Figure 1.8.

1.8 The proof of Lemma 1.5.4

We now give the proof of Lemma 1.5.4, completing the proof of Theorem 1.4.4.

Proof of Lemma 1.5.4. We begin by observing that we have L′
≈→ L in sSetKQ (for

any choice of i ≥ 0) because this model category is left proper, so that these objects
are both homotopy pushouts.

To prove the rest of the statement, we proceed in steps for clarity. To fix notation,
suppose that the chosen point of the pullback selects a pair of maps

(ϕ, ε) ∈ homsS(K,W )× homS(|L|, |W |).

We present the∞-category sS via the model category s(sSetKQ)Reedy, and we denote
by const : sSettriv → s(sSetKQ)Reedy the evident right Quillen functor modeling the
right adjoint disc : sSet→ sS (though we will continue to suppress the latter).

(1) We choose an arbitrary fibrant representative W ∈ s(sSetKQ)fReedy for the object

W ∈ sS, and then we choose an arbitrary map const(K)
φ−→ W in s(sSetKQ)Reedy

which presents the map K
ϕ−→ W in sS.



135

(2) Recall that the diagonal functor diag : ∆op →∆op×∆op induces an adjunction

diag! : sSet� ssSet : diag∗.

Applying its right adjoint to φ yields a map

K ∼= diag∗(const(K))
diag∗(φ)−−−−→ diag∗(W)

in sSet. Since this right adjoint diag∗ : s(sSetKQ)Reedy → sSetKQ is a rela-
tive functor (see e.g. [GJ99, Proposition IV.1.9]) and considered in RelCatBK

models the functor |−| : sS → S (see e.g. [GJ99, Exercise IV.1.6] or Example

T.A.2.9.31), then the map diag∗(φ) in sSetKQ models the map |K| |ϕ|−→ |W | in
S.

(3) By assumption, we have an extension

|K| |W |

|L|

|ϕ|

ε

in S. Since the∞-category S|K|/ is presented by the model category (sSetK/)KQ,
then this can be modeled as an extension

∂∆n K diag∗(W)

∆n L Ex∞(diag∗(W))

diag∗(φ)

≈

ε

in sSetKQ. To simplify our diagrams we will henceforth omit L, since it’s
defined as a pushout anyways.

(4) Recall that the map diag∗(W)
≈→ Ex∞(diag∗(W)) is defined as a transfinite com-

position
diag∗(W)

≈→ Ex(diag∗(W))
≈→ Ex2(diag∗(W))

≈→ · · ·
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in sSetKQ. Since ∆n is small as an object of sSet∂∆n/, there must exist a
factorization

∂∆n K diag∗(W)

∆n Exi(diag∗(W))

Ex∞(diag∗(W))

diag∗(φ)

≈
≈

in sSetKQ for some i <∞.

(5) Via the adjunction sdi : sSet� sSet : Exi, the extension in step (4) is equiva-
lent to the extension

sdi(∂∆n) ∂∆n K diag∗(W)

sdi(∆n) ∆n,

diag∗(φ)

i.e. an extension

K diag∗(W).

L′

diag∗(φ)

(6) Via the adjunction diag! : sSet � ssSet : diag∗, the extension in step (5) is
equivalent to the extension

diag!(sd
i(∂∆n)) diag!(∂∆n) diag!(K) W.

diag!(sd
i(∆n)) diag!(∆

n).

diag∗(φ)]
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(7) The diagram in step (6) extends to a diagram

diag!(sd
i(∂∆n)) diag!(∂∆n) diag!(K) W

const(sdi(∂∆n)) const(∂∆n) const(K)

diag!(sd
i(∆n)) diag!(∆

n)

const(sdi(∆n)) const(∆n)

diag∗(φ)]

φ

in s(sSetKQ)Reedy, in which all unlabeled oblique arrows are components of the
natural transformation

diag!
∼= diag!diag∗const→ const

in Fun(sSet, ssSet) induced by the counit of the adjunction diag! a diag∗;
indeed, the counit is initial among maps of the form diag∗(−)].

(8) The map diag!(sd
i(∆n))→ const(sdi(∆n)) in the diagram of step (7) is a weak

equivalence in s(sSetKQ)Reedy by Lemma 1.8.1 below. Hence, upon applying
the localization s(sSetKQ)Reedy → sS to that diagram, we obtain the desired
extension

sdi(∂∆n) ∂∆n K W

sdi(∆n) ∆n

ϕ

in sS. (Working back through the proof, it is clear that this does indeed model
the extension

|K| |W |

|L′| |L|

|ϕ|

∼

ε
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in S.)

Lemma 1.8.1. For any acyclic object M ∈ sSetKQ, the component

diag!(M) ∼= diag!(diag∗(const(M)))→ const(M)

of the counit of the adjunction diag! : sSet � ssSet : diag∗ is a weak equivalence in
s(sSetKQ)Reedy.

Proof. We begin by choosing a presentation of M as a transfinite composition of
pushouts of the generating acyclic cofibrations JKQ = {Λn

i → ∆n}0≤i≤n≥1. Note
that diag! is a left adjoint, so it commutes with pushouts; thus, this also gives
us a presentation of diag!(M) as a transfinite composition of pushouts of maps in
diag!(JKQ) = {diag!(Λ

n
i )→ diag!(∆

n)}0≤i≤n≥1.
We now argue by transfinite induction. Clearly the result holds if M = ∆0. To

obtain the inductive step at any successor ordinal, we will show below that we have
a commutative square

diag!(Λ
n
i ) const(Λn

i )

diag!(∆
n) const(∆n)

≈

≈

in s(sSetKQ)Reedy. Then, since s(sSetKQ)Reedy is left proper (for instance because all
its objects are cofibrant), the induced map between the pushouts of the front and
back faces in the diagram

const(Λn
i ) const(M)

diag!(Λ
n
i ) diag!(M)

const(∆n)

diag!(∆
n)

≈ ≈

≈

in s(sSetKQ)Reedy will again be a weak equivalence. To obtain the inductive step at
any limit ordinal, we observe that both colimits and weak equivalences in s(sSetKQ)Reedy

are defined levelwise, and that weak equivalences in sSetKQ are closed under transfi-
nite composition (for instance by arguments in the style of steps (3)-(5) in the proof
of Lemma 1.5.4 above).
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So, it only remains to show that we have a commutative square in s(sSetKQ)Reedy

as claimed above. We verify the illustrated assertions in turn.

• Both vertical maps are monomorphisms and hence are cofibrations in s(sSetKQ)Reedy.

• We have an isomorphism diag!(∆
n) ∼= ∆n�̂∆n, under which identification the

lower map is given by ∆n�̂∆n → ∆n�̂∆0. In level j this is just the map∐
(∆n)j

∆n →
∐

(∆n)j
∆0, which is a weak equivalence in sSetKQ. So the lower

map is indeed a weak equivalence in s(sSetKQ)Reedy.

• To see that the upper map is also a weak equivalence, we recall the explicit
description of diag!(Λ

n
i ) (given both in the proof of [Moe89, Lemma 1.3] and

in the text leading up to [GJ99, Lemma IV.3.10]), that

diag!(Λ
n
i )j,k ∼=

(α, β) ∈ hom∆([j], [n])× hom∆([k], [n]) :

there exists some
l ∈ [n] with l 6= i

which is not in the
image of α or β

 .

For any fixed j ≥ 0, we must show that the map diag!(Λ
n
i )j → const(Λn

i )j
is a weak equivalence in sSetKQ. The latter object is discrete (i.e. its only
nondegenerate simplices are 0-simplices), and so this is equivalent to showing
that the preimage of each such 0-simplex is acyclic in sSetKQ. Such a 0-simplex
is precisely the datum of a map α ∈ hom∆([j], [n]) ∼= homsSet(∆

j,∆n) whose
image on 0-simplices does not cover (∆n)0\{∆{i}}. Define the subset T ⊂ (∆n)0

to be the union of {∆{i}} and the image of α, and let T c ⊂ (∆n)0 be its
complement. Then, the preimage of the 0-simplex of const(Λn

i )j corresponding
to α is the subobject of ∆n ∈ sSet consisting of those simplices whose 0-
simplices do not contain all of T c ⊂ (∆n)0, which is indeed acyclic in sSetKQ

since T c is nonempty.

Remark 1.8.2. Lemma 1.8.1 fails drastically if we do not assume that M ∈ sSetKQ is
acyclic. In fact, in Remark 1.7.3, the stark difference between the sets of homotopy
classes of maps IsSMoer and IsSKQ in sS is precisely due to the difference between (the

weak equivalences classes of) the objects diag!(∂∆n) ∼= ∂∆n�̂∂∆n and const(∂∆n)
in s(sSetKQ)Reedy.

Remark 1.8.3. Using the arguments of Remark 1.7.3, one can use Lemma 1.8.1 to
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give an alternative proof of Corollary 1.6.7. The key point is that we have a diagram

diag!(Λ
n
i ) const(Λn

i )

diag!(∆
n) const(∆n)

≈

≈

in s(sSetKQ)Reedy. Hence, if the map Y → Z in sS has rlp(JKQ), then it can be pre-
sented by a fibration Y� Z in s(sSetKQ)Reedy that additionally has rlp(diag!(J

sSet
KQ )),

i.e. that is also in FssSet
Moer. Since both s(sSetKQ)Reedy and ssSetMoer are right proper,

it follows that all pullbacks of the map Y → Z in ssSet simultaneously compute
homotopy pullbacks in both model structures.
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∂∆n Fz Y

(∆n)′ ∆n

(∆n)′′′ (∆n)′′

∆0 ptsS Z

rlp(JKQ)

≈

≈

≈

≈

≈ ≈

∼ z

Figure 1.2: The diagram in sSKQ used in the proof of Proposition 1.6.5.

|∂∆n| |Fz| |Y |

|(∆n)′| |∆n| F|z|

|(∆n)′′′| |(∆n)′′|

|∆0| |ptsS| |Z|,

∼

∼∼

∼

∼ ∼

∼ |z|

Figure 1.3: The diagram in S used in the proof of Proposition 1.6.5.
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|Y |

|(∆n)′| |∆n| F|z|

|(∆n)′′|

|∆0| |ptsS| |Z|

∼

∼

∼

∼ |z|

Figure 1.4: The subdiagram of the diagram in S of Figure 1.3 used in part (4) of the
proof of Proposition 1.6.5.

∂∆n Fz Y

(∆n)′′′

∆0 ptsS Zz

Figure 1.5: The subdiagram of the diagram in sS of Figure 1.2 used in part (7) of
the proof of Proposition 1.6.5.

IsSMoer
IsSKQ

Sn−1 � ∂∆n ∆n ∂∆n ∆n

Figure 1.6: The maps in IsSMoer and IsSKQ at n = 2.
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∆{0}

∆{01}∆{1}

∆{12}

∆{2} ∆{02}

Figure 1.7: A weak natural transformation of simplicial topological spaces from ∂∆2

to const(S1).

∂∆n Y

Y ′

Y ′′

Z ′

∆n Z

rlp(JKQ)

≈

≈

≈
rlp(IKQ)

≈

≈

rlp(IKQ )≈

Figure 1.8: The diagram in sSKQ used in the proof of Proposition 1.7.9.
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Chapter 2

The universality of the Rezk nerve

In this chapter, we functorially associate to each relative ∞-category (R,W) a sim-
plicial space NR

∞(R,W), called its Rezk nerve (a straightforward generalization of
Rezk’s “classification diagram” construction for relative categories). We prove the
following local and global universal properties of this construction: (i) that the com-
plete Segal space generated by the Rezk nerve NR

∞(R,W) is precisely the one corre-
sponding to the localization RJW−1K; and (ii) that the Rezk nerve functor defines
an equivalence RelCat∞JW−1

BKK ∼−→ Cat∞ from a localization of the ∞-category of
relative ∞-categories to the ∞-category of ∞-categories.

2.0 Introduction

2.0.1 The Rezk nerve

A relative∞-category is a pair (R,W) of an∞-category R and a subcategory W ⊂ R

containing all the equivalences, called the subcategory of weak equivalences. Freely
inverting the weak equivalences, we obtain the localization of this relative∞-category,
namely the initial functor

R→ RJW−1K

from R which sends all maps in W to equivalences. In general, it is extremely difficult
to access the localization.1 To ameliorate this state of affairs, in this chapter we

1For instance, even in the case that R is a one-object 1-category and we are only interested in
its 1-categorical localization, i.e. the composite R → RJW−1K → ho(RJW−1K) ' R[W−1] – that
is, in the case that we are interested in freely inverting certain elements of a monoid –, obtaining
a concrete description is nevertheless an intractable (in fact, computationally undecidable) task,
closely related to the so-called “word problem” for generators and relations in abstract algebra.
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provide a novel method of accessing this localization via Rezk’s theory of complete
Segal spaces.

To describe this, let us first recall that the ∞-category CSS of complete Segal
spaces participates in a diagram

sS CSS Cat∞.
LCSS

⊥
UCSS

N−1
∞
∼

N∞

That is, it sits as a reflective subcategory of the ∞-category sS of simplicial spaces,
and it is equivalent to the ∞-category Cat∞ of ∞-categories. In particular, one can
contemplate the complete Segal space (or equivalently, the ∞-category) generated
by an arbitrary simplicial space Y , much as one can contemplate the 1-category
generated by an arbitrary simplicial set: this is encoded by the unit

Y
η−→ LCSS(Y )

of the adjunction (where we omit the inclusion functor UCSS for brevity).
Now, given a relative∞-category (R,W), its Rezk nerve is a certain simplicial

space
NR
∞(R,W) ∈ sS

which “wants to be” the complete Segal space

N∞(RJW−1K) ∈ CSS

corresponding to its localization:

• it admits canonical maps

N∞(R)→ NR
∞(R,W)→ N∞(RJW−1K),

and moreover

• its construction manifestly dictates that for any ∞-category C, the restriction
map

homsS(N
R
∞(R,W),N∞(C))→ homsS(N∞(R),N∞(C)) ' homCat∞(R,C)

factors through the subspace (i.e. collection of path components) of those
functors R→ C sending all maps in W ⊂ R to equivalences in C.

Unfortunately, life is not quite so simple: the Rezk nerve is not generally a complete
Segal space (or even a Segal space).2 Nevertheless, the second-best-possible thing is
true.

2We provide sufficient conditions on (R,W) for its Rezk nerve NR
∞(R,W) to be a (complete)

Segal space in Chapter 4.
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Theorem (2.3.8). The above maps extend to a commutative diagram

N∞(R) NR
∞(R,W) N∞(RJW−1K)

LCSS(N∞(R)) LCSS(N
R
∞(R,W)) LCSS(N∞(RJW−1K)).

η

∼ η η

∼

∼

In other words, the complete Segal space generated by the Rezk nerve of (R,W) is
precisely the one corresponding to its localization.

This theorem provides a local universal property of the Rezk nerve: it asserts
that the composite

RelCat∞
NR
∞−−→ sS

LCSS−−→ CSS
N−1
∞−−→
∼

Cat∞

takes each relative ∞-category (R,W) to its localization RJW−1K. However, it says
nothing about the effect of this composite on morphisms of relative ∞-categories.
To this end, we also prove the following.

Theorem (2.3.9 and 2.3.11). The above composite is canonically equivalent to the
localization functor

RelCat∞ → Cat∞.

In particular, denoting by WBK ⊂ RelCat∞ the subcategory of maps which it takes
to equivalences, the above composite induces an equivalence

RelCat∞JW−1
BKK ∼−→ Cat∞.

In other words, the Rezk nerve functor does indeed functorially compute localizations
of relative ∞-categories, and moreover the induced “homotopy theory” on the ∞-
category RelCat∞ of relative∞-categories – that is, the relative∞-category structure
(RelCat∞,WBK) that results therefrom – gives a presentation of the ∞-category
Cat∞ of∞-categories. We therefore deem this result as capturing the global universal
property of the Rezk nerve.

Remark 2.0.1. The Rezk nerve functor is a close cousin of Rezk’s “classification
diagram” functor of [Rez01, 3.3]; to emphasize the similarity, we denote the latter
functor by

RelCat
NR

−−→ ssSet
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and refer to it as the 1-categorical Rezk nerve. In fact, as we explain in Remark 2.3.2,
this is essentially just the restriction of the ∞-categorical Rezk nerve functor, in the
sense that there is a canonical commutative diagram

RelCat s(sSet) sS

RelCat∞

NR s(|−|)

N
R
∞

in Cat∞. In Remark 2.3.10, we use this observation to show that our global universal
property of the ∞-categorical Rezk nerve can be seen as a generalization of work of
Barwick–Kan.

2.0.2 Outline

We now provide a more detailed outline of the contents of this chapter.

• In §2.1, we undertake a study of relative ∞-categories and their localizations.

• In §2.2, we briefly review the theory of complete Segal spaces.

• In §2.3, we introduce the Rezk nerve and state its local and global universal
properties. We give a proof of the global universal property which relies on the
local one, but we defer the proof of the local one to §2.4.

• In §2.4, we prove the local universal property of the Rezk nerve. Though much
of the proof is purely formal, at its heart it ultimately relies on some rather
delicate model-categorical arguments.
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2.1 Relative ∞-categories and their localizations

Given an ∞-category and some chosen subset of its morphisms, we are interested in
freely inverting those morphisms. In order to codify these initial data, we introduce
the following.

Definition 2.1.1. A relative ∞-category is a pair (R,W) of an ∞-category R

and a subcategory W ⊂ R, called the subcategory of weak equivalences , such that
W contains all the equivalences (and in particular, all the objects) in R. These form
the evident∞-category RelCat∞.4 Weak equivalences will be denoted by the symbol
≈→. Though we will of course write R for the ∞-category obtained by forgetting W,
to ease notation we will also sometimes simply write R for the pair (R,W). We write
RelCat ⊂ RelCat∞ for the full subcategory on those relative ∞-categories (R,W)
such that R ∈ Cat ⊂ Cat∞.

Remark 2.1.2. As we are working invariantly, our Definition 2.1.1 is not quite a gener-
alization of the 1-category RelCat as given e.g. in [BK12b, 3.1] or [LMG15, Definition
3.1], an object of which is a strict category R ∈ Cat (i.e. a simplicial set satisfying the
Segal condition (see subitem A(4)(c))) equipped with a wide subcategory W ⊂ R

(i.e. one containing all the objects). For emphasis, we will therefore sometimes refer
to objects of RelCat as strict relative categories.

In addition to being the only meaningful variant in the invariant world, Defi-
nition 2.1.1 allows for a clean and aesthetically appealing definition of localization,
namely as a left adjoint (see Definition 2.1.8). In any case, as we are ultimately only
interested in relative ∞-categories because we are interested in their localizations,
this requirement is no real loss.

Despite these differences, there is an evident functor

RelCat→ RelCat,

to which we will refer on occasion.

Notation 2.1.3. In order to disambiguate our notation associated to various relative
∞-categories, we introduce the following conventions.

4To be precise, one can view RelCat∞ ' Funsurj mono([1],Cat∞) ⊂ Fun([1],Cat∞) as the full
subcategory on those functors selecting the inclusion of a surjective monomorphism.
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• When multiple relative ∞-categories are under discussion, we will sometimes
decorate them for clarity. For instance, we may write (R1,W1) and (R2,W2)
to denote two arbitrary relative∞-categories, or we may instead write (I,WI)
and (J,WJ).

• Moreover, we will eventually study certain “named” relative ∞-categories; for
example, there is a Barwick–Kan relative structure on RelCat∞ itself (see Def-
inition 2.1.16). We will always subscript the subcategory of weak equivalences
of such a relative ∞-category with (an abbreviation of) its name; for example,
we will write WBK ⊂ RelCat∞. We may also merely similarly subscript the
ambient ∞-category to denote the relative ∞-category; for example, we will
write (RelCat∞)BK = (RelCat∞,WBK).

• Finally, there will occasionally be two different∞-categories with relative struc-
tures of the same name. In such cases, if disambiguation is necessary we will
additionally superscript the subcategory of weak equivalences with the name
of the ambient∞-category. For instance, we would write WRelCat∞

BK ⊂ RelCat∞
to distinguish it from the subcategory WRelCat

BK ⊂ RelCat.

We have the following fundamental source of examples of relative ∞-categories.

Example 2.1.4. If R → C is any functor of ∞-categories, we can define a relative
∞-category (R,W) by declaring W ⊂ R to be the subcategory on those maps that
are sent to equivalences in C. Note that W ⊂ R will automatically have the two-
out-of-three property.

Definition 2.1.5. In the situation of Example 2.1.4, we will say that the functor
R→ C creates the subcategory W ⊂ R.

We will make heavy use of the following construction.

Notation 2.1.6. Given any (R1,W1), (R2,W2) ∈ RelCat∞, we define(
Fun(R1,R2)Rel,Fun(R1,R2)W

)
∈ RelCat∞

by setting
Fun(R1,R2)Rel ⊂ Fun(R1,R2)

to be the full subcategory on those functors which send W1 ⊂ R1 into W2 ⊂ R2,
and setting

Fun(R1,R2)W ⊂ Fun(R1,R2)Rel
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to be the (generally non-full) subcategory on the natural weak equivalences.5 It is
not hard to see that this defines an internal hom bifunctor for (RelCat∞,×).

It will be useful to have the following terminology.

Definition 2.1.7. If C is any ∞-category, we call (C,C') the associated minimal
relative ∞-category and we call (C,C) the associated maximal relative ∞-
category . These define fully faithful inclusions

Cat∞ RelCat∞

min

max

⊥

⊥

which are respectively left and right adjoint to the forgetful functor RelCat∞
URel−−→

Cat∞ sending (R,W) to R. For [n] ∈∆ ⊂ Cat∞, we will use the abbreviation [n]W =
max([n]), since these relative categories will appear quite often; correspondingly, we
will also make the implicit identification [n] = min([n]).

We now come to our central object of interest.

Definition 2.1.8. The functor min : Cat∞ → RelCat∞ also admits a left adjoint

RelCat∞
L−→ Cat∞,

which we refer to as the localization functor on relative∞-categories. For a relative
∞-category (R,W) ∈ RelCat∞, we will often write RJW−1K = L (R,W); we only
write L since the notation (−)J(−)−1K is a bit unwieldy. Explicitly, its value on
(R,W) ∈ RelCat∞ can be obtained as the pushout

RJW−1K ' colim


W R

Wgpd


in Cat∞ (and the functor itself can be obtained by applying this construction in
families).

5If we consider RelCat∞ ⊂ Fun([1],Cat∞), then Fun(R1,R2)Rel is simply the ∞-category of
natural transformations.
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Remark 2.1.9. Using model categories, one can of course compute the pushout in
Cat∞ of Definition 2.1.8 by working in sSetJoyal (which is left proper), for instance
after presenting the map W→Wgpd using the derived unit of the Quillen adjunction
id : sSetJoyal � sSetKQ : id, i.e. after taking a fibrant replacement via a cofibration
in sSetKQ of a quasicategory presenting W. However, note that this derived unit
can be quite difficult to describe in practice, and moreover the resulting pushout will
generally still be very far from being a quasicategory. Equally inexplicitly, one can
also obtain a quasicategory presenting RJW−1K by computing a fibrant replacement
in the marked model structure of Proposition T.3.1.3.7 (i.e. in the specialization of
the model structure given there to the case where the base is the terminal object
ptsSet).

Remark 2.1.10. We will also use the term “localization” to refer to the canonical
map R→ RJW−1K in Cat∞ satisfying the universal property that for any C ∈ Cat∞,
the restriction

homCat∞(RJW−1K,C)→ homCat∞(R,C)

defines an equivalence onto the subspace

homRelCat∞((R,W),min(C)) ⊂ homCat∞(R,C)

of those functors which take W into C'.6 Thus, by definition the map R→ RJW−1K
is an epimorphism in Cat∞.

Example 2.1.11. The localization of a minimal relative ∞-category min(C) =
(C,C') is simply the identity functor C

∼−→ C.

Example 2.1.12. The localization of a maximal relative ∞-category max(C) =
(C,C) is the groupoid completion functor C → Cgpd (i.e. the component at C of the
unit of the adjunction (−)gpd : Cat∞ � S : US).

Example 2.1.13. Given a left localization adjunction L : C � LC : U (i.e. an
adjunction with fully faithful right adjoint), if we define W ⊂ C to be created

by C
L−→ LC, then the localization of (C,W) is precisely C

L−→ LC: that is, the

functor C
L−→ LC induces an equivalence CJW−1K ∼−→ LC, which is in fact inverse to

the composite LC
U−→ C → CJW−1K. This follows from Proposition T.5.2.7.12, or

alternatively from Lemma 2.1.24 (see Remark 2.1.25). Of course, a dual statement
holds for right localization adjunctions.

6This map can be obtained either by applying RelCat∞
L−→ Cat∞ to the counit min(R) →

(R,W) of the adjunction min a URel, or by applying RelCat∞
URel−−−→ Cat∞ to the unit (R,W) →

min(RJW−1K) of the adjunction L a min.
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For an arbitrary relative ∞-category (R,W), note that the localization map
R → RJW−1K might not create the subcategory W ⊂ R: there might be strictly
more maps in R which are sent to equivalences in RJW−1K. This leads us to the
following notion.

Definition 2.1.14. A relative ∞-category (R,W) is called saturated if the local-
ization map R→ RJW−1K creates the subcategory W ⊂ R.

Remark 2.1.15. If a relative ∞-category (R,W) ∈ RelCat∞ has its subcategory
of weak equivalences W ⊂ R created by any functor R → C, then (R,W) will
automatically be saturated. To see this, consider the induced factorization

R C

RJW−1K

in Cat∞. This implies that any morphism in R which is sent to an equivalence in
RJW−1K must also be sent to an equivalence in C (by the functoriality of inverse
morphisms), so that by definition it lies in the subcategory W ⊂ R.

Now, we will be using relative ∞-categories as “presentations of ∞-categories”,
namely of their localizations. However, a map of relative ∞-categories may induce
an equivalence on localizations without itself being an equivalence in RelCat∞. This
leads us to the following notion.

Definition 2.1.16. We define the subcategory WBK ⊂ RelCat∞ of Barwick–Kan

weak equivalences to be created by the localization functor RelCat∞
L−→ Cat∞.

We denote the resulting relative ∞-category by (RelCat∞)BK = (RelCat∞,WBK) ∈
RelCat∞.

The following result then justifies our usage of relative ∞-categories as “presen-
tations of ∞-categories”.

Proposition 2.1.17. The functors in the left localization adjunction L : RelCat∞ �
Cat∞ : min induce inverse equivalences

RelCat∞JW−1
BKK ' Cat∞

in Cat∞.

Proof. This is a special case of Example 2.1.13.
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We have the following strengthening of Remark 2.1.10.

Proposition 2.1.18. For any (R,W) ∈ RelCat∞ and any C ∈ Cat∞, the restriction

Fun(RJW−1K,C)→ Fun(R,C)

along the localization functor R → RJW−1K defines an equivalence onto the full
subcategory of Fun(R,C) spanned by those functors which take W into C'.

Proof. We begin by observing that this functor is a monomorphism in Cat∞: this is
because we have a pullback diagram

Fun(RJW−1K,C) Fun(Wgpd,C)

Fun(R,C) Fun(W,C)

in Cat∞ in which the right arrow is clearly a monomorphism, and monomorphisms
are closed under pullback. So in particular, this functor is the inclusion of a subcat-
egory. Then, to see that it is full, suppose we are given two functors RJW−1K⇒ C,
considered as objects of Fun(RJW−1K,C). A natural transformation between their
images in Fun(R,C) is given by a functor [1] × R → C which restricts to the the
two composites R → RJW−1K ⇒ C on the two objects 0, 1 ∈ [1]. Since we already
know that Fun(RJW−1K,C) ⊂ Fun(R,C) is the inclusion of a subcategory, it suffices
to obtain an extension

[1]× R C

[1]× RJW−1K

in Cat∞. For this, consider the diagram

{0, 1} ×W {0, 1} ×Wgpd

{0, 1} × R {0, 1} × RJW−1K C

[1]×W [1]×Wgpd

[1]× R [1]× RJW−1K



154

in Cat∞ containing and extending the above data. The bottom square is a pushout
since the functor [1] × − : Cat∞ → Cat∞ is a left adjoint, and the back square
is a pushout by Lemma 2.1.20. Together, these observations guarantee the desired
extension.

Remark 2.1.19. Proposition 2.1.18 implies that Definition 2.1.8 agrees with Definition
A.1.3.4.1.

We now make an easy observation regarding the localization functor, which is
necessary for the argument of Proposition 2.1.18 but will also be useful in its own
right.

Lemma 2.1.20. The localization functor L : RelCat∞ → Cat∞ commutes with
finite products.

For the proof of Lemma 2.1.20, it will be convenient to have the following notion.

Definition 2.1.21. Let (C,⊗) be a closed symmetric monoidal ∞-category with
internal hom bifunctor

Cop × C
homC(−,−)−−−−−−→ C.

A collection of objects I of C is called an exponential ideal if we have homC(Y, Z) ∈
I for any Y ∈ C and any Z ∈ I. We will use this same terminology to refer to a full
subcategory D ⊂ C whose objects form an exponential ideal.

The following straightforward result explains why we are interested in exponential
ideals.

Lemma 2.1.22. Suppose that (C,⊗) is a closed symmetric monoidal ∞-category,

and let L : C � LC : U be a left localization with unit map idC
η−→ L in Fun(C,C)

(where we implicitly consider LC ⊂ C). Then, the full subcategory LC ⊂ C is an
exponential ideal if and only if the natural map L(η⊗η) is an equivalence in Fun(C×
C,C) (i.e. we have

L(Y ⊗ Z)
∼−→ L(L(Y )⊗ L(Z))

in LC for all Y, Z ∈ C). In particular, if LC is closed under the monoidal structure,
then LC ⊂ C is an exponential ideal if and only if

L(Y ⊗ Z) ' L(Y )⊗ L(Z)

in LC for all Y, Z ∈ C.
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Proof. Suppose that LC ⊂ C is an exponential ideal. Then, for any Y, Z ∈ C and
any test object W ∈ LC, we have the string of natural equivalences

homC(L(Y ⊗ Z),W ) ' homC(Y ⊗ Z,W ) ' homC(Y, homC(Z,W )) ' homC(L(Y ), homC(Z,W ))

' homC(L(Y )⊗ Z,W ) ' homC(Z ⊗ L(Y ),W ) ' homC(Z, homC(L(Y ),W ))

' homC(L(Z), homC(L(Y ),W )) ' homC(L(Z)⊗ L(Y ),W )

' homC(L(Y )⊗ L(Z),W ) ' homC(L(L(Y )⊗ L(Z)),W ).

Hence, we have an equivalence L(Y ⊗ Z) ' L(L(Y ) ⊗ L(Z)) by the Yoneda lemma
applied to the∞-category LC (and it is straightforward to check that this equivalence
is indeed induced by the specified map). So L(η⊗η) is an equivalence in Fun(C×C,C),
as desired.

On the other hand, suppose that L(Y ⊗ Z)
∼−→ L(L(Y )⊗ L(Z)) for all Y, Z ∈ C.

Then, we have the string of natural equivalences

homC(Y, homC(Z,W )) ' homC(Y ⊗ Z,W ) ' homC(L(Y ⊗ Z),W ) ' homC(L(L(Y )⊗ L(Z)),W )

' homC(L(Y )⊗ L(Z),W ) ' homC(L(L(Y ))⊗ L(Z),W )

' homC(L(L(L(Y ))⊗ L(Z)),W ) ' homC(L(L(Y )⊗ Z),W )

' homC(L(Y )⊗ Z,W ) ' homC(L(Y ), homC(Z,W )).

Hence, for any map Y → Y ′ in C which localizes to an equivalence L(Y )
∼−→ L(Y ′) in

LC ⊂ C, we obtain an equivalence homC(Y, homC(Z,W ))
∼←− homC(Y ′, homC(Z,W )).

It follows that the object homC(Z,W ) ∈ C is local with respect to the left localization,
i.e. that in fact homC(Z,W ) ∈ LC ⊂ C. So LC ⊂ C is an exponential ideal.

With Lemma 2.1.22 in hand, we now proceed to prove Lemma 2.1.20.

Proof of Lemma 2.1.20. The right adjoint min : Cat∞ → RelCat∞ induces an equiv-
alence onto the full subcategory of minimal relative ∞-categories. It is easy to see
that this is an exponential ideal in (RelCat∞,×), and so the result follows from
Lemma 2.1.22.

The following useful construction relies on Lemma 2.1.20.

Remark 2.1.23. Let (R1,W1), (R2,W2) ∈ RelCat∞. Then the identity map(
Fun(R1,R2)Rel,Fun(R1,R2)W

)
→
(
Fun(R1,R2)Rel,Fun(R1,R2)W

)
is adjoint to an evaluation map

(R1,W1)×
(
Fun(R1,R2)Rel,Fun(R1,R2)W

)
→ (R2,W2).
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By Lemma 2.1.20, applying the localization functor RelCat∞
L−→ Cat∞ yields a map

R1JW−1
1 K× Fun(R1,R2)RelJ

(
Fun(R1,R2)W

)−1K→ R2JW−1
2 K,

which is itself adjoint to a canonical map

Fun(R1,R2)RelJ
(
Fun(R1,R2)W

)−1K→ Fun(R1JW−1
1 K,R2JW−1

2 K).

In particular, precomposing with the localization map for the internal hom-object
yields a canonical map

Fun(R1,R2)Rel → Fun(R1JW−1
1 K,R2JW−1

2 K).

Lemma 2.1.20 also allows us to prove the following result, which will be useful
later and which gives a sense of the interplay between relative∞-categories and their
localizations.

Lemma 2.1.24. Given any (R1W1), (R2,W2) ∈ RelCat∞ and any pair of maps
R1 ⇒ R2 in RelCat∞, a natural weak equivalence between them induces an equivalence
between their induced functors R1JW−1

1 K⇒ R2JW−1
2 K in Cat∞.

Proof. A natural weak equivalence corresponds to a map [1]W×R1 → R2 in RelCat∞.
By Lemma 2.1.20 (and Example 2.1.12), this gives rise to a map [1]gpd×R1JW−1

1 K→
R2JW−1

2 K in Cat∞, which precisely selects the desired equivalence.

Remark 2.1.25. Lemma 2.1.24 allows for a simple proof of Proposition T.5.2.7.12,
that a left localization is in particular a free localization. Indeed, given a left lo-
calization adjunction L : C � LC : U, write W ⊂ C for the subcategory created
by the functor L : C → LC. Then, this adjunction gives rise to a pair of maps

(C,W)
L−→ min(LC) and min(LC)

U−→ (C,W) in RelCat∞. Moreover, the composite

min(LC)
U−→ (C,W)

L−→ min(LC)

is an equivalence, while the composite

(C,W)
L−→ min(LC)

U−→ (C,W)

is connected to id(C,W) by the unit of the adjunction, which is a componentwise weak

equivalence (since for any Y ∈ C, applying C
L−→ LC to the map Y → L(Y ) gives an

equivalence L(Y )
∼−→ L(L(Y ))). Hence, it follows that these functors induce inverse

equivalences CJW−1K ' LC. (From here, one can obtain the actual statement of
Proposition T.5.2.7.12 by appealing to Proposition 2.1.18.)



157

Lemma 2.1.24 also has the following special case which will be useful to us.

Lemma 2.1.26. Given any C,D ∈ Cat∞ and any pair of maps C ⇒ D, a natu-
ral transformation between them induces an equivalence between the induced maps
Cgpd ⇒ Dgpd in S.

Proof. In light of Example 2.1.12, this follows from applying Lemma 2.1.24 in the
special case that (R1,W1) = max(C) and (R2,W2) = max(D).

Remark 2.1.27. Lemma 2.1.26 can also be seen as following from applying Lemma 2.1.22
to the left localization (−)gpd : Cat∞ � S : US. Namely, since the full sub-
category S ⊂ Cat∞ is an exponential ideal for (Cat∞,×), then the left adjoint
(−)gpd : Cat∞ → S commutes with finite products, and hence a natural transfor-
mation [1] × C → D gives rise to a map ([1] × C)gpd ' [1]gpd × Cgpd → Dgpd which
selects the desired equivalence in homS(C

gpd,Dgpd).

In turn, Lemma 2.1.26 has the following useful further special case.

Corollary 2.1.28. An adjunction F : C � D : G induces inverse equivalences
F gpd : Cgpd ∼−→ Dgpd and Cgpd ∼←− Dgpd : Ggpd in S.

Proof. The adjunction F a G has unit and counit natural transformations idC →
G ◦ F and F ◦G→ idD, and so the claim follows from Lemma 2.1.26.

We note the following interaction between taking localizations and taking homo-
topy categories.

Remark 2.1.29. Observe that the composite left adjoint

RelCat∞
(ho(−),ho(−))−−−−−−−−→ RelCat

(−)[(−)−1]−−−−−−→ Cat

coincides with the composite left adjoint

RelCat∞
(−)J(−)−1K−−−−−−→ Cat∞

ho−→ Cat,

since they share a right adjoint

RelCat∞ ←↩ RelCat
min←−− Cat.

Hence, for any (R,W) ∈ RelCat∞ we have a natural equivalence

ho(RJW−1K) ∼−→ ho(R)[ho(W)−1]

in Cat ⊂ Cat∞.
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We end this section with the following observation (which partly echoes Exam-
ple 1.2.11).

Remark 2.1.30. Suppose (R,W) is a relative∞-category. Then (ho(R), ho(W)) is a
relative category (so is in particular a relative∞-category). However, its localization
ho(R)Jho(W)−1K need not recover RJW−1K. This is for the same reason as such
facts always are, namely that we lose coherence data when we pass from R to ho(R).
(Commutative diagrams in ho(R) need not come from commutative diagrams in R,
and when they do they might do so in multiple, inequivalent ways.) An explicit
counterexample is provided by the minimal relative ∞-category (R,W) = (R,R'):
then

ho(W) ' ho(R') ' ho(R)' ⊂ ho(R)

since the equivalences in R are created by R→ ho(R), and hence ho(R)Jho(W)−1K '
ho(R) (while of course RJW−1K ' R). One might therefore refer to the ∞-category
ho(R)Jho(W)−1K as an “exotic enrichment” of the homotopy category ho(RJW−1K).

2.2 Complete Segal spaces

We now give an extremely brief review of the theory of complete Segal spaces. This
section exists more-or-less solely to fix notation; we refer the reader seeking a more
thorough discussion either to the original paper [Rez01] (which uses model categories)
or to [Lur09c, §1] (which uses ∞-categories).

Let us write ∆
[•]−→ Cat for the standard cosimplicial (strict) category. Then, recall

that the nerve of C ∈ Cat is by definition the simplicial set N(C)• = homlw
Cat([•],C).

This defines a fully faithful embedding N : Cat → sSet, with image those simplicial
sets which admit unique lifts for the inner horn inclusions {Λn

i → ∆n}0<i<n≥0. In
fact, this functor is a right adjoint.

The situation with ∞-categories is completely analogous.

Definition 2.2.1. The (∞-categorical) nerve of an ∞-category C is the simplicial
space

N∞(C)• = homlw
Cat∞([•],C),

i.e. the composite

∆op [•]op−−→ (Cat∞)op
homCat∞ (−,C)
−−−−−−−−→ S.

This defines a fully faithful embedding N∞ : Cat∞ ↪→ sS, with image the full subcat-
egory CSS ⊂ sS of complete Segal spaces , i.e. those simplicial spaces satisfying
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the Segal condition and the completeness condition. This inclusion fits into a left
localization adjunction LCSS : sS� CSS : UCSS. Hence, we obtain an equivalence

Cat∞
N∞−−→
∼

CSS,

whose inverse

CSS
N−1
∞−−→
∼

Cat∞

takes an object Y• ∈ CSS to the coend∫ [n]∈∆

Yn × [n]

in Cat∞. (These claims respectively follow from [Proposition A.A.7.10], [JT07, Theo-
rem 4.12], [Rez01, Theorem 7.2], and [JT07, Theorem 4.12] again.) This equivalence
identifies the subcategory S ⊂ Cat∞ with the subcategory of constant simplicial
spaces (which are automatically complete Segal spaces).

Remark 2.2.2. Complete Segal spaces provide an extremely efficient way of comput-
ing the hom-spaces in an∞-category: if x, y ∈ C, then there is a natural equivalence

homC(x, y) ' lim


N∞(C)1

ptS N∞(C)0 × N∞(C)0

(s,t)

(x,y)


in S, where we use the notations s = δ1 and t = δ0 to emphasize the roles that
these two face maps play in this theory. (Note that N∞(C)0 = homCat∞([0],C) '
C' is simply the maximal subgroupoid of C, while N∞(C)1 = homCat∞([1],C) '
Fun([1],C)' is the space morphisms in C.)

Remark 2.2.3. There is a canonical involution ∆
∼−→ ∆ in Cat, which is the identity

on objects but acts on morphisms by “reversing the coordinates”: a map [m]
ϕ−→ [n]

is taken to the map

[m]
i 7→(n−ϕ(m−i))−−−−−−−−−→ [n].

Taking opposites, this induces an involution ∆op ∼−→ ∆op, which in turn induces
an involution of sS = Fun(∆op, S) by precomposition. Unwinding the definitions,
we see that this involution sS

∼−→ sS restricts to an involution CSS
∼−→ CSS which

corresponds to the involution (−)op : Cat∞
∼−→ Cat∞.
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For future use, we record the following observation.

Proposition 2.2.4. The diagram

sS CSS Cat∞

S

LCSS

⊥
UCSS

|−|

N−1
∞
∼

N∞

(−
)
gp

d

commutes: that is,

• geometric realization of complete Segal spaces models groupoid completion of
∞-categories, and

• for any Y ∈ sS, the localization map Y → LCSS(Y ) becomes an equivalence
upon geometric realization.

Proof. For the first claim, note that the functor (−)gpd : Cat∞ → S is a left localiza-
tion, and the composite

S
US
↪−→ Cat∞

N∞−−→
∼

CSS
UCSS
↪−−→ sS

agrees with the functor const : S→ sS. Hence, the equivalence

|−| ◦ UCSS ◦ N∞ ' (−)gpd

in Fun(Cat∞, S) follows from the uniqueness of left adjoints.
For the second claim, note that the reflective inclusion const : S ↪→ sS factors

through the reflective inclusion UCSS : CSS ↪→ sS. Hence, the factorization S ↪→ CSS

is also a reflective inclusion. The equivalence

|−| ' |−| ◦ UCSS ◦ LCSS

in Fun(sS, S) now also follows from the uniqueness of left adjoints.

Remark 2.2.5. We may interpret Proposition 2.2.4 as saying that, while a simplicial
space Y ∈ sS can be thought of as generating an∞-category (namely the one corre-
sponding to LCSS(Y ) ∈ CSS), we can already directly extract its groupoid completion
from Y itself. This is analogous to the fact that an arbitrary simplicial set can be
thought of as generating a quasicategory via fibrant replacement in sSetJoyal, and the
replacement map lies in WJoyal ⊂WKQ (i.e. it induces an equivalence on geometric
realizations).
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Remark 2.2.6. Given a strict category C ∈ Cat, the maps homCat([n],C)→ homCat∞([n],C)
from hom-sets to hom-spaces collect into a map

N(C)→ N∞(C)

in sS; in turn, these maps assemble into a natural transformation N → N∞ in
Fun(Cat, sS). This map will be an equivalence in sS if and only if C is gaunt : while
the nerve N(C) ∈ sSet ⊂ sS is always a Segal space, it only satisfies the completeness
condition when every isomorphism in C is actually an identity map.7 However, by
[Rez01, Remark 7.8], the above map induces an equivalence

LCSS(N(C))
∼−→ LCSS(N∞(C)) ' N∞(C)

in CSS ⊂ sS. In particular, it therefore follows from Proposition 2.2.4 that it also
induces an equivalence

|N(C)| ∼−→ |N∞(C)|
in S.

2.3 The Rezk nerve

Recall that the localization of a relative∞-category (R,W) is the initial∞-category
RJW−1K equipped with a functor from R which sends the subcategory W ⊂ R of
weak equivalences to equivalences. Meanwhile, given an arbitrary ∞-category C,
observe that the nth space of its nerve can be considered as

N∞(C)n = homCat∞([n],C) ' Fun([n],C)' ⊂ Fun([n],C),

the subcategory of Fun([n],C) whose morphisms are the natural equivalences. Putting
these two facts together, one is led to suspect that the nth space of the nerve
N∞(RJW−1K)• should somehow contain the subcategory

Fun([n],R)W ⊂ Fun([n],R)

of Fun([n],R) whose morphisms are the natural weak equivalences. Of course, this
will not generally form a space, but will instead be an ∞-category. On the other
hand, there is a universal choice for a space admitting a map from this ∞-category,
namely its groupoid completion. We are thus naturally led to make the following
construction, a direct generalization of the “classification diagram” construction for
relative categories defined in [Rez01, 3.3].

7Note that the Segal condition in sSet can be equivalently checked in sS since the inclusion
sSet ⊂ sS is a right adjoint.
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Definition 2.3.1. Given a relative ∞-category (R,W), its (∞-categorical) Rezk
pre-nerve is the simplicial ∞-category

preNR
∞(R,W)• = Funlw([•],R)W,

i.e. the composite

∆op [•]op−−→ (Cat∞)op
minop−−−→ (RelCat∞)op

Fun(−,R)W−−−−−−→ Cat∞.

This defines a functor

RelCat∞
preNR

∞−−−−→ sCat∞.

Then, the (∞-categorical) Rezk nerve functor

RelCat∞
NR
∞−−→ sS

is given by the composite

RelCat∞
preNR

∞−−−−→ sCat∞
s(−)gpd

−−−−→ sS.

Remark 2.3.2. Recall that Rezk’s “classification diagram” construction of [Rez01,
3.3], which we will denote by

RelCat
NR

−−→ s(sSet)

and refer to as the 1-categorical Rezk nerve functor, is given by the formula

NR(R,W)• = N
(

Funlw([•],R)W
)
.

Of course, we would like to think of this as a simplicial space using the model category
s(sSetKQ)Reedy. Indeed, combining Proposition 2.2.4 and Remark 2.2.6, we obtain a
canonical commutative diagram

RelCat s(sSet) sS

RelCat∞

NR s(|−|)

N
R
∞

in Cat∞; in fact, this even refines to a canonical commutative diagram

RelCat s(sSet) sCat∞ sS

RelCat∞

NR s(−)gpd

preN
R
∞

N
R
∞
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in Cat∞ (in which the functor s(sSet) → sCat∞ is obtained by applying s(−) =
Fun(∆op,−) to the localization sSet→ sSetJW−1

JoyalK ' Cat∞). Thus, at least as far
as homotopical content is concerned, the ∞-categorical Rezk nerve functor strictly
generalizes its 1-categorical counterpart.

Remark 2.3.3. In turn, the 1-categorical Rezk nerve functor of Remark 2.3.2 suggests
a similar model-dependent definition of a Rezk nerve functor for “marked quasicat-
egories” (once again landing in ssSet). In fact, as the first step in the proof of
Lemma 2.4.3, we will show that this construction is a model-categorical presentation

• of the∞-categorical Rezk nerve when considered in s(sSetKQ)Reedy, and in fact

• of the ∞-categorical Rezk pre-nerve when considered in s(sSetJoyal)Reedy.

Remark 2.3.4. We have the following slight reformulation of Definition 2.3.1: in view
of Proposition 2.2.4, the Rezk nerve functor can also be described as a composite

RelCat∞
preNR

∞−−−−→ sCat∞ ' sCSS
s(UCSS)
↪−−−−→ s(sS)

s(|−|)−−−→ sS.

Note that the composite functor RelCat∞ → s(sS) is a right adjoint, whose left
adjoint is the left Kan extension

∆×∆ RelCat∞

s(sS)

m×m=(([m],[n])7→[m]×[n]W)

ょ

ょ!(m×m)

along the Yoneda embedding, where we write m×m for the upper “min×max”
functor for brevity. On the other hand, the functor s(|−|) : s(sS) → sS is a left
adjoint. Hence, as the Rezk nerve functor is the composite of a right adjoint followed
by a left adjoint, understanding its behavior in general is a rather difficult task.
(In fact, it follows that preNR

∞ : RelCat∞ → sCat∞ is also a right adjoint, while
s(−)gpd : sCat∞ → sS is of course also a left adjoint.)

We have the following identifications of the Rezk nerves of minimal and maximal
relative ∞-categories: in both of these extremal cases, the Rezk nerve does indeed
compute the localization.

Proposition 2.3.5. The Rezk nerve functor acts on the full subcategories of RelCat∞
spanned by the minimal and maximal relative ∞-categories (both of which can be
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indentified with Cat∞) according to the canonical commutative diagram

Cat∞ RelCat∞ Cat∞

CSS sS S

min

N∞

∼

max

NR
∞ (−)gpd

UCSS const

in Cat∞.

Proof. To see that the left square commutes, given any C ∈ Cat∞ we compute that

preNR
∞(min(C))n = Fun([n],min(C))W ' Fun([n],C)' ' homCat∞([n],C) = N∞(C)n

(in a way compatible with the evident simplicial structure maps on both sides), i.e.
we even have a canonical equivalence

preNR
∞(min(C))• ' N∞(C)•

in sCat∞. As s(−)gpd : sCat∞ � sS : s(US) is a left localization adjunction, it follows
that we also have a canonical equivalence

NR
∞(min(C))• ' N∞(C)•

in sS.
To see that the right square commutes, given any C ∈ Cat∞ we first compute

that
preNR

∞(max(C))n = Fun([n],max(C))W ' Fun([n],C).

Moreover, note that every face-then-degeneracy composite

Fun([n],C)
δi−→ Fun([n− 1],C)

σj−→ Fun([n],C)

admits a natural transformation either to or from idFun([n],C) (depending on i and
j).8 By Lemma 2.1.26, it follows that all the structure maps of NR

∞(max(C)) ∈ sS
are equivalences, and hence (since ∆op is sifted so in particular (∆op)gpd ' ptS) it
follows that this simplicial space is constant. The commutativity of the right square
now follows from the computation

NR
∞(max(C))0 =

(
Fun([0],max(C))W

)gpd ' Cgpd,

which gives rise to a canonical equivalence NR
∞(max(C))• ' const(Cgpd) ' N∞(Cgpd)•

in sS.
8We refer the reader to Lemma 4.3.5 for a more general statement (whose proof of course does

not rely on the present discussion in any way).
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Now, recall that any relative∞-category (R,W) admits a natural map min(R) =
(R,R') → (R,W) (namely the unit of the adjunction min a URel). Hence, by
Proposition 2.3.5 we obtain a natural map

N∞(R)→ NR
∞(R,W)

in sS.9 This immediately suggests the following two questions.

Question 2.3.6. When does this map in sS (or equivalently, its target) actually lie
in the full subcategory CSS ⊂ sS?

Question 2.3.7. In light of the composite adjunction

sS CSS Cat∞,
LCSS

⊥
UCSS

N−1
∞
∼

N∞

what is the ∞-categorical significance of this map?

We give a partial answer to Question 2.3.6 in Chapter 4 (see the calculus theorem
(4.5.1)). Meanwhile, the essence of the present chapter consists in the following
complete answer to Question 2.3.7, the local universal property of the Rezk
nerve .

Theorem 2.3.8. For any (R,W) ∈ RelCat∞ and any C ∈ Cat∞, we have a com-
mutative square

homRelCat∞((R,W),min(C)) homCat∞(R,C)

homsS(N
R
∞(R,W),N∞(C)) homCSS(N∞(R),N∞(C)).

∼ ∼

In other words, the natural map

N∞(R) ' LCSS(N∞(R))→ LCSS(N
R
∞(R,W))

in CSS corresponds to the localization map R→ RJW−1K in Cat∞.

We will give a proof of Theorem 2.3.8 in §2.4.
Using Theorem 2.3.8 as input, we now prove the first half of the global universal

property of the Rezk nerve.

9This can also be obtained from the levelwise inclusion homlw
Cat∞([•],R) '(

Funlw([•],R)W
)'

↪→ Funlw([•],R)W of maximal subgroupoids.
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Proposition 2.3.9. The composite functor

RelCat∞
NR
∞−−→ sS

LCSS−−→ CSS
N−1
∞−−→
∼

Cat∞

is canonically equivalent in Fun(RelCat∞,Cat∞) to the localization functor

RelCat∞
L−→ Cat∞.

Proof. Consider the commutative triangle

min ◦URel

idRelCat∞ min ◦N−1
∞ ◦ LCSS ◦ NR

∞

in Fun(RelCat∞,RelCat∞). Postcomposing with the functor L yields a commutative
triangle

URel

L N−1
∞ ◦ LCSS ◦ NR

∞

in Fun(RelCat∞,Cat∞). By Theorem 2.3.8, the horizontal morphism in this commu-
tative triangle is an equivalence.

Remark 2.3.10. Proposition 2.3.9 can be seen as a generalization of work of Barwick–
Kan. To see this, consider the composite pair of Quillen adjunctions

s(sSetKQ)Reedy � ssSetRezk � RelCatBK,

where

• the first is the left Bousfield localization which defines the Rezk model structure
(see [Rez01, Theorem 7.2]) and presents the adjunction LCSS : sS� CSS : UCSS,
and

• the second is the Quillen equivalence which defines the Barwick–Kan model
structure (see [BK12b, Theorem 6.1]).

As the latter is constructed using the lifting theorem for cofibrantly generated model
categories, its right adjoint preserves all weak equivalences by definition. Moreover,
Barwick–Kan provide a natural weak equivalence in s(sSetKQ)Reedy (and hence also
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in ssSetRezk) from the Rezk nerve functor to the right adjoint of their Quillen equiv-
alence (see [BK12b, Lemma 5.4]).

Now, consider the commutative triangle

s(sSetKQ)Reedy RelCattriv

ssSetRezk

idssSet

NR

in RelCat (in which we take RelCat with the trivial model structure since we are
interested in relative categories themselves here). Applying the localization functor

RelCat ↪→ RelCat∞
L−→ Cat∞,

this yields a commutative triangle

sS RelCat

CSS

LCSS

s(|−|)◦NR

N∞◦L

in Cat∞, in which

• the upper map coincides with the composite

RelCat→ RelCat ↪→ RelCat∞
NR
∞−−→ sS

by Remark 2.3.2, and

• the map RelCat → CSS can be identified as indicated since by what we have
just seen it is equivalent to the projection

RelCat→ RelCatJW−1
BKK ' Cat∞

to the underlying ∞-category (which is indeed given by localization).

It follows that we obtain a commutative diagram

RelCat RelCat∞ sS

Cat∞ CSS

L

NR
∞

LCSS

∼
N∞

in Cat∞, which is precisely the restriction of the assertion of Proposition 2.3.9 to the
category RelCat, as claimed.
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We now prove the second half of the global universal property of the Rezk nerve.

Proposition 2.3.11. The composite functor

RelCat∞
NR
∞−−→ sS

LCSS−−→ CSS ' Cat∞

induces an equivalence
RelCat∞JW−1

BKK ∼−→ Cat∞.

In the proof of Proposition 2.3.11, it will be convenient to have the following
terminology.

Definition 2.3.12. We define the subcategory WRezk ⊂ ssS of Rezk weak equiv-
alences to be created by the composite

s(sS)
s(|−|)−−−→ sS

LCSS−−→ CSS ' Cat∞.

(This name is meant to be suggestive of Rezk’s “complete Segal space” model struc-
ture on the category ssSet of bisimplicial sets.) We denote the resulting relative
∞-category by ssSRezk = (ssS,WRezk) ∈ RelCat∞. Since left localizations are in
particular free localizations (recall Example 2.1.13), this composite left adjoint in-
duces an equivalence

ssSJW−1
RezkK

∼−→ Cat∞

in Cat∞.

Proof of Proposition 2.3.11. Recalling Remark 2.3.4, we have a composite adjunc-
tion

ssS RelCat∞ Cat∞.
ょ!(m×m)

⊥
preNR

∞

L
⊥

min

Moreover, it follows from Proposition 2.3.5 that the right adjoint of this composite
adjunction is precisely that of the composite adjunction

s(sS) sS CSS Cat∞
s(|−|)
⊥

s(const)

LCSS

⊥
UCSS

N−1
∞
∼

N∞

whose left adjoint defines WRezk ⊂ ssS, and hence in particular it follows that the
right adjoint of our original composite adjunction defines a weak equivalence

ssSRezk
min ◦preNR

∞←−−−−−−−
≈

min(Cat∞)

in (RelCat∞)BK.
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Next, we claim that the right adjoint RelCat∞
preNR

∞−−−−→ ssS is a relative functor.
To see this, first note that given any (R,W) ∈ RelCat∞, we obtain a counit map

(R,W)
≈→ min(RJW−1K)

in (RelCat∞)BK from the adjunction L a min. Theorem 2.3.8 and Proposition 2.3.5

then together imply that applying the functor RelCat∞
preNR

∞−−−−→ ssS to this map yields
a weak equivalence

preNR
∞(R,W)

≈→ preNR
∞(min(RJW−1K)) ' constlw(N∞(RJW−1K))

in ssSRezk. Hence, any weak equivalence (R1,W1)
≈→ (R2,W2) in (RelCat∞)BK

induces a commutative diagram

preNR
∞(R1,W1) preNR

∞(R2,W2)

constlw(N∞(R1JW−1
1 K)) constlw(N∞(R2JW−1

2 K))

≈ ≈

∼

in ssSRezk, and then the top arrow in this square is also in WRezk ⊂ ssS since it has
the two-out-of-three property. So this does indeed define a relative functor

(RelCat∞)BK
preNR

∞−−−−→ ssSRezk.

From here, it follows that the right adjoints of our original composite adjunction
form a commutative diagram

ssSRezk min(Cat∞)

(RelCat∞)BK

≈
preNR

∞◦min

min
≈

preN R
∞

in (RelCat∞)BK, and so the entire diagram lies in WBK ⊂ RelCat∞ since it has the
two-out-of-three property. Hence, we obtain a commutative diagram

ssSRezk sS CSS ' Cat∞

(RelCat∞)BK

s(|−|)

≈

LCSS

preNR
∞ ≈

N
R
∞

in (RelCat∞)BK, which proves the claim.
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Remark 2.3.13. It does not appear possible to give a completely hands-off proof of
Proposition 2.3.11, i.e. one not relying on Theorem 2.3.8 (or perhaps even one that
would prove Theorem 2.3.8 as a formal consequence). More specifically, adjunctions
of underlying ∞-categories do not necessarily play well with relative ∞-category
structures, even if one of the adjoints is a relative functor: one must have some
control over the behavior of both adjoints.

For instance, the geometric realization functor sS
|−|−→ S and its restriction to

the subcategory sSet ⊂ sS create subcategories of weak equivalences which define
the Kan–Quillen relative ∞-category structures (sS,WsS

KQ), (sSet,WsSet
KQ ) ∈ RelCat∞

(which underlie their respective Kan–Quillen model structures (see §1.4)). Moreover,
these relative ∞-categories give rise to a diagram

sS sSet

sSJ(WsS
KQ)−1K sSetJ(WsSet

KQ )−1K

S

s(π0)

⊥
s(disc)

∼ ∼

in which the right adjoint commutes with the respective localization functors: in
other words, it induces a weak equivalence

(sSKQ,W
sS
KQ)

≈← (sSetKQ,W
sSet
KQ )

in (RelCat∞)BK. Nevertheless, the left adjoint is clearly very far from also defining
a weak equivalence in (RelCat∞)BK.

Remark 2.3.14. Taken together, Propositions 2.3.9 and 2.3.11 imply that in fact the
adjunction

ssS RelCat∞
ょ!(m×m)

⊥
preNR

∞

has

• that both adjoints are relative functors (with respect to their respective Rezk
and Barwick–Kan relative structures), and

• that the unit and counit are both natural weak equivalences.

This can be seen as follows.
First of all, recall that in the proof of Proposition 2.3.11, we already saw that the

right adjoint is a relative functor. On the other hand, the left adjoint is a relative
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functor because the composite left adjoint

ssS
ょ!(m×m)−−−−−→ RelCat∞

L−→ Cat∞

agrees with the left adjoint

ssS
s(|−|)−−−→ sS

LCSS−−→ CSS
N−1
∞−−→
∼

Cat∞

(since we have seen in the proof of Proposition 2.3.11 that they share a right ad-
joint), and so in fact the subcategory WRezk ⊂ ssS is created by pulling back the
subcategory WBK ⊂ RelCat∞.

Next, we can see that the counit map

ょ!(m×m)(preNR
∞(R,W))→ (R,W)

is a weak equivalence in (RelCat∞)BK as follows. Applying the functor RelCat∞
L−→

Cat∞, we obtain a map

L (ょ!(m×m)(preNR
∞(R,W)))→ RJW−1K

in Cat∞. Then, again appealing to the fact that these composite left adjoints ssS→
Cat∞ agree, we can reidentify the source as

L (ょ!(m×m)(preNR
∞(R,W)) ' N−1

∞ (LCSS(s(|−|)(preNR
∞(R,W)))) ' N−1

∞ (LCSS(N
R
∞(R,W))).

So, we can reidentify this map as

N−1
∞ (LCSS(N

R
∞(R,W)))→ RJW−1K,

which is an equivalence by Theorem 2.3.8. So the counit map is indeed a weak
equivalence in (RelCat∞)BK, i.e. the counit is a natural weak equivalence.

Finally, we can see that the unit map

preNR
∞(ょ!(m×m)(Y ))→ Y

is a weak equivalence in ssSRezk as follows. Applying the composite left adjoint

ssS
N−1
∞ ◦LCSS◦s(|−|)−−−−−−−−−→ Cat∞

and appealing to Proposition 2.3.9, we obtain a map

L (ょ!(m×m)(Y ))→ N−1
∞ (LCSS(s(|−|)(Y )))

in Cat∞, and the same equivalence of composite left adjoints ssS → Cat∞ implies
that this is an equivalence. So the unit map is indeed a weak equivalence in ssSRezk,
i.e. the unit is a natural weak equivalence.
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2.4 The proof of Theorem 2.3.8

Let (R,W) be an arbitrary relative ∞-category. In this section, we show that as
a simplicial space, its Rezk nerve NR

∞(R,W) enjoys the desired universal property
for mapping into complete Segal spaces: for any C ∈ Cat∞, we have a commutative
diagram

homRelCat∞((R,W),min(C)) homCat∞(R,C)

homsS(N
R
∞(R,W),N∞(C)) homCSS(N∞(R),N∞(C))

∼ ∼

in S, as asserted in Theorem 2.3.8.
Most of the proof is reasonably straightforward, and we can give it immediately.

But there will be one technical result (Lemma 2.4.3) that is necessary for the proof
which will occupy us for the remainder of the section.

Proof of Theorem 2.3.8. By definition, the localization RJW−1K ∈ Cat∞ is given as
the pushout

W R

Wgpd RJW−1K

in Cat∞; under the equivalence N∞ : Cat∞
∼−→ CSS, this corresponds to a pushout

diagram

N∞(W) N∞(R)

N∞(Wgpd) N∞(RJW−1K)
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in CSS ⊂ sS. On the other hand, there is an evident commutative diagram

(W,W') (R,R')

(W,W) (R,W)

(RJW−1K,RJW−1K')

in RelCat∞. Applying the functor NR
∞ : RelCat∞ → sS and taking the pushout of

the upper left span, in light of Proposition 2.3.5 we obtain a commutative diagram

N∞(W) N∞(R)

N∞(Wgpd) p.o.sS NR
∞(R,W)

N∞(RJW−1K)

in sS,

• where p.o.sS denotes the pushout in sS of the upper left span, and

• which contains as a subdiagram the above pushout square in CSS ⊂ sS (namely
the upper left span along with the object N∞(RJW−1K)).

Our goal is to prove that the induced map

LCSS(N
R
∞(R,W))→ LCSS(N∞(RJW−1K)) ' N∞(RJW−1K)

is an equivalence in CSS ⊂ sS.
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For notational convenience, let us simply write

(sS)op Fun(sS, S) Fun(CSS, S)
ょ(sS)op

ょCSSop

−◦UCSS

for the restricted contravariant Yoneda functor, so that for any Y ∈ sS we have

ょCSSop(Y ) = homsS(Y,UCSS(−)) ' homCSS(LCSS(Y ),−)

in Fun(CSS, S). Then, by Yoneda’s lemma, our aforestated goal is equivalent to
proving that the map

NR
∞(R,W)→ N∞(RJW−1K)

in sS induces an equivalence

ょCSSop(N
R
∞(R,W))←ょCSSop(N∞(RJW−1K))

in Fun(CSS, S). Moreover, as the functor sS
LCSS−−→ CSS commutes with pushouts

(being a left adjoint), it follows that the map

p.o.sS → N∞(RJW−1K)

in sS induces an equivalence

LCSS

(
p.o.sS

) ∼−→ LCSS(N∞(RJW−1K)) ' N∞(RJW−1K)

in CSS ⊂ sS, and so the above diagram in sS gives rise to a retraction diagram

ょCSSop(p.o.
sS) ょCSSop(N

R
∞(R,W))

ょCSSop(N∞(RJW−1K))

∼

in Fun(CSS, S) into which this map which we must show to be an equivalence fits,
and which it therefore suffices to show is in fact a diagram of equivalences.

Now, observe that CSS is complete and hence in particular is cotensored over S,
and observe moreover that the functor

(sS)op
ょCSSop−−−−→ Fun(CSS, S)
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factors through the contravariant Yoneda embedding and hence takes values in func-
tors which commute with cotensors. So by Lemma 2.4.1, it suffices to show that
after postcomposition with S

π0−→ Set, the above retraction diagram in Fun(CSS, S)
becomes a diagram of natural isomorphisms in Fun(CSS, Set). Hence, it suffices to
show that the induced map(

π0 ◦ょCSSop(N
R
∞(R,W))

)
→
(
π0 ◦ょCSSop(p.o.

sS)
)

is a natural monomorphism in Fun(CSS, Set). This follows from the stronger state-
ment that the composite(

π0 ◦ょCSSop(N
R
∞(R,W))

)
→
(
π0 ◦ょCSSop(p.o.

sS)
)
→
(
π0 ◦ょCSSop(N∞(R))

)
is a natural monomorphism in Fun(CSS, Set), which in turn follows from Lemma 2.4.3.

We needed the following easy result in the proof of Theorem 2.3.8.

Lemma 2.4.1. Let C be an ∞-category admitting a cotensoring

Sop × C
−t−−−→ C,

and suppose we are given two space-valued functors F,G ∈ Fun(C, S) that commute
with cotensors. Then, a natural transformation F → G is a natural equivalence in
Fun(C, S) if and only if its postcomposition π0F → π0G with S

π0−→ Set is a natural
isomorphism in Fun(C, Set).

Proof. The “only if” direction is clear. So, suppose we are given a natural transforma-
tion F → G in Fun(C, S) such that the induced natural transformation π0F → π0G is
a natural equivalence in Fun(C, Set). Since equivalences in Fun(C, S) are determined
componentwise, it suffices to show that for any Y ∈ C, the map F (Y ) → G(Y )
is an equivalence in S. In turn, since equivalences in S are created in ho(S), by
Yoneda’s lemma it suffices to show that for any Z ∈ S, the induced map [Z, F (Y )]S →
[Z,G(Y )]S is an isomorphism in Set. But since C admits cotensors, then we can rei-
dentify this map via the canonical commutative square

π0(F (Z t Y )) π0(G(Z t Y ))

[Z, F (Y )]S [Z,G(Y )]S

∼=

∼ =

∼=

in Set, in which the top arrow is an isomorphism by the assumption that π0F → π0G
is a natural isomorphism and the vertical arrows are isomorphisms by the assumption
that F and G commute with cotensors. This proves the claim.
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Before moving on to Lemma 2.4.3, it will be convenient to have the following bit
of terminology.

Definition 2.4.2. A morphism in a model category M is called a homotopy epi-
morphism if it presents an epimorphism in the underlying ∞-category MJW−1K.

We now proceed to the technical heart of the proof of Theorem 2.3.8. We warn the
reader that our proof of the following result is (perhaps unexpectedly, and certainly
unsatisfyingly) complicated.

Lemma 2.4.3. The map N∞(R)→ LCSS(N
R
∞(R,W)) is an epimorphism in CSS.

Proof. Our proof will proceed using model categories – primarily ssSetRezk and
sSetJoyal, but also a number of others auxiliarily –, and will also use the language of
marked simplicial sets (see e.g. §T.3.1).

We begin by recalling the two Quillen equivalences between ssSetRezk and sSetJoyal

given in [JT07].

(1) Let us write ∆op ×∆op pr2−−→ ∆op for the second projection map and ∆op i2−→
∆op×∆op for the functor const([0]◦)×id∆op . Pullbacks along these two functors
induce the Quillen equivalence

pr∗2 : sSetJoyal � ssSetRezk : i∗2

of [JT07, Theorem 4.11].

(2) Let us write (∆i)gpd ∈ sSet for the nerve of the strict (i.e. objects-preserving)
groupoid completion of [i] ∈ Cat, and let us write t! : ssSet→ sSet for the left
Kan extension

∆×∆ sSet

ssSet

([n],[i])7→∆n×(∆i)gpd

along the (1-categorical) Yoneda embedding. This has a right adjoint t! :
sSet→ ssSet given by

t!(Y ) = {{homsSet(∆
n × (∆i)gpd, Y )}i≥0}n≥0,

and together these fit into the Quillen equivalence

t! : ssSetRezk � sSetJoyal : t!

of [JT07, Theorem 4.12].
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Now, suppose that R ∈ sSetfJoyal is a quasicategory presenting R ∈ Cat∞, and let

(R, W) ∈ sSet+ be the marked simplicial set obtained by marking precisely those edges
of R which present maps in W ⊂ R. For any n ≥ 0, the ∞-category Fun([n],R) is
presented by the object

homsSet(∆
n, R) = {homsSet(∆

n ×∆i, R)}i≥0 ∈ sSetJoyal,

and hence its subcategory

Fun([n],R)W ⊂ Fun([n],R)

is presented by the object

{homsSet+((∆n)[ × (∆i)], (R, W))}i≥0 ∈ sSetJoyal.

These constructions are contravariantly functorial in [n] ∈ ∆, and hence we obtain
that the Rezk pre-nerve

preNR
∞(R,W) = Funlw([•],R)W ∈ sCat∞

is presented by the object

{{homsSet+((∆n)[ × (∆i)], (R, W))}i≥0}n≥0 ∈ s(sSetJoyal)Reedy.

From here, we observe that the Quillen adjunction

idssSet : s(sSetJoyal)Reedy � s(sSetKQ)Reedy : idssSet

presents the left localization adjunction s((−)gpd) : sCat∞ � sS : s(US); as all
objects of s(sSetJoyal)Reedy are cofibrant, it follows that when considered as an object
of s(sSetKQ)Reedy, this same bisimplicial set presents NR

∞(R,W) ∈ sS. Moreover, in
light of the left Bousfield localization

idssSet : s(sSetKQ)Reedy � ssSetRezk : idssSet

presenting the left localization adjunction LCSS : sS � CSS : UCSS, when considered
as an object of ssSetRezk, this same bisimplicial set presents the Rezk nerve

NR
∞(R,W) =

(
Funlw([•],R)W

)gpd ∈ CSS.

We will denote this bisimplicial set by NR(R, W) ∈ ssSet.10 In particular, note that
we have a natural isomorphism NR(R\) ∼= t!(R) in ssSet, and hence we see that the
right Quillen equivalence

t! : sSetJoyal → ssSetRezk

10When (R, W) ∈ sSet+ is the “marked nerve” of a relative 1-category, this recovers the 1-
categorical Rezk nerve of Remark 2.3.2 (as an object of ssSet), and so there is no ambiguity
in the notation.
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presents the equivalence N∞ : Cat∞
∼−→ CSS of ∞-categories.

Now, the natural map
R\ → (R, W)

in sSet+ induces a map
NR(R\)→ NR(R, W)

in ssSetRezk, which by what we have seen presents the map

N∞(R)→ LCSS(N
R
∞(R,W))

in CSS. So, to prove that this latter map is an epimorphism in CSS, it suffices to
prove that the former map is a homotopy epimorphism in ssSetRezk. However, note

that there is a natural isomorphism t!(pr∗2(R))
∼=−→ R in sSet, which is in particular a

weak equivalence in sSetJoyal; via the Quillen equivalence of item (2), this corresponds

to a weak equivalence pr∗2(R)
≈→ t!(R) in ssSetRezk. So, it also suffices to show that

the composite map
pr∗2(R)

≈→ t!(R) ∼= NR(R\)→ NR(R, W)

is a homotopy epimorphism in ssSetRezk.
For this, let us also recall the “usual” geometric realization functor ssSet→ sSet

(a homotopy colimit functor with respect to s(sSetKQ)Reedy): this is the left Kan
extension

∆×∆ sSet

ssSet

([n],[i])7→∆n×∆i

along the (1-categorical) Yoneda embedding, but by [GJ99, Exercise IV.1.6] this is

(naturally isomorphic to) the functor diag∗ : ssSet→ sSet, where ∆op diag−−→∆op×∆op

denotes the diagonal functor. Now, the evident morphisms ∆n×∆i → ∆n× (∆i)gpd

in sSet induce a natural transformation diag∗ → t! in Fun(ssSet, sSet). Moreover,

it is not hard to see that upon precomposition with sSet
pr∗2−−→ ssSet, this induces

the identity natural transformation from idsSet to itself in Fun(sSet, sSet) (up to
isomorphism). Applying these observations to the above composite map in ssSet,
we obtain a commutative square

diag∗(pr∗2(R)) diag∗(NR(R, W))

t!(pr∗2(R)) t!(N
R(R, W))

α

∼ = β

γ
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in sSet, where both objects on the left are (compatibly) isomorphic to R itself. Since
t! : ssSetRezk → sSetJoyal is a left Quillen equivalence and all objects of ssSetRezk are
cofibrant, it suffices to show that the map γ is a homotopy epimorphism in sSetJoyal.
For this, it suffices to prove that when considered in sSetJoyal, the map α is a weak
equivalence and the map β is a homotopy epimorphism. This, finally, is what we
will show.

We begin with the second assertion, that the map

diag∗(NR(R, W))
β−→ t!(N

R(R, W))

is a homotopy epimorphism in sSetJoyal. In fact, we will show that the natural
transformation diag∗ → t! in Fun(ssSet, sSetJoyal) is a componentwise homotopy
epimorphism. Just for the duration of this sub-proof, let us “reverse” our simplicial
coordinates, so that the one we have been denoting by “i” will be the outer coordinate
while the one we have been denoting by “n” will be the inner coordinate. Now,
observe that we can rewrite these two functors as

diag∗ ∼=
∫ [i]∈∆

(−)i ×∆i : s(sSet)→ sSet

and

t! ∼=
∫ [i]∈∆

(−)i × (∆i)gpd : s(sSet)→ sSet,

under which identifications our natural transformation diag∗ → t! is induced by the
evident map ∆• → (∆•)gpd in c(sSet). Moreover, by Proposition T.A.2.9.26, we
obtain a left Quillen bifunctor∫ [i]∈∆

(−)i × (−)i : s(sSetJoyal)Reedy × c(sSetJoyal)Reedy → sSetJoyal

(since sSetJoyal is cartesian, i.e. the product bifunctor is left Quillen).11 As every
object of s(sSetJoyal)Reedy is cofibrant, for any object

Y• ∈ s(sSetJoyal)Reedy

the above left Quillen bifunctor induces a left Quillen functor∫ [i]∈∆

Yi × (−)i : c(sSetJoyal)Reedy → sSetJoyal.

11Note that since we have flipped our simplicial coordinates, this model structure
s(sSetJoyal)Reedy is different from the model structure s(sSetJoyal)Reedy that appeared earlier (with
respect to the fixed copy of the underlying category ssSet in which we have been working).
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Moreover, the cofibrant objects of c(sSetJoyal)Reedy are exactly those of c(sSetKQ)Reedy

(since the cofibrations in sSetJoyal are exactly those of sSetKQ), and so in particular
the objects ∆•, (∆•)gpd ∈ c(sSetJoyal)Reedy are cofibrant by [Hir03, Corollary 15.9.10].

Now, epimorphisms (being determined by a colimit condition) are preserved by
left adjoint functors of ∞-categories. Moreover, by [MG16, Theorem 2.1], a left
Quillen functor between model categories induces a left adjoint functor between ∞-
categories, which is presented (in RelCatBK) by the restriction of the left Quillen
functor to the subcategory of cofibrant objects. So, it suffices to show that the map
∆• → (∆•)gpd is a homotopy epimorphism in c(sSetJoyal)Reedy.

For this, observe that the model category c(sSetJoyal)Reedy presents the∞-category
cCat∞. Since epimorphisms in cCat∞ = Fun(∆,Cat∞) are determined componen-
twise, it suffices to show that each ∆i → (∆i)gpd is a homotopy epimorphism in
sSetJoyal. But this is clear: this map in sSetJoyal presents the terminal map

[i]→ [i]gpd ' ptCat∞

in Cat∞, which on an arbitrary ∞-category C corepresents the inclusion

C' ↪→ homCat∞([i],C)

of the subspace of length-i sequences of composable equivalences (inside of the space
of arbitrary length-i sequences of composable morphisms). Thus, the natural trans-
formation diag∗ → t! in Fun(ssSet, sSetJoyal) is indeed a componentwise homotopy
epimorphism, and so in particular we obtain that the map β (which is its component
at the object NR(R, W) ∈ ssSet) is a homotopy epimorphism, as claimed.

So, it only remains to show that the map

R ∼= diag∗(pr∗2(R))
α−→ diag∗(NR(R, W))

is a weak equivalence in sSetJoyal. Unwinding the definitions, we see that via the
evident cosimplicial object

∆
(∆•)[×(∆•)]−−−−−−−→ sSet+,

we obtain a canonical isomorphism

diag∗(NR(R, W)) ∼= homlw
sSet+((∆•)[ × (∆•)], (R, W)).

Moreover, via the canonical isomorphisms

R ∼= homlw
sSet(∆

•, R) ∼= homlw
sSet+((∆•)[, R[) ∼= homlw

sSet+((∆•)[, (R, W)),
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this map α is corepresented by the collection of first projection maps

(∆n)[ × (∆n)] → (∆n)[,

which assemble to a natural transformation in Fun(∆, sSet+). On the other hand,
the collection of diagonal maps

(∆n)[ → (∆n)[ × (∆n)]

(or more precisely, the unique maps in sSet+ which recover the diagonal maps in sSet
under the forgetful functor sSet+ → sSet) also assemble into a natural transformation
in Fun(∆, sSet+), which likewise corepresents a map

diag∗(NR(R, W))
ρ−→ R

in sSet. Clearly, the composite

R
α−→ diag∗(NR(R, W))

ρ−→ R

is the identity map, since this is true of the composite

(∆n)[ → (∆n)[ × (∆n)] → (∆n)[

of the diagonal map followed by the first projection. On the other hand, we will
show that the composite

diag∗(NR(R, W))
ρ−→ R

α−→ diag∗(NR(R, W))

is connected to iddiag∗(NR(R,W)) by the zigzag of simplicial homotopies illustrated in
Figure 2.1, whose components (i.e. whose values on the vertices of (the source copies
of) diag∗(NR(R, W))) are all degenerate edges of (the target copy of) diag∗(NR(R, W)).
Postcomposing with an arbitrary fibrant replacement

diag∗(NR(R, W))
≈→ R(diag∗(NR(R, W)))� ptsSet

in sSetJoyal, we obtain a composite

Λ2
2 → homsSet(diag∗(NR(R, W)), diag∗(NR(R, W)))→ homsSet(diag∗(NR(R, W)),R(diag∗(NR(R, W))))

in sSetJoyal which, by [Joyb, Chapter 5, Theorem C] (and [Joyb, Proposition 4.8]
(and the fact that sSetJoyal is cartesian)), presents a zigzag of natural equivalences in
Cat∞ between the functors presented by the maps iddiag∗(NR(R,W)) and αρ in sSetJoyal.
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diag∗(NR(R, W))

∆1 × diag∗(NR(R, W))

diag∗(NR(R, W)) diag∗(NR(R, W))

∆1 × diag∗(NR(R, W))

diag∗(NR(R, W))

∆{0}×id

id
diag∗(NR(R,W))

H1
∆{1}×id

∆{1}×id

η

H2

∆{0}×id

αρ

Figure 2.1: The zigzag of simplicial homotopies in sSet in the proof of Lemma 2.4.3.

In turn, this zigzag (along with the natural equivalence in Cat∞ presented by the
identification ρα = idR) witnesses the fact that the maps α and ρ in sSetJoyal present
inverse equivalences in Cat∞, from which we conclude that in particular the map α
is indeed a weak equivalence in sSetJoyal.

Now, all three of η, H1, and H2 will be corepresented by maps between the
various objects (∆n)[× (∆n)] ∈ sSet+; in turn, all of these maps will be obtained by
applying the evident “marked nerve” functor N+ : RelCat→ sSet+ to maps between
the various objects [n]× [n]W ∈ RelCat.

We begin by defining the map diag∗(NR(R, W))
η−→ diag∗(NR(R, W)): this is corep-

resented by the marked nerves of the maps

[n]× [n]W
ηn−→ [n]× [n]W

in RelCat given by

ηn(i, j) =

{
(i, i), i ≥ j
(i, j), i < j.
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It is easy to verify that this does indeed define a map in RelCat, and moreover that
assembling these maps for all n ≥ 0 yields an endomorphism of the object [•]×[•]W ∈
cRelCat.

In order to define the simplicial homotopies H1 and H2, we first recall a com-
binatorial reformation of the definition of a simplicial homotopy (see e.g. [May92,
Definitions 5.1]): for any Y, Z ∈ sSet and any f, g ∈ homsSet(Y, Z), a simplicial
homotopy

Y

∆1 × Y Z

Y

∆{0}×id
g

h

∆{1}×id
f

is equivalently given by a family of maps

{hi,n ∈ homSet(Yn, Zn+1)}0≤i≤n≥0

which satisfy the identities
δ0h0,n = fn,

δn+1hn,n = gn,

δihj,n =


hj−1,n−1δi, i < j
δihi−1,n, i = j 6= 0
hj,n−1δi−1, i > j + 1,

and

σihj,n =

{
hj+1,n+1σi, i ≤ j
hj,n+1σi−1, i > j.

So, for ε ∈ {1, 2}, we will define the simplicial homotopies

∆1 × diag∗(NR(R, W))
Hε−→ diag∗(NR(R, W))

to be corepresented by the marked nerves of families of maps

{H i,n
ε ∈ homRelCat([n+ 1]× [n+ 1]W, [n]× [n]W)}0≤i≤n≥0
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satisfying the opposites of the identities given above (with the first two “boundary
condition” identities being dictated by their respective sources and targets). Namely,
we define

H i,n
1 (j, k) =


(j, k), 0 ≤ j, k ≤ i
(j − 1, j − 1), j > i and j ≥ k
(j, k − 1), k > i ≥ j
(j − 1, k − 1), k > j > i

and

H i,n
2 (j, k) =


(j, j), j ≤ i
(j − 1, j − 1), j > i and j ≥ k
(j − 1, k − 1), k > j > i.

It is a straightforward (but lengthy) process to verify

• that these satisfy the opposites of the identities given above,

• that they restrict along their boundaries to the various maps

iddiag∗(NR(R,W)), η, αρ ∈ homsSet(diag∗(NR(R, W)), diag∗(NR(R, W)))

as indicated in Figure 2.1, and

• that their values on vertices are all degenerate edges,

as claimed. This completes the proof.
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Chapter 3

On the Grothendieck construction
for ∞-categories

In this chapter we provide, among other things: (i) a Bousfield–Kan formula for
colimits in∞-categories (generalizing the 1-categorical formula for a colimit as a co-
equalizer of maps between coproducts); (ii)∞-categorical generalizations of Barwick–
Kan’s Theorem Bn and Dwyer–Kan–Smith’s Theorem Cn (regarding homotopy pull-
backs in the Thomason model structure, which themselves vastly generalize Quillen’s
Theorem B); and (iii) an articulation of the simultaneous and interwoven functori-
ality of colimits (or dually, of limits) for natural transformations and for pullback
along maps of diagram ∞-categories.

3.0 Introduction

3.0.1 Outline

As the title and abstract suggest, this is essentially an omnibus chapter in which
we collect a number of useful results in ∞-category theory, all having to do in some
way or another with the Grothendieck construction . This is instantiated in
quasicategories by Lurie’s unstraightening construction, although we work model-
independently.

• In §3.1, we fix some notation and terminology surrounding the Grothendieck
construction. We also give some examples, and we highlight some of its im-
portant features – notably its naturality (as proved by Gepner–Haugseng–
Nikolaus).
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• In §3.2, we define lax and oplax natural transformations of functors C→ Cat∞
via the Grothendieck construction. Using these, we then construct a global
colimit functor for a cocomplete ∞-category C: this is a functor

Lax(C)→ C

from the lax overcategory of C

– which sends an object

(D
F−→ C) ∈ Lax(C)

to its colimit
colimD(F ) ∈ C,

and

– which encodes the simultaneous and interwoven functoriality of colimits
in C

∗ for natural transformations – that is, for maps in Fun(D,C) – and

∗ for pullback along maps of diagram ∞-categories – that is, for maps
in (Cat∞)/C.

This immediately dualizes to give an analogous global limit functor

opLax(D)op
lim−→ D

for a complete ∞-category D (now running from the opposite of its oplax
overcategory).

• In §3.3, we explore the relationship between the Grothendieck construction
(and its “two-sided” generalization) and colimits in the ∞-category of spaces.
For instance, we record an∞-categorical version of Thomason’s homotopy col-
imit theorem. Some of these results are suggestive of the (∞, 2)-categorical
functoriality of the Grothendieck construction (e.g. we say the word “modifi-
cation”).

• In §3.4, we prove ∞-categorical versions of Barwick–Kan’s Theorem Bn and
Dwyer–Kan–Smith’s Theorem Cn, thus further extending the following se-
quence of increasingly general results in 1-category theory.
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– Given a functor D
F−→ C satisfying a certain property B, Quillen’s Theorem

B gives a simple description of the fibers

lim


Dgpd

{c}gpd Cgpd

F gpd


of the induced map on (∞-)groupoid completions.

– Given a functor satisfying a certain property Bn (which recovers property
B when n = 1 but becomes weaker as n grows),

∗ Dwyer–Kan–Smith’s Theorem Bn gives a description of the fibers of
the induced map on groupoid completions (which recovers Quillen’s
description when n = 1 but in trade becomes more complicated as n
grows), while

∗ their Theorem Cn asserts that if C satisfies a certain property Cn,
then any functor D→ C satisfies property Bn.

– Given a cospan D
F−→ C

G←− E such that F satisfies property Bn (but
without any conditions on G), Barwick–Kan’s enhanced Theorem Bn gives
a description of the pullback

lim


Dgpd

Egpd Cgpd

F gpd

Ggpd


of the induced cospan on groupoid completions (which likewise becomes
more complicated as n grows).

• In §3.5, we prove a Bousfield–Kan formula for colimits in ∞-categories.
This generalizes the 1-categorical formula for a colimit as a coequalizer of maps
between coproducts. We also illustrate its application with concrete examples.

• In §3.6, we construct a Thomason model structure on the ∞-category
Cat∞ of ∞-categories. Aside from its intrinsic interest, this model ∞-category
(Cat∞)Th provides a convenient language for the various results which appear
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throughout this chapter: it gives a presentation of the ∞-category S of spaces,
and moreover its localization functor

Cat∞ → Cat∞JW−1
ThK ' S

can be canonically identified with the groupoid completion functor. In partic-
ular, the subcategory WTh ⊂ Cat∞ of Thomason weak equivalences consists of
precisely those maps which become equivalences upon groupoid completion.

This model structure is analogous to the classical Thomason model structure on
the category Cat of categories; however, it is (in a sense) better behaved, and
moreover it completely accounts for a certain quirk that prevents the latter
from being lifted directly along the nerve functor. On the other hand, this
model structure bears some rather surprising features of its own.
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3.1 The Grothendieck construction

In this section, we recall some basic notions involving the Grothendieck construction
and the various sorts of fibrations that it involves: we discuss co/cartesian (and
left/right) fibrations in §3.1.1, and we discuss the Grothendieck construction itself
in §3.1.2. For background, we refer the reader to our companion paper [MG], which
contains

• model-independent definitions of co/cartesian morphisms and co/cartesian fi-
brations,

• proofs that these model-independent definitions are suitably compatible with
their quasicategorical counterparts, and

• an extended informal discussion the Grothendieck construction.
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3.1.1 Fibrations

We begin by fixing the following notation (without really giving any definitions).

Notation 3.1.1. Let C be an ∞-category.

• We denote by LFib(C) the ∞-category of left fibrations over C; by the dual of
Corollary T.2.2.3.12 (see Remark T.2.1.4.12), this is the underlying∞-category
of the covariant model structure of Proposition T.2.1.4.7, and is well-defined
by Remark T.2.1.4.11.

• We denote by coCFib(C) the ∞-category of cocartesian fibrations over C; by
the dual of Proposition T.3.1.4.1, this is the underlying ∞-category of the
cocartesian model structure which is dual to that of Proposition T.3.1.3.7 (see
Remark T.3.1.3.9), and is well-defined by Proposition T.3.3.1.1.

By Theorem T.3.1.5.1, these two ∞-categories sit in a sequence of adjunctions

(Cat∞)/C coCFib(C) LFib(C) S/Cgpd

LcoCFib(C)

⊥
UcoCFib(C)

LLFib(C)

⊥
ULFib(C)

LL(C)

⊥
UL(C)

in Cat∞.1

Of course, there are dual notions of right fibrations and of cartesian fibrations,
defined to be those functors that respectively become left fibrations or cocartesian
fibrations under the involution (−)op : Cat∞ → Cat∞. These then assemble into an
analogous string of adjunctions

(Cat∞)/C CFib(C) RFib(C) S/Cgpd

LCFib(C)

⊥
UCFib(C)

LRFib(C)

⊥
URFib(C)

LR(C)

⊥
UR(C)

in Cat∞. By taking opposites, it will often suffice to leave observations about these
latter notions implicit.

We now assemble a number of useful observations.

Remark 3.1.2. The adjunctions LLFib(C) a ULFib(C) and LL(C) a UL(C) are both left
localization adjunctions.2 However, the adjunction LcoCFib(C) a UcoCFib(C) is not: given

1The identification of S/Cgpd as the underlying∞-category of the corresponding model category
follows from the fact that sSetKQ is right proper, and hence any weak equivalence induces a Quillen
adjunction on overcategories. In particular, the overcategory of a quasicategory already has the
correct underlying ∞-category, even without replacing the quasicategory by a Kan complex.

2To see this, note that the first is presented by the composite of a left Bousfield localization
followed by a Quillen equivalence, while the second is presented by a left Bousfield localization.
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two objects (D
p−→ C), (E

q−→ C) ∈ coCFib(C), a morphism

D E

C

p q

in (Cat∞)/C must take p-cocartesian morphisms in D to q-cocartesian morphisms in
E in order to define a morphism in coCFib(C). (However, the right adjoint UcoCFib(C)

is nevertheless the inclusion of a (non-full) subcategory, as indicated.) In §3.2, we
will see that its failure to be a left localization gives rise to the notion of a lax natural
transformation between objects of Fun(C,Cat∞).

Remark 3.1.3. Given any functor D
F−→ C, the resulting horizontal composite in the

diagram

D×C Fun([1],C) Fun([1],C) C

D C

t

s

F

is a cocartesian fibration by (the dual of) Corollary T.2.4.7.12. In fact, by (the dual
of) [GHN, Theorem 4.5], this is precisely the free cocartesian fibration on F : this
construction gives the left adjoint LcoCFib(C).

Remark 3.1.4. In the sequence

(Cat∞)/C
LcoCFib(C)−−−−−→ coCFib(C)

LLFib(C)−−−−−→ LFib(C)
LL(C)−−−→ SCgpd

of left adjoints, all of the (possibly composite) left adjoints with target S/Cgpd are
given by taking an object D → C to the object Dgpd → Cgpd; this follows directly
from the definitions of the overlying Quillen adjunctions of Theorem T.3.1.5.1.

Remark 3.1.5. When in fact C ∈ S ⊂ Cat∞, the adjunctions LcoCFib(C) a UcoCFib(C)

and LL(C) a UL(C) become adjoint equivalences by Theorem T.3.1.5.1.

3.1.2 The Grothendieck construction

We now give the main definition of this section.
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Definition 3.1.6. We define the Grothendieck construction to be either equiv-
alence of ∞-categories in the diagram

Fun(C,Cat∞) coCFib(C)

Fun(C, S) LFib(C);

Gr
∼

∼
Gr

here, the upper (resp. lower) equivalence underlies the right adjoint of the Quillen
equivalence which is dual to that of Theorem T.3.2.0.1 (resp. that of Theorem
T.2.2.1.2) in the special case that the functor of sSet-enriched categories is the
identity. The fact that the diagram commutes follows from the construction (see
Definition T.3.2.1.2). Of course, there are also Grothendieck constructions for carte-
sian fibrations and right fibrations; we will denote these by

Fun(Cop,Cat∞) CFib(C)

Fun(Cop, S) RFib(C).

Gr−

∼

∼
Gr−

When we need to distinguish between these two types of Grothendieck constructions,
we will refer to the former sort as covariant and to the latter sort as contravari-
ant .

For any C
F−→ Cat∞, when we need to refer to it we will write

Gr(F )
prGr(F )−−−−→ C

for the cocartesian fibration that it classifies. Similarly, given any Cop
G−→ Cat∞, when

we need to refer to it we will write

Gr−(G)
prGr−(G)−−−−−→ C

for the cartesian fibration that it classifies.

The following characterization of the Grothendieck construction may at first ap-
pear rather abstract. However, it gives excellent geometric intuition, as we illustrate
in Example 3.1.8 (the first nontrivial case).

Remark 3.1.7. The covariant Grothendieck construction can be characterized as a lax
colimit : by [GHN, Theorem 7.4], for any functor C

F−→ Cat∞ we have an equivalence

Gr(F ) '
∫ c∈C

Cc/ × F (c)
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of its covariant Grothendieck construction with its colimit weighted by Cop
C−/−−→ Cat∞.

Thus, whereas the ordinary colimit of the diagram F can be viewed as “gluing
together” all of the∞-categories F (c) – that is, taking all of the values F (c) ∈ Cat∞
and, for every map c

ϕ−→ c′ in C adding in an equivalence

y
∼−→ (F (ϕ))(y)

for every y ∈ F (c) –, in a lax colimit, we now only add in a noninvertible morphism

y → (F (ϕ))(y)

corresponding to such data. Dually, the contravariant Grothendieck construction
can be characterized as an oplax colimit : by [GHN, Corollary 7.6], for any functor

Cop
G−→ Cat∞ we have an equivalence

Gr−(G) '
∫ c◦∈Cop

C/c ×G(c◦)

of its contravariant Grothendieck construction with its colimit weighted by C
C/−−−→

Cat∞.3

Example 3.1.8. Suppose that [1]
F−→ Cat∞ selects a functor C0

f−→ C1. Then, its
covariant Grothendieck construction can be identified as

Gr(F ) ' colim


C0 C1

C0 × [1]

f

idC0
×{1}

 ,

a “directed mapping cylinder” for f . Dually, if [1]op
G−→ Cat∞ selects a functor

D0
g←− D1, then its contravariant Grothendieck construction can be identified as

Gr−(G) ' colim


D1 D0

D1 × [1]

idD1
×{0}

g
 ,

a “reversed directed mapping cylinder” for g.

3One can also identify the ∞-categories of sections of Grothendieck constructions with op/lax
limits (see e.g. [GHN, Proposition 7.1]), but this is less essential for geometric intuition.
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We now list a few more basic examples of the Grothendieck construction.

Example 3.1.9. The equivalence

Fun(C,Cat∞)
Gr−→
∼

coCFib(C)

necessarily preserves terminal objects. In the source, the terminal object is const(ptCat∞),
while in the target, the terminal object is the identity functor idC (which is a cocarte-
sian fibration). Similarly, the identity functor idC is the terminal object of CFib(C).

Example 3.1.10. Given any two functors F,G ∈ Fun(C,Cat∞), consider the pull-
back diagram

Gr(F )×C Gr(G) Gr(F )

Gr(G) C

prGr(F )

prGr(G)

in Cat∞. Note first that the composite functor

Gr(F )×C Gr(G)→ C

is again a cocartesian fibration by the dual of (parts (2) and (3) of) Proposition
T.2.4.2.3. Moreover, this is the product of the objects prGr(F ) and prGr(G) in (Cat∞)/C,
and since the inclusion coCFib(C) ⊂ (Cat∞)/C is a right adjoint, this must also be
their product in coCFib(C). Thus, this cocartesian fibration must be classified by
the composite functor

C
(F,G)−−−→ Cat∞ × Cat∞

−×−−−−→ Cat∞,

i.e. the product F ×G ∈ Fun(C,Cat∞).

Example 3.1.11. In the special case that C = ptCat∞ , the Grothendieck construction
yields an equivalence

Cat∞ ' Fun(ptCat∞ ,Cat∞)
Gr−→
∼

coCFib(ptCat∞).

By [Toë05, Théorèm 6.3], this must be inverse to the composite

coCFib(ptCat∞)
∼−→ (Cat∞)/ptCat∞

∼−→ Cat∞

of two forgetful equivalences.



194

Example 3.1.12. Let C ∈ Cat∞, and let c ∈ C. Then, the forgetful functor Cc/ → C

from the undercategory is a left fibration by Corollary T.2.1.2.2; in fact, it follows
from Proposition T.4.4.4.5 that we can identify this as

Cc/ ' Gr
(
C

homC(c,−)−−−−−−→ S
)
.

Dually, we have that (C/c → C) ∈ RFib(C), and we have the identification

C/c ' Gr−
(
Cop

homC(−,c)−−−−−−→ S
)
.

Remark 3.1.13. An important property of the Grothendieck construction is its nat-
urality : it assembles to a functor

(Cat∞)op → Fun([1],Cat∞)

which sends an ∞-category C to the object

Fun(C,Cat∞)
Gr−→
∼

coCFib(C)

of Fun([1],Cat∞) by (the dual of) [GHN, Corollary A.31]. By its construction (see
the proof of [GHN, Proposition A.30]), over 0 ∈ [1] this functor is given by precom-
position of functors to Cat∞, while over 1 ∈ [1] this functor is given by pullback of

cocartesian fibrations. So for instance, a map C
F−→ D in Cat∞ determines a map

Fun(D,Cat∞) coCFib(D)

Fun(C,Cat∞) coCFib(C)

Gr
∼

−◦F F ∗

∼
Gr

in Fun([1],Cat∞) (where we read this square in Cat∞ vertically in order to consider
it as a morphism between the two horizontal arrows). Of course, by duality the
contravariant Grothendieck construction enjoys analogous naturality.

Since this observation will arise so frequently for us, we codify it.

Definition 3.1.14. We refer to the phenomenon described in Remark 3.1.13 as the
naturality of the Grothendieck construction.

This has the following easy consequence.
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Example 3.1.15. Consider the tautological factorization

C Cat∞.

ptCat∞

const(D)

D

By Example 3.1.11, we have a canonical equivalence

Gr
(

ptCat∞

D−→ Cat∞

)
' D.

Hence, the naturality of the Grothendieck construction implies that the pullback
square

C×D D

C ptCat∞

in Cat∞ provides a canonical equivalence

Gr
(
C

const(D)−−−−−→ Cat∞

)
' C×D,

with the cocartesian fibration down to C identifying as prGr(const(D)) ' prC, the pro-
jection onto the first factor. (From here, we can recover Example 3.1.9 as the special
case where D = ptCat∞ .) Similarly, we have that

Gr−
(
Cop

const(D)−−−−−→ Cat∞

)
' C×D,

with prGr−(const(D)) ' prC: in other words, the projection C×D
prC−−→ C is simultane-

ously a cocartesian fibration and a cartesian fibration, in either case classified by the
constant functor at the object D ∈ Cat∞.

Definition 3.1.16. Fix some C
F−→ Cat∞. By the naturality of the Grothendieck

construction (and Example 3.1.11), for any x ∈ C there is a canonical pullback
square

F (x) Gr(F )

{x} C
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in Cat∞. We refer to F (x) as the fiber of the cocartesian fibration over the object
x ∈ C, and we refer to the above commutative square as a fiber inclusion .4

Remark 3.1.17. A fiber inclusion will not generally be the inclusion of a full subcat-
egory: it will not contain those morphisms covering nontrivial endomorphisms. In
fact, in the extreme case that we take C = Y ∈ S ⊂ Cat∞ to be an ∞-groupoid, the
functor corepresented by an object y ∈ Y will have

Gr
(
Y

homY (y,−)−−−−−−→ S
)
' Yy/ ' ptS

(recall Example 3.1.12); then, the fiber inclusion over the object y ∈ Y itself will be
given by the pullback square

ΩY ptS

{y} Y

in S ⊂ Cat∞, the “inclusion” of the based loopspace of Y at y into the terminal
space.

We have the following concrete identification of the left localization which takes
cocartesian fibrations to left fibrations.

Proposition 3.1.18. Under the equivalences given by the Grothendieck construction,
the left localization

coCFib(C)
LLFib(C)−−−−−→ LFib(C)

corresponds to the functor Fun(C,Cat∞)→ Fun(C, S) given by postcomposition with

Cat∞
(−)gpd

−−−−→ S.

Proof. This follows from the uniqueness of left adjoints and the commutativity of the
diagram in Definition 3.1.6: the adjunction Fun(C,Cat∞) � Fun(C, S) comes from
applying the functor Fun(C,−) : Cat∞ → Cat∞ to the adjunction (−)gpd : Cat∞ �
S.

4At the level of quasicategories, this can be computed by the inclusion of the fiber over a
vertex corresponding to x ∈ C, which is a homotopy fiber in sSetJoyal by the Reedy trick (and the
implications of Remark T.2.0.0.5).
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3.2 Op/lax natural transformations and the

global co/limit functor

In ordinary category theory, functors with the same source and target can be related
by natural transformations between them. When the target (and possibly the source)
is a 2-category, this notion can be relaxed in two different ways, yielding notions of
lax and oplax natural transformations.

We will be interested in this phenomenon in the∞-categorical context. However,
we will concern ourselves exclusively with the special case in which the source is only
an ∞-category and the target is Cat∞, considered as an (∞, 2)-category via the clo-
sure of its symmetric monoidal structure (Cat∞,×). In this case, the Grothendieck
construction allows us to easily and concisely define such transformations without ref-
erence to an ambient theory of (∞, 2)-categories: heuristically speaking, it “reduces
category level by one”.5

In §3.2.1 we define op/lax natural transformations via the Grothendieck construc-
tion, and then in §3.2.2 we apply this framework to study the ((∞, 2)-categorical)
functoriality of colimits in an arbitrary but fixed ∞-category.

3.2.1 Op/lax natural transformations

We begin with the following definition.

Definition 3.2.1. Suppose we are given a pair of functors F,G : C⇒ Cat∞. A lax
natural transformation from F to G, denoted F  G for short, is a map

Gr(F ) Gr(G)

C

in (Cat∞)/C. Meanwhile, an oplax natural transformation from F to G, denoted

F
op
 G for short, is a map

Gr−(F ) Gr−(G)

Cop

5The notion we introduce here is manifestly equivalent to the more general notion of lax natural
transformations between functors among (∞, 2)-categories studied in [GR17, Chapter 10, §3].
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in (Cat∞)/Cop .

To provide some intuition, we illustrate Definition 3.2.1 in the simplest nontrivial
case.

Example 3.2.2. Recall from Example 3.1.8 that we can think of the equivalence

Fun([1],Cat∞)
Gr−→
∼

coCFib([1])

as a sort of “directed mapping cylinder” construction. Hence, if [1]
F−→ Cat∞ selects

a functor C0
f−→ C1 and [1]

G−→ Cat∞ selects a functor D0
g−→ D1, then a lax natural

transformation α : F  G is equivalent to a square

C0 C1

D0 D1

f

⇒α0 α1

g

in Cat∞, i.e. the data of

• a functor C0
α0−→ D0,

• a functor C1
α1−→ D1, and

• a natural transformation g ◦ α0 → α1 ◦ f in Fun(C0,D1).

A similar analysis shows that an oplax natural transformation α : F
op
 G simply

reverses the direction of the natural transformation (so that it runs down and to the
left, instead of up and to the right).

We will be interested in the special case of Example 3.2.2 in which G = const(C)
(so that g = idC) for some chosen ∞-category C. For a fixed such choice, these can
be organized in the following way.

Definition 3.2.3. For any C ∈ Cat∞, we define the lax overcategory of C to be

Lax(C) = Gr−
(

(Cat∞)op
Fun(−,C)−−−−−→ Cat∞

)
.
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Thus, the objects of Lax(C) are functors with target C, and a morphism from D
F−→ C

to E
G−→ C in Lax(C) is given by a triangle

D E

C

H

⇒
F G

in Cat∞. We write

Lax(C)
sLax(C)−−−−→ Cat∞

for the canonical projection map, and refer to it as the source projection ; this is
by definition a cartesian fibration, with fiber over D ∈ Cat∞ given by Fun(D,C).

Similarly, we define the oplax overcategory of C to be

opLax(C) = Gr−
(

(Cat∞)op
Fun((−)op,Cop)−−−−−−−−→ Cat∞

)
.

Thus, the objects of opLax(C) can be canonically identified (via the involution (−)op :
Cat∞

∼−→ Cat∞) with functors with target C, and a morphism from (the object

identified with) D
F−→ C to (the object identified with) E

G−→ C in opLax(C) can be
canonically identified with a triangle

D E

C

H

⇒

F G

in Cat∞. We write

opLax(C)
sopLax(C)−−−−−→ Cat∞

for the canonical projection map, and also refer to it as the source projection ;
this is again by definition a cartesian fibration, with fiber over D ∈ Cat∞ given by
Fun(Dop,Cop) ' Fun(D,C)op.

Remark 3.2.4. A map C1 → C2 induces a natural transformation Fun(−,C1) →
Fun(−,C2) in Fun((Cat∞)op,Cat∞), which in turn gives rise to a commutative triangle

Lax(C1) Lax(C2)

Cat∞

sLax(C1) sLax(C2)
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in Cat∞; altogether, we obtain a functor

Cat∞
Lax(−)−−−−→ CFib(Cat∞).

Similarly, we obtain a functor

Cat∞
opLax(−)−−−−−→ CFib(Cat∞).

Remark 3.2.5. Expanding out the definition, we also can write

opLax(C) = Gr−
(

(Cat∞)op
((−)op)op−−−−−→ (Cat∞)op

Fun(−,Cop)−−−−−−→ Cat∞

)
(where the first functor is obtained by applying the involution Cat∞

(−)op−−−→ Cat∞ to

the morphism Cat∞
(−)op−−−→ Cat∞). By the naturality of the Grothendieck construc-

tion, it follows that we have a pullback square

opLax(C) Lax(Cop)

Cat∞ Cat∞

∼

sopLax(C) sLax(Cop)

∼
(−)op

in Cat∞.

Remark 3.2.6. As an alternative to the construction of Definition 3.2.3, both Lax(C)
and opLax(C) are simultaneously encoded in the “(op)lax square” of Cat∞ as con-
structed in [JFS, §5]. While this alternative construction is both clean and aes-
thetically pleasing, we have chosen our own exposition in pursuit of the meta-goal
of this chapter (namely, to connect as many different concepts as possible to the
Grothendieck construction).

3.2.2 The global co/limit functor

Suppose we are given an arbitrary cocomplete ∞-category C. Then, the operation
of taking colimits in C should be functorial in two different senses.

• On the one hand, colimits are functorial for natural transformations. For in-
stance, a natural transformation

D C

F

⇓

G
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induces a canonical map colimD(F ) → colimD(G) in C: a colimiting cocone
D. → C extending G composes to give an arbitrary cocone D. → C extending
F , and then the desired map arises from the definition of a colimit as an initial
cocone extending the given diagram. Thus, taking colimits should give rise to
a functor

Fun(D,C)
colim−−−→ C.

• On the other hand, colimits are also functorial for commutative diagrams of
∞-categories over C. For instance, a commutative diagram

D E

C
F G

in Cat∞ induces a canonical map colimD(F ) → colimE(G) in C: a colimiting
cocone E. → C extendingG composes to give an arbitrary cocone D. → E. → C

extending F , and then the desired map once again arises from the definition
of a colimit as an initial cocone extending the given diagram. Thus, taking
colimits should also give rise to a functor

(Cat∞)/C
colim−−−→ C.

In fact, we have already seen a construction in Definition 3.2.3 which unifies these two

situations: via the cartesian fibration Lax(C)
sLax(C)−−−−→ Cat∞, an arbitrary morphism

D E

C

H

⇒
F G

in Lax(C) gives rise to a unique diagram

D E

C

H

G◦H
⇑

F

G

in which the inner (commutative) triangle determines a cartesian arrow and the
indicated natural transformation is a fiber morphism (lying over the object D ∈
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Cat∞). Thus, one might expect that it is possible to unify the above two senses in
which colimits are functorial by means of a single functor

Lax(C)
colim−−−→ C.

The purpose of this subsection is to construct precisely such a global colimit
functor. In fact, we will achieve this (as Proposition 3.2.12) for an arbitrary ∞-
category C (i.e. when C is not necessarily cocomplete), although in this more general
setting we will of course need to restrict to the full subcategory of Lax(C) spanned
by those diagrams in C which admit a colimit (see Notation 3.2.11).

Remark 3.2.7. A similar analysis suggests that when C is complete, there should
exist a corresponding global limit functor running

opLax(C)op
lim−→ C.

Indeed, this can be obtained from Proposition 3.2.12 simply by taking opposites:
if C is complete then Cop is cocomplete, and combining the resulting global colimit
functor

Lax(Cop)
colim−−−→ Cop

with the equivalence of Remark 3.2.5 and taking opposites yields a composite

opLax(C)op
∼−→ Lax(Cop)op → C

which one can easily verify is the desired global limit functor. (And of course, this
equally well generalizes to the case that C only admits certain limits.) We will
therefore henceforth focus our attention only on the global colimit functor.

The first step in constructing the global colimit functor is to make the following
reidentification of the nerve of the ∞-category Cat∞ of ∞-categories.

Lemma 3.2.8. There is a canonical identification of N∞(Cat∞)• ∈ CSS ⊂ sS with
the composite

∆op ↪→ (Cat∞)op
coCFib(−)'−−−−−−→ S.

Proof. For any [n] ∈∆, the Grothendieck construction provides an equivalence

Fun([n],Cat∞)
Gr−→
∼

coCFib([n]);

passing to maximal subgroupoids, we obtain an equivalence

N∞(Cat∞)n = homCat∞([n],Cat∞) ' coCFib([n])'.

The claim then follows from the naturality of the Grothendieck construction.
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Next, we would like to correspondingly identify the nerve of the lax overcate-
gory of C (along with that of its source projection). For this, observe (recalling
Example 3.2.2) that the datum of a morphism in Lax(C) is specified by the pair of

• its image [1]
H−→ Cat∞ under the source projection, which by Lemma 3.2.8 is

equivalent to specifying a point(
Gr(H)

prGr(H)−−−−→ [1]
)
∈ coCFib([1])' ∈ S,

along with

• a map Gr(H)→ C from (the underlying∞-category of) the “directed mapping
cylinder” Gr(H) into our fixed target ∞-category C.

Moreover, a similar observation holds when we replace the object [1] ∈ ∆ by an
arbitrary object [n] ∈∆. Altogether, this identifies the canonical maps

N∞(Lax(C))n → N∞(Cat∞)n

(obtained by applying the functor

N∞(−)n ' homCat∞([n],−) ∈ Fun(Cat∞, S)

to the source projection map Lax(C)
sLax(C)−−−−→ Cat∞) as being the cocartesian fibration

associated to a certain map
N∞(Cat∞)n → S.

This motivates our desired identification (Lemma 3.2.10), but in order to state it
precisely we first introduce the following notation.

Notation 3.2.9. To ease notation, for any ∞-category C we denote by UC any
sub-composite of the composite

coCFib(C)' ↪→ coCFib(C)
UcoCFib(C)−−−−−−→ (Cat∞)/C → Cat∞

of the inclusion of the maximal subgroupoid with the two evident forgetful func-
tors. Moreover, we denote by U†C any sub-composite beginning at coCFib(C)' of the
composite

coCFib(C)'
∼−→ (coCFib(C)')op ↪→ (coCFib(C))op

Uop
coCFib(C)−−−−−−→

(
(Cat∞)/C

)op → (Cat∞)op

of the canonical equivalence followed by the opposite of the above composite. We also
use this same notation when restricting to the subcategory LFib(C) ⊂ coCFib(C) or
to its maximal subgroupoid.



204

Lemma 3.2.10. Fix any C ∈ Cat∞.

(1) For any n ≥ 0, there is a canonical equivalence

N∞(Lax(C))n ' UcoCFib([n])'

(
Gr

(
coCFib([n])'

U†
[n]

(−)

−−−−→ (Cat∞)op
homCat∞ (−,C)
−−−−−−−−→ S

))
in S.

(2) The equivalences of part (1) assemble into a canonical identification of N∞(Lax(C))• ∈
CSS ⊂ sS with the composite

∆op ↪→ (Cat∞)op

UcoCFib(−)'

Gr

coCFib(−)'
U
†
(−)

(=)

−−−−→(Cat∞)op
homCat∞ (=,C)

−−−−−−−−→S




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S.

Proof. Part (1) follows directly from Definition 3.2.3, and part (2) follows from the
naturality of the Grothendieck construction.

Notation 3.2.11. We denote by Lax(C)colim ⊂ Lax(C) the full subcategory on those

functors D
F−→ C which admit a colimit in C.

We can now give the main result of this section, whose output we refer to as the
global colimit functor for C.

Proposition 3.2.12. For any C ∈ Cat∞, there is a functor

Lax(C)colim colim−−−→ C

which takes an object (D
F−→ C) ∈ Lax(C)colim to colimD(F ) ∈ C. Moreover, this

functor

• restricts to the usual colimit functor on each fiber

Fun(D,C)colim = Fun(D,C) ∩ Lax(C)colim,

and

• takes a commutative diagram

D E

C

F G
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(considered as a cartesian morphism in Lax(C)colim) to the canonical induced
map

colimD F → colimEG

in C.

Proof. In order to prove the claim, we make the following construction. Define
Lax(C)′ ∈ Cat∞ to be the unique ∞-category such that N∞(Lax(C)′)• ∈ CSS ⊂ sS
is given by

∆op ↪→ (Cat∞)op

UcoCFib(−)'

Gr

coCFib(−)'

U
†
(−)

(
= �

(−)
(−)

)
−−−−−−−−−→(Cat∞)op

homCat∞ (=,C)

−−−−−−−−→S




!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S,

where the subscript decorating the second functor indicates that we are restricting

to the subspace corresponding to those pairs of a functor [n]
F−→ Cat∞ and a map

U†[n]

(
Gr(F ) �

[n]
[n]

)
→ C

such that the induced composite diagram

U†[n](Gr(F )) C

U†[n]

(
Gr(F ) �

[n]
[n]

)
defines a left Kan extension (along the inclusion of a full subcategory). The canonical
inclusions

Gr(F ) ↪→ Gr(F ) �
[n]

[n]←↩ [n]

induce maps

N∞(Lax(C))• ← N∞(Lax(C)′)• → N∞(C)• × N∞(Cat∞)•

in CSS ⊂ sS, where the identification of N∞(Lax(C))• comes from Lemma 3.2.10(2)
and the identification of N∞(C)• × N∞(Cat∞)• follows from Lemma 3.2.8 and Ex-
ample 3.1.15. It then follows from Proposition T.4.3.2.15 that we have an induced
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factorization
Lax(C) Lax(C)′

Lax(C)colim

∼

via an equivalence in Cat∞. Moreover, combining this diagram with the composite
Lax(C)′ → C× Cat∞ → C with the projection map gives us a unique functor

Lax(C) Lax(C)′ C

Lax(C)colim

∼

making the diagram commute. By Proposition T.4.3.3.10, this is precisely the desired
functor; moreover, it is clear from the construction that it encodes the asserted
functorialities.

Remark 3.2.13. Clearly, the global colimit functor (Proposition 3.2.12) is itself func-
torial in the following sense: if C1 → C2 is a functor which commutes with all colimits
existing in C1, then we obtain a commutative square

Lax(C1)colim C1

Lax(C2)colim C2

colimC1

colimC2

in Cat∞.

Remark 3.2.14. One could also construct the global colimit functor (i.e. prove Propo-
sition 3.2.12) in the following way. First of all, the Grothendieck construction of the
source projection

Lax(C)
sLax(C)−−−−→ Cat∞

produces a “tautological bundle” over Lax(C), a cocartesian fibration whose fiber

over an object (D
F−→ C) ∈ Lax(C) is D itself. This can moreover be shown to

admit a tautological map to C which, restricted to such a fiber, is precisely the

functor D
F−→ C. The global colimit functor can then be produced by appealing to

Proposition T.4.2.2.7. However, this method is in fact quite a bit more involved than
the route we have taken here.
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3.3 The Grothendieck construction and colimits

of spaces

In this section, we study the relationship between the Grothendieck construction
and colimits in the ∞-category S of spaces: in §3.3.1 we give some basic results, in
§3.3.2 we extend these to the “two-sided” Grothendieck construction, and in §3.3.3
we collect some results which are suggestive of the (∞, 2)-categorical functoriality
of the Grothendieck construction. We state these results in terms of the Thomason
model structure on Cat∞ of Definition 3.6.2: a weak equivalence in (Cat∞)Th is a
functor that induces an equivalence on groupoid completions.

3.3.1 The Grothendieck construction and colimits

We begin with the following fundamental fact, on which all further results in this
direction are based. Its 1-categorical version, Thomason’s homotopy colimit theorem,
first appeared as [Tho79, Theorem 1.2].

Proposition 3.3.1. For any C
F−→ Cat∞, the Grothendieck construction computes

its homotopy colimit when considered as diagram in (Cat∞)Th, i.e.

Gr(F )gpd ' colim

(
C

F−→ Cat∞
(−)gpd

−−−−→ S

)
.

Proof. This follows from Corollary T.3.3.4.3 and the fact that groupoid completion
(being a left adjoint) commutes with colimits.

Corollary 3.3.2. Suppose that we are given a pair of functors F,G : C⇒ (Cat∞)Th

and a natural weak equivalence F
≈→ G. Then the induced map Gr(F )→ Gr(G) is a

weak equivalence in (Cat∞)Th.

Proof. Combining the equivalence

(−)gpd ◦ F ∼−→ (−)gpd ◦G

in Fun(C, S) with two applications of the equivalence of Proposition 3.3.1, we obtain
a composite equivalence

Gr(F1)gpd ' colim

(
C

F1−→ Cat∞
(−)gpd

−−−−→ S

)
∼−→ colim

(
C

F2−→ Cat∞
(−)gpd

−−−−→ S

)
' Gr(F2)gpd

in S.



208

3.3.2 The two-sided Grothendieck construction and
colimits

We will also be interested in the following variant of the Grothendieck construction
and its interaction with colimits in S.

Definition 3.3.3. Given any (ordered) pair of functors Cop
F−→ Cat∞ and C

G−→
Cat∞, we define the two-sided Grothendieck construction of F and G to be
the pullback

Gr(F,C, G) = lim


Gr−(F )

Gr(G) C


in Cat∞.

Proposition 3.3.4. Suppose that we are given

• a pair of functors F, F ′ : Cop ⇒ (Cat∞)Th and a natural weak equivalence

F
≈→ F ′, and

• a pair of functors G,G′ : C ⇒ (Cat∞)Th and a natural weak equivalence G
≈→

G′.

Then, the induced map
Gr(F,C, G)→ Gr(F ′,C, G′)

is a weak equivalence in (Cat∞)Th.

Proof. The naturality of the Grothendieck construction induces an evident naturality
of the two-sided Grothendieck construction; in light of this, by duality and since
WTh ⊂ Cat∞ is closed under composition, it suffices to prove the claim in the special
case that G = G′ and that the natural weak equivalence G

≈→ G′ is simply idG.
Then, by the naturality of the Grothendieck construction we have an equivalence

Gr(F,C, G) = lim


Gr−(F )

Gr(G) C

 ' Gr−(F ◦ propGr(G))

in CFib(Gr(G)), and similarly we have an equivalence

Gr(F ′,C, G) ' Gr−(F ′ ◦ propGr(G))
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in CFib(Gr(G)). Moreover, by assumption, the map

F ◦ propGr(G) → F ′ ◦ propGr(G)

in Fun(Gr(G)op,Cat∞) has that for every y ∈ Gr(G)op, the induced map

(F ◦ propGr(G))(y)gpd → (F ′ ◦ propGr(G))(y)gpd

is an equivalence in S: in other words, the map

(−)gpd ◦ F ◦ propGr(G) → (−)gpd ◦ F ′ ◦ propGr(G)

is an equivalence in Fun(Gr(G)op, S). The claim now follows from (the dual of)
Corollary 3.3.2.

3.3.3 Higher-categorical functoriality of the Grothendieck
construction and colimits

We now assemble a few results which are suggestive of the (∞, 2)-categorical functori-
ality of the Grothendieck construction. However, we do not pursue such functoriality
in any systematic way.

Proposition 3.3.5. A diagram

C D Cat∞

E

α⇓

F

G

induces a commutative triangle

colimC((−)gpd ◦G ◦ E)

colimD((−)gpd ◦G)

colimC((−)gpd ◦G ◦ F )

in S.

Proof. This follows by combining Proposition 3.3.1, Lemma 3.3.6, and Lemma 2.1.26.
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The following result is an ingredient of the proof of Proposition 3.3.5.

Lemma 3.3.6. A diagram

C D Cat∞

E

α⇓

F

G

induces a morphism

Gr(G ◦ E)

Gr(G)

Gr(G ◦ F )

Gr(idG◦α) ⇓

in Lax(Gr(G)).

Proof. We begin by encoding α as a functor [1]× C
H−→ D. By the naturality of the

Grothendieck construction, this gives rise to a diagram

Gr(G ◦H) Gr(G)

[1]× C D

[1]

H

pr[1]

in which both left vertical arrows are cocartesian fibrations (the upper by pullback,

the lower the Grothendieck construction of the functor [1]
const(C)−−−−→ Cat∞). Hence,

the composite left vertical arrow is a cocartesian fibration as well, namely the one
classified by the map [1]→ Cat∞ selecting the functor

Gr(G ◦ E)
Gr(idG◦α)−−−−−−→ Gr(G ◦ F ).

Now, in order to extract this functor as a map between cocartesian fibrations (as
opposed to being contained within a cocartesian fibration), we obtain a morphism in



211

Fun([1],Cat∞) with this map as its target by precomposing with the map [1]× [1]→
[1] given by

(i, j) 7→
{

0, (i, j) 6= (1, 1)
1, (i, j) = (1, 1);

by adjunction, this yields a functor [1]→ Fun([1],Cat∞) which, considered as a map

in Fun([1],Cat∞), has source [1]
const(Gr(G◦E))−−−−−−−−−→ Cat∞ and has target selecting this same

functor Gr(G◦E)
Gr(idG◦α)−−−−−−→ Gr(G◦F ). From here, the equivalence Fun([1],Cat∞)

Gr−→
∼

coCFib([1]) gives rise to the diagram of Figure 3.1, in which for clarity we include both
fiber inclusions of each of these objects of coCFib([1]) as well as the induced maps
between them. Moreover, there is a canonical natural transformation in Fun(Gr(G ◦

Gr(G ◦ E) Gr(G ◦ F )

[1]×Gr(G ◦ E) Gr(G ◦H) Gr(G)

Gr(G ◦ E) Gr(G ◦ E)

{1}

[1]

{0}

Gr(idG◦α)

idGr(G◦E)

Figure 3.1: The diagram in Cat∞ used in the proof of Lemma 3.3.6.

E), [1]×Gr(G◦E)) from the inclusion of the fiber over 0 ∈ [1] to the inclusion of the
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fiber over 1 ∈ [1] (selected by the identity map id[1]×Gr(G◦E)). Taking the horizontal
composite

Gr(G ◦ E) [1]×Gr(G ◦ E) Gr(G ◦H) Gr(G)

{0}×idGr(G◦E)

⇓

{1}×idGr(G◦E)

of this natural transformation with the horizontal composite in the diagram of Fig-
ure 3.1 then yields the desired morphism in Lax(Gr(G)).

In manipulating colimits, we will also make use of the following notion (which is
actually only a special case of a more general (∞, 2)-categorical phenomenon).

Definition 3.3.7. Let C ∈ Cat∞, let F,G ∈ Fun(C,Cat∞), and let α, β ∈ homFun(C,Cat∞)(F,G).
A modification from α to β is a map

const([1])× F µ−→ G

in Fun(C,Cat∞) whose restriction along const({0}) → const([1]) recovers α and
whose restriction along const({1})→ const([1]) recovers β.

The following result describes the effect of the Grothendieck construction on
modifications.

Proposition 3.3.8. Let C ∈ Cat∞, let F,G ∈ Fun(C,Cat∞), and let α, β ∈ homFun(C,Cat∞)(F,G).
A modification µ from α to β induces a natural transformation

Gr(F ) Gr(G)

Gr(α)

Gr(µ)⇓

Gr(β)

in Cat∞.

Proof. Applying the Grothendieck construction to the modification µ, we obtain a
map

Gr(const([1])× F )
Gr(µ)−−−→ Gr(G)
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in coCFib(C). But this source can be identified as

Gr(const([1])× F ) ' Gr(const([1]))×C Gr(F ) ' ([1]× C)×C Gr(F ) ' [1]×Gr(F ),

where the first equivalence follows from the fact that Fun(C,Cat∞)
Gr−→
∼

coCFib(C) is

an equivalence (so commutes with products) and the fact that the forgetful functor
coCFib(C) → (Cat∞)/C is a right adjoint and hence commutes with products. So,
this becomes a map

[1]×Gr(F )
Gr(µ)−−−→ Gr(G),

as desired.

3.4 Homotopy pullbacks in (Cat∞)Th, finality, and

Theorems A, Bn, and Cn

Via the Thomason model structure on Cat∞ of §3.6, we can consider∞-categories as
“presentations of spaces”; the corresponding localization functor Cat∞ → Cat∞JW−1

ThK '
S is that of groupoid completion. Being a left adjoint, this functor commutes with
colimits, but in general its interplay with limits is much more complicated. In this
section, we describe certain sufficient conditions under which it commutes with a
given pullback.

In the 1-categorical case, there is a long history of results of this variety, going
back to Quillen’s celebrated [Qui73, Theorem B]. The current state of the art seems
to be Barwick–Kan’s pair of results [BK, Theorems Bn (5.6) and Cn (5.8)] (the former
generalizing Dwyer–Kan–Smith’s [DKS89, Theorem Bn (6.2)], the latter identical to
their [DKS89, Theorem Cn (6.4)]), as described in §3.0.1.

The main goal of this section is to give ∞-categorical generalizations of these re-
sults (which we prove in an essentially analogous fashion); these appear in §3.4.3. In
§3.4.1 we work towards this goal with a pair of foundational results surrounding ho-
motopy pullbacks in (Cat∞)Th (whose 1-categorical analogs constitute the main input
to the proof of [Qui73, Theorem B]), and in §3.4.2 we take a moment to briefly re-
state Joyal’s quasicategorical analog (namely Theorem T.4.1.3.1) of Quillen’s [Qui73,
Theorem A] in invariant language (i.e. stated in Cat∞ instead of in sSetJoyal).
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3.4.1 Homotopy pullbacks in (Cat∞)Th: a first pass

In and of themselves, pullbacks among ∞-categories are relatively understandable;
for instance, limits commute with the right adjoint of the composite adjunction

sS CSS Cat∞.
LCSS

⊥
UCSS

N−1
∞
∼

N∞

On the other hand, it is a subtle question to determine when such a pullback com-
mutes with groupoid completion (or, working in complete Segal spaces, with geomet-
ric realization (recall Proposition 2.2.4)). In this subsection, we address this question
in the special case that one of the maps in the pullback is a special sort of cocartesian
fibration.

We begin with the relevant definition, an analog of [Qui73, 4.4].

Definition 3.4.1. We say that a functor C
F−→ Cat∞ has property Q if it factors

through WTh ⊂ Cat∞.

The importance of Definition 3.4.1 stems from the following result, which we call
Lemma Q , an analog of [BK, Lemma 4.5] (there called “Quillen’s lemma”).

Lemma 3.4.2. If C
F−→ Cat∞ factors through WTh ⊂ Cat∞, then for any x ∈ C, the

fiber inclusion

F (x) Gr(F )

{x} C

is a homotopy pullback square in (Cat∞)Th, i.e. it gives rise to a pullback square

F (x)gpd Gr(F )gpd

{x}gpd Cgpd

in S.

Proof. Let C ∈ sSetfJoyal be a quasicategory presenting C ∈ Cat∞, let D→ C be a JL-
cocartesian fibration presenting (Gr(F ) → C) ∈ coCFib(C), let D′ → C be a JL-left
fibration presenting (LLFib(C)(Gr(F )) → C) ∈ LFib(C), and let x ∈ C0 be a vertex
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corresponding to x ∈ C (see [MG, Definition 3.2]). Let us define F, F′ ∈ sSet via the
pullback squares

F D

ptsSet Cx

and
F′ D′

ptsSet Cx

in sSet. Considered in sSetJoyal, these present fiber inclusions, the first of which is

F (x) Gr(F )

{x} C

and the second of which, by Proposition 3.1.18, we can identify as

F (x)gpd LLFib(C)(Gr(F ))

{x} C.

Moreover, by Proposition T.2.1.3.1, the assertion that

C
F−→ Cat∞

(−)gpd

−−−−→ S

factors through S' ⊂ S is equivalent to the assertion that the map D′ → C is in fact
in FKQ. Since sSetKQ is right proper (see [Hir03, Theorem 13.1.13]), it follows that
the pullback square

F′ D′

ptsSet Cx

in sSetKQ is also a homotopy pullback square, which implies that

F (x)gpd LFib(Gr(F ))gpd

{x}gpd Cgpd
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is a pullback square in S. By Remark 3.1.4 we obtain an equivalence

Gr(F )gpd ∼−→ (LLFib(C)(Gr(F )))gpd

in S/Cgpd , which completes the proof.

We also have the following parametrized version of Lemma Q (3.4.2).

Corollary 3.4.3. If C
F−→ Cat∞ has property Q, then for any D

G−→ C, the resulting
pullback D×C Gr(F ) is a homotopy pullback in (Cat∞)Th.

Proof. By the naturality of the Grothendieck construction, we have a commutative
square

Gr(F ◦G) Gr(F )

D C
G

in Cat∞, where both of the vertical maps are cocartesian fibrations. We would like
to show that this becomes a pullback square upon application of (−)gpd : Cat∞ → S.

For this, note that any map ptS
x−→ Dgpd in S comes from a map ptCat∞

x̃−→ D in Cat∞.
Then, we have the diagram

Gr(F ◦G) Gr(F )

(F ◦G)(x) F (G(x))

D C

{x̃} {G(x̃)}

∼

G

∼

in Cat∞, whose back face is the above commutative square and in which the upper
oblique arrows are the fiber inclusions over x̃ ∈ D and G(x̃) ∈ C. By Lemma Q
(3.4.2), we obtain that applying (−)gpd : Cat∞ → S to this commutative diagram
yields a commutative diagram in S in which the oblique squares are pullbacks. Hence,
the square

Gr(F ◦G)gpd Gr(F )gpd

Dgpd Cgpd

Ggpd
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is a pullback in S, since for every point of Dgpd the induced map on corresponding
fibers is an equivalence.

3.4.2 Finality and Theorem A

In this subsection, we briefly recall a few definitions and results from §T.4.1, restating
them in invariant language.

Definition 3.4.4. A functor I
F−→ J is called final if, for any functor J

G−→ C such
that colimJG exists, the colimit colimI(G ◦ F ) also exists and the natural map

colimI(G ◦ F )→ colimJG

(in the sense of the global colimit functor (Proposition 3.2.12)) is an equivalence in
C.

Dually, a functor I
F−→ J is called initial if, for any functor J

G−→ C such that
limJG exists, the limit limI(G ◦ F ) also exists and the natural map

lim
J

(G)→ lim
I

(G ◦ F )

(in the sense of the global limit functor (the dual of Proposition 3.2.12)) is an equiv-
alence in C.

Remark 3.4.5. A functor I→ J is initial if and only if its opposite Iop → Jop is final.

Remark 3.4.6. The notion of finality given in Definition 3.4.4 is also sometimes called
“cofinality” or “right cofinality”, while that initiality is also sometimes called “co-
cofinality” or “left cofinality”. We have chosen our terminology because it seems
most natural: the simplest example of a final functor is the inclusion {ptI} ↪→ I

of a final object, while the simplest example of an initial functor is the inclusion
{∅I} ↪→ I of an initial object.

Remark 3.4.7. By Proposition T.4.1.1.8 (see also Corollary T.4.1.1.10), the notion of
finality given in Definition 3.4.4 is an invariant version of the quasicategorical notion
of “cofinality” (given e.g. as Definition T.4.1.1.1).

Proposition 3.4.8. Every final functor lies in WTh ⊂ Cat∞.

Proof. This follows from Proposition T.4.1.1.3(3).

Proposition 3.4.9. If I1
F1−→ J1 and I2

F2−→ J2 are both final, then so is I1×I2
F1×F2−−−−→

J1 × J2.
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Proof. By Corollary T.4.1.1.13, both of the functors in the composite

I1 × I2

F1×idI2−−−−→ J1 × I2

idJ1
×F2−−−−→ J1 × J2

are final, and hence by Proposition T.4.1.1.3(2) their composite F1 × F2 is also
final.6

The next result is the main point of this subsection, Joyal’s∞-categorical analog
of [Qui73, Theorem A]; we refer to it simply as Theorem A.

Theorem 3.4.10. A functor I
F−→ J is final iff for every object j ∈ J,

(I×J Jj/)
gpd ' ptS.

Proof. This follows from Theorem T.4.1.3.1; by the Reedy trick (and the implications
of Remark T.2.0.0.5 and Corollary T.2.1.2.2), the pullback given there is a homotopy
pullback in sSetJoyal.

Corollary 3.4.11. If J ∈ Cat∞ has a terminal object, then Jgpd ' ptS.

Proof. We apply Theorem 3.4.10 to deduce that the functor {ptJ} ↪→ J is final: for
any j ∈ J, we have that {ptJ} ×J Jj/ ' homJ(j, ptJ) ' ptS. Hence, the claim follows
from Proposition 3.4.8.

Remark 3.4.12. One could also prove Corollary 3.4.11 by observing that a functor
ptCat∞ → J is a right adjoint if (and only if) it selects a terminal object, and then
appealing to Corollary 2.1.28.

3.4.3 Theorems Bn and Cn: a second pass at homotopy
pullbacks in (Cat∞)Th

In this final subsection, we provide ∞-categorical generalizations of Barwick–Kan’s
pair of results [BK, Theorems Bn (5.6) and Cn (5.8)].

Remark 3.4.13. The results of this subsection will be used in §6.9. In fact, there
we will actually employ their dual formulations. Our choice of variances in this
subsection are so that our exposition adheres as closely as possible to that of [BK,
§5].

6This is of course closely related to Fubini’s theorem for colimits, but to deduce it from that
result would require slightly trickier manipulations depending on which of the various colimits
actually exist.
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We begin with the following.

Notation 3.4.14. For n ≥ 1, we define the strict category zn ∈ Cat by the pattern

z1 = (s→ t) ,

z2 = (s← • → t) ,

z3 = (s→ • ← • → t) ,

z4 = (s← • → • ← • → t) ,

etc. (where we have named only the leftmost and rightmost objects of these cate-
gories).

We now give the following omnibus definition.

Definition 3.4.15. For any n ≥ 1 and any C ∈ Cat∞, we define (C ↓n C) =
Fun(zn,C). Evaluation at the objects s, t ∈ zn induces maps

C
s←− (C ↓n C)

t−→ C.

More generally, for any functors D
F−→ C and E

G−→ C and any objects d ∈ D and
e ∈ E, we define new∞-categories and maps between them via the induced diagram

(F (d) ↓n G(e)) (F (D) ↓n G(e)) (C ↓n G(e)) ptCat∞

(F (d) ↓n G(E)) (F (D) ↓n G(E)) (C ↓n G(E)) E

(F (d) ↓n C) (F (D) ↓n C) (C ↓n C) C

ptCat∞ D C

e

G

t

s

d F

in Cat∞ in which all squares are pullbacks. Thus, we may consider (F (D) ↓n G(E))
as simultaneously generalizing all three constructions (F (D) ↓n C), (C ↓n G(E))
and (C ↓n C), with the convention that if either F or G is simply idC then we
omit it from the notation; we refer to any of these constructions (but especially to
(F (D) ↓n G(E))) as a potential homotopy pullback ∞-category . Similarly, the
construction (F (d) ↓n G(E)) generalizes the construction (F (d) ↓n C) (in the case
that G = idC), while the construction (F (D) ↓n G(e)) generalizes the construction
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(C ↓n G(e)) (in the case that F = idC). Additionally, we denote all vertical maps
landing at D (and in particular, all vertical maps in the third column landing at C)
by s and refer to these as source maps, and we denote all horizontal maps landing
at E (and in particular, all horizontal maps in the third row landing at C) by t and
refer to these as target maps.

Remark 3.4.16. To make sense of the terminology, one should think of the construc-
tion (F (D) ↓n G(E)) of Definition 3.4.15 as a sort of “directed” analog of the standard
explicit construction of a homotopy pullback of topological spaces (as the space of
pairs of points in the two sources of the cospan equipped with a path between their
images in the common target). The question, of course, is whether this actually
computes the homotopy pullback in (Cat∞)Th (which explains the word “potential”
in the name); a sufficient condition for this to be the case is precisely the content of
Theorem Bn (3.4.23). Continuing along these lines, one might think of (F (D) ↓n C)
and (C ↓n G(E)) as “directed” analogs of the mapping path space construction, i.e.
the standard explicit factorization of an arbitrary map of topological spaces as a weak
equivalence followed by a fibration. The reader may find these analogies helpful to
keep in mind while reading the rest of this subsection.

In order to simultaneously deal with the case when n is even and when n is odd,
we also introduce the following.

Notation 3.4.17. Inspired by the half-open intervals [0, 1) and (0, 1], we will enclose
an expression by [−) when we mean for it to be read only when n is even, while when
we will enclose an expression by (−] when we mean for it to be read only when n is
odd. So for instance, C[op) denotes Cop when n is even, and simply denotes C when n
is odd.

Lemma 3.4.18. Let n ≥ 1, let D
F−→ C and E

G−→ C be any functors.

(1) We have (
(F (D) ↓n G(E))

s−→ D
)
∈ [co)CFib(D)

and (
(F (D) ↓n G(E))

t−→ E
)
∈ coCFib(E).

(2) For any objects d ∈ D and e ∈ E, we have(
(F (D) ↓n G(e))

s−→ D
)
∈ [co)CFib(D)

and (
(F (d) ↓n G(E))

t−→ E
)
∈ coCFib(E).
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Proof. In both parts, we will only prove the second of the two claims; the first claims
follow from nearly identical arguments. Moreover, since cocartesian fibrations are
stable under pullback, it suffices to prove these statements in the case that G = idC.
For this, let us denote by t′ ∈ zn the penultimate object (reading from left to right),
and let us denote by z′n ⊂ zn the full subcategory on all the objects besides t ∈ zn,
so that we can identify zn as a pushout

zn ' z′n
∐

t′,ptCat∞ ,0

[1]

in Cat∞. We therefore obtain a diagram

(F (d) ↓n C) (F (D) ↓n C) (C ↓n C) Fun([1],C) C

ptCat∞ ×
F (d),C,evs

Fun(z′n,C) D ×
F,C,evs

Fun(z′n,C) Fun(z′n,C) C

ptCat∞ D C

ev1

ev0

evt′

evs

d F

in Cat∞ in which all squares are pullbacks and the upper row contains as composites

the two functors (F (D) ↓n C)
t−→ C and (F (d) ↓n C)

t−→ C which we would like to show
are cocartesian fibrations. Both claims now follow by applying the dual of Corollary
T.2.4.7.12 to the corresponding composites

D ×
F,C,evs

Fun(z′n,C)→ C

and
ptCat∞ ×

F (d),C,evs
Fun(z′n,C)→ C

in the middle row.

Notation 3.4.19. We denote the functors classifying the co/cartesian fibrations of
Lemma 3.4.18(1) by

D(op] (F (−)↓nG(E))−−−−−−−−→ Cat∞

and

E
(F (D)↓nG(−))−−−−−−−−→ Cat∞,
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and we denote the functors classifying the co/cartesian fibrations of Lemma 3.4.18(2)
by

D(op] (F (−)↓nG(e))−−−−−−−−→ Cat∞

and

E
(F (d)↓nG(−))−−−−−−−−→ Cat∞

(again omitting the functor F or G if it is just idC). Note that this is indeed consistent
with the notation given in Definition 3.4.15, and identifies all of the various pullbacks
over ptCat∞ in the diagram given there as fiber inclusions. (In particular, the ∞-
category (F (d) ↓n G(e)) includes as a fiber of two different co/cartesian fibrations.)

Remark 3.4.20. We may consider Lemma 3.4.18(2) as equipping the first two functors
defined in Notation 3.4.19 with lifts

coCFib(E)

D(op] Cat∞
(F (−)↓nG(E))

and
[co)CFib(D)

E Cat∞
(F (D)↓nG(−))

(through the evident forgetful functors). (Preservation of co/cartesian morphisms
follows from Corollary T.2.4.7.12.)

We then have the following elementary but important observations.

Proposition 3.4.21. Let n ≥ 1, and choose any functor D
F−→ C and E

G−→ C.

(1) The unique functor zn → ptCat∞ induces a common section

(C ↓n C) C
s

t

q

to the source and target maps.
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(2) The common section of part (1) induces sections

(F (D) ↓n C) Ds

q

and

(C ↓n G(E)) E.
t

q

(3) The section diagrams of part (2) (and in particular, those of part (1)) define
homotopy equivalences in (Cat∞)Th.

Proof. Part (1) follows from the fact that both composites ptCat∞ ⇒ zn → ptCat∞

are canonically equivalent to idptCat∞
. Then, part (2) follows from part (1) and the

definitions of (F (D) ↓n C) and (C ↓n G(E)) as pullbacks. For part (3), observe
first that either composite zn → ptCat∞ ⇒ zn is connected by a zigzag of natural

transformations to idzn
; moreover, working with ptCat∞

s−→ zn this zigzag can be
taken in Cat∗ where we point our categories using their source objects (i.e. such
that all the constituent natural transformations of the zigzag have the map ids as

their component at s), and similarly for working with ptCat∞

t−→ zn. By applying
Lemma 4.3.5 (where we take C to be equipped with the maximal relative structure),
we see that either composite (C ↓n C) ⇒ C → (C ↓n C) is in turn connected to
id(C↓nC) by a zigzag of natural transformations, such that all of the constituent natural
transformations commute with the chosen projection (C ↓n C) → C (either the

source or target map). Since the functor Cat∞
−×[1]−−−→ Cat∞ commutes with pullbacks

(being a limit), by the functoriality of pullbacks these induce zigzags of natural
transformations between the composite

(F (D) ↓n C)
s−→ D→ (F (D) ↓n C)

and id(F (D)↓nC) and between the composite

(C ↓n G(E))
t−→ E→ (C ↓n G(E))

and id(C↓nG(E)). Thus, the claim follows from Lemma 2.1.26.

We now define the key concept of this subsection.

Definition 3.4.22. We say that a functor D
F−→ C has property Bn if the functor

C
(F (D)↓n−)−−−−−−→ Cat∞

has property Q.
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We now give the main result of this subsection, which we refer to as Theorem
Bn (for homotopy pullbacks (in (Cat∞)Th)).

Theorem 3.4.23. If the functor D
F−→ C has property Bn, then for any functor

E
G−→ C, the (not generally commutative) square

(F (D) ↓n G(E)) D

E C

s

t F

G

is a homotopy pullback square in (Cat∞)Th, i.e. it induces a (commutative) pullback
square

(F (D) ↓n G(E))gpd Dgpd

Egpd Cgpd

sgpd

tgpd F gpd

Ggpd

in S.

Proof. To say that D
F−→ C has property Bn is to say that the functor

C
(F (D)↓n−)−−−−−−→ Cat∞

has property Q. By the naturality of the Grothendieck construction, the functor

E
(F (D)↓nG(−))−−−−−−−−→ Cat∞

is precisely the composite

E
G−→ C

(F (D)↓n−)−−−−−−→ Cat∞,

and therefore also has property Q. Hence, by Lemma Q (3.4.2), for any objects c ∈ C

and e ∈ E the fiber inclusions

(F (D) ↓n c) (F (D) ↓n C)

{c} C

t
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and
(F (D) ↓n G(e)) (F (D) ↓n G(E))

{e} E

t

are both homotopy pullback squares in (Cat∞)Th.
Now, observe that we have a diagram

(F (D) ↓n G(E)) (F (D) ↓n C) D

E C

s

t t

s

q

≈

F
G

in (Cat∞)Th, in which

• the map labeled q comes from Proposition 3.4.21(2),

• every bounded connected region is commutative except for the one containing
the symbol ≈, which is homotopy commutative (and is hence bounded by weak
equivalences in (Cat∞)Th) by Proposition 3.4.21(3), and

• the square is by definition a pullback square in Cat∞.

Our goal, then, reduces to showing that the commutative square in this diagram is
also a homotopy pullback square in (Cat∞)Th. For this, it suffices to verify that in
the induced commutative square

(F (D) ↓n G(E))gpd (F (D) ↓n C)gpd

Egpd Cgpd

tgpd tgpd

Ggpd

in S, we obtain an equivalence on fibers over every point of Egpd.
Now, observe first that any point ptS → Egpd is represented by a map ptCat∞

e−→ E

in (Cat∞)Th. Moreover, we have just seen that in the resulting commutative diagram

(F (D) ↓n G(e)) (F (D) ↓n G(E)) (F (D) ↓n C)

{e} E C

t t

G
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in Cat∞, both the left square and the outer rectangle are fiber inclusions which are
moreover homotopy pullback squares in (Cat∞)Th (where we take c = G(e) ∈ C). So
we do indeed obtain an equivalence on fibers over every point of Egpd in the above
commutative square in S, which completes the proof.

Remark 3.4.24. As [DKS89, Theorem Bn (6.2)] specializes to [Qui73, Theorem B] in
the case that n = 1, our Theorem Bn (3.4.23) also generalizes [Barb, Theorem B for
∞-categories (5.3)].

The following definition allows us to formulate a useful sufficient condition for a
functor to have property Bn.

Definition 3.4.25. We say that C ∈ Cat∞ has property Cn if every functor
ptCat∞ → C has property Bn.

The sufficient condition is then provided by the following main supporting result
of this section, which we refer to as Theorem Cn.

Theorem 3.4.26. If C ∈ Cat∞ has property Cn, then any functor D
F−→ C has

property Bn.

Proof. We must show that for any map c1
ϕ−→ c2 in C, the resulting functor

(F (D) ↓n c1)→ (F (D) ↓n c2)

is in WTh ⊂ Cat∞. Recall from Remark 3.4.20 that this functor can be considered
as the image of the map ϕ under a functor

C
(F (D)↓n−)−−−−−−→ [co)CFib(D).

Via the Grothendieck construction

Fun(D(op],Cat∞)
Gr−→
∼

[co)CFib(D)

this is classified by a natural transformation

(F (−) ↓n c1)
Gr−1((F (D)↓nϕ))−−−−−−−−−−→ (F (−) ↓n c2)

in Fun(D(op],Cat∞), and by Corollary 3.3.2 it suffices to show that the components
of this natural transformation lie in WTh ⊂ Cat∞. This is just the assertion that for
any object d ∈ D, the induced map

(F (d) ↓n c1)→ (F (d) ↓n c2)

is in WTh ⊂ Cat∞, which follows by applying the definition of property Cn to the

functor ptCat∞

F (d)−−→ C.



227

3.5 The Bousfield–Kan colimit formula

In 1-category theory, there’s an extremely useful formula which expresses an arbitrary
colimit as a coequalizer of maps between coproducts (at least when the ambient
category is cocomplete). Namely, if we are given C,D ∈ Cat, C admits coproducts

and coequalizers, and D
F−→ C is any functor, then we have an isomorphism

colimD F ∼= coeq

 ∐
(d1→d2)∈N(D)1

F (d1)⇒
∐

d∈N(D)0

F (d)


in C, where on the summand corresponding to (d1

ϕ−→ d2) ∈ N(D)1, one map is given
by

F (d1)
idF (d1)−−−−→ F (d1)

(landing on the summand corresponding to d1 ∈ N(D)0) and the other map is given
by

F (d1)
F (ϕ)−−→ F (d2)

(landing on the summand corresponding to d2 ∈ N(D)0). (In fact, it follows from this
formula that C is cocomplete if (and only if) it admits coproducts and coequalizers.)

In this section, we generalize this colimit formula to ∞-categories. Two things
must be changed. First of all, this coequalizer will be replaced by a geometric
realization.7 Moreover, the coproducts over the sets of objects and morphisms of
D will be replaced by the colimits over the spaces of objects, morphisms, pairs
of two composable morphisms, etc., of the diagram ∞-category – in other words,
over the constituents of its ∞-categorical nerve. To be more precise, the simplicial

replacement of a diagram D
F−→ C in C will be a simplicial object srep(F )• ∈ sC

which in level n is the colimit of the composite

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

F−→ C

(which of course only need exist when C has a sufficient supply of colimits). Then, the
geometric realization of the simplicial replacement will compute the colimit colimD F
of the original diagram in C.

7Recall that ∆op
≤1 is the walking reflexive pair, so that colimits over it are precisely reflexive

coequalizers. In fact, the above pair of parallel arrows in C is indeed a reflexive pair: a common
section is given by taking the summand F (d) over the element d ∈ N(D)0 to summand F (d) over
the element idd ∈ N(D)1 via the identity map idF (d) in C.
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This section is organized as follows. In §3.5.1, we carefully construct the simplicial
replacement and prove the Bousfield–Kan colimit formula (Theorem 3.5.8). In §3.5.2,
we provide some examples to illustrate the usage of this formula. Finally, in §3.5.3,
we provide a functoriality result.

Remark 3.5.1. Of course, one can dualize this entire section to obtain analogous
constructions and results concerning limits in a complete ∞-category.

3.5.1 The Bousfield–Kan colimit formula

In this subsection, we construct the simplicial replacement and prove the main result
of this section. We begin with the following observation.

Remark 3.5.2. The structure maps of the diagrams in C assembling to the simplicial
replacement are not strictly compatible: we will only have a lax natural transforma-
tion N∞(D)•  const(D) in Fun(∆op,Cat∞), i.e. a map

Gr(N∞(D)•) D×∆op

∆op

making the triangle commute, which by precomposition will induce the passage to the
simplicial replacement. For instance, a point ϕ ∈ N∞(D)1 corresponds to a morphism

x
ϕ−→ y in D, and the above map should send this to the point x ∈ D × {[1]◦}. On

the other hand, the two simplicial structure maps take the point ϕ ∈ N∞(D)1 to the
points x, y ∈ N∞(D)0, and the map N∞(D)0 → D× {[0]◦} is simply the inclusion of
the maximal subgroupoid. So in the diagram

N∞(D)1 D

N∞(D)0 D,

{0}

δ0 δ0

∼

{0}

going across and then down gives ϕ 7→ x 7→ x, while going down and then across
gives ϕ 7→ y 7→ y. Hence, the diagram does not strictly commute. However, it
will commute up to a natural transformation (running down and to the left), whose
component at the point ϕ ∈ N∞(D)1 is simply the map ϕ itself.

Remark 3.5.3. In light of Remark 3.5.2, one sees that the “decomposition of colimits”
results of §T.4.2.3 do not suffice for our purposes here: they only apply to strict
diagrams of diagram ∞-categories lying over our diagram ∞-category D.
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We now construct the lax natural transformation of Remark 3.5.2. In fact, we
will construct it in a way which is functorial in D ∈ Cat∞.8

Construction 3.5.4. We construct the map Gr(N∞(D)•)→ D×∆op in (Cat∞)/∆op

as follows. By the universal property of products, it suffices to construct only
the map Gr(N∞(D)•) → D in Cat∞. This we construct on nerves, i.e. as a map
N∞(Gr(N∞(D)•))• → N∞(D)• in CSS ⊂ sS. For this, we will unwind the definitions
of these two constructions as functors of D ∈ Cat∞.

Of course, the target is corepresented in level n by [n] ∈∆ ⊂ Cat∞.
On the other hand, every string of composable morphisms in Gr(N∞(D)•) is

uniquely determined by its source and its image in ∆op (since the functor Gr(N∞(D)•)→
∆op is a left fibration and hence all maps are cocartesian), and so we obtain an equiv-
alence

N∞(Gr(N∞(D)•))n '
∐

α∈N(∆op)n

N∞(D)α(0),

where we consider α ∈ N(∆op)n ∼= homCat([n],∆op). Hence, the composite functor

Cat∞
N∞(−)•−−−−→ sS ' Fun(∆op, S)

Gr−→ LFib(∆op)
UL(∆op)−−−−−→ (Cat∞)/∆op → Cat∞

N∞(−)•−−−−→ sS,

considered by adjunction as a simplicial object in Fun(Cat∞, S), is given in each level
by a coproduct of corepresentable objects. In level n, it is given by∐

α∈N(∆op)n

ょ(α(0)◦),

where we writeょ=ょ(Cat∞)op for the contravariant Yoneda functor

(Cat∞)op
homCat∞ (−,=)
−−−−−−−−→ Fun(Cat∞, S)

for brevity. To describe its simplicial structure maps, given a map [n]
α−→ ∆op, for

any 0 ≤ i ≤ j ≤ n let us denote the corresponding map in ∆op selected by α by

α(i)
α◦i,j−−→ α(j)

(i.e. the image under α of the unique element of hom[n](i, j)). Then, associated to a

map [n]◦
ϕ◦−→ [m]◦ in ∆op, the structure map ∐

α∈N(∆op)n

ょ(α(0)◦)

→
 ∐
β∈N(∆op)m

ょ(β(0)◦)


8This is essentially a homotopy-invariant analog of the “first vertex projection” from the oppo-

site of the category of simplices of a quasicategory. The main difficulty lies in keeping careful track
of all coherence data.
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of this simplicial object in Fun(Cat∞, S) is given by taking the summandょ(α(0)◦)
indexed by α ∈ homCat([n],∆op) to the summandょ(β(0)◦) indexed by β = α ◦ ϕ ∈
homCat([m],∆op) via the map

ょ(α(0)◦)
ょ(α◦

0,ϕ(0)
)

−−−−−→ょ(α(ϕ(0))◦)

in Fun(Cat∞, S). Since the objects of Fun(Cat∞, S) corepresented by gaunt categories
and their finite coproducts generate a full subcategory which is just a 1-category, no
higher coherence issues arise. (We will implicitly appeal to this fact for our further
manipulations as well.)

We can now describe our desired map N∞(Gr(N∞(D)•))• → N∞(D)• in CSS ⊂
sS. In level n, it is obtained from the map ∐

α∈N(∆op)n

ょ(α(0)◦)

→ょ([n]◦)

which on the summand α ∈ N(∆op)n is the map

ょ

(
α(0)◦

((i 7→α0,i(0))0≤i≤n)◦

−−−−−−−−−−−→ [n]◦
)

in Fun(Cat∞, S). That is, in level n, on the summand α it is corepresented by the
map [n] → α(0)◦ in ∆ ⊂ Cat∞ given by i 7→ α0,i(0), i.e. the map taking i ∈ [n] to
the image in α(0)◦ of the object 0 ∈ α(i)◦ under the composite

α(0)◦
α0,1←−− · · · αi−1,i←−−− α(i)◦

in ∆.
We have now associated to the object D ∈ Cat∞ a map N∞(Gr(N∞(D)•)) →

N∞(D) in CSS. In fact, this map clearly commutes with the induced projections to
N∞(∆op), and moreover, this association is clearly functorial in D ∈ Cat∞ since it is
entirely corepresented. Hence, we obtain a functor

Cat∞ → Fun([1],CSS/N∞(∆op)),

which immediately (and equivalently) produces our desired functor

Cat∞ → Fun([1], (Cat∞)/∆op)

which takes the object D ∈ Cat∞ to a commutative triangle as depicted in Re-
mark 3.5.2 (considered as an object of Fun([1], (Cat∞)/∆op)).
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Example 3.5.5. To illustrate the combinatorics of the corepresenting map in Con-
struction 3.5.4, we return to the situation described in Remark 3.5.2. Namely, let
us restrict our attention to the case that n = 1, α(0) = [1]◦, and α(1) = [0]◦.
Then, there are two possibilities for the map α ∈ N(∆op)1 = homCat([1],∆op): it

selects either [1]◦
δ0−→ [0]◦ or [1]◦

δ1−→ [0]◦. These are respectively opposite to the map
[0] → [1] in ∆ given by 0 7→ 1 or 0 7→ 0. Hence, the corresponding corepresenting
map [1]→ α(0)◦ = [1] in ∆ is respectively either id[1] or const(0).

We now define our main object of interest, the simplicial replacement.

Definition 3.5.6. Suppose that C is cocomplete, and let D
F−→ C be a functor. We

construct a composite

Gr(N∞(D)•) D×∆op C×∆op

∆op

F×id∆op

in which the first horizontal map is given by Construction 3.5.4. By Proposition
T.4.2.2.7, there is a unique lift in the diagram

Gr(N∞(D)•) C×∆op

Gr(N∞(D)•) �
∆op

∆op ∆op

such that the composite

∆op → Gr(N∞(D)•) �
∆op

∆op → C×∆op

takes each [n]◦ ∈∆op to a colimit of the composite

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

F−→ C.

We define the object srep(F )• ∈ sC to be the composite

∆op → Gr(N∞(D)•) �
∆op

∆op → C×∆op → C,

and refer to it as the simplicial replacement of the functor F .



232

Lemma 3.5.7. Suppose that C1
χ−→ C2 is a cocontinuous functor between cocomplete

∞-categories, and suppose that D
F−→ C1 is any functor. Then the composite

∆op srep(F )•−−−−−→ C1
χ−→ C2

is canonically equivalent to the object srep(χ ◦ F )• ∈ s(C2).

Proof. This follows directly from Definition 3.5.6.

We can now give the main result of this section, the Bousfield–Kan colimit
formula .

Theorem 3.5.8. Let C be cocomplete, and let D
F−→ C be a functor. Then there is a

canonical equivalence
colimD F ' |srep(F )•|

in C.

Proof. Observe that the colimit of a D-shaped diagram is functorial in cocomplete
∞-categories under D and cocontinuous functors between them. Hence, in light of
Lemma 3.5.7, it suffices to prove the statement in the universal (i.e. initial) case,

namely taking the functor D
F−→ C to be the canonical map from D into its free

cocompletion, i.e. the Yoneda embedding D
ょ−→ P(D) = Fun(Dop, S).

First of all, we claim that there is a canonical equivalence colimD(ょ) ' const(ptS)
in P(D). To see this, observe that for any d ∈ D, we have a string of equivalences

(colimDょ)(d) ' colimD(evd ◦ょ) ' colimD(homD(d,−))

in S, where the first equivalence is because colimits in P(D) are computed pointwise
and the second is simply because evd ◦ょ' homD(d,−) in Fun(D, S). Appealing to
Proposition 3.3.1 and the canonical equivalence

Gr(homD(d,−)) ' Dd/

in LFib(D) of Example 3.1.12, we obtain a string of equivalences

colimD(homD(d,−)) ' Gr(homD(d,−))gpd ' (Dd/)
gpd ' ptS,

where the last equivalence follows from the dual of Corollary 3.4.11. Hence, (colimDょ)(d) '
ptS for every d ∈ D, and so it follows that the terminal map colimD(ょ)→ const(ptS)
in P(D) is indeed an equivalence.9

9This is also proved as Lemma T.5.3.3.2.
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On the other hand, recall that srep(ょ)n ∈ P(D) is the colimit of the composite

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

ょ−→ P(D).

For any d ∈ D, the composite functor

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

ょ−→ P(D)
evd−−→ S

classifies the left fibration which is the upper composite map

{d} ×
N∞(D)0,{0}

N∞(D)n+1 N∞(D)n+1 N∞(D)n

{d} N∞(D)0.

δ0

{0}

Again appealing to Proposition 3.3.1 (and the fact that colimits in P(D) are com-
puted pointwise), it follows that

srep(ょ)n(d) '
(

colim
(

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

ょ−→ P(D)
))

(d)

' colim
(

N∞(D)n
{0}−−→ N∞(D)0 ' D' ↪→ D

ょ−→ P(D)
evd−−→ S

)
'
(
{d} ×

N∞(D)0,{0}
N∞(D)n+1

)gpd

' {d} ×
N∞(D)0,{0}

N∞(D)n+1

(where the last equivalence follows from the fact that the inclusion S ⊂ Cat∞ is a right
adjoint and hence commutes with pullbacks (and the fact that (−)gpd : Cat∞ → S is
idempotent)). Unwinding the definitions of the simplicial structure maps of srep(ょ)•,
we obtain that in fact

srep(ょ)•(d) '
(
{d} ×

N∞(D)0,{0}
N∞(D)•+1

)
' N∞(Dd/)•.

Hence, it follows that

|srep(ょ)•|(d) ' |srep(ょ)•(d)| ' |N∞(Dd/)•| ' (Dd/)
gpd ' ptS,

where again the last equivalence follows from the dual of Corollary 3.4.11, and the
second-to-last equivalence follows from Proposition 2.2.4. Therefore, the terminal
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map |srep(ょ)•| → const(ptS) in P(D) is also an equivalence. It follows that we have
a canonical equivalence

colimDょ' const(ptS) ' |srep(ょ)•|,

which proves the claim.

Remark 3.5.9. Our Bousfield–Kan colimit formula (Theorem 3.5.8) is certainly in-
spired by the classical Bousfield–Kan formula (see the original source [BK72, Chapter
XII, §5], or e.g. [Hir03, §18.1] for a more modern treatment), but it is actually rather
different: the latter computes a homotopy colimit in a simplicial model category.
Moreover, even in the case that both C and D are only 1-categories, it does not
generally agree with the formula for a colimit as a coequalizer of coproducts: this
additionally requires that D be gaunt. (Note that that formula is actually evil: it
is not invariant under replacing D by an equivalent category, referring as it does to
its actual sets N(D)0 and N(D)1 of objects and of morphisms.) On the other hand,
when D is a (1- or ∞-)groupoid, then our simplicial replacement (Definition 3.5.6)
is trivial: in that case we have a canonical equivalence N∞(D)• ' const(D) in sC,

whence it follows that the simplicial replacement srep(F )• ∈ sC of a diagram D
F−→ C

is already constant at the object colimD F ∈ C.

3.5.2 Examples of the Bousfield–Kan colimit formula

The Bousfield–Kan colimit formula (Theorem 3.5.8) is most interesting (and novel)
when the diagram∞-category D is not merely a 1-category. For instance, applying it
to a pushout diagram and canceling out the redundancies in the resulting geometric
realization yields nothing but the original pushout diagram. We therefore give two
inherently ∞-categorical examples to illustrate its application.

Example 3.5.10. Choose any space Y ∈ S, and let us take D to be its “categorical
suspension”: this is an ∞-category with two objects d1 and d2, which is determined
by the prescriptions that

• homD(d1, d1) ' homD(d2, d2) ' ptS,

• homD(d2, d1) ' ∅S, and

• homD(d1, d2) ' Y .

Then, a functor D
F−→ C selects the data of

• a pair of objects c1, c2 ∈ C, and

• a map Y → homS(c1, c2) in S.
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Canceling out redundancies (and assuming C is cocomplete), the Bousfield–Kan col-
imit formula (Theorem 3.5.8) then gives equivalences

colimD(F ) ' |srep(F )•| ' colim

 c1 � Y c1

c2


in C, where in the pushout

• the horizontal map is given by the tensoring c1 � (Y → ptS), and

• the vertical map is the adjunct of the chosen map Y → homC(c1, c2).

Example 3.5.11. Choose any space Y ∈ S, and let us take D = Y / ∈ Cat∞ to be
the left cone on it (considered as an ∞-groupoid). Assume for simplicity that C is

bicomplete. Then, a functor D
F−→ C is determined by

• its restriction Y
F ′−→ C, and

• a map c → limY (F ′) from some object c ∈ C (selected by the cone point) to
the limit of this restriction.10

Canceling out redundancies, the Bousfield–Kan colimit formula (Theorem 3.5.8) then
gives equivalences

colimD(F ) ' |srep(F )•| ' colim


c� Y c

colimY (F ′)


in C, where in the pushout

• the horizontal map is given by c� (Y → ptS), and

• the vertical map is induced by the natural transformation constY (c) → F ′ in
Fun(Y,C) which is adjunct to the chosen map c→ limY (F ′).

On an object c′ ∈ C, this pushout corepresents the data of

10If Y
F ′−→ C is constant, then limY (F ′) reduces to a cotensor. However, there are interesting

examples where this is not the case: for instance, if Y is a 1-type, this limit computes the fixed
points of the corresponding group action. Of course, a dual observation applies to colimY (F ′),
which appears here as well. (Another interesting example of a colimit over an ∞-groupoid is the
Thom spectrum construction.)
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• a morphism colimY (F ′)→ c′ in C (or equivalently, a morphism F ′ → constY (c′)
in Fun(Y,C), along with

• a trivialization
Y homC(c, c′)

ptS

of the adjunct to the induced composite

c� Y → colimY (F ′)→ c′.

3.5.3 Functoriality of the Bousfield–Kan colimit formula

Of course, it is perfectly reasonable to expect that the Bousfield–Kan colimit formula
enjoys good functoriality properties, along the lines of those explored in § 3.2.2.
However, for expedience, rather than pursue a full treatment, in this subsection we
exhibit only the mere shadow of such functoriality that we will actually need.

We begin by identifying the simplicial replacement as a left Kan extension.

Lemma 3.5.12. Suppose that C is cocomplete, let D
F−→ C be any diagram. Then,

in the commutative diagram

Gr(N∞(D)•) C×∆op C

∆op Gr(N∞(D)•) �
∆op

∆op

containing the simplicial replacement ∆op srep(F )•−−−−−→ C as a composite, the vertical
functor is a full inclusion and the dotted arrow is a left Kan extension along it.

Proof. To see that the vertical functor is a full inclusion, we simply unwind the
definition of its target to obtain

Gr(N∞(D)•) �
∆op

∆op

= Gr(N∞(D)•)
∐

(
Gr(N∞(D)•) ×

∆op
∆op×{0}

)
(

Gr(N∞(D)•) ×
∆op

∆op × [1]

) ∐
(

Gr(N∞(D)•) ×
∆op

∆op×{1}
)∆op
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' (Gr(N∞(D)•)× [1])
∐

(Gr(N∞(D)•)×{1})

∆op.

That is, this target is precisely the cocartesian fibration over [1] classified by the
functor [1]→ Cat∞ which selects the projection Gr(N∞(D)•)→∆op, and our vertical
functor is the fiber inclusion over the object 0 ∈ [1]; in particular, it is full (as the
object 0 ∈ [1] admits no nontrivial automorphisms).

Now, to check that the dotted arrow is a left Kan extension along this full inclu-
sion, by Remark T.4.3.2.3 it suffices to show that for any object

[n]◦ ∈∆op ⊂
(

Gr(N∞(D)•) �
∆op

∆op
)
,

the corresponding fiber inclusion N∞(D)n ↪→ Gr(N∞(D)•) induces a functor

N∞(D)n →

Gr(N∞(D)•) ×(
Gr(N∞(D)•) �

∆op
∆op

)
(

Gr(N∞(D)•) �
∆op

∆op
)
/[n]◦


which is final. This is straightforwardly verified using Theorem A (3.4.10): all of the
comma ∞-categories whose groupoid completions must be shown to be contractible
are easily seen to possess initial objects, and hence the equivalent condition follows
from the opposite of Corollary 3.4.11.

We can now describe our desired shadow of functoriality.

Proposition 3.5.13. Let C be cocomplete, and suppose that

D E

C

H

F G

is a commutative diagram in Cat∞.

(1) There is a canonical induced map

srep(F )• → srep(G)•

in sC, which is functorial in the variable C for cocontinuous functors between
cocomplete ∞-categories.
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(2) We have a commutative square

colimD F colimEG

|srep(F )•| |srep(G)•|

∼ ∼

in C, in which

• the upper map is the induced map on colimits of the global colimit functor
(Proposition 3.2.12),

• the lower map is the geometric realization of the canonical map of part
(1), and

• the vertical equivalences are those of Theorem 3.5.8.

Proof. For part (1), by Lemma 3.5.12 and the functoriality provided by Construc-
tion 3.5.4, we have a commutative diagram

Gr(N∞(D)•) C

Gr(N∞(E)•)

Gr(N∞(D)•) �
∆op

∆op

Gr(N∞(E)•) �
∆op

∆op

in which the vertical arrows are full inclusions and the dotted arrows are left Kan
extensions therealong. As the composite(

Gr(N∞(D)•) �
∆op

∆op
)
→
(

Gr(N∞(E)•) �
∆op

∆op
)
→ C

also extends the map Gr(N∞(D)•) → C along the given full inclusion, it therefore
admits a canonical natural transformation from the dotted map

Gr(N∞(D)•) �
∆op

∆op → C.
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Restricting to the full subcategory

∆op ⊂
(

Gr(N∞(D)•) �
∆op

∆op
)
,

we obtain a natural transformation

∆op C

srep(F )•

⇓

srep(G)•

which is precisely our desired map in sC. Moreover, the asserted functoriality follows
easily from this argument (recall Remark 3.2.13).

For part (2), note that there is a unique cocontinuous functor P(D) → P(E)
making the diagram

D E

P(D) P(E)

H

ょD ょE

commute.11 From here, by Lemma 3.5.7 and the functoriality asserted in part (1),

it suffices to verify the claim in the case that the functor E
G−→ C is the Yoneda

embedding E
ょE−→ P(E), so that the functor D

F−→ C is the composite D
ょE◦H−−−→ P(E).

Hence, it remains to show that we have a commutative square

colimD(ょE ◦H) colimEょE

|srep(ょE ◦H)•| |srep(ょE)•|

∼ ∼

in P(E) satisfying the described criteria. But as we have seen in the proof of Theo-
rem 3.5.8, if we consider these two vertical maps as objects of Fun([1],P(E)), then
the one on the right determines a terminal object. As the datum of this commutative
square is equivalent to that of the corresponding morphism in Fun([1],P(E)) (reading
the square from left to right), it follows that in fact the square must commute in a
canonical and unique way.

11In fact, by Lemma T.5.1.5.5(1), this functor must be precisely the left Kan extension (ょD)!(ょE◦
H).
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3.6 The Thomason model structure on the

∞-category of ∞-categories

In this final section, we equip the∞-category Cat∞ of∞-categories with a Thomason
model structure analogous to the classical Thomason model structure on Cat (though
see Remark 3.6.6) and observe some of its basic features. (We refer the reader to
§1.1 for the definition of a model structure on an ∞-category, and to §1.4 for the
definition of the Kan–Quillen model structure on the ∞-category sS of simplicial
spaces.) This model structure provides a convenient language for a number of the
results in the main body of the chapter.

We begin by constructing it.

Theorem 3.6.1. The Kan–Quillen model structure on sS lifts along the composite
adjunction

sS CSS Cat∞.
LCSS

⊥
UCSS

N−1
∞
∼

N∞

Moreover, this Quillen adjunction is a Quillen equivalence.

Proof. For notational convenience, we prove the statement for the adjunction LCSS a
UCSS (which is of course equivalent).

For the first claim, we verify the hypotheses of the lifting theorem for cofibrantly
generated model ∞-categories (1.3.12) in turn.

First of all, for any Y ∈ sS and Z ∈ CSS we have that

homCSS(LCSS(Y ), Z) ' homsS(Y,UCSS(Z)),

and so the fact that the sets LCSS(IKQ) and LCSS(JKQ) of homotopy classes of maps
in CSS permit the small object argument follows from Lemma 1.5.2.

Next, we show that the right adjoint sS
UCSS←−−↩ CSS takes relative LCSS(JKQ)-cell

complexes into WKQ. For this, let us begin by supposing that

LCSS(Λ
n
i ) Y

LCSS(∆
n) Z
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is a pushout square in CSS. Since sS
LCSS−−→ CSS commutes with pushouts (being a

left adjoint), we have that

Z ' colimCSS


LCSS(Λ

n
i ) LCSS(UCSS(Y ))

LCSS(∆
n)

 ' LCSS

colimsS


Λn
i UCSS(Y )

∆n


 .

Using Proposition 2.2.4 and the fact that colimits commute with colimits, we then
obtain the string of equivalences

|UCSS(Z)| '

∣∣∣∣∣∣∣∣∣UCSS

LCSS

colimsS


Λn
i UCSS(Y )

∆n




∣∣∣∣∣∣∣∣∣

'

∣∣∣∣∣∣∣∣∣colimsS


Λn
i UCSS(Y )

∆n


∣∣∣∣∣∣∣∣∣

' colimS


|Λn

i | |UCSS(Y )|

|∆n|

∼


' |UCSS(Y )|.

Hence, the map
UCSS(Y )→ UCSS(Z)

lies in WKQ ⊂ sS. Now, to prove the claim for more general transfinite compositions,
it then suffices to observe that the composite

CSS
UCSS
↪−−→ sS

|−|−→ S

is a left adjoint and hence commutes with colimits. Thus, UCSS does indeed take
relative LCSS(JKQ)-cell complexes into WKQ.

So, the Kan–Quillen model structure sSKQ does indeed lift along the adjunction
as claimed, and it remains to check that the resulting Quillen adjunction is a Quillen
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equivalence. For this, suppose we are given any objects Y ∈ sS and Z ∈ CSS. Then,
a map

Y → UCSS(Z)

in sS corresponds via the adjunction to the map

LCSS(Y )→ LCSS(UCSS(Z)) ' Z

in CSS. Since the lifting theorem (1.3.12) produces a model structure for which the
right adjoint creates the weak equivalences, the claim follows from Proposition 2.2.4.

Definition 3.6.2. We refer to the model structure on Cat∞ defined by Theorem 3.6.1
as the Thomason model structure , denoted (Cat∞)Th.

Remark 3.6.3. Proposition 2.2.4 implies that the subcategory WTh ⊂ Cat∞ is created
by the groupoid completion functor (−)gpd : Cat∞ → S. As this functor is a left
localization, it therefore induces an equivalence Cat∞JW−1

ThK
∼−→ S. Moreover, it is

not hard to see directly that the adjoint functors N−1
∞ ◦ LCSS a UCSS ◦ N∞ induce

inverse equivalences sSJW−1
KQK ' Cat∞JW−1

ThK.

Remark 3.6.4. Let us explore what it means for an object C ∈ Cat∞ to be fibrant in
the Thomason model structure. By definition, this means that N∞(C) ∈ CSS ⊂ sS
has the extension property for the set JKQ = {Λn

i → ∆n}0≤i≤n≥1 of horn inclusions
in sSet ⊂ sS.

In fact, the Segal condition on a simplicial space implies that it admits unique
fillers for the set {Λn

i → ∆n}0<i<n≥2 of inner horn inclusions. To see this, observe
that the inclusion (

∆{0,1}
∐
∆{1}

· · ·
∐

∆{n−1}

∆{n−1,n}

)
→ Λn

i

of subobjects of ∆n ∈ sSet can be constructed as a (finite) composition of pushouts
of inner horn inclusions Λk

j → ∆k for k < n, and the Segal condition is precisely
the assertion that a given simplicial space admits unique extensions for the inclusion
of the above source into ∆n (the “nth spine inclusion”). From here, the assertion
follows by induction.

On the other hand, it is already clear that if a (complete) Segal space has the
extension property for the outer horn inclusion Λ2

0 → ∆2, then it must be the nerve
of an ∞-category whose morphisms are all invertible. Hence, the fibrant objects in
the model structure on CSS of Theorem 3.6.1 are precisely the constant complete
Segal spaces (i.e. those that are constant as simplicial spaces). It follows that we
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can identify the subcategory of fibrant objects in the Thomason model structure as
(Cat∞)fTh = S ⊂ Cat∞, the subcategory of ∞-groupoids (i.e. spaces).

In fact, we have the following strengthening of Remark 3.6.4.12,13

Proposition 3.6.5. The Thomason model structure on Cat∞ is a left localization
model structure (in the sense of Example 1.2.12) with respect to the left localization
adjunction

Cat∞ S.
(−)gpd

⊥
US

Proof. Observe that a model structure on an∞-category is clearly determined by its
subcategories of weak equivalences and of cofibrations (just as a model structure on a
1-category). So, it only remains to check that all maps in (Cat∞)Th are cofibrations.

For this, it suffices to present any map in CSS as the image under sS
LCSS−−→ CSS

of a cofibration in sSKQ. Note that the inclusion sSet ⊂ sS induces an inclusion
CsSet

KQ ⊂ CsS
KQ; in fact, we will present any map in CSS as the image of a cofibration

in sSetKQ.
To accomplish this, we begin by observing that the composite functor

sSet ↪→ sS
LCSS−−→ CSS

consists of a right adjoint followed by a left adjoint. In fact, these are both presented
by Quillen functors: the first functor is presented by the right Quillen functor in the
evident Quillen adjunction

πlw
0 : s(sSetKQ)Reedy � sSettriv : constlw

(where in the left adjoint we slightly abuse notation by using the symbol π0 to refer
to the composite sSet → sSetJW−1

KQK ' S
π0−→ Set), while the second functor is

presented by the left Quillen functor in the left Bousfield localization

idssSet : s(sSetKQ)Reedy � ssSetRezk : idssSet

(see (the proof of) [Rez01, Theorem 7.2]). Moreover, all objects of sSettriv are fibrant
while all objects of s(sSetKQ)Reedy are cofibrant, so this composite of Quillen functors

12Proposition 3.6.5 immediately implies the conclusion of Remark 3.6.4 (that (Cat∞)fTh = S ⊂
Cat∞), but we will want to build on the explicit geometric arguments given there in Remark 3.6.8.

13Proposition 3.6.5 does not follow from the discussion of Example 1.2.12. For instance, this
left localization is certainly not left exact; the entire point of §3.4 is to obtain sufficient conditions
under which it commutes with pullbacks. See also Remark 3.6.9.
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does not need to be corrected at either stage in order to compute the value of the
corresponding adjoint functor of ∞-categories. On the other hand, this composite
functor

sSettriv
constlw

−−−−→ s(sSetKQ)Reedy
idssSet−−−→ ssSetRezk

of model categories is precisely the functor underlying the left Quillen equivalence
constlw : sSetJoyal → ssSetRezk of [JT07, Theorem 4.11]. It therefore follows that the
above composite functor of ∞-categories induces an equivalence

sSetJW−1
JoyalK

∼−→ CSS

from the localization of sSet at the subcategory WJoyal ⊂ sSet to the ∞-category of
complete Segal spaces.14

We can now easily achieve our goal. Since CsSet
KQ = CsSet

Joyal, it follows that we can
simply choose a cofibration in sSetJoyal presenting our given map in CSS ' Cat∞:
considering this map of simplicial sets as a map of discrete simplicial spaces, its

image under the functor sS
LCSS−−→ CSS is precisely the chosen map.

Remark 3.6.6. We observe that the Thomason model structure on Cat∞ does not
extend the original Thomason model structure on Cat: the model category CatTh is
not a model subcategory of the model ∞-category (Cat∞)Th (in the sense of Defini-
tion 1.4.11, and ignoring the fact that Cat is not, strictly speaking, a subcategory of
Cat∞ at all). However, the weak equivalences remain unchanged: the subcategory
WCat

Th ⊂ Cat is pulled back from the subcategory WCat∞
Th ⊂ Cat∞ along the composite

functor Cat → Cat ↪→ Cat∞. To illustrate this, we recall the history of this classical
model category.

To begin, we recall the main point: categories can individually be considered as
“presentations of spaces” (via simplicial sets) via the nerve functor N : Cat → sSet.
Thus, it is natural to wonder whether this can be extended to a global presentation
of the homotopy category of spaces (i.e. ho(S) ' sSet[W−1

KQ]) as some localization of
the category Cat of categories. As a first step in this direction, it was proved in [Ill72,

3.3.1] (but attributed there to Quillen) that the nerve functor Cat
N−→ sSet does indeed

induce an equivalence Cat[W−1
Th]

∼−→ sSet[W−1
KQ] on (1-categorical) localizations. In

other words, the relative category (Cat,WTh) ∈ RelCat has as its (1-categorical)
localization the homotopy category ho(S) of spaces, as desired.

On the other hand, relative categories are not so easy to work with, and so one
might then further wonder whether this relative category structure can be promoted

14Of course, we already knew that sSetJW−1
JoyalK was equivalent to CSS (since it is equivalent to

Cat∞); the new information here is that this particular composite functor (of ∞-categories) also
induces this equivalence.
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to a model category structure. Now, the most obvious way that one might hope to
obtain this would be to simply lift the classical Kan–Quillen model structure (as in
Theorem 1.3.12, but of course really just using [Hir03, Theorem 11.3.2]) along the
adjunction LCat : sSet � Cat : N. However, it is easy to see that such a Quillen
adjunction could not possibly be a Quillen equivalence: the fibrant objects of Cat
would be precisely the subcategory Gpd ⊂ Cat of groupoids, but these (or rather their
nerves) do not model all objects of sSet[W−1

KQ], and so the derived right adjoint could
not possibly be surjective.

But in [Tho80], Thomason showed that if we instead lift the Kan–Quillen model
structure along the composite right adjoint

sSetKQ
Ex←− sSet

Ex←− sSet
N←− Cat,

then the resulting Quillen adjunction is a Quillen equivalence.15,16 This defines
what is now called the Thomason model structure on Cat. From this description,
it is clear that the model structure (Cat∞)Th does not extend the model structure
CatTh. For instance, it follows from Proposition 3.6.5 that all objects of (Cat∞)Th

are cofibrant, whereas [Tho80, Proposition 5.7] asserts that all cofibrant objects of
CatTh are in fact posets. Moreover, that same result also implies that their notions
of fibrancy disagree: it follows from it that any bifibrant object of CatTh is a poset,
whereas according to Remark 3.6.4 the fibrant objects of (Cat∞)Th are precisely the
∞-groupoids.17

Remark 3.6.7. One way to interpret Remark 3.6.6 is to say that the model ∞-
category (Cat∞)Th entirely accounts for the quirky definition of the model category
CatTh: in this sense, the only “obstruction” to obtaining a model structure on Cat
presenting S by lifting directly along the nerve functor is the lack of would-be fibrant
objects in Cat. While not every space is presented by a groupoid, certainly every
space is presented by an ∞-groupoid (!), and so this obstruction vanishes when we
pass from Cat to Cat∞.

15Heuristically, one might say that the Ex functor “makes more simplicial sets fibrant”. In-
deed, recall that it comes equipped with a natural transformation idsSet → Ex, and the resulting
transfinite composition defines a fibrant replacement functor on sSetKQ (see [GJ99, §III.4]).

16The Ex functor is not only a right Quillen equivalence from sSetKQ to itself, but it is also a
relative functor – indeed, it defines a weak equivalence in RelCatBK. Thus, even though here we
are (crucially!) not only applying it to fibrant objects of sSetKQ, in the end this composite still

presents an equivalent map in Cat∞ (namely S
idS−−→ S).

17As posets are gaunt, the composites Cat→ Cat∞
N∞−−→ sS and Cat

N−→ sSet ↪→ sS are equivalent
on such objects.
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Remark 3.6.8. In contrast with Remark 3.6.4, it is not so straightforward to charac-
terize which maps in (Cat∞)Th are fibrations.18 By definition, this would be a functor

C
F−→ D in Cat∞ such that the corresponding map

N∞(C)
N∞(F )−−−−→ N∞(D)

on nerves in CSS ⊂ sS has rlp(IKQ). On the one hand, arguments similar to those of
Remark 3.6.4 imply that these maps likewise admit unique lifts for the inner horn
inclusions. On the other hand, the condition that this map have the right lifting
property against the outer horn inclusions seems to be a good deal more subtle.

• At n = 1, the requirement that our map have the right lifting property against
the outer horn inclusion Λ1

0 → ∆1 (resp. the outer horn inclusion Λ1
1 → ∆1) is

equivalent to the condition that for all objects c ∈ C, the functor C/c → D/F (c)

(resp. the functor Cc/ → DF (c)/) is surjective.

• At n = 2, even just the requirement that our map have the right lifting property
against the outer horn inclusion Λ2

0 → ∆2 already implies that the equivalences

in C are created by the functor C
F−→ D. However, this does not appear to be

a sufficient condition. Of course, one can at least rephrase the condition as
follows: for our map to have the right lifting property against Λ2

0 → ∆2 (resp.
Λ2

2 → ∆2), it must be the case that, given any two maps ϕ and ψ in C whose
sources (resp. targets) have been identified, then any factorization of one of the
maps F (ϕ) or F (ψ) in D through the other must already exist in C.

• Requiring that our map have the right lifting property against the higher outer
horn inclusions appears to demand similar but even more exotic properties of

our original functor C
F−→ D.

Remark 3.6.9. Combining Proposition 3.6.5 with the discussion of Example 1.2.12,
we obtain that (W ∩ F)Th = (Cat∞)' ⊂ Cat∞; in other words, any fibration in
(Cat∞)Th which induces an equivalence on groupoid completions must in fact itself be
an equivalence. In light of the discussion of Remark 3.6.8 regarding the complexities
of the subcategory FTh ⊂ Cat∞, this appears to be a rather nontrivial fact.19

18Nor should this necessarily be expected to be straightforward: by the lifting axiom M∞4 for
model ∞-categories and Proposition 3.6.5, we have FTh = rlp((W ∩C)Th) = rlp(WTh).

19It is not so hard to see directly that if D ∈ S ⊂ Cat∞, then a functor C
F−→ D is in FTh if and

only if we also have C ∈ S ⊂ Cat∞. (Thus, Striv ⊂ (Cat∞)Th is a model subcategory.) From here,
it is clear at least that ((W ∩ F)Th ∩ S) = S' ⊂ Cat∞.
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Remark 3.6.10. Both Thomason model structures (Cat∞)Th and CatTh are rather
quirky in their own ways. On the other hand, recalling Corollary 3.4.3, it appears
that there should exist the structure of an “∞-category of fibrant objects” struc-
ture on Cat∞ (or a “category of fibrant objects” structure on Cat), in which the
co/cartesian fibrations D → C classified by functors C → Cat∞ that have property
Q are among the fibrations.20 In some vague sense, this would appear to be a more
“true” articulation of the role of Cat∞ (or of Cat) as a presentation of S than either
of the corresponding Thomason model structures.

20With the model ∞-category (Cat∞)Th in hand, this should be obtainable from arguments
along the lines of those contained in [Bro71].
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Chapter 4

Hammocks and fractions in
relative ∞-categories

In this chapter, we study the homotopy theory of ∞-categories enriched in the ∞-
category sS of simplicial spaces. That is, we consider sS-enriched∞-categories as pre-
sentations of ordinary∞-categories by means of a “local” geometric realization func-
tor CatsS → Cat∞, and we prove that their homotopy theory presents the∞-category
of ∞-categories, i.e. that this functor induces an equivalence CatsSJW−1

DKK ∼−→ Cat∞
from a localization of the ∞-category of sS-enriched ∞-categories.

Following Dwyer–Kan, we define a hammock localization functor from relative
∞-categories to sS-enriched ∞-categories, thus providing a rich source of exam-
ples of sS-enriched ∞-categories. Simultaneously unpacking and generalizing one of
their key results, we prove that given a relative∞-category admitting a homotopical
three-arrow calculus, one can explicitly describe the hom-spaces in the ∞-category
presented by its hammock localization in a much more explicit and accessible way.

As an application of this framework, we give sufficient conditions for the Rezk
nerve of a relative∞-category to be a (complete) Segal space, generalizing joint work
with Low.

4.0 Introduction

4.0.1 Introducing (even more) homotopy theory

In their groundbreaking papers [DK80c] and [DK80a], Dwyer–Kan gave the first
presentation of the ∞-category of ∞-categories, namely the category CatsSet of cat-
egories enriched in simplicial sets: in modern language, every sSet-enriched
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category has an underlying ∞-category, and this association induces an equivalence

CatsSetJW−1
DKK ∼−→ Cat∞

from the (∞-categorical) localization of the category CatsSet at the subcategory
WDK ⊂ CatsSet of Dwyer–Kan weak equivalences to the ∞-category Cat∞ of ∞-
categories. Moreover, Dwyer–Kan provided a method of “introducing homotopy
theory” into a category R equipped with a subcategory W ⊂ R of weak equiva-
lences, namely their hammock localization functor L H

δ : RelCat→ CatsSet of [DK80a].
In this chapter, we set up an analogous framework in the setting of∞-categories :

we prove that the ∞-category CatsS of ∞-categories enriched in simplicial
spaces likewise models the ∞-category of ∞-categories via an equivalence

CatsSJW−1
DKK ∼−→ Cat∞,

and we define a hammock localization functor L H : RelCat∞ → CatsS which like-
wise provides a method of “introducing (even more) homotopy theory” into
relative∞-categories. We moreover prove the following two results – the first gener-
alizing a theorem of Dwyer–Kan, the second generalizing joint work with Low (see
[LMG15]).

Theorem (4.3.4). Given a relative ∞-category (R,W) admitting a homotopical
three-arrow calculus, the hom-spaces in the underlying∞-category of its hammock
localization admit a canonical equivalence

3(x, y)gpd ∼−→
∣∣homLH(R,W)(x, y)

∣∣
from the groupoid completion of the ∞-category of three-arrow zigzags x

≈← • → • ≈←
y in (R,W).

Theorem (4.5.1). Given a relative ∞-category (R,W), its Rezk nerve

NR
∞(R,W) ∈ sS

• is a Segal space if (R,W) admits a homotopical three-arrow calculus, and

• is moreover a complete Segal space if moreover (R,W) is saturated and
satisfies the two-out-of-three property.

(The notion of a homotopical three-arrow calculus is a minor variant on Dwyer–Kan’s
“homotopy calculus of fractions” (see Definition 4.3.1). Meanwhile, the Rezk nerve
is a straightforward generalization of Rezk’s “classification diagram” construction,
which we introduced in Chapter 2 and proved computes the ∞-categorical localiza-
tion (see Theorem 2.3.8 and Proposition 2.3.9).)
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Remark 4.0.1. In Remark 4.1.21, we show how our notion of “sS-enriched∞-category”
fits with the corresponding notion coming from Lurie’s theory of distributors.

Remark 4.0.2. Many of the original Dwyer–Kan definitions and proofs are quite
point-set in nature. However, when working ∞-categorically, it is essentially impos-
sible to make such ad hoc constructions. Thus, we have no choice but to be both
much more careful and much more precise in our generalization of their work.1 We
find Dwyer–Kan’s facility with universal constructions (displayed in that proof and
elsewhere) to be really quite impressive, and we hope that our elaboration on their
techniques will be pedagogically useful. Broadly speaking, our main technique is to
corepresent higher coherence data.

4.0.2 Outline

We now provide a more detailed outline of the contents of this chapter.

• In §4.1, we introduce the ∞-category CatsS of ∞-categories enriched in simpli-
cial spaces, as well as an auxiliary ∞-category SsS of Segal simplicial spaces.
We endow both of these with subcategories of Dwyer–Kan weak equivalences,
and prove that the resulting relative ∞-categories both model the ∞-category
Cat∞ of ∞-categories.

• In §4.2, we define the ∞-categories of zigzags in a relative ∞-category (R,W)
between two objects x, y ∈ R, and use these to define the hammock simpli-
cial spaces homLH(R,W)(x, y), which will be the hom-simplicial spaces in the

hammock localization L H(R,W).

• In §4.3, we define what it means for a relative ∞-category to admit a homo-
topical three arrow calculus, and we prove the first of the two results stated
above.

• In §4.4, we finally construct the hammock localization functor on relative ∞-
categories, and we explore some of its basic features.

• In §4.5, we prove the second of the two results stated above.

1For example, our proof of Theorem 4.3.4 spans nearly four pages whereas the proof of [DK80a,
Proposition 6.2(i)] (which it generalizes) is just half a page long, and our proof of Proposition 4.4.8
is nearly three pages whereas the proof of [DK80a, Proposition 3.3] (which it generalizes) is not
even provided.
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4.1 Segal spaces, Segal simplicial spaces, and

sS-enriched ∞-categories

In this section, we develop the theory – and the homotopy theory – of two closely re-
lated flavors of higher categories whose hom-objects lie in the symmetric monoidal∞-
category (sS,×) of simplicial spaces equipped with the cartesian symmetric monoidal
structure. By “homotopy theory”, we mean that we will endow the ∞-categories of
these objects with relative ∞-category structures, whose weak equivalences are cre-
ated by “local” (i.e. hom-object-wise) geometric realization. These therefore consti-
tute “many-object” elaborations on the Kan–Quillen relative∞-category (sS,WKQ),
whose weak equivalences are created by geometric realization (see Theorem 1.4.4).
A key source of such objects will be the hammock localization functor, which we will
introduce in §4.4.

This section is organized as follows.

• In §4.1.1, we recall some basic facts regarding Segal spaces.

• in §4.1.2, we introduce Segal simplicial spaces and define the essential notions
for “doing (higher) category theory” with them.

• In §4.1.3, we introduce their full (in fact, coreflective) subcategory of simplicio-
spatially-enriched (or simply sS-enriched)∞-categories. These are useful since
they can more directly be considered as “presentations of ∞-categories”.

• In §4.1.4, we prove that freely inverting the Dwyer–Kan weak equivalences
among either the Segal simplicial spaces or the sS-enriched∞-categories yields
an ∞-category which is canonically equivalent to Cat∞ itself. We also con-
textualize both of these sorts of objects with respect to the theory of enriched
∞-categories based in the notion of a distributor, and provide some justification
for our interest in them.
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4.1.1 Segal spaces

We begin this section with the following recollections. This subsection exists mainly
in order to set the stage for the remainder of the section; we refer the reader seeking
a more thorough discussion either to the original paper [Rez01] (which uses model
categories) or to [Lur09c, §1] (which uses ∞-categories).

Definition 4.1.1. The∞-category of Segal spaces is the full subcategory SS ⊂ sS
of those simplicial spaces satisfying the Segal condition. These sit in a left localization
adjunction

sS SS,
LSS

⊥
USS

which factors the left localization adjunction LCSS a UCSS of Definition 2.2.1 in the
sense that we obtain a pair of composable left localization adjunctions

sS SS CSS.
LSS

⊥
USS

LCSS

⊥
UCSS

(This follows easily from [Rez01, Theorems 7.1 and 7.2], or alternatively more-or-less
follows from [Lur09c, Remark 1.2.11].)

In order to make a few basic observations, it will be convenient to first introduce
the following.

Definition 4.1.2. Suppose that C ∈ Cat∞ admits finite products. Then, we de-
fine the 0th coskeleton of an object c ∈ C (or perhaps more standardly, of the
corresponding constant simplicial object const(c) ∈ sC) to be the simplicial object
selected by the composite

∆op ↪→ (sSet)op
((−)0)op−−−−→ Setop ↪→ Sop

−tc−−→ C.

This assembles to a functor

C
(−)×(•+1)

−−−−−→ sC

which, as the notation suggests, is given in degree n by c 7→ c×(n+1). This sits in an
adjunction

(−)0 : sC� C : (−)×(•+1),

which we refer to as the 0th coskeleton adjunction for C. Using this, given a
simplicial object Z ∈ sC and a map Y

ϕ−→ Z0 in C, we define the pullback of Z along
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ϕ to be the fiber product

ϕ∗(Z) = lim


Z•

Y ×(•+1) (Z0)×(•+1)

ϕ×(•+1)


in sC, where the vertical map is the component at the object Z ∈ sC of the unit of the
0th coskeleton adjunction. In particular, note that we have a canonical equivalence
(ϕ∗(Z))0 ' Y in C.

Remark 4.1.3. Suppose that Y ∈ SS, and let us write Y
λ−→ LCSS(Y ) for its localization

map. Then, the map Y0
λ0−→ LCSS(Y )0 is a surjection in S, and moreover we have a

canonical equivalence
Y ' (λ0)∗(LCSS(Y ))

in SS ⊂ sS. (The first claim follows from [Rez01, Theorem 7.7 and Corollary 6.5],
while the second claim follows from combining [Lur09c, Definition 1.2.12(b) and
Theorem 1.2.13(2)] with the Segal condition for Y ∈ sS.) From here, it follows easily
that we have an equivalence

SS ' lim


Funsurj([1],Cat∞)

S Cat∞

s

 ,

where Funsurj([1],Cat∞) ⊂ Fun([1],Cat∞) denotes the full subcategory on those func-
tors [1]→ Cat∞ that select surjective functors C→ D. From this viewpoint, the left
localization LCSS : SS→ CSS is then just the composite functor

SS ↪→ Funsurj([1],Cat∞)
t−→ Cat∞

N∞−−→
∼

CSS,

where N∞(−)• = homlw
Cat∞([•],−) denotes the ∞-categorical nerve functor. Thus,

one might think of SS as “the ∞-category of surjectively marked ∞-categories”
(where by “surjectively marked” we mean “equipped with a surjective map from an
∞-groupoid”).
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Remark 4.1.4. Continuing with the observations of Remark 4.1.3, note that the
category Cat of strict 1-categories can be recovered as a limit

Cat Cat

SS Funsurj([1],Cat∞) Cat∞

Set S Cat∞

t

s

in Cat∞ (in which the square is already a pullback). (In fact, the inclusion Cat ↪→ SS

itself fits into the defining pullback square

Cat SS

sSet sS

N USS

in Cat∞.) We can therefore consider the ∞-category SS of Segal spaces as a close
cousin of the 1-category Cat of strict categories, with the caveat that objects of Cat
must be surjectively marked by a discrete space.

Remark 4.1.5. Suppose that Y ∈ SS. Then, we can compute hom-spaces in the
∞-category

C = N−1
∞ (LCSS(Y )) ∈ Cat∞

as follows. Any pair of objects x, y ∈ C can be considered as defining a pair of points

x, y ∈ C' ' N∞(C)0 ' LCSS(Y )0.

Since the map Y0 → LCSS(Y )0 is a surjection, these admit lifts x̃, ỹ ∈ Y0. Then, we
have a composite equivalence

homC(x, y) ' lim


N∞(C)1

ptS N∞(C)0 × N∞(C)0

(s,t)

(x,y)

 ' lim


Y1

ptS Y0 × Y0

(s,t)

(x̃,ỹ)


by Remarks 2.2.2 and 4.1.3. (In particular, we can compute the hom-space homC(x, y)
using any choices of lifts x̃, ỹ ∈ Y0.)
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4.1.2 Segal simplicial spaces

We now turn from the S-enriched context to the sS-enriched context.

Definition 4.1.6. We define the ∞-category of Segal simplicial spaces to be
the full subcategory SsS ⊂ s(sS) of those simplicial objects in sS which satisfy the
Segal condition. These sit in a left localization adjunction s(sS) � SsS by the
adjoint functor theorem (Corollary T.5.5.2.9). To ease our discussion, we take the
convention that these are organized according to the diagram

...
... . .

.

(C0)1 (C1)1 · · ·

(C0)0 (C1)0 · · ·

in S: we think of the columns as the “internal” simplicial spaces, and denote them
as Cn = (Cn)• ∈ sS (omitting the outer index if it’s irrelevant for the discussion).
Thus, the Segal condition applies in the horizontal direction, and asserts that the
Segal map

Cn → C1 ×
C0

· · · ×
C0

C1

is an equivalence in sS.

Remark 4.1.7. In light of Remark 4.1.4, we can consider the ∞-category SsS of
Segal simplicial spaces as being a homotopical analog of the 1-category sCat =
Fun(∆op, Cat) of simplicial categories. The subcategory CatsSet ⊂ sCat of sSet-
enriched categories then corresponds to the full subcategory on those Segal sim-
plicial spaces C• ∈ SsS such that the object C0 ∈ sS is constant. We will restrict our
attention to such objects in §4.1.3.

Definition 4.1.8. For any C• ∈ SsS, we define the space of objects of C• to be
the space

(C0)0 ' homsS(ptsS,C0) ∈ S,
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and for any x, y ∈ (C0)0, we define the hom-simplicial space from x to y in C• to
be the pullback

homC•(x, y) = lim


C1

ptsS C0 × C0

(s,t)

(x,y)


in sS. We refer to the points of the space

homC•(x, y)0 ' homsS(ptsS, homC•(x, y))

simply as morphisms from x to y. The various hom-simplicial spaces of C• admit
associative composition maps

homC•(x0, x1)× · · · × homC•(xn−1, xn)
χC•
x0,...,xn−−−−−→ homC•(x0, xn)

in sS, which are obtained as usual via the Segal conditions. For any x ∈ (C0)0 there
is an evident identity morphism from x to itself, denoted idx ∈ homC•(x, x)0,
which behaves as expected under these composition maps.

Definition 4.1.9. Given any C• ∈ SsS and any pair of objects x, y ∈ (C0)0, we say
that two morphisms

ptsS ⇒ homC•(x, y)

are simplicially homotopic if the induced maps

ptS ⇒ |homC•(x, y)|

are equivalent (i.e. select points in the same path component of the target). We then
say that a morphism f ∈ homC•(x, y)0 is a simplicial homotopy equivalence if
there exists a morphism g ∈ homC•(y, x)0 such that the composite morphisms

χC•
x,y,x(f, g) ∈ homC•(x, x)

and
χC•
y,x,y(g, f) ∈ homC•(y, y)

are simplicially homotopic to the respective identity morphisms.

Now, the objects of SsS will indeed be “presentations of∞-categories”, but maps
between them which are not equivalences may nevertheless induce equivalences be-
tween the ∞-categories that they present. We therefore introduce the following
notion.
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Definition 4.1.10. A map C•
ϕ•−→ D• in SsS is called a Dwyer–Kan weak equiv-

alence if

• it is weakly fully faithful , i.e. for all pairs of objects x, y ∈ (C0)0 the induced
map ∣∣homC•(x, y)

∣∣→ ∣∣homD•(ϕ(x), ϕ(y))
∣∣

is an equivalence in S, and

• it is weakly surjective , i.e. the map

π0((C0)0)
π0((ϕ0)0)−−−−−→ π0((D0)0)

is surjective up to the equivalence relation on π0((D0)0) generated by simplicial
homotopy equivalence.

Such morphisms define a subcategory WDK ⊂ SsS containing all the equivalences
and satisfying the two-out-of-three property, and we denote the resulting relative
∞-category by SsSDK = (SsS,WDK) ∈ RelCat∞.

Remark 4.1.11. Via the evident functor CatsSet → SsS (recall Remark 4.1.7), the
subcategory of Dwyer–Kan weak equivalences WCatsSet

DK ⊂ CatsSet of §4.0.1 (i.e. the
subcategory of weak equivalences for the Bergner model structure) is pulled back
from the subcategory WSsS

DK ⊂ SsS.

4.1.3 sS-enriched ∞-categories

In light of the discussion of §4.1.2, the natural guess for the sense in which a Segal
simplicial space should be considered as a “presentation of an∞-category” is via the
levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS.

However, this operation does not preserve Segal objects: taking fiber products of
simplicial spaces does not generally commute with taking their geometric realizations.
On the other hand, these two operations do commute when the common target of
the cospan is constant. Hence, it will be convenient to restrict our attention to the
following special class of objects.

Definition 4.1.12. We define the ∞-category of simplicio-spatially-enriched
∞-categories , or simply of sS-enriched ∞-categories , to be the full subcategory
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CatsS ⊂ SsS on those objects C• ∈ SsS ⊂ s(sS) such that C0 ∈ sS is constant. We
write

CatsS
UCatsS
↪−−−→ SsS

for the defining inclusion. Restricting the subcategory WSsS
DK ⊂ SsS of Dwyer–Kan

weak equivalences along this inclusion, we obtain a relative ∞-category (CatsS)DK =
(CatsS,WDK) ∈ RelCat∞ (which also has the two-out-of-three property).

Lemma 4.1.13. There is a canonical factorization

CatsS SsS s(sS) sS

SS

UCatsS s(|−|)

of the restriction of the levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS

to the subcategory CatsS ⊂ s(sS) of sS-enriched ∞-categories.

Proof. Choose any C• ∈ CatsS. Since the functor SS ↪→ sS is the inclusion of a full
subcategory, it suffices to show that s(|UCatsS(C•)|) ∈ SS, for which in turn it suffices
to show that the evident map

|Cn| → |C1| ×
|C0|
|Cn−1|

is an equivalence. Towards this aim, write

|C0| '
∐
i

|C0|i

for the decomposition of |C0| ∈ S into its connected components; since by assumption
C0 ' const(|C0|), this induces a decomposition

C0 ' const

(∐
i

|C0|i

)
'
∐
i

const(|C0|i)

of C0 ∈ sS. Let us similarly write

C1 '
∐
i

(C1)i



259

and
Cn−1 '

∐
i

(Cn−1)i

for the resulting pulled back decompositions. Then, using Lemma A.5.5.6.17 (applied
to the ∞-topos S) and the fact that coproducts commute with connected limits, we
can identify the target of the above map as

|C1| ×
|C0|
|Cn−1| '

∐
i

(
|(C1)i| ×

|C0|i
|(Cn−1)i|

)
'
∐
i

∣∣∣∣(C1)i ×
const(|C0|i)

(Cn−1)i

∣∣∣∣
'

∣∣∣∣∣∐
i

(
(C1)i ×

const(|C0|i)
(Cn−1)i

)∣∣∣∣∣
'
∣∣∣∣C1 ×

C0

Cn−1

∣∣∣∣ .
As C• satisfies the Segal condition by assumption, this proves the claim.

Remark 4.1.14. could also just ask levelwise pi-0 to be constant The proof of Lemma 4.1.13
shows that it would suffice to make the weaker assumption that the object πlw

0 (C0) ∈
sSet is constant in order to conclude that s(|UCatsS(C•)|) ∈ SS.

Definition 4.1.15. We denote simply by

CatsS
|−|−→ SS

the factorization of Lemma 4.1.13, and refer to it as the geometric realization
functor on sS-enriched ∞-categories.

Definition 4.1.16. The composite inclusion

Cat∞
N∞−−→
∼

CSS
UCSS
↪−−→ s(S)

s(const)
↪−−−−→ s(sS)

clearly factors through the subcategory CatsS ⊂ SsS ⊂ s(sS). We simply write

Cat∞
const−−−→ CatsS

for this factorization, and refer to it as the constant sS-enriched ∞-category
functor. Thus, for an ∞-category C ∈ Cat∞, the simplicial object

const(C)• ∈ CatsS ⊂ s(sS)
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is given in degree n by
const(N∞(C)n) ∈ sS,

the constant simplicial space on the object

N∞(C)n = homCat∞([n],C) ∈ S.

This functor clearly participates in a commutative diagram

Cat∞ CatsS SS

CSS

const

∼
N∞

|−|

UCSS

in Cat∞.

Remark 4.1.17. Suppose we are given a Segal simplicial space C• ∈ SsS and a map
Z → (C0)0 in S to its space of objects. Write const(Z)

ϕ−→ C0 for the corresponding
map in sS. Then, the canonical map

ϕ∗(C•)→ C•

is fully faithful (in the sS-enriched sense): for any objects x, y ∈ Z ' (ϕ∗(C•)0)0, the
induced map

homϕ∗(C•)(x, y)→ homC•(ϕ(x), ϕ(y))

is already an equivalence in sS (instead of just being an equivalence upon geometric
realization). Of course, the map ϕ∗(C•)→ C• is therefore in particular weakly fully

faithful as well. As we can always choose our original map Z
ϕ−→ (C0)0 so that

the induced map ϕ∗(C•) → C• is additionally weakly surjective (e.g. by taking ϕ
to be a surjection), it follows that any Segal simplicial space admits a Dwyer–Kan
weak equivalence from a sS-enriched category; indeed, we can even arrange to have
Z ∈ Set ⊂ S.

Improving on Remark 4.1.17, we now describe a universal way of extracting a
sS-enriched ∞-category from a Segal simplicial space.

Definition 4.1.18. We define the spatialization functor sp : SsS → CatsS as
follows.2 Any C• ∈ SsS gives rise to a natural map

const((C0)0)
ε−→ C0

2The word “spatialization” is meant to indicate that the 0th object of its output will lie in the
subcategory S ⊂ sS of constant simplicial spaces.
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in sS, the component at C0 ∈ sS of the counit of the right localization adjunction
const : S� sS : lim. The spatialization of C• is then the pullback

sp(C•) = ε∗(C•).

(Note that the fiber product of Definition 4.1.2 that yields this pullback may be
equivalently taken either in SsS or in s(sS), in light of the left localization adjunction
of Definition 4.1.6.) This clearly assembles to a functor, and in fact it is not hard to
see that this participates in a right localization adjunction

CatsS SsS,
UCatsS

⊥
sp

whose counit components sp(C•)→ C• are Dwyer–Kan weak equivalences (which are
even fully faithful as in Remark 4.1.17).

4.1.4 SsS and CatsS as presentations of Cat∞

The following pair of results asserts that both sS-enriched ∞-categories and Segal
simplicial spaces, equipped with their respective subcategories of Dwyer–Kan weak
equivalences, present the ∞-category of ∞-categories.

Proposition 4.1.19. The composite functor

CatsS
|−|−→ SS

LCSS−−→ CSS ' Cat∞

induces an equivalence
CatsSJW−1

DKK ∼−→ CSS ' Cat∞.

Proof. So far, we have obtained the solid diagram

s(sS) sS

SsS SS

CatsS CSS.

s(|−|)
⊥

s(const)
⊥

L
SS⊥

U
SS

L
CSS⊥U

CSS

⊥
sp |−|

⊥
s(const)

The right adjoint of the composite left localization adjunction

s(sS) sS SS
s(|−|)
⊥

s(const)

LSS

⊥
USS
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clearly lands in the full subcategory CatsS ⊂ s(sS), and hence restricts to give the
right adjoint of a left localization adjunction as indicated by the dotted arrow above.
This composes to a left localization adjunction

CatsS SS CSS.
|−|
⊥

s(const)

LCSS

⊥
UCSS

Moreover, the definition of Dwyer–Kan weak equivalence is precisely chosen so that
the composite left adjoint creates the subcategory WDK ⊂ CatsS (i.e. it is pulled
back from the subcategory of equivalences (see Definition 2.1.5)). Hence, by Exam-
ple 2.1.13, it does indeed induce an equivalence

CatsSJW−1
DKK ∼−→ CSS ' Cat∞,

as desired.

Proposition 4.1.20. Both adjoints in the right localization adjunction

CatsS SsS
UCatsS

⊥
sp

are functors of relative ∞-categories (with respect to their respective Dwyer–Kan
relative structures), and moreover they induce inverse equivalences

CatsSJ(WCatsS
DK )−1K ' SsSJ(WSsS

DK)−1K

in Cat∞ on localizations.

Proof. The left adjoint inclusion is a functor of relative ∞-categories by definition.
On the other hand, suppose that C•

≈→ D• is a map in WSsS
DK ⊂ SsS. Via the right

localization adjunction, its spatialization fits into a commutative diagram

sp(C•) C•

sp(D•) D•

≈

≈

≈

in SsSDK, and hence is also in WSsS
DK ⊂ SsS by the two-out-of-three property. This

shows that the right adjoint is also a functor of relative ∞-categories.
To see that these adjoints induce inverse equivalences on localizations, note that

the composite

CatsS
UCatsS
↪−−−→ SsS

sp−→ CatsS
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is the identity, while the composite

SsS
sp−→ CatsS

UCatsS
↪−−−→ SsS

admits a natural weak equivalence in SsSDK to the identity functor (namely, the
counit of the adjunction). Hence, the claim follows from Lemma 2.1.24.

To conclude this section, we make a pair of general remarks regarding SsS and
CatsS. We begin by contextualizing these∞-categories with respect to Lurie’s theory
of enriched ∞-categories, which is described in [Lur09c, §1].

Remark 4.1.21. Lurie’s theory of enriched ∞-categories – which provides a satisfac-
tory, compelling, and apparently complete picture (at least when the enriching ∞-
category is equipped with the cartesian symmetric monoidal structure) – is premised
on the notion of a distributor, the data of which is simply an∞-category Y equipped
with a full subcategory X ⊂ Y (see [Lur09c, Definition 1.2.1]).3 Given such a distrib-
utor, one can then define ∞-categories SSX⊂Y and CSSX⊂Y of Segal space objects and
of complete Segal space objects with respect to it: these sit as full (in fact, reflective)
subcategories

CSSX⊂Y ⊂ SSX⊂Y ⊂ sY,

in which

• the subcategory SSX⊂Y ⊂ sY consists of those simplicial objects Y• ∈ sY such
that

– Y• satisfies the Segal condition and

– Y0 ∈ X

(see [Lur09c, Definition 1.2.7]), while

• the subcategory CSSX⊂Y ⊂ SSX⊂Y consists of those objects which additionally
satisfy a certain completeness condition (see [Lur09c, Definition 1.2.10]).

Thus, Y plays the role of the “enriching∞-category”, i.e. the∞-category containing
the hom-objects in our enriched∞-category, while its subcategory X ⊂ Y provides a
home for the “object of objects” of the enriched∞-category. As in the classical case
– indeed, the identity distributor S ⊂ S simply has SSS⊂S ' SS and CSSS⊂S ' CSS

–, one can already meaningfully extract an enriched ∞-category from a Segal space
object, but it is only by restricting to the complete ones that one obtains the desired
∞-category of such.

3Note that there is a typo in [Lur09c, Definition 1.2.1]: condition (4) should say that the functor
X→ (Cat∞)op preserves colimits, not limits. This is clear from [Lur09c, Example 1.2.3] (see Lemma
T.6.1.3.7 and Definition T.6.1.3.8).
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Now, obviously we have
SsS ' SSsS⊂sS,

as Segal simplicial spaces are nothing but Segal space objects with respect to the
identity distributor sS ⊂ sS on the ∞-category sS of simplicial spaces. We can
clearly also identify the ∞-category of sS-enriched ∞-categories as

CatsS ' SSS⊂sS,

the Segal space objects with respect to the distributor S ⊂ sS (the embedding of
spaces as the constant simplicial spaces).4,5 On the other hand, the subcategory of
complete Segal space objects can be identified as the pullback

CSSS⊂sS SSS⊂sS

CSS SS

in which the right vertical functor takes an sS-enriched ∞-category C• ∈ SSS⊂sS '
CatsS to its “levelwise 0th space” object (C•)0 ∈ SS.

We now explain the source of our interest in the ∞-categories SsS and CatsS.

Remark 4.1.22. First and foremost, the reason we are interested in SsS is because
this is the natural target of the “pre-hammock localization” functor

RelCat∞
LH

pre−−→ SsS,

whose construction constitutes the main ingredient of the construction of the ham-
mock localization functor itself (see §4.4). On the other hand, we then restrict to
the (coreflective) subcategory CatsS ⊂ SsS since this is a convenient full subcategory
of SsS ⊂ s(sS) on which the levelwise geometric realization functor

s(sS)
s(|−|)−−−→ sS

4To see that the inclusion S ⊂ sS of the full subcategory of constant objects is a distributor,
note that if Y is an ∞-topos and X ⊂ Y is a full subcategory which is stable under limits and
colimits, then X ⊂ Y is automatically a distributor. The only remaining point is to verify condition
(4) of [Lur09c, Definition 1.2.1]. The functor X → (Cat∞)op is given on objects by x 7→ (Y/x)◦,
with functoriality given by pullback in Y. This clearly factors as the composite X ↪→ Y→ (Cat∞)op,
in which the latter functor is similarly given by y 7→ (Y/y)◦, which then preserves colimits by
Proposition T.6.1.3.10 and Theorem T.6.1.3.9.

5In contrast with Remark 4.1.7, sS-enriched ∞-categories do not quite have an analog in ordi-
nary category theory, only in enriched category theory. (It is only a coincidence of the special case
presently under study that the two ∞-categories S and sS participating in the distributor appear
to be so closely related.)
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(which is a colimit) preserves the Segal condition (which is defined in terms of lim-
its) (recall (the proof of) Lemma 4.1.13).6 Indeed, if our “local geometric realiza-
tion” functor failed to preserve the Segal condition, it would necessarily destroy
all “category-ness” inherent in our objects of study. In turn, this would effectively
invalidate our right to declare the hammock simplicial spaces

homLH(R,W)(x, y) ∈ sS

(see Definition 4.2.17) – which will of course be the hom-simplicial spaces in the
hammock localization L H(R,W) ∈ CatsS – as “presentations of hom-spaces” in any
reasonable sense.

For these reasons, Segal simplicial spaces are therefore not really our primary
interest. However, since for a Segal simplicial space C• ∈ SsS, the counit sp(C•)→ C•
of the spatialization right localization adjunction is actually fully faithful in the sS-
enriched sense, the hammock localization

L H(R,W) = sp(L H
pre(R,W)) ∈ CatsS

will then simultaneously

• have the hammock simplicial spaces as its hom-simplicial spaces, and

• have composition maps which both

– directly present composition in its geometric realization, and

– manifestly encode the notion of “concatenation of zigzags”.

Of course, it would also be possible to restrict further to the (reflective) subcat-
egory

CSSS⊂sS ⊂ SSS⊂sS ' CatsS

of complete Segal space objects (recall Remark 4.1.21). However, this is unnecessary
for our purposes, since both the pre-hammock localization functor and the hammock
localization functor will land in ∞-categories (namely SsS and CatsS, respectively)
which admit canonical relative structures via which they present the ∞-category
Cat∞, thus endowing these constructions with external meaning (which are of course
compatible with each other in light of Proposition 4.1.20). Moreover, as the successive
inclusions

CSSS⊂sS ⊂ SSS⊂sS ' CatsS ⊂ SsS

respectively admit a left adjoint and a right adjoint, this further restriction would
in all probability make for a somewhat messier story.

6In light of Proposition 4.1.19, it seems unnecessary to use the larger subcategory of SsS afforded
by ??.
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4.2 Zigzags and hammocks in relative

∞-categories

In studying relative 1-categories and their 1-categorical localizations, one is naturally
led to study zigzags. Given a relative category (R,W) ∈ RelCat and a pair of objects
x, y ∈ R, a zigzag from x to y is a diagram of the form

x
≈← · · · → · · · ≈← · · · → · · · ≈← y,

i.e. a sequence of both forwards and backwards morphisms in R (in arbitrary (finite)
quantities and in any order) such that all backwards morphisms lie in W ⊂ R. Under
the 1-categorical localization R → R[W−1], such a diagram is taken to a sequence
of morphisms such that all backwards maps are isomorphisms, so that it is in effect
just a sequence of composable (forwards) arrows. Taking their composite, we obtain
a single morphism x → y in R[W−1]. In fact, one can explicitly construct R[W−1]
in such a way that all of its morphisms arise from this procedure.

It is a good deal more subtle to show, but in fact the same is true of relative
∞-categories and their (∞-categorical) localizations: given a relative ∞-category
(R,W) ∈ RelCat∞, it turns out that every morphism in RJW−1K can likewise be
presented by a zigzag in (R,W) itself. (We prove a precise statement of this assertion
as Proposition 4.2.11.)

The representation of a morphism in RJW−1K by a zigzag in (R,W) is quite
clearly overkill: many different zigzags in (R,W) will present the same morphism in
RJW−1K. For example, we can consider a zigzag as being selected by a morphism
m→ (R,W) of relative∞-categories, where m ∈ RelCat ⊂ RelCat∞ is a zigzag type
which is determined by the shape of the zigzag in question; then, precomposition
with a suitable morphism m′ →m of zigzag types will yield a composite m′ →m→
(R,W) which presents a canonically equivalent morphism in RJW−1K. Thus, in
order to obtain a closer approximation to homRJW−1K(x, y), we should take a colimit
of the various spaces of zigzags from x to y indexed over the category of zigzag types.

However, this colimit alone will still not generally capture all the redundancy in-
herent in the representation of morphisms in RJW−1K by zigzags in (R,W). Namely,
a natural weak equivalence between two zigzags of the same type (which fixes the
endpoints) will, upon postcomposing to the localization R → RJW−1K, yield a ho-
motopy between the morphisms presented by the respective zigzags. Pursuing this
observation, we are thus led to consider certain ∞-categories, denoted m(x, y) (for
varying zigzag types m), whose objects are the m-shaped zigzags from x to y and
whose morphisms are the natural weak equivalences (fixing x and y) between them.
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Finally, putting these two observations of redundancy together, we see that in
order to approximate the hom-space homRJW−1K(x, y), we should be taking a colimit
of the various∞-categories m(x, y) over the category of zigzag types. In fact, rather
than taking a colimit of these ∞-categories, we will take a colimit of their corre-
sponding complete Segal spaces (see §2.2), not within the ∞-category CSS of such
but rather within the larger ambient∞-category sS in which it is definitionally con-
tained; this, finally, will yield the hammock simplicial space homLH(R,W)(x, y) ∈ sS,
which (as the notation suggests) will be the hom-simplicial space in the hammock
localization L H(R,W) ∈ CatsS.

7

This section is organized as follows.

• In §4.2.1, we lay some groundwork regarding doubly-pointed relative∞-categories,
which will allow us to efficiently corepresent our ∞-categories of zigzags.

• In §4.2.2, we use this to define∞-categories of zigzags in a relative∞-category.

• In §4.2.3, we prove a precise articulation of the assertion made above, that all
morphisms in the localization RJW−1K are represented by zigzags in (R,W).

• In §4.2.4, we finally define our hammock simplicial spaces and compare them
with the hammock simplicial sets of Dwyer–Kan (in the special case of a relative
1-category).

• In §4.2.5, we assemble some technical results regarding zigzags in relative ∞-
categories which will be useful later; notably, we prove that for a concatenation
[m; m′] of zigzag types, we can recover the ∞-category [m; m′](x, y) via the
two-sided Grothendieck construction (see Definition 3.3.3).

4.2.1 Doubly-pointed relative ∞-categories

In this subsection, we make a number of auxiliary definitions which will streamline
our discussion throughout the remainder of this chapter.

7As the functor LCSS : sS → CSS is left adjoint to the inclusion CSS ⊂ sS and hence in
particular commutes with colimits, its application to the hammock simplicial space will yield the
aforementioned colimit of ∞-categories. Moreover, since we are ultimately interested in hammock
simplicial spaces for their geometric realizations, in view of Proposition 2.2.4 we can consider this
shift in ambient ∞-category merely as a technical convenience. For instance, there is an evident
explicit description of the constituent spaces in the hammock simplicial space (analogous to the
1-categorical case (see [DK80a, 2.1])).
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Definition 4.2.1. A doubly-pointed relative∞-category is a relative∞-category
(R,W) equipped with a map ptRelCat∞tptRelCat∞ → R. The two inclusions ptRelCat∞ ↪→
ptRelCat∞ t ptRelCat∞ select objects s, t ∈ R, which we call the source and the tar-
get ; we will sometimes subscript these to remove ambiguity, e.g. as sR and tR. These
assemble into the evident ∞-category, which we denote by

(RelCat∞)∗∗ = (RelCat∞)(ptRelCat∞tptRelCat∞ )/.

Of course, there is a forgetful functor (RelCat∞)∗∗ → RelCat∞. We will often implic-
itly consider a relative∞-category (R,W) equipped with two chosen objects x, y ∈ R

as a doubly-pointed relative ∞-category; on the other hand, we may also write
((R,W), x, y) ∈ (RelCat∞)∗∗ to be more explicit. We write RelCat∗∗ ⊂ (RelCat∞)∗∗
for the full subcategory of doubly-pointed relative categories , i.e. of those
doubly-pointed relative ∞-categories whose underlying ∞-category is a 1-category.

Notation 4.2.2. Recall from Notation 2.1.6 that RelCat∞ is a cartesian closed sym-
metric monoidal∞-category. With respect to this structure, (RelCat∞)∗∗ is enriched
and tensored over RelCat∞. As for the enrichment, for any (R1W1), (R2,W2) ∈
(RelCat∞)∗∗, we define the object

(
Fun∗∗(R1,R2)Rel,Fun∗∗(R1,R2)W

)
= lim


(
Fun(R1,R2)Rel,Fun(R1,R2)W

)
{(s2, t2)} (R2,W2)× (R2,W2)

(evs1 ,evt1 )


of RelCat∞ (where we write s1, t1 ∈ R1 and s2, t2 ∈ R2 to distinguish between the
source and target objects); informally, this should be thought of as the relative
∞-category whose objects are the doubly-pointed relative functors from (R1,W1) to
(R2,W2), whose morphisms are the doubly-pointed natural transformations between
these (i.e. those natural transformations whose components at s1 and t1 are ids2
and idt2 , resp.), and whose weak equivalences are the doubly-pointed natural weak
equivalences. Then, the tensoring is obtained by taking (R,W) ∈ RelCat∞ and
(R1,W1) ∈ (RelCat∞)∗∗ to the pushout

colim


R× {s, t} R× R1

ptRelCat∞ × {s, t}
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in RelCat∞, with its double-pointing given by the natural map from ptRelCat∞ t
ptRelCat∞ ' ptRelCat∞ × {s, t}. We will write

(RelCat∞)∗∗ × RelCat∞
−�−−−−→ (RelCat∞)∗∗

to denote this tensoring.

Notation 4.2.3. In order to simultaneously refer to the situations of unpointed and
doubly-pointed relative ∞-categories, we will use the notation (RelCat∞)(∗∗) (and
similarly for other related notations). When we use this notation, we will mean
for the entire statement to be interpreted either in the unpointed context or the
doubly-pointed context.

Notation 4.2.4. We will write

(RelCat∞)(∗∗) × RelCat∞
−�−−−−→ (RelCat∞)(∗∗)

to denote either the tensoring of Notation 4.2.2 in the doubly-pointed case or else
simply the cartesian product in the unpointed case.

4.2.2 Zigzags in relative ∞-categories

In this subsection we introduce the first of the two key concepts of this section, namely
the ∞-categories of zigzags in a relative ∞-category between two given objects.

We begin by defining the objects which will corepresent our ∞-categories of
zigzags.

Definition 4.2.5. We define a relative word to be a (possibly empty) word m in
the symbols A (for “any arbitrary arrow”) and W−1. We will write A◦n to denote
n consecutive copies of the symbol A (for any n ≥ 0), and similarly for (W−1)◦n.
We can extract a doubly-pointed relative category from a relative word, which for
our sanity we will carry out by reading forwards. So for instance, the relative word
m = [A; (W−1)◦2; A◦2] defines the doubly-pointed relative category

s • • • • t.≈ ≈

We denote this object by m ∈ RelCat∗∗. Thus, by convention, the empty relative
word determines the terminal object [∅] ' ptRelCat∗∗ ∈ RelCat∗∗ (which is the unique
relative word determining a doubly-pointed relative category whose source and target
objects are equivalent). Restricting to the order-preserving maps between relative
words (with respect to the evident ordering on their objects, i.e. starting from s and



270

ending at t), we obtain a (non-full) subcategory Z ⊂ RelCat∗∗ of zigzag types.8,9,10

We will occasionally also use this same relative word notation with the symbol W,
but the resulting doubly-pointed relative categories will not be objects of Z.

Remark 4.2.6. Let m,m′ ∈ Z ⊂ RelCat∗∗ ⊂ (RelCat∞)∗∗ be relative words. Then,
their concatenation can be characterized as a pushout

ptRelCat∞ m′

m [m; m′]

s

t

in RelCat∞ (as well as in RelCat).

Notation 4.2.7. For any m ∈ Z, we will write |m|A ∈ N to denote the number of
times that A appears in m, and we will write |m|W−1 ∈ N to denote the number of
times that W−1 appears in m.

Remark 4.2.8. The localization functor

RelCat∞
L−→ Cat∞

acts on the subcategory Z ⊂ RelCat ⊂ RelCat∞ of zigzag types as

L (m) ' [|m|A] ∈∆ ⊂ Cat ⊂ Cat∞ :

in effect, it collapses all the copies of [W−1] and leaves the copies of [A] untouched.

We now define the first of the two key concepts of this section, an analog of
[DK80a, 5.1].

Definition 4.2.9. Given a relative ∞-category (R,W) equipped with two chosen
objects x, y ∈ R, and given a relative word m ∈ Z, we define the ∞-category of
zigzags in (R,W) from x to y of type m to be

m(R,W)(x, y) = Fun∗∗(m,R)W.

If the relative∞-category (R,W) is clear from context, we will simply write m(x, y).
8Note that the objects of Z can in fact be considered as strict doubly-pointed relative categories,

and moreover Z itself can be considered as a strict category. However, as we will only use these
objects in invariant manipulations, we will not need these observations.

9Omitting the terminal relative word from Z (and considering it as a strict category), we obtain
the opposite of the indexing category II of [DK80a, 4.1]. We prefer to include this terminal object:
it is the unit object for a monoidal structure on Z given by concatenation, which will play a key
role in the definition of the hammock localization (see Construction 4.4.1).

10Note that an order-preserving map must lay each morphism [A] across some [A◦m] (for some
m ≥ 0), and must lay each morphism [W−1] across some [(W−1)◦n] (for some n ≥ 0). In particular,
it cannot lay a morphism [A] across a morphism [W−1] (or vice versa, of course).
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4.2.3 Representing maps in RJW−1K by zigzags in (R,W)

In this subsection, we take a digression to illustrate that our study of zigzags in
relative∞-categories is well-founded: roughly speaking, we show that any morphism
in the localization of a relative ∞-category is represented by a zigzag in the relative
∞-category itself. We will give the precise assertion as Proposition 4.2.11. In order
to state it, however, we first introduce the following terminology.

Definition 4.2.10. Let (R,WR) and (D,WD) be relative ∞-categories. We will
say that a morphism

(D,WD)→ (R,WR)

in RelCat∞ represents the morphism

DJW−1
D K→ RJW−1

R K

in Cat∞ induced by the localization functor. We will also say that it represents the
morphism

ho(DJW−1
D K)→ ho(RJW−1

R K)

in Cat induced from the previous one by the homotopy category functor. In a slight
abuse of terminology, we will moreover say that a zigzag

m→ (R,WR)

represents the composite
[1]→ L (m)→ RJW−1

R K

in Cat∞, where the map [1] → L (m) ' [|m|A] is given by 0 7→ 0 and 1 7→ |m|A
(i.e. it corepresents the operation of composition), and likewise for the morphism in
the homotopy category ho(RJW−1

R K) of the localization selected by either three-fold
composite in the commutative diagram

[1]

L (m) RJW−1
R K

ho(L (m)) ho(RJW−1
R K)

∼

in Cat∞.
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Proposition 4.2.11. Let (R,W) ∈ RelCat∞ be a relative ∞-category, and let [1]
F−→

RJW−1K be a functor selecting a morphism in its localization. Then, for some relative
word m ∈ Z, there exists a zigzag m→ (R,W) which represents F .

We will prove Proposition 4.2.11 in stages of increasing generality. We begin by
recalling that any morphism in the 1-categorical localization of a relative 1-category
is represented by a zigzag.

Lemma 4.2.12. Let (R,W) ∈ RelCat be a relative 1-category, and let [1]
F−→ R[W−1]

be a functor selecting a morphism in its 1-categorical localization. Then, for some
relative word m ∈ Z, there exists a zigzag m→ (R,W) which represents F .

Proof. This follows directly from the standard construction of the 1-categorical lo-
calization of a relative 1-category (see e.g. [DK80a, Proposition 3.1]).

Remark 4.2.13. Lemma 4.2.12 accounts for the fundamental role that zigzags play in
the theory of relative categories and their 1-categorical localizations. We can there-
fore view Proposition 4.2.11 as asserting that zigzags play an analogous fundamental
role in the theory of relative ∞-categories and their (∞-categorical) localizations.

Remark 4.2.14. We can view Lemma 4.2.12 as guaranteeing the existence of a dia-
gram

m (R,W)

ho(L (m)) R[W−1]

[1]
F

for some relative word m ∈ Z, in which

• the upper dotted arrow is a morphism in RelCat ⊂ RelCat∞,

• the lower dotted arrow is its image under the 1-categorical localization functor

RelCat∞
L−→ Cat∞

ho−→ Cat,

and

• the map [1]→ ho(L (m)) ' ho([|m|A]) ' [|m|A] is as in Definition 4.2.10.

With Lemma 4.2.12 recalled, we now move on to the case of ∞-categorical local-
izations of relative 1-categories.
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Lemma 4.2.15. Let (R,W) ∈ RelCat be a relative 1-category, and let [1]
F−→

RJW−1K be a functor selecting a morphism in its localization. Then, for some relative
word m ∈ Z, there exists a zigzag m→ (R,W) which represents F .

Proof. Recall from Remark 2.1.29 that we have an equivalence ho(RJW−1K) ∼−→
R[W−1]. The resulting postcomposition

[1]
F−→ RJW−1K→ ho(RJW−1K) ∼−→ R[W−1]

of F with the projection to the homotopy category selects a morphism in the 1-
categorical localization R[W−1]. Hence, by Lemma 4.2.12, we obtain a diagram

m (R,W)

L (m) RJW−1K

ho(L (m)) R[W−1]

[1]

∼

for some relative word m ∈ Z, in which

• the solid horizontal arrows are as in Remark 4.2.14,

• the upper map in RelCat ⊂ RelCat∞ induces the dotted map under the functor
L : RelCat∞ → Cat∞, so that

• the (lower) square in Cat∞ commutes.

That the resulting composite

[1]→ L (m)→ RJW−1K

is equivalent to the functor [1]
F−→ RJW−1K follows from Lemma 4.2.16. Thus, in

effect, we obtain a diagram

m (R,W)

L (m) RJW−1K

[1]
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analogous to the one in Remark 4.2.14 (only with the 1-categorical localizations
replaced by the ∞-categorical localizations), which proves the claim.

Lemma 4.2.16. For any ∞-category C and any map [1]→ ho(C), the space of lifts

C

[1] ho(C)

is connected.

Proof. Since the functor C → ho(C) creates the subcategory C' ⊂ C, there is a
connected space of lifts of the maximal subgroupoid {0, 1} ' [1]' ⊂ [1]. Then, in
any solid commutative square

[1]' C

[1] ho(C)

there exists a connected space of dotted lifts by definition of the homotopy category.

With Lemma 4.2.15 in hand, we now proceed to the fully general case of ∞-
categorical localizations of relative ∞-categories.

Proof of Proposition 4.2.11. Observe that the morphism (R,W)→ (ho(R), ho(W))
in RelCat∞ induces a postcomposition

[1]
F−→ RJW−1K→ ho(R)Jho(W)−1K

selecting a morphism in the ∞-categorical localization of the relative 1-category
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(ho(R), ho(W)) ∈ RelCat. Hence, by Lemma 4.2.15, we obtain a solid diagram

(R,W)

m (ho(R), ho(W)) RJW−1K

L (m) ho(R)Jho(W)−1K ho(RJW−1K)

ho(R)[ho(W)−1]

[1]

∼

for some relative word m ∈ Z, in which

• the lower right diagonal map is an equivalence by Remark 2.1.29,

• we moreover obtain the upper dotted arrow from Remark 4.2.6 by induction,
and

• we define the lower dotted arrow to be its image under localization.

Now, the resulting composite

[1]→ L (m)→ RJW−1K
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fits into a commutative diagram

[1] L (m) RJW−1K

ho(R)Jho(W)−1K ho(R)[ho(W)−1] ho(RJW−1K)∼

in Cat∞. In particular, we have obtained a lift

RJW−1K

[1] ho(RJW−1K)

of the composite

[1]
F−→ RJW−1K→ ho(RJW−1K),

which must therefore be equivalent to F itself by Lemma 4.2.16. Thus, we obtain a
diagram

m (R,W)

L (m) RJW−1K

[1]

as in the proof of Lemma 4.2.15, which proves the claim.

Thus, zigzags play an important role not just in the theory of relative 1-categories
and their 1-categorical localizations, but more generally in the theory of relative ∞-
categories and their ∞-categorical localizations.

4.2.4 Hammocks in relative ∞-categories

For a general relative ∞-category (R,W), the representation of a morphism in
RJW−1K by a zigzag m → (R,W) guaranteed by Proposition 4.2.11 is clearly
far from unique. Indeed, any morphism m′ → m in Z gives rise to a composite
m′ →m→ (R,W) which presents the same morphism in RJW−1K: in other words,
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the morphisms in Z corepresent universal equivalence relations between zigzags in
relative ∞-categories (with respect to the morphisms that they represent upon lo-
calization).

In order to account for this over-representation, we are led to the following def-
inition, the second of the two key concepts of this section, an analog of [DK80a,
2.1].

Definition 4.2.17. Suppose (R,W) ∈ RelCat∞, and suppose x, y ∈ R. We define
the simplicial space of hammocks (or alternatively the hammock simplicial
space) in (R,W) from x to y to be the colimit

homLH(R,W)(x, y) = colimm∈Zop N∞(m(x, y)) ∈ sS.

We will extend the hammock simplicial space construction further – and in par-
ticular, justify its notation – by constructing the hammock localization

L H(R,W) ∈ CatsS

of (R,W) in §4.4 (see Remark 4.4.5).
We now compare our hammock simplicial spaces of Definition 4.2.17 with Dwyer–

Kan’s classical hammock simplicial sets (in relative 1-categories).

Remark 4.2.18. Suppose that (R,W) ∈ RelCat is a relative category. Then, by
[DK80a, Proposition 5.5], we have an identification

homLH
δ (R,W)(x, y) ∼= colimsSet

m∈Zop N(m(x, y))

of the classical simplicial set of hammocks defined in [DK80a, 2.1] as an analogous
colimit over the 1-categorical nerves of the (strict) categories of zigzags in (R,W)
from x to y.11 However, there are two reasons that this does not coincide with
Definition 4.2.17.

• The colimit computing homLH
δ (R,W)(x, y) is taken in the subcategory sSet ⊂ sS.

This inclusion (being a right adjoint) does not generally commute with colimits.

• The functors Cat
N−→ sSet ↪→ sS and Cat→ Cat∞

N∞−−→ sS do not generally agree,
but are only related by a natural transformation

Cat sSet

Cat∞ sS

N

⇒ disc

N∞

11It is not hard to see that the presence of the initial object [∅]◦ ∈ Zop (which is what distin-
guishes this indexing category from II) does not change this colimit.



278

in Fun(Cat, sS) (see Remark 2.2.6).

On the other hand, these two constructions do at least participate in a diagram

sSet

Zop sS

discN((−)(x,y))

⇓

N∞((−)(x,y))

in Cat∞, which induces a span

colimsS
m◦∈Zop disc(N(m(x, y)))

homLH(R,W)(x, y) disc
(

homLH
δ (R,W)(x, y)

)
in sS. We claim that this span lies in the subcategory WKQ ⊂ sS, i.e. that it becomes
an equivalence upon geometric realization; as we have a commutative triangle

sSet sS

S

disc

|−| |−
|

in Cat∞, this will imply that we have a canonical equivalence∣∣homLH(R,W)(x, y)
∣∣ ' ∣∣∣homLH

δ (R,W)(x, y)
∣∣∣

in S. We view this as a satisfactory state of affairs, since we are only ultimately
interested in simplicial sets/spaces of hammocks as presentations of hom-spaces,
anyways.
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To see the claim, note first that since |−| : sS→ S is a left adjoint, it commutes
with colimits, and so the left leg of the span lies in WKQ by the fact that upon
postcomposition with the geometric realization functor |−| : sS → S, the natural
transformation

disc ◦ N→ N∞

in Fun(Cat, sS) becomes a natural equivalence

|−| ◦ disc ◦ N
∼−→ |−| ◦ N∞

in Fun(Cat, S) (again see Remark 2.2.6). By Proposition 2.2.4, these geometric real-
izations of colimits in sS both evaluate to

colimS
m◦∈Zop m(x, y)gpd.

Now, in order to compute the geometric realization∣∣∣disc
(

homLH
δ (R,W)(x, y)

)∣∣∣ ' ∣∣∣homLH
δ (R,W)(x, y)

∣∣∣ ,
we begin by observing that that the category Z has an evident Reedy structure,
which one can verify has cofibrant constants, so that the dual Reedy structure on
Zop has fibrant constants. Moreover, it is not hard to verify that the functor

Zop
N((−)(x,y))−−−−−−→ sSet

defines a cofibrant object of Fun(Zop, sSetKQ)Reedy. Hence, the colimit

homLH
δ (R,W)(x, y) ∼= colimsSet

m◦∈Zop N(m(x, y))

computes the homotopy colimit in sSetKQ, i.e. the colimit of the composite

Zop
N((−)(x,y))−−−−−−→ sSet

|−|−→ sSetJW−1
KQK ' S.

The claim then follows from the string of equivalences

|−| ◦ N ' |−| ◦ disc ◦ N ' |−| ◦ N∞ ' (−)gpd

in Fun(Cat, S) (again appealing to Proposition 2.2.4).

Remark 4.2.19. Dwyer–Kan give a point-set definition of the hammock simplicial
set in [DK80a, 2.1], and then prove it is isomorphic to the colimit indicated in Re-
mark 4.2.18. However, working ∞-categorically, it is essentially impossible to make
such an ad hoc definition. Thus, we have simply defined our hammock simplicial
space as the colimit to which we would like it to be equivalent anyways.
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4.2.5 Functoriality and gluing for zigzags

In this subsection, we prove that ∞-categories of zigzags are suitably functorial for
weak equivalences among source and target objects (see Notation 4.2.23), and we use
this to give a formula for an∞-category of zigzags of type [m; m′], the concatenation
of two arbitrary relative words m,m′ ∈ Z (see Lemma 4.2.24).

Recall from Remark 4.2.6 that concatenations of relative words compute pushouts
in RelCat∞. This allows for inductive arguments, in which at each stage we freely
adjoin a new morphism along either its source or its target. For these, we will want
to have a certain functoriality property for diagrams of this shape. To describe it, let
us first work in the special case of Cat∞ (instead of RelCat∞). There, if for instance
we have an ∞-category D′ with a chosen object d ∈ D′ and we use this to define a
new ∞-category D as the pushout

ptCat∞ [1]

D′ D,

t

d

then for any target ∞-category C, the evaluation

Fun(D,C)→ Fun([1],C)
s−→ C

will be a cartesian fibration by Corollary T.2.4.7.12 (applied to the functor Fun(D′,C)
evd−−→

C). The following result is then an analog of this observation for relative ∞-
categories; note that there are now two types of “freely adjoined morphisms” we
must consider.

Lemma 4.2.20. Let (I′,WI′) ∈ RelCat∞, choose any i ∈ I′, and suppose we are
given any (R,WR) ∈ RelCat∞.

(1) (a) If we form the pushout

pt [W]

(I′,WI′) (I,WI)

s

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([W],R)W t−→WR

is a cocartesian fibration.
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(b) Dually, if we form the pushout

pt [W]

(I′,WI′) (I,WI)

t

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([W],R)W s−→WR

is a cartesian fibration.

(2) (a) If we form the pushout

pt [A]

(I′,WI′) (I,WI)

s

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([A],R)W t−→WR

is a cocartesian fibration.

(b) Dually, if we form the pushout

pt [A]

(I′,WI′) (I,WI)

t

i

in RelCat∞, then the composite restriction

Fun(I,R)W → Fun([A],R)W s−→WR

is a cartesian fibration.

Proof. We first prove item (1)(b). Applying Corollary T.2.4.7.12 to the functor

Fun(I′,R)W i−→WR
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and noting that Fun([W],R)W ' Fun([1],WR) (in a way compatible with the eval-
uation maps), we obtain that the composite restriction

Fun(I,R)W ' lim


Fun([W],R)W

Fun(I′,R)W WR

t

i

→ Fun([W],R)W s−→WR

is a cartesian fibration, as desired. The proof of item (1)(a) is completely dual.
We now prove item (2)(b). For this, consider the diagram

Fun(I,R)W Fun(I′,R)W

Fun(I,R)W@s Fun(I,R)Rel Fun(I′,R)Rel

Fun([A],R)Rel R

WR R

s

i

t

s

in which all small rectangles are pullbacks and in which we have introduced the ad
hoc notation

Fun(I,R)W@s ⊂ Fun(I,R)Rel

for the wide subcategory whose morphisms are those natural transformations whose
component at s ∈ [A] ⊂ I lies in WR ⊂ R. Observing that Fun([A],R)Rel '
Fun([1],R) (in a way compatible with the evaluation maps), it follows from applying
Corollary T.2.4.7.12 to the functor

Fun(I′,R)Rel i−→ R

that the composite
Fun(I,R)Rel → Fun([A],R)Rel s−→ R

is a cartesian fibration, for which the cartesian morphisms are precisely those that
are sent to equivalences under the restriction functor

Fun(I,R)Rel → Fun(I′,R)Rel.



283

Then, by Propositions T.2.4.2.3(2) and T.2.4.1.3(2), the functor

Fun(I,R)W@s s−→WR

is also a cartesian fibration, for which any morphism that is sent to an equivalence
under the composite

Fun(I,R)W@s → Fun(I,R)Rel → Fun(I′,R)Rel

is cartesian. Now, for any map x′
ϕ−→ x in WR and any object

G ∈
(

ptCat∞ ×
x,WR,s

Fun(I,R)W@s

)
,

choose such a cartesian morphism

(F
ϕ̃−→ G) ∈

(
Fun

(
[1],Fun(I,R)W@s

)
×

Fun([1],s),Fun([1],WR),ϕ
ptCat∞

)
.

Since by definition R' ⊂WR, it follows that this is in fact a morphism in the (wide)
subcategory Fun(I,R)W ⊂ Fun(I,R)W@s. Hence, we obtain a diagram(

Fun(I,R)W
)
/ϕ̃

(
Fun(I,R)W@s

)
/ϕ̃

(WR)/ϕ

(
Fun(I,R)W

)
/G

(
Fun(I,R)W@s

)
/G

(WR)/x

in Cat∞, in which the right square is a pullback since ϕ̃ is a cartesian morphism.
Moreover, again using the fact that R' ⊂ WR, it is easy to check that the left
square is also a pullback. So the entire rectangle is a pullback, and hence ϕ̃ is also
a cartesian morphism for the functor

Fun(I,R)W s−→WR.

From here, it follows from the fact that Fun(I,R)W ⊂ Fun(I,R)W@s is a subcategory
that this functor is indeed a cartesian fibration. The proof of item (2)(a) is completely
dual.

Given an arbitrary doubly-pointed relative ∞-category (I,WI) ∈ (RelCat∞)∗∗
and some relative ∞-category (R,WR) ∈ RelCat∞ which we consider to be doubly-
pointed via some choice x, y ∈ R of a pair of objects, we will be interested in the
functoriality of the construction

Fun∗∗((I,WI), ((R,WR), x, y))W ∈ Cat∞
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in the variable x ∈ W but for a fixed choice of y ∈ W (or vice versa). This
functoriality will be expressed by a variant of Lemma 4.2.20. However, in order to
accommodate the fixing of just one of the two chosen objects, we must first introduce
the following notation.

Notation 4.2.21. Let I ∈ (RelCat∞)∗∗, let (R,W) ∈ RelCat∞, and let x, y ∈ R.
Then, we write

(
Fun∗◦(I,R)Rel,Fun∗◦(I,R)W

)
= lim


(
Fun(I,R)Rel,Fun(I,R)W

)
ptRelCat∞ (R,W)

s

x


and

(
Fun◦∗(I,R)Rel,Fun◦∗(I,R)W

)
= lim


(
Fun(I,R)Rel,Fun(I,R)W

)
ptRelCat∞ (R,W)

t

y

 .

We now give a “half-doubly-pointed” variant of Lemma 4.2.20, but stated only
in the special case that we will need.

Lemma 4.2.22. Let m ∈ Z, let (R,W) ∈ RelCat∞, and let x, y ∈ R.

(1) The functor Fun◦∗(m,R)W s−→W

(a) is a cocartesian fibration if m begins with W−1, and

(b) is a cartesian fibration if m begins with A.

(2) The functor Fun∗◦(m,R)W t−→W

(a) is a cartesian fibration if m ends with W−1, and

(b) is a cocartesian fibration if m ends with A.

Proof. If we simply have m = [A] or m = [W−1] then these statements follow
trivially from Lemma 4.2.20, so let us assume that the relative word m has length
greater than 1.
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To prove item (2)(a), suppose that m = [m′; W−1]. Then we have a pullback
square

Fun∗◦(m,R)W Fun([W−1],R)W

Fun∗◦(m
′,R)W W

s[W−1]

tm′

which, making the identification of [W−1] with [W] in a way which switches the
source and target objects, is equivalently a pullback square

Fun∗◦(m,R)W Fun([W],R)W

Fun∗◦(m
′,R)W W.

t[W]

tm′

From here, the proof parallels that of Lemma 4.2.20(1)(b), only now we apply Corol-
lary T.2.4.7.12 to the functor

Fun∗◦(m
′,R)W

tm′−−→W.

The proof of item (1)(a) is completely dual.
To prove item (1)(b), let us now suppose that m = [A; m′]. Then we have a

diagram

Fun◦∗(m,R)W Fun◦∗(m
′,R)W

Fun◦∗(m,R)W@s Fun◦∗(m,R)Rel Fun◦∗(m
′,R)Rel

Fun([A],R)W R

W R

s

sm′

t[A]

s[A]

in which all small rectangles are pullbacks, almost identical to that of the proof of
Lemma 4.2.20(2)(b). From here, the proof proceeds in a completely analogous way
to that one. The proof of item (2)(b) is completely dual.

Lemma 4.2.22, in turn, enables us to make the following definitions.
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Notation 4.2.23. Let m ∈ Z, let (R,W) ∈ RelCat∞, and let x, y ∈ R.

• If m begins with W−1, we write

W
m(−,y)−−−−→ Cat∞

for the functor classifying the cocartesian fibration of Lemma 4.2.22(1)(a). On
the other hand, if m begins with A, we write

Wop m(−,y)−−−−→ Cat∞

for the functor classifying the cartesian fibration of Lemma 4.2.22(1)(b).

• If m ends with W−1, we write

Wop m(x,−)−−−−→ Cat∞

for the functor classifying the cartesian fibration of Lemma 4.2.22(2)(a). On
the other hand, if m ends with A, we write

W
m(x,−)−−−−→ Cat∞

for the functor classifying the cocartesian fibration of Lemma 4.2.22(2)(b).

• By convention and for convenience, if m = [∅] ∈ Z is the empty relative word
(which defines the terminal relative ∞-category), we let both m(x,−) and
m(−, y) denote either functor

W
const(ptCat∞ )
−−−−−−−−→ Cat∞

or

Wop const(ptCat∞ )
−−−−−−−−→ Cat∞.

Using Notation 4.2.23, we now express the∞-category [m; m′](R,W)(x, y) of zigzags
in (R,W) from x to y of the concatenated zigzag type [m; m′] in terms of the two-
sided Grothendieck construction (see Definition 3.3.3). This is an analog of [DK80a,
9.4].12

12In the statement of [DK80a, 9.4], the third appearance of m should actually be m′.
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Lemma 4.2.24. Let m,m′ ∈ Z. Then for any (R,W) ∈ RelCat∞ and any x, y ∈ R,
we have an equivalence

[m; m′](x, y) '



Gr (m′(−, y),W,m(x,−)) ,
m ends with A and
m′ begins with A

Gr (m(x,−),W,m′(−, y)) ,
m ends with W−1 and
m′ begins with W−1

Gr (const(pt),W, (m(x,−)×m′(−, y))) ,
m ends with A and
m′ begins with W−1

Gr ((m(x,−)×m′(−, y)) ,W, const(pt)) ,
m ends with W−1 and
m′ begins with A

which is natural in ((R,W), x, y) ∈ (RelCat∞)∗∗.

Proof. Recall from Remark 4.2.6 that we have a pushout square

ptRelCat∞ m′

m [m; m′]

s

t

in RelCat∞, through which [m; m′] acquires its source object from m and its target
object from m′. This gives rise to a string of equivalences

[m; m′](x, y) = Fun∗∗([m; m′],R)W

' lim



ptCat∞

Fun(m′,R)W W

Fun(m,R)W W

ptCat∞ W

y

t

s

t

s

x
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' lim


Fun◦∗(m

′,R)W

Fun∗◦(m,R)W W

s

t


in Cat∞. From here, the first and second cases follow from Lemma 4.2.22, Nota-
tion 4.2.23, and Definition 3.3.3, while the third and fourth cases follow by addition-
ally appealing to Example 3.1.9 and Example 3.1.10.

4.3 Homotopical three-arrow calculi in relative

∞-categories

In the previous section, given a relative∞-category (R,W), we introduced the ham-
mock simplicial space

homLH(R,W)(x, y) ∈ sS

for two objects x, y ∈ R. The definition of this simplicial space is fairly explicit, but
it is nevertheless quite large. In this section, we show that under a certain condition
– namely, that (R,W) admits a homotopical three-arrow calculus – we can at least
recover this simplicial space up to weak equivalence in sSKQ (i.e. we can recover its
geometric realization) from a much smaller simplicial space, in fact from one of the
constituent simplicial spaces in its defining colimit. This condition is often satisfied
in practice; for example, it holds when (R,W) admits the additional structure of a
model ∞-category (see Lemma 6.8.2).

This section is organized as follows.

• In §4.3.1, we define what it means for a relative ∞-category to admit a homo-
topical three-arrow calculus, and we state the fundamental theorem of homo-
topical three-arrow calculi (4.3.4) described above.

• In §4.3.2, in preparation for the proof of Theorem 4.3.4, we assemble some
auxiliary results regarding relative ∞-categories.

• In §4.3.3, in preparation for the proof of Theorem 4.3.4, we assemble some
auxiliary results regarding ends and coends.

• In §4.3.4, we give the proof of Theorem 4.3.4.
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4.3.1 The fundamental theorem of homotopical
three-arrow calculi

We begin with the main definition of this section, whose terminology will be justified
by Theorem 4.3.4; it is a straightforward generalization of [LMG15, Definition 4.1],
which is itself a minor variant of [DK80a, 6.1(i)].

Definition 4.3.1. Let (R,W) ∈ RelCat∞. We say that (R,W) admits a homo-
topical three-arrow calculus if for all x, y ∈ R and for all i, j ≥ 1, the map

[W−1; A◦i; W−1; A◦j; W−1]→ [W−1; A◦i; A◦j; W−1]

in Z ⊂ RelCat∗∗ obtained by collapsing the middle weak equivalence induces a map

Fun∗∗([W
−1; A◦i; A◦j; W−1],R)W → Fun∗∗([W

−1; A◦i; W−1; A◦j; W−1],R)W

in WCat∞
Th ⊂ Cat∞ (i.e. it becomes an equivalence upon applying the groupoid com-

pletion functor (−)gpd : Cat∞ → S).

Notation 4.3.2. Since it will appear repeatedly, we make the abbreviation 3 =
[W−1; A; W−1] for the relative word

s • • t.≈ ≈

Definition 4.3.3. For any relative∞-category (R,W) and any objects x, y ∈ R, we
will refer to

3(x, y) = Fun∗∗(3,R)W ∈ Cat∞

as the ∞-category of three-arrow zigzags in R from x to y.

We now state the fundamental theorem of homotopical three-arrow cal-
culi , an analog of [DK80a, Proposition 6.2(i)]; we will give its proof in §4.3.4.

Theorem 4.3.4. If (R,W) ∈ RelCat∞ admits a homotopical three-arrow calculus,
then for any x, y ∈ R, the natural map

N∞(3(x, y))→ homLH(R,W)(x, y)

in sS becomes an equivalence under the geometric realization functor |−| : sS→ S.
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4.3.2 Supporting material: relative ∞-categories

In this subsection, we give two results regarding relative ∞-categories which will be
used in the proof of Theorem 4.3.4. Both concern corepresentation, namely the effect
of the functor

RelCat(∗∗)
Fun(−,R)W−−−−−−→ Cat∞

on certain data in RelCat(∗∗) (for a given relative ∞-category (R,W)).

Lemma 4.3.5. Given a pair of maps I ⇒ J in (RelCat∞)(∗∗), a morphism between
them in Fun(∗∗)(I, J)W induces, for any (R,W) ∈ (RelCat∞)(∗∗), a natural transfor-
mation between the two induced functors

Fun(∗∗)(J,R)W ⇒ Fun(∗∗)(I,R)W.

Proof. First of all, the morphism in Fun(∗∗)(I, J)W is selected by a map [1] →
Fun(∗∗)(I, J)W; this is equivalent to a map

[1]W →
(
Fun(∗∗)(I, J)Rel,Fun(∗∗)(I, J)W

)
in RelCat∞, which is adjoint to a map

I� [1]W → J

in (RelCat∞)(∗∗). Then, for any (R,W) ∈ (RelCat∞)(∗∗), composing with this map
yields a functor

Fun(∗∗)(J,R)W → Fun(∗∗)(I� [1]W,R)W

' Fun
(
[1]W,

(
Fun(∗∗)(I,R)Rel,Fun(∗∗)(I,R)W

))
' Fun

(
[1],Fun(∗∗)(I,R)W

)
,

which is adjoint to a map

[1]× Fun(∗∗)(J,R)W → Fun(∗∗)(I,R)W,

which selects a natural transformation between the two induced functors

Fun(∗∗)(J,R)W ⇒ Fun(∗∗)(I,R)W,

as desired.
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Lemma 4.3.6. Let (I,WI) ∈ (RelCat∞)(∗∗), and form any pushout diagram

[W] (I,WI)

[W◦2] (J,WJ)

in RelCat(∗∗), where the left map is the unique map in RelCat∗∗. Note that the two
possible retractions [W◦2] ⇒ [W] in RelCat∗∗ of the given map induce retractions
(J,WJ) ⇒ (I,WI) in (RelCat∞)(∗∗). Then, for any (R,WR) ∈ RelCat(∗∗), the in-
duced map

Fun(∗∗)(J,R)W → Fun(∗∗)(I,R)W

becomes an equivalence under the functor (−)gpd : Cat∞ → S, with inverse given by
either map (

Fun(∗∗)(I,R)W
)gpd
⇒
(
Fun(∗∗)(J,R)W

)gpd

in S induced by one of the given retractions.

Proof. Note that both composites

[W◦2]⇒ [W]→ [W◦2]

(of one of the two possible retractions followed by the given map) are connected to
id[W◦2] by a map in

Fun∗∗([W
◦2], [W◦2])W.

In turn, both composites

(J,WJ)⇒ (I,WI)→ (J,WJ)

are connected to id(J,WJ) by a map in Fun(∗∗)(J, J)W. Hence, the result follows from
Lemmas 4.3.5 and 2.1.26.

4.3.3 Supporting material: co/ends

In this subsection, we give a few results regarding ends and coends which will be used
in the proof of Theorem 4.3.4. For a brief review of these universal constructions in
the ∞-categorical setting, we refer the reader to [GHN, §2].

We begin by recalling a formula for the space of natural transformations between
two functors.
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Lemma 4.3.7. Given any C,D ∈ Cat∞ and any F,G ∈ Fun(C,D), we have a
canonical equivalence

homFun(C,D)(F,G) '
∫
c∈C

homD(F (c), G(c)).

Proof. This appears as [Gla, Proposition 2.3] (and as [GHN, Proposition 5.1]).

We now prove a “ninja Yoneda lemma”.13

Lemma 4.3.8. If C ∈ Cat∞ is an ∞-category equipped with a tensoring − � − :

C× S→ C, then for any functor Iop
F−→ C, we have an equivalence

F (−) '
∫ i∈I

F (i)� homI(−, i)

in Fun(Iop,C).

Proof. For any test objects j ∈ Iop and Y ∈ C, we have a string of natural equiva-
lences

homC

(∫ i∈I
F (i)� homI(j, i), Y

)
'
∫
i∈I

homC(F (i)� homI(j, i), Y )

'
∫
i∈I

homS(homI(j, i), homC(F (i), Y ))

' homFun(I,S)(homI(j,−), homC(F (−), Y ))

' homC(F (j), Y ),

where the first line follows from the definition of a coend as a colimit (see e.g.
[GHN, Definition 2.5]), the second line uses the tensoring, the third line follows from
Lemma 4.3.7, and the last line follows from the usual Yoneda lemma (Proposition
T.5.1.3.1). Hence, again by the Yoneda lemma, we obtain an equivalence

F (j) '
∫ i∈I

F (i)� homJ(j, i)

which is natural in j ∈ Iop.

Then, we have the following result on the preservation of colimits.14

13The name is apparently due to Leinster (see [Lor, Remark 2.2]).
14Lemma 4.3.9 is actually implicitly about weighted colimits (see [GHN, Definition 2.7]).
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Lemma 4.3.9. If C ∈ Cat∞ is an ∞-category equipped with a tensoring − � − :

C× S→ C, then for any functor Iop
F−→ C, the functor

Fun(I, S)
∫ i∈I F (i)�(−)(i)−−−−−−−−−→ C

is a left adjoint.

Proof. It suffices to check that for every c ∈ C, the functor

Fun(I, S)op
homC(

∫ i∈I F (i)�(−)(i),c)
−−−−−−−−−−−−−−−→ S

is representable. For this, given any W ∈ Fun(I, S) we compute that

homC

(∫ i∈I
F (i)�W (i), c

)
'
∫
i∈I

homC(F (i)�W (i), c)

'
∫
i∈I

homS(W (i), homC(F (i), c))

' homFun(I,S)(W, homC(F (−), c)),

where the first line follows from the definition of a co/end as a co/limit (again see e.g.
[GHN, Definition 2.5]), the second line uses the tensoring, and the last line follows
from Lemma 4.3.7.

4.3.4 The proof of Theorem 4.3.4

Having laid out the necessary supporting material in the previous two subsection, we
now proceed to prove the fundamental theorem of homotopical three-arrow calculi
(4.3.4). This proof is based closely on that of [DK80a, Proposition 6.2(i)], although
we give many more details (recall Remark 4.0.2).

Proof of Theorem 4.3.4. We will construct a commutative diagram

|N∞(3(x, y))| |colimm∈Zop N∞(G(m)(x, y))|

|colimm∈Zop N∞(m(x, y))| |colimm∈Zop N∞(F (m)(x, y))|

|β|
∼

|α| |ψ|∼

|ϕ|

|ρ|
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in S, i.e. a commutative square in which the bottom arrow is equipped with a
retraction and in which moreover the top and right map are equivalences. Note
that by definition, the object on the bottom left is precisely

∣∣homLH(R,W)(x, y)
∣∣;

the left map will be the natural map referred to in the statement of the result.
The equivalences in S satisfy the two-out-of-six property, and applying this to the
composable sequence of arrows [|α|; |ϕ|; |ρ|], we deduce that |α| is also an equivalence,
proving the claim.

We will accomplish this by running through the following sequence of tasks.

(1) Define the two objects on the right.

(2) Define the maps in the diagram.

(3) Explain why the square commutes.

(4) Explain why |ρ| gives a retraction of |ϕ|.

(5) Explain why the map |β| is an equivalence.

(6) Explain why the map |ψ| is an equivalence.

We now proceed to accomplish these tasks in order.

(1) We define endofunctors F,G ∈ Fun(Z,Z) by the formulas

F (m) = [W−1; m; W−1]

and
G(m) = [W−1; A◦|m|A ; W−1].

Then, the object in the upper right is given by∣∣∣colim
(
Zop

Gop−−→ Zop
N∞((−)(x,y))−−−−−−−−→ sS

)∣∣∣ ,
and the object in the bottom right is given by∣∣∣colim

(
Zop

F op−−→ Zop
N∞((−)(x,y))−−−−−−−−→ sS

)∣∣∣ .
(2) We define the two evident natural transformations F

ϕ−→ idZ (given by collapsing

the two newly added copies of [W−1]) and F
ψ−→ G (given by collapsing all

internal copies of [W−1]) in Fun(Z,Z); these induce natural transformations
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idZop
ϕop−−→ F op and Gop ψop−−→ F op in Fun(Zop,Zop).15 We then define the maps in

the diagram as follows.

• The left map is obtained by taking the geometric realization of the inclu-
sion

N∞(3(x, y))
α−→ homLH(R,W)(x, y) = colimm∈Zop N∞(m(x, y))

into the colimit at the object 3 ∈ Zop.

• The top map is obtained by taking the geometric realization of the inclu-
sion

N∞(3(x, y)) ' N∞(G([A])(x, y))
β−→ colimm∈Zop N∞(G(m)(x, y))

into the colimit at the object [A] ∈ Zop. (Note that 3 ∼= G([A]) in Zop.)

• The right map is obtained by taking the geometric realization of the map

colimm∈Zop N∞(G(m)(x, y))
ψ
−→ colimm∈Zop N∞(F (m)(x, y))

on colimits induced by the natural transformation idN∞((−)(x,y)) ◦ ψop in
Fun(Zop, sS).

• The bottom map in the square (i.e. the straight bottom map) is obtained
by taking the geometric realization of the map

homLH(R,W)(x, y) = colimm∈Zop N∞(m(x, y))
ϕ
−→ colimm∈Zop N∞(F (m)(x, y))

on colimits induced by the natural transformation idN∞((−)(x,y)) ◦ ϕop in
Fun(Zop, sS).

• The curved map is obtained by taking the geometric realization of the
map

colimm∈Zop N∞(F (m)(x, y))
ρ−→ colimm∈Zop N∞(m(x, y)) = homLH(R,W)(x, y)

on colimits induced by the functor

Fun(Zop, sS)
−◦F op←−−−− Fun(Zop, sS).

15Recall that the involution (−)op : Cat∞ → Cat∞ is contravariant on 2-morphisms.
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(3) The upper composite in the square is given by the geometric realization of the
composite

N(3(x, y)) ' N∞(G([A])(x, y)) N∞(F ([A])(x, y))

colimm∈Zop N∞(F (m)(x, y))

N∞((ψop
[A]

)(x,y))

∼

of the equivalence induced by the component of ψop at the object [A] ∈ Zop

(which is an isomorphism in Zop) followed by the inclusion into the colimit
at [A]. So, via the (unique) identification 3 ∼= F ([A]), we can identify this
composite with the inclusion into the colimit at [A] ∈ Zop.

Meanwhile, the lower composite in the square is given by the geometric real-
ization of the composite

N∞(3(x, y))
N∞((ϕop3 )(x,y))
−−−−−−−−−→ N∞(F (3)(x, y))→ colimm∈Zop N∞(F (m)(x, y))

of the map induced by the component of ϕop at 3 followed by the inclusion into
the colimit at 3.

Now, the map F (3)
ϕ3−→ 3 in Z is given by

sF (3) • • • • tF (3)

s3 • • t3.

≈ ≈ ≈ ≈

≈ ≈

On the other hand, applying F to the unique map 3
γ−→ [A] in Z, we obtain a

map F (3)
F (γ)−−→ F ([A]) ∼= 3 in Z given by

sF (3) • • • • tF (3)

s3 • • t3.

≈ ≈ ≈ ≈

≈ ≈

which corepresents a map

N∞(3(x, y)) ' N∞(F ([A])(x, y))
N∞((F (γ))(x,y))−−−−−−−−−→ N∞(F (3)(x, y))
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in sS which participates in the diagram

Zop
F op−−→ Zop

N∞((−)(x,y))−−−−−−−−→ sS

defining colimm∈Zop N∞(F (m)(x, y)). So, in order to witness the commutativity
of the square, it suffices to obtain an equivalence between the two maps∣∣N∞((ϕop3 )(x, y))

∣∣ , |N∞((F (γ))(x, y))| ∈ homS (|N∞(3(x, y))| , |N∞(F (3)(x, y))|) .

But there is an evident cospan in Fun∗∗(F (3),3)W between the two maps
ϕ3 and F (γ), so this follows from Lemma 4.3.5, Lemma 2.1.26, and Proposi-
tion 2.2.4.

(4) The fact that |ρ| ◦ |ϕ| ' id|colimm∈Zop N∞(m(x,y))| follows from applying Proposi-

tion 3.3.5 to the diagram

Zop Zop S

idZop

ϕop⇓

F op

((−)(x,y))gpd

and invoking Proposition 2.2.4 to obtain a retraction diagram

colim((−)gpd ◦ N∞((−)(x, y)) ◦ idZop)

colim((−)gpd ◦ N∞((−)(x, y))).

colim((−)gpd ◦ N∞((−)(x, y)) ◦ F op)

∼

|ϕ|

|ρ|

(5) We first claim that for any m′ ∈ Z, the map

homZ(3,m′) ' homZ(G([A]),m′)→ colimm∈Zop homZ(G(m),m′)

is an isomorphism. Indeed, note that by Proposition 3.3.1, we have an equiva-
lence

colimm∈Zop homZ(G(m),m′) ' Gr

(
Zop

homZ(G(−),m′)−−−−−−−−−→ Set

)gpd

.
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The category

Gr

(
Zop

homZ(G(−),m′)−−−−−−−−−→ Set

)
admits a span of natural transformations from the identity functor to its fiber
over the object [A] ∈ Zop, whose component at an object (m ∈ Zop, G(m) →
m′) is indicated by the natural commutative diagram

G(m) m′

G([A◦|m|A ])

[A]

∼ =

in Z (in which the dotted arrow is simply the extension of the upper map over
an isomorphism).16 Hence, by Lemma 2.1.26 the inclusion of the fiber over
[A] ∈ Zop induces an equivalence upon groupoid completions. But this fiber is
precisely homZ(G([A]),m′) ' homZ(3,m′).

Now, assembling the above observation over all m′ ∈ Z, we see that the map

homZ(3,−)→ colimm∈Zop homZ(G(m),−)

is an equivalence in Fun(Z, Set) ⊂ Fun(Z, S). Using this, and denoting by
−�− : sS× S→ sS the evident tensoring

sS× S
idsS×const−−−−−−→ sS× sS −×−−−−→ sS,

we obtain the map

N∞(3(x, y))
β−→ colimm∈Zop N∞(G(m)(x, y))

as string of equivalences

N∞(3(x, y)) '
∫ m′∈Z

N∞(m′(x, y))� homZ(3,m′)

=

∫ Z

N∞((−)(x, y))� homZ(3,−)

16Each path component of this category contains exactly one object lying over [A] ∈ Zop.
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∼−→
∫ Z

N∞((−)(x, y))�
(

colim
Fun(Z,S)
m∈Zop homZ(G(m),−)

)
' colimsS

m∈Zop

(∫ Z

N∞((−)(x, y))� homZ(G(m),−)

)
= colimsS

m∈Zop

(∫ m′∈Z
N∞(m′(x, y))� homZ(G(m),m′)

)
' colimsS

m∈Zop N∞(G(m)(x, y))

in sS, in which

• the second and fifth lines are purely for notational convenience,

• we apply to the functor

Zop
N∞((−)(x,y))−−−−−−−−→ sS

– Lemma 4.3.8 to obtain the first line,

– Lemma 4.3.9 to obtain the fourth line, and

– Lemma 4.3.8 again to obtain the last line,

and

• the third line follows from the equivalence in Fun(Z, S) obtained above.

(So in fact, the map β itself is already an equivalence in sS (i.e. before geometric
realization).)

(6) We claim that for every m ∈ Zop the map

N∞(G(m)(x, y))
N∞((ψopm )(x,y))
−−−−−−−−−→ N∞(F (m)(x, y))

in sS becomes an equivalence after geometric realization. This follows from an

analysis of the corepresenting map F (m)
ψm−−→ G(m) in Z ⊂ RelCat∞: it can

be obtained as a composite

F (m) = m′0 →m′1 → · · · →m′|m|W−1−1 →m′|m|W−1
= G(m)
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in Z, in which each m′i is obtained from m′i−1 by omitting one of the internal
appearances of W−1 in F (m), and the corresponding map m′i → m′i+1 is
obtained by collapsing this copy of W−1 to an identity map. Each map

N∞(m′i(x, y))→ N∞(m′i−1(x, y))

in sS becomes an equivalence after geometric realization, by Lemma 4.3.6 when
the about-to-be-omitted appearance of W−1 in m′i−1 is adjacent to another ap-
pearance of W−1, and by applying the definition of (R,W) admitting a homo-
topical three-arrow calculus (Definition 4.3.1) to (either one or two iterations,
depending on the shape of m′i−1, of) the combination of Lemma 4.2.24 and
Proposition 3.3.4. Hence, the composite map

N∞(G(m)(x, y)) = N∞(m′|m|W−1
(x, y))→ · · · → N∞(m′0(x, y)) = N∞(F (m)(x, y)),

which is precisely the map N∞((ψopm)(x, y)), does indeed become an equivalence
upon geometric realization as well. Then, since colimits commute, it follows
that the induced map

|colimm′∈Zop N∞(G(m′)(x, y))|
|ψ|
−→ |colimm′∈Zop N∞(F (m′)(x, y))|

is an equivalence in S.

4.4 Hammock localizations of relative

∞-categories

In §4.2, given a relative∞-category (R,W) and a pair of objects x, y ∈ R, we defined
the corresponding hammock simplicial space

homLH(R,W)(x, y) ∈ sS

(see Definition 4.2.17). In this section, we proceed to globalize this construction,
assembling the various hammock simplicial spaces of (R,W) into a Segal simpli-
cial space – and thence a sS-enriched ∞-category – whose compositions encode the
concatenation of zigzags in (R,W).

The bulk of the construction of the hammock localization consists in constructing
the pre-hammock localization: this will be a Segal simplicial space

L H
pre(R,W) ∈ SsS ⊂ s(sS),
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whose nth level is given by the colimit

colimsS
(m1,...,mn)∈(Zop)×nN∞

(
Fun([m1; . . . ; mn],R)W

)
.

For clarity, we proceed in stages.
First, we build an object which simultaneously corepresents

• all possible sequences (of any length) of composable zigzags, and

• all possible concatenations among these sequences.

Construction 4.4.1. Observe that Z ∈ Cat is a monoid object, i.e. a monoidal
category: its multiplication is given by the concatenation functor

Z× Z
[−;−]−−−→ Z,

and the unit map ptCat → Z selects the terminal object [∅] ∈ Z.17 We can thus
define its bar construction

∆op Bar(Z)•−−−−→ Cat,

which has Bar(Z)n = Z×n (so that Bar(Z)0 = Z×0 = ptCat), with face maps given by
concatenation and with degeneracy maps given by the unit. This admits an oplax
natural transformation to the functor

∆op const(RelCat)−−−−−−−→ Cat,

which we encode as a commutative triangle

Gr−(Bar(Z)•) RelCat×∆

∆

in Cat (recall Definition 3.2.1 and Example 3.1.15): in simplicial degree n, this is
given by the iterated concatenation functor

Bar(Z)n = Z×n
[−;··· ;−]−−−−→ Z ↪→ RelCat∗∗ → RelCat

(which in degree 0 is simply the composite

{[∅]} ↪→ RelCat∗∗ → RelCat,

17In fact, we can even consider Z as a monoid object in Cat (i.e. a strict monoidal category), but
this is unnecessary for our purposes.
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i.e. the inclusion of the terminal object {ptRelCat} ↪→ RelCat).18,19 Taking opposites,
we obtain a commutative triangle

Gr(Bar(Zop)•) RelCatop ×∆op

∆op

in Cat, which now encodes a lax natural transformation from the bar construction

∆op Bar(Zop)•−−−−−→ Cat

on the monoid object Zop ∈ Cat (note that the involution (−)op : Cat
∼−→ Cat is

covariant) to the functor

∆op const(RelCatop)−−−−−−−−→ Cat.

We now map into an arbitrary relative ∞-category and extract the indicated
colimits, all in a functorial way.

Construction 4.4.2. A relative∞-category (R,W) represents a composite functor

RelCat ↪→ RelCat∞
Fun(−,R)W−−−−−−→ Cat∞

N∞−−→
∼

CSS ↪→ sS.

Considering this as a natural transformation const(RelCatop)→ const(sS) in Fun(∆op,Cat∞),
we can postcompose it with the lax natural transformation obtained in Construc-
tion 4.4.1, yielding a composite lax natural transformation encoded by the diagram

Gr(Bar(Zop)•) RelCatop ×∆op sS×∆op

∆op

N∞(Fun(−,R)W)×id∆op

in Cat∞. Then, by Proposition T.4.2.2.7, there is a unique “fiberwise colimit” lift in
the diagram

Gr(Bar(Zop)•) sS×∆op

Gr(Bar(Zop)•) �
∆op

∆op ∆op

18The reason that we must compose with the forgetful functor RelCat∗∗ → RelCat is that the
oplax structure maps (e.g. the inclusion m1 ↪→ [m1; m2]) do not respect the double-pointings.

19It is also true that for a monoidal (∞-)category C whose unit object is terminal, the bar
construction Bar(C)• admits a canonical lax natural transformation to const(C), whose components
are again given by the iterated monoidal product. But this is distinct from what we seek here.
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in Cat∞.20 Thus, the resulting composite

∆op → Gr(Bar(Zop)•) �
∆op

∆op → sS×∆op → sS

takes each object [n]◦ ∈∆op to the colimit of the composite

Bar(Zop)n = (Zop)×n
[−;··· ;−]op−−−−−−→ Zop ↪→ (RelCat∗∗)

op → RelCatop
N∞(Fun(−,R)W)
−−−−−−−−−−→ sS.

We denote this simplicial object in simplicial spaces by

∆op LH
pre(R,W)
−−−−−−→ sS.

Allowing (R,W) ∈ RelCat∞ to vary, this assembles into a functor

RelCat∞
LH

pre−−→ s(sS).

We now show that the bisimplicial spaces of Construction 4.4.2 are in fact Segal
simplicial spaces.

Lemma 4.4.3. For any (R,W) ∈ RelCat∞, the object L H
pre(R,W) ∈ s(sS) satisfies

the Segal condition.

Proof. We must show that for every n ≥ 2, the nth Segal map

L H
pre(R,W)n → L H

pre(R,W)1 ×
t,LH

pre(R,W)0,s
· · · ×

t,LH
pre(R,W)0,s

L H
pre(R,W)1

(to the n-fold fiber product) is an equivalence in sS. As sS is an ∞-topos, colimits
therein are universal, i.e. they commute with pullbacks (see Definition T.6.1.0.4 and
Theorem T.6.1.0.6 (and the discussion at the beginning of §T.6.1.1)). Moreover,
note that we have a canonical equivalence L H

pre(R,W)0 ' N∞(W) in sS. Hence, by
induction, we have a string of equivalences

L H
pre(R,W)1 ×

t,LH
pre(R,W)0,s

· · · ×
t,LH

pre(R,W)0,s
L H

pre(R,W)1

' L H
pre(R,W)1 ×

{1},LH
pre(R,W)0,{0}

L H
pre(R,W)n−1

20The object in the bottom left of this diagram is a “relative join” (see Definition T.4.2.2.1),
which in this case actually simply reduces to a “directed mapping cylinder” (see Example 3.1.8).
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= lim


N∞(W)

colim(m2,...,mn)∈(Zop)×(n−1) N∞
(
Fun([m2; . . . ; mn],R)W

)

colimm1∈Zop N∞
(
Fun(m1,R)W

)



' colimm1∈Zop

lim


N∞(W)

colim(m2,...,mn)∈(Zop)×(n−1) N∞
(
Fun([m2; . . . ; mn],R)W

)

N∞
(
Fun(m1,R)W

)





' colimm1∈Zop

colim(m2,...,mn)∈(Zop)×(n−1)

lim


N∞(W)

N∞
(
Fun([m2; . . . ; mn],R)W

)

N∞
(
Fun(m1,R)W

)






' colim(m1,...,mn)∈(Zop)×n N∞

(
Fun([m1; . . . ; mn],R)W

)
= L H

pre(R,W)n

(where in the penultimate line we appeal to Fubini’s theorem for colimits) which,
chasing through the definitions, visibly coincides with the nth Segal map. This proves
the claim.

We finally come to the main point of this section.

Definition 4.4.4. By Lemma 4.4.3, the functor given in Construction 4.4.2 admits
a factorization

RelCat∞ s(sS)

SsS

LH
pre

through the∞-category of Segal simplicial spaces. We again denote this factorization
by

RelCat∞
LH

pre−−→ SsS,
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and refer to it as the pre-hammock localization functor.21 Then, we define the
hammock localization functor

RelCat∞
LH

−−→ CatsS

to be the composite

RelCat∞
LH

pre−−→ SsS
sp(−)−−−→ CatsS.

Remark 4.4.5. Given a relative∞-category (R,W), the 0th level of its pre-hammock
localization

L H
pre(R,W) ∈ SsS ⊂ s(sS)

is given by

colim

(
{[∅]}◦ ↪→ (RelCat∗∗)

op → RelCatop
N∞(Fun(−R)W)
−−−−−−−−−−→ sS

)
,

which is simply the nerve N∞(W) ∈ sS of the subcategory W ⊂ R of weak equiva-
lences. Thus, its space of objects is simply

L H
pre(R,W)0 ' N∞(W)0 'W' ' R'.

Moreover, unwinding the definitions, it is manifestly clear that

• its hom-simplicial spaces are precisely the hammock simplicial spaces of (R,W)
(recall Definitions 4.1.8 and 4.2.17), and

• its compositions correspond to concatenation of zigzags (with identity mor-
phisms corresponding to zigzags of type [∅] ∈ Z).

Of course, we have a canonical counit weak equivalence

L H(R,W)
≈→ L H

pre(R,W)

in SsSDK which is even fully faithful in the sS-enriched sense, so that the hammock
localization enjoys all these same properties.

Just as in the 1-categorical case, the hammock localization of (R,W) admits a
natural map from R.

21The terminology “pre-hammock localization” should be parsed as “pre-(hammock localiza-
tion)”: it already contains the hammock simplicial spaces (see Remark 4.4.5), it is just not itself
the hammock localization.
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Construction 4.4.6. Returning to Construction 4.4.1, observe that there is a tau-
tological section

Gr−(Bar(Z)•)

∆

which takes [n] ∈ ∆ to ([A], . . . , [A]) ∈ Z×n = Bar(Z)n, and which takes a map

[m]
ϕ−→ [n] in ∆ to the map corresponding to the fiber map which, in the ith factor

of Z×m, is given by the unique map

[A]→ [A◦(ϕ(i)−ϕ(i−1))]

in Z. This is opposite to a tautological section

Gr(Bar(Zop)•)

∆op

which gives rise to a composite map

∆op → Gr(Bar(Zop)•)→ Gr(Bar(Zop)•) �
∆op

∆op

admitting a natural transformation to the standard inclusion (as the “target” factor,
i.e. the fiber over 1 ∈ [1]). This postcomposes with the composite

Gr(Bar(Zop)•) �
∆op

∆op → sS×∆op → sS

appearing in Construction 4.4.2 to give a natural transformation

Nlw
∞
(
Fun([•],R)W

)
→ L H

pre(R,W)•

in Fun(∆op, sS).22 Thus, in simplicial degree n, this map is simply the inclusion into
the colimit defining L H

pre(R,W)n ∈ sS at the object

([A]◦, . . . , [A]◦) ∈ (Zop)×n.

22Note that this source is just the image of the Rezk pre-nerve preNR
∞(R,W)• ∈ sCat∞ under

the inclusion sCat∞
∼−→ sCSS ↪→ s(sS) (recall Definition 2.3.1).
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Restricting levelwise to (the nerve of) the maximal subgroupoid, we obtain a com-
posite

const(R)• = constlw(UCSS(N∞(R)))•

= constlw(homCat∞([•],R))

' constlw (Fun([•],R)')

' Nlw
∞ (Fun([•],R)')

↪→ Nlw
∞
(
Fun([•],R)W

)
→ L H

pre(R,W)•.

As this source lies in CatsS ⊂ SsS, we obtain a canonical factorization

const(R) L H
pre(R,W)

L H(R,W)

≈

in (CatsS)DK. This clearly assembles into a natural transformation

const→ L H

in Fun(RelCat∞,CatsS).

Definition 4.4.7. For a relative ∞-category (R,W), we refer to the map

const(R)→ L H(R,W)

in CatsS of Construction 4.4.6 as its tautological inclusion .

We end this section with the following fundamental result, an analog of [DK80a,
Proposition 3.3]. In essence, it shows that when considered as morphisms in the
hammock localization, weak equivalences in R both represent and corepresent equiv-
alences in the underlying ∞-category. Just as with the fundamental theorem of
homotopical three-arrow calculi (4.3.4), its proof will be substantially more involved
than that of its 1-categorical analog (recall Remark 4.0.2).

Proposition 4.4.8. Let (R,W) ∈ RelCat∞, and let r, y, z ∈ R. Suppose we are
given a weak equivalence

w ∈ homW(y, z) ⊂ homR(y, z),
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and let us also denote by w ∈ homLH(R,W)(y, z)0 the resulting composite morphism

ptsS → N∞([A](y, z))→ homLH(R,W)(y, z).

Then, the induced “composition with w” maps

homLH(R,W)(r, y)
χ

LH (R,W)
r,y,z (−,w)−−−−−−−−−→ homLH(R,W)(r, z)

and

homLH(R,W)(z, r)
χ

LH (R,W)
y,r,z (w,−)−−−−−−−−−→ homLH(R,W)(y, r)

in sS become equivalences in S upon geometric realization. Moreover, if we denote
by w−1 ∈ homLH(R,W)(z, y)0 the composite morphism

ptsS → N∞([W−1](z, y))→ homLH(R,W)(y, z),

then their inverses are respectively given by the geometric realizations of the induced
“composition with w−1” maps

homLH(R,W)(r, z)
χ

LH (R,W)
r,z,y (−,w−1)−−−−−−−−−−−→ homLH(R,W)(r, y)

and

homLH(R,W)(y, r)
χ

LH (R,W)
z,y,r (w−1,−)−−−−−−−−−−−→ homLH(R,W)(z, r).

in sS.

Proof. We prove the first statement; the second statement follows by a nearly iden-
tical argument. Moreover, we will only show that the composite map∣∣homLH(R,W)(r, y)

∣∣→ ∣∣homLH(R,W)(r, z)
∣∣→ ∣∣homLH(R,W)(r, y)

∣∣
is an equivalence; that the composite∣∣homLH(R,W)(r, z)

∣∣→ ∣∣homLH(R,W)(r, y)
∣∣→ ∣∣homLH(R,W)(r, z)

∣∣
is an equivalence will follow from a very similar argument.

For each m ∈ Zop, let us define a functor

m(r, y)
ϕm−−→ [m; A; W−1](r, y)
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given informally by taking a zigzag

r y
m

in (R,W) to the zigzag

r y z y
m ≈

in (R,W), in which both new maps are the chosen weak equivalence w.23 This
operation is clearly natural in m ∈ Zop, i.e. it assembles into a natural transformation

Zop Cat∞.

Zop

(−)(r,y)

ϕ⇓

[−;A;W−1] (−)(r,y)

Then, using Proposition 2.2.4 and the fact that the geometric realization functor

sS
|−|−→ S commutes with colimits (being a left adjoint), we see that the composite∣∣homLH(R,W)(r, y)

∣∣→ ∣∣homLH(R,W)(r, z)
∣∣→ ∣∣homLH(R,W)(r, y)

∣∣
is obtained as the composite

colimZop
(
(−)gpd ◦ (−)(r, y)

)

colimZop
(
(−)gpd ◦ (−)(r, y) ◦ [−; A; W−1]

)
colimZop

(
(−)gpd ◦ (−)(r, y)

)
.

colimZop (id
(−)gpd◦ϕ)

colimS([−;A;W−1])

To see that this is an equivalence, for each m ∈ Zop let us define a map m
ψm−−→

[m; A; W−1] in Zop to be opposite the map [m; A; W−1] → m in Z which collapses
the newly concatenated copy of [A; W−1] to the map idtm . These assemble into a

23This (and subsequent constructions) can easily be made precise by defining a suitable notion
of a map in a relative word being forced to land at w; we will leave such a precise construction to
the interested reader.
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natural transformation idZop
ψ−→ [−; A; W−1] in Fun(Zop,Zop), and hence we obtain

a natural transformation

Zop Cat∞.

Zop

(−)(r,y)

id(−)(r,y)◦ψ⇓

[−;A;W−1] (−)(r,y)

Moreover, For each m ∈ Zop we have a functor

[1]×m(r, y)
µm−−→ [m; A; W−1](r, y),

adjoint to a functor

m(r, y)→ Fun([1], [m; A; W−1](r, y)),

given informally by taking a zigzag

r y
m

in (R,W) to the diagram

r y y y

r y z y

m

≈

≈

m ≈

in (R,W) representing a morphism in [m; A; W−1](r, y), where the maps in the

right two squares are all either the chosen weak equivalence y
≈→ z or are idy. These

assemble into a morphism

const([1])× (−)(r, y)
µ−→ (−)(r, y) ◦ [−; A; W−1]
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in Fun(Zop,Cat∞), i.e. a modification from id(−)(r,y) ◦ ψ to ϕ. By Proposition 3.3.8,
this induces a natural transformation

Gr((−)(r, y)) Gr((−)(r, y) ◦ [−; A; W−1])

Gr(id(−)(r,y)◦ψ)

Gr(µ)⇓

Gr(ϕ)

which, by Lemma 2.1.26 and Proposition 3.3.1, gives a homotopy between the maps

colimZop
(
(−)gpd ◦ (−)(r, y)

) colimZop (id
(−)gpd◦id(−)(r,y)◦ψ)

−−−−−−−−−−−−−−−−−−→ colimZop
(
(−)gpd ◦ (−)(r, y) ◦ [−; A; W−1]

)
and

colimZop
(
(−)gpd ◦ (−)(r, y)

) colimZop (id
(−)gpd◦ϕ)

−−−−−−−−−−−−→ colimZop
(
(−)gpd ◦ (−)(r, y) ◦ [−; A; W−1]

)
in S. Hence, to show that the above composite is an equivalence, it suffices to show
that the composite

colimZop
(
(−)gpd ◦ (−)(r, y)

)

colimZop
(
(−)gpd ◦ (−)(r, y) ◦ [−; A; W−1]

)
colimZop

(
(−)gpd ◦ (−)(r, y)

)
colimZop (id

(−)gpd◦id(−)(r,y)◦ψ)

colimS([−;A;W−1])

is an equivalence. But this composite fits into a commutative triangle

colimZop((−)gpd ◦ (−)(r, y) ◦ idZop)

colimZop((−)gpd ◦ (−)(r, y))

colimZop((−)gpd ◦ (−)(r, y) ◦ [−; A; W−1])

∼
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obtained by applying Proposition 3.3.5 to the diagram

Zop Zop Cat∞,

idZop

ψ⇓

[−;A;W−1]

(−)(r,y)

so it is an equivalence. This proves the claim.

4.5 From fractions to complete Segal spaces,

redux

As an application of the theory developed in this chapter, we now provide a sufficient
condition for the Rezk nerve NR

∞(R,W) ∈ sS of a relative ∞-category (R,W) to be
either

• a Segal space or

• a complete Segal space,

thus giving a partial answer to our own Question 2.3.6, which we refer to as the
calculus theorem .24 This result is itself a direct generalization of joint work with
Low regarding relative 1-categories (see [LMG15, Theorem 4.11]). That result, in
turn, generalizes work of Rezk, Bergner, and Barwick–Kan; we refer the reader to
[LMG15, §1] for a more thorough history.

Theorem 4.5.1. Suppose that (R,W) ∈ RelCat∞ admits a homotopical three-arrow
calculus.

(1) NR
∞(R,W) ∈ sS is a Segal space.

(2) Suppose moreover that W ⊂ R satisfies the two-out-of-three property. Then
NR
∞(R,W) ∈ sS is a complete Segal space if and only if (R,W) is saturated.

The proof of the calculus theorem (4.5.1) is very closely patterned on the proof
of [LMG15, Theorem 4.11] (the main theorem of that paper), which is almost com-
pletely analogous but holds only for relative 1-categories.25 We encourage any reader

24The Rezk nerve is a straightforward generalization of Rezk’s “classification diagram” construc-
tion, which we introduced and studied in §2.3.

25The 1-categorical Rezk nerve and the Rezk nerve of a relative ∞-category are essentially
equivalent (see Remark 2.3.2), which is why essentially the same proof can be applied in both cases.
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who would like to understand it to first read that paper: there are no truly new ideas
here, only generalizations from 1-categories to ∞-categories.

Proof of Theorem 4.5.1. For this proof, we give a detailed step-by-step explanation
of what must be changed in the paper [LMG15] to generalize its main theorem from
relative 1-categories to relative ∞-categories.

• For [LMG15, Definition 2.1], we replace the notion of a “weak homotopy equiv-
alence” of categories by the notion of a map in Cat∞ which becomes an equiv-
alence under (−)gpd : Cat∞ → S (i.e. a Thomason weak equivalence (see
Definition 3.6.2 and Remark 3.6.3)).

• The proof of [LMG15, Lemma 2.2] carries over easily using Lemma 2.1.26.

• For [LMG15, Definition 2.3], we replace the notion of a “homotopy pullback
diagram” of categories by the notion of a commutative square in Cat∞ which
becomes a pullback square under (−)gpd : Cat∞ → S (i.e. a homotopy pullback
diagram in (Cat∞)Th).

• For [LMG15, Definition 2.4], we replace the notions of “Grothendieck fibra-
tions” and “Grothendieck opfibrations” of categories by those of cartesian fi-
brations and cocartesian fibrations of ∞-categories (see §3.1 and [MG]).

• For [LMG15, Remark 2.5], as the entire theory of∞-categories is in essence al-
ready only pseudofunctorial, there is no corresponding notion of a co/cartesian
fibration being “split” (or rather, every co/cartesian fibration should be thought
of as being “split”).

• The evident generalization of [LMG15, Example 2.6] can be obtained by ap-
plying Corollary T.2.4.7.12 to an identity functor of ∞-categories.

• The evident generalization of (the first of the two dual statements of) [LMG15,
Theorem 2.7] is proved as Corollary 3.4.3.

• The evident generalization of [LMG15, Corollary 2.8] again follows directly (or
can alternatively be obtained by combining Example 2.1.12 and Lemma 2.1.20).

• For [LMG15, Definition 2.9], we use the definition of the “two-sided Grothendieck
construction” given in Definition 3.3.3. (Note that the 1-categorical version is
simply the corresponding (strict) fiber product.)
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• The evident analog of [LMG15, Lemma 2.11] is proved as Proposition 3.3.4.

• For [LMG15, Definition 3.1], we replace the notion of a “relative category” by
the notion of a “relative ∞-category” given in Definition 2.1.1; recall from Re-
mark 2.1.2 that here we are actually working with a slightly weaker definition.
We replace the notion of its “homotopy category” by that of its localization
given in Definition 2.1.8. We have already defined the notion of a relative
∞-category being “saturated” in Definition 2.1.14.

• For [LMG15, Definition 3.2], we have already made the analogous definitions
in Notation 2.1.6.

• For [LMG15, Definitions 3.3 and 3.6], we have already made the analogous
definitions in Definitions 4.2.5 and 4.2.9.

• The evident analog of [LMG15, Remark 3.7] is now true by definition (recall
Notation 4.2.2).

• For [LMG15, Proposition 3.8], the paper actually only uses part (ii), whose
evident analog is provided by Lemma 4.2.20(1).

• For [LMG15, Lemma 3.10], note that the functors in the statement of the result
as well as in its proof are all corepresented by maps in RelCat∗∗ ⊂ (RelCat∞)∗∗;
the proof of the analogous result thus carries over by Lemma 4.3.5.

• For [LMG15, Lemma 3.11], again everything in the statement of the result
as well as in its proof are all corepresented; again the proof carries over by
Lemma 4.3.5.

• For [LMG15, Definition 4.1], we have already defined a “homotopical three-
arrow calculus” for a relative ∞-category in Definition 4.3.1.

• For [LMG15, Theorem 4.5], we use the more general but slightly different
definition of hammocks given in Definition 4.2.17 (recall Remark 4.2.18); part
(i) is proved as Theorem 4.3.4, while part (ii) follows immediately from the
definitions, particularly Definitions 4.4.4 and 4.1.8. (Note that in the present
framework, the “reduction map” is simply replaced by the canonical map to
the colimit defining the simplicial space of hammocks.)
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• For [LMG15, Corollary 4.7], the evident analog of [DK80a, Proposition 3.3] is
proved as Proposition 4.4.8.

• For [LMG15, Proposition 4.8], the proof carries over essentially without change.
(The functor considered there when proving that the rectangle (AC) is a ho-

motopy pullback diagram is replaced by our functor Wop 3(x,−)−−−→ Cat∞ of No-
tation 4.2.23.)

• For [LMG15, Lemma 4.9], the map itself in the statement of the result comes
from the functoriality

Wop [W−1;A◦n;W−1](x,−)−−−−−−−−−−−−−→ Cat∞

and

W
[W−1;A◦n;W−1](−,y)−−−−−−−−−−−−−→ Cat∞

of Notation 4.2.23, as do the vertical maps in the commutative square in the
proof. The horizontal maps in that square are corepresented by maps in Z ⊂
RelCat∗∗ ⊂ (RelCat∞)∗∗, and it clearly commutes by construction. The evident
analog of [DK80a, Proposition 9.4] is proved as Lemma 4.2.24.

• For [LMG15, Proposition 4.10], note that all morphisms in both the statement
of the result and its proof are corepresented by maps in Z ⊂ RelCat∗∗ ⊂
(RelCat∞)∗∗; the proof itself carries over without change.

• For [LMG15, Theorem 4.11] (whose analog is Theorem 4.5.1 itself), note that
we are now proving an∞-categorical statement (instead of a model-categorical
one), and so there are no issues with fibrant replacement.

– The proof of part (1) of Theorem 4.5.1 is identical to the proof of part (i)
there: it follows from our analog of [LMG15, Proposition 4.10].

– We address the two halves of the proof of part (2) of Theorem 4.5.1 in
turn.

∗ The proof of the “only if” direction runs analogously to that of
[LMG15, Theorem 4.11(ii)], only now we use that given two ob-
jects ptCat∞ ⇒ C in an ∞-category C, any path between their post-
compositions ptCat∞ ⇒ C → Cgpd can be represented by a zigzag
N−1(sdi(∆1))→ C connecting them (for some sufficiently large i).
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∗ We must modify the proof of the “if” direction slightly, as follows.
Assume that (R,W) ∈ RelCat∞ is saturated. By the local universal
property of the Rezk nerve (Theorem 2.3.8), we have an equivalence
LCSS(N

R
∞(R,W)) ' N∞(RJW−1K) in CSS ⊂ sS. Note also that by the

two-out-of-three assumption, any two objects ptCat∞ ⇒ Fun([1],R)W

which select the same path component under the composite

ptCat∞ ⇒ Fun([1],R)W →
(
Fun([1],R)W

)gpd
= NR

∞(R,W)1

are either both weak equivalences or both not weak equivalences.
Now, for any object of Fun([1],R)W, recalling Remark 4.1.3 and in-
voking the saturation assumption, we see that the corresponding map
[1]→ R selects an equivalence under the postcomposition [1]→ R→
RJW−1K if and only if it factors as [1] → W ↪→ R. From here, the
proof proceeds identically.

Remark 4.5.2. After establishing the necessary facts concerning model∞-categories,
we obtain an analog of [LMG15, Corollary 4.12] as Theorem 6.10.1.

Remark 4.5.3. In light of Remark 2.3.2, [LMG15, Remark 4.13] is strictly generalized
by the local universal property of the Rezk nerve (Theorem 2.3.8).
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Chapter 5

Model ∞-categories II: Quillen
adjunctions

In this chapter, prove that various structures on model∞-categories descend to cor-
responding structures on their localizations: (i) Quillen adjunctions; (ii) two-variable
Quillen adjunctions; (iii) monoidal and symmetric monoidal model structures; and
(iv) enriched model structures.

5.0 Introduction

5.0.1 Presenting structures on localizations of model
∞-categories

A relative ∞-category is a pair (M,W) of an ∞-category M and a subcategory
W ⊂M containing all the equivalences, called the subcategory of weak equivalences.
Freely inverting the weak equivalences, we obtain the localization of this relative
∞-category, namely the initial functor

M→MJW−1K

from M which sends all maps in W to equivalences. In general, it is extremely
difficult to access the localization. In Chapter 1, we introduced the notion of a
model structure extending the data of a relative ∞-category: just as in Quillen’s
classical theory of model structures on relative categories, this allows for much more
control over manipulations within its localization.1 For instance, in Chapter 6 we

1For the precise definition a model ∞-category, we refer the reader to §1.1. However, for the
present discussion, it suffices to observe that it is simply a direct generalization of the standard
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prove that a model structure provides an efficient and computable way of accessing
the hom-spaces homMJW−1K(x, y).

However, we are not just interested in localizations of relative∞-categories them-
selves. For example, adjunctions are an extremely useful structure, and we would
therefore like a systematic way of presenting an adjunction on localizations via some
structure on overlying relative ∞-categories. The purpose of this chapter is to show
that model structures on relative ∞-categories are not only useful for computations
within their localizations, but are in fact also useful for presenting structures on their
localizations. More precisely, we prove the following sequence of results.2

Theorem (5.1.1 and 5.1.3). A Quillen adjunction between model ∞-categories
induces a canonical adjunction on their localizations. If this is moreover a Quillen
equivalence, then the resulting adjunction is an adjoint equivalence.

Theorem (5.4.6). A two-variable Quillen adjunction between model∞-categories
induces a canonical two-variable adjunction on their localizations.

Theorem (5.5.4 and 5.5.6). The localization of a (resp. symmetric) monoidal
model ∞-category is canonically a closed (resp. symmetric) monoidal ∞-category.

Theorem (5.6.7). The localization of an enriched model ∞-category is canoni-
cally enriched and bitensored over the localization of the enriching model∞-category.

Along the way, we also develop the foundations of the theory of homotopy co/limits
in model ∞-categories.

Remark 5.0.1. Perhaps surprisingly, none of these results depends on the concrete
identification of the hom-spaces homMJW−1K(x, y) in the localizations of model ∞-
categories provided in Chapter 6. Rather, their proofs all rely on considerations
involving subcategories of “nice” objects relative to the given structure, for instance
the subcategory of cofibrant objects relative to a left Quillen functor. Such consid-
erations are thus somewhat akin to the theory of “deformable” functors of Dwyer–
Hirschhorn–Kan–Smith (see [DHKS04], as well as Shulman’s excellent synthesis and
contextualization [Shu]), but the philosophy can be traced back at least as far as
Brown’s “categories of fibrant objects” (see [Bro71]).

definition of a model category.
2The precise definitions of Quillen adjunctions and Quillen equivalences are also contained in

§1.1, while the remaining relevant definitions are contained in the body of the present chapter. How-
ever, for the present discussion, it likewise suffices to observe that they are all direct generalizations
of their classical counterparts.
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Remark 5.0.2. In the special case of model categories and their 1-categorical local-
izations, these results are all quite classical (and fairly easy to prove).3 However, the
study of ∞-categorical localizations – even just of model categories – is much more
subtle, because it requires keeping track of a wealth of coherence data.

The following specializations of our results to model 1-categories (and their ∞-
categorical localizations) appear in the literature.

• We proved this special case of the first of the results (regarding Quillen adjunc-
tions) listed above as [MG16, Theorem 2.1]. (For a detailed history of partial
results in this direction, we refer the reader to [MG16, §A].)

• Under a more restrictive definition of a (resp. symmetric) monoidal model cat-
egory in which the unit object is required to be cofibrant (as opposed to unit
axiom MM∞2 of Definition 5.5.1), Lurie proves that its localization admits a
canonical (resp. symmetric) monoidal structure in §A.4.3.1 (see particularly
Proposition A.4.1.3.4). Moreover, under an analogously more restrictive defi-
nition of a (resp. symmetric) monoidal model ∞-category, a canonical (resp.
symmetric) monoidal structure on its localization likewise follows from this
same result. (See Remark 5.5.7.)

Aside from these, the results of this chapter appear to be new, even in the special
case of model 1-categories.

Remark 5.0.3. Our result [MG16, Theorem 2.1] is founded in point-set considera-
tions, for instance making reference to an explicit “underlying quasicategory” func-
tor from relative categories (e.g. model categories). By contrast, the proof of the
generalization given here works invariantly, and relies on a crucial result of Gepner–
Haugseng–Nikolaus identifying cocartesian fibrations as lax colimits, which appeared
almost concurrently to our [MG16]. (Specifically, the proof of our “fiberwise local-
ization” result Proposition 5.2.3 appeals multiple times to [GHN, Theorem 7.4].)
Nevertheless, we hope that our model-specific proof will still carry some value: the
techniques used therein seem fairly broadly applicable, and its point-set nature may
someday prove useful as well.

3Given a relative category (R,W), its 1-categorical localization and its ∞-categorical localiza-
tion are closely related: there is a natural functor RJW−1K → ho(RJW−1K) ' R[W−1] between
them, namely the projection to the homotopy category (see Remark 2.1.29). Moreover, all of these
structures – adjunctions, two-variable adjunctions, closed (symmetric) monoidal structures, and en-
richments and bitensorings – descend canonically from ∞-categories to their homotopy categories.
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5.0.2 Outline

We now provide a more detailed outline of the contents of this chapter.

• In §5.1, we begin by stating our results concerning Quillen adjunctions and
Quillen equivalences (Theorem 5.1.1 and Corollary 5.1.3, resp.). We then de-
velop the rudiments of the theory of homotopy co/limits in model∞-categories,
and provide a detailed study of Reedy model structures on functor∞-categories.

• In § 5.2, we provide some auxiliary material on relative co/cartesian fibra-
tions and on bicartesian fibrations. These two enhancements of the theory
of co/cartesian fibrations are used in the proofs of the main results of the
chapter.

• In §5.3, we prove Theorem 5.1.1 and Corollary 5.1.3.

• In § 5.4, we show that two-variable Quillen adjunctions between model ∞-
categories present two-variable adjunctions between their localizations.

• In §5.5, we show that (resp. symmetric) monoidal model ∞-categories present
closed (resp. symmetric) monoidal ∞-category.

• In §5.6, we show that enriched model∞-categories present enriched and biten-
sored ∞-categories.
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5.1 Quillen adjunctions, homotopy co/limits, and

Reedy model structures

Model structures on relative (1- and ∞-)categories are extremely useful for making
computations within their localizations. However, it can also be quite useful to obtain
relationships between their localizations. Perhaps the most important relationship
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that two∞-categories can share is that of being related by an adjunction. The central
result of this section (Theorem 5.1.1) provides a systematic way of obtaining just such
a relationship: a Quillen adjunction between model ∞-categories induces a canon-
ical derived adjunction on their localizations. As a special case (Corollary 5.1.3), a
Quillen equivalence induces a derived equivalence on localizations.4

This section is organized as follows. In §5.1.1, we state these fundamental theo-
rems regarding Quillen adjunctions and Quillen equivalences. (However, their proofs
will be postponed to §5.3, after we have developed some necessary scaffolding in
§5.2.) Then, in §5.1.2 we study the important special case of homotopy co/limits,
briefly introducing the projective and injective model structures. Finally, in §5.1.3,
we pursue a more in-depth study of the Reedy model structure.

5.1.1 Quillen adjunctions and Quillen equivalences

The classical theory of derived functors arose out of a desire to “correct” functors
between relative categories which do not respect weak equivalences to ones that do.
There, one replaces a given object by a suitable resolution – the nature of which
depends both on the context and on the sort of functor which one is attempting to
correct – and then applies the original functor to this resolution, the point being that
the functor does respect weak equivalences between such “nice” objects.

A Quillen adjunction
F : M� N : G

between model (1- or ∞-)categories is a prototypical and beautifully symmetric ex-
ample of such a situation. In general, neither Quillen adjoint will preserve weak
equivalences. However, in this case there are canonical choices for such subcategories
of “nice” objects: left Quillen functors preserve weak equivalences between cofibrant
objects, while right Quillen functors preserve weak equivalences between fibrant ob-
jects (see Kenny Brown’s lemma (5.3.5)). Moreover, the inclusions (Mc,Wc

M) ↪→
(M,WM) and (N,WN)←↩ (Nf ,Wf

N) induce equivalences

McJ(Wc
M)−1K ∼−→MJW−1

M K

and
NJW−1

N K ∼←− NfJ(Wf
N)−1K

on localizations (see Corollary 5.3.4). A perfect storm then ensues.

4Quillen adjunctions and Quillen equivalences are respectively given as Definitions 1.1.12 and
1.1.14. These are completely straightforward generalizations of the model 1-categorical counter-
parts, and so we do not feel the need to repeat them here.



322

Theorem 5.1.1. A Quillen adjunction

F : M� N : G

of model ∞-categories induces a canonical adjunction

LF : MJW−1
M K� NJW−1

N K : RG

on localizations, whose left and right adjoints are respectively obtained by applying

the localization functor RelCat∞
L−→ Cat∞ to the composites

Mc ↪→M
F−→ N

and
M

G←− N←↩ Nf .

Definition 5.1.2. Given a Quillen adjunction F a G, we refer to the the resulting
adjunction LF a RG on localizations of Theorem 5.1.1 as its derived adjunction .
We refer to LF as the left derived functor of F , and to RG as the right derived
functor of G.

Theorem 5.1.1 has the following easy consequence.

Corollary 5.1.3. The derived adjunction

LF : MJW−1
M K� NJW−1

N K : RG

of a Quillen equivalence
F : M� N : G

of model ∞-categories is an adjoint equivalence.

Remark 5.1.4. With Theorem 5.1.1 in hand, to prove Corollary 5.1.3 it would suffice
to show that either one of the derived adjoint functors is an equivalence; this can be
accomplished using the fundamental theorem of model ∞-categories (6.1.9), which
provides an explicit description of the hom-spaces in the localization of a model ∞-
category. However, our proofs of Theorem 5.1.1 and of Corollary 5.1.3 will not rely
on that result (recall Remark 5.0.1).

Remark 5.1.5. A number of examples of Quillen adjunctions and Quillen equivalences
are provided in §1.2.2.
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5.1.2 Homotopy co/limits

Some of the most important operations one can perform within an ∞-category are
the extraction of limits and colimits. However, co/limit functors on relative ∞-
categories do not generally take natural weak equivalences to weak equivalences. In
view of the theory of derived adjunctions laid out in §5.1.1, in the setting of model
∞-categories it is therefore important to determine sufficient conditions under which
co/limit functors can be derived, i.e. under which they determine left/right Quillen
functors.

We now codify this desired situation.

Notation 5.1.6. For a model∞-category M and an∞-category C, we write WFun(C,M) ⊂
Fun(C,M) for the subcategory of natural weak equivalences. Of course, considering
(M,W) as a relative ∞-category, via Notation 2.1.6 this identifies as

WFun(C,M) Fun(C,M)

Fun(min(C),M)W Fun(min(C),M)Rel.

∼ ∼

Definition 5.1.7. Let M be a model ∞-category, and let C be an ∞-category.
Suppose that M admits C-shaped colimits, so that we obtain an adjunction

colim : Fun(C,M)�M : const.

If (Fun(C,M),WFun(C,M)) admits a model structure such that this adjunction be-
comes a Quillen adjunction, we refer to its resulting left derived functor

Lcolim : Fun(C,M)JW−1
Fun(C,M)K→MJW−1

M K

as a homotopy colimit functor. Dually, suppose that M admits C-shaped limits,
so that we obtain an adjunction

const : M� Fun(C,M) : lim.

If (Fun(C,M),WFun(C,M)) admits a model structure such that this adjunction be-
comes a Quillen adjunction, we refer to its resulting right derived functor

MJW−1
M K← Fun(C,M)JW−1

Fun(C,M)K : Rlim

as a homotopy limit functor.
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Now, to check that an adjunction between model ∞-categories is a Quillen ad-
junction, it suffices to show only that either its left adjoint is a left Quillen functor or
that its right adjoint is a right Quillen functor. This leads us to define the following
“absolute” model structures on functor ∞-categories.

Definition 5.1.8. Let M be a model∞-category, and let C be an∞-category. Sup-
pose that there exists a model structure on Fun(C,M) whose weak equivalences and
fibrations are determined objectwise. In this case, we call this as the projective
model structure , and denote it by Fun(C,M)proj. Dually, suppose that there ex-
ists a model structure on Fun(C,M) whose weak equivalences and cofibrations are
determined objectwise. In this case, we call this the injective model structure ,
and denote it by Fun(C,M)inj.

Remark 5.1.9. Definition 5.1.8 immediately implies

• that whenever M admits C-shaped colimits and there exists a projective model
structure on Fun(C,M), then we obtain a Quillen adjunction

colim : Fun(C,M)proj �M : const,

and

• that that whenever M admits C-shaped limits and there exists an injective
model structure on Fun(C,M), then we obtain a Quillen adjunction

const : M� Fun(C,M)inj : lim.

Remark 5.1.10. As in the classical case, the projective and injective model structures
do not always exist. However, it appears that

• the projective model structure will exist whenever M is cofibrantly generated
(see §1.3), while

• the injective model structure will exist whenever M is combinatorial (that is,
its underlying ∞-category is presentable and its model structure is cofibrantly
generated);

see [Hir03, Theorem 11.6.1] and Proposition T.A.2.8.2.5

5In the construction of the projective model structure, one can replace the appeal to the “set of
objects” of C with an arbitrary surjective map C → C from some C ∈ Set ⊂ Cat∞; the necessary left
Kan extension will exist as long as M is cocomplete, which seems to be generally true in practice.
However, there is also some subtlety regarding whether the resulting sets of would-be generating
cofibrations and generating acyclic cofibrations do indeed admit the small object argument: it
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5.1.3 Reedy model structures

Whereas the projective and injective model structures of Definition 5.1.8 are not
always known to exist (even for model 1-categories), there is a class of examples in
which a model structure on (Fun(C,M),WFun(C,M)) is always guaranteed to exist:
the Reedy model structure. This does not make any additional assumptions on the
model ∞-category M (recall Remark 5.1.10), but instead it requires that C be a
(strict) 1-category equipped with a certain additional structure.

The Reedy model structure will be useful in a number of settings: we’ll use
Example 5.1.18 a number of times in the proof of Theorem 5.1.1, it will be heavily
involved in our development of “cylinder objects” and “path objects” in model ∞-
categories in §6.1 (leading towards the fundamental theorem of model ∞-categories
(6.1.9)), and it is also closely related to the resolution model structure (see e.g.
§1.0.3).

We begin by fixing the following definition.

Definition 5.1.11. Let C ∈ Cat be a gaunt category equipped with a factorization

system defined by two wide subcategories
−→
C ,
←−
C ⊂ C; that is, every morphism ϕ in

C admits a unique factorization as a composite −→ϕ ◦ ←−ϕ , where −→ϕ is in
−→
C and ←−ϕ is

in
←−
C . Suppose there do not exist any infinite “decreasing” zigzags of non-identity

morphisms in C, where by “decreasing” we mean that all forward-pointing arrows lie

in
←−
C and all backwards-pointing arrows lie in

−→
C . Then, we say that C is a Reedy

category , and we refer to the defining subcategories
−→
C ,
←−
C ⊂ C respectively as its

direct subcategory and its inverse subcategory .

Remark 5.1.12. Definition 5.1.11 is lifted from Definition T.A.2.9.1. There is also a
more restrictive definition in the literature, given for instance as [Hir03, Definition
15.1.2], in which one requires that C comes equipped with a “degree function” deg :

N(C)0 → N such that all non-identity morphisms in
−→
C raise degree while all non-

identity morphisms in
←−
C lower degree: the nonexistence of infinite decreasing zigzags

then follows from the fact that N has a minimal element.
However, as pointed out in [Hir03, Remark 15.1.4], the results of [Hir03, Chapter

15] easily generalize to the case when the degree function takes values in ordinals
rather than simply in nonnegative integers. Indeed, Notation T.A.2.9.11 introduces
the notion of a “good filtration” on a Reedy category, which is a transfinite total

suffices that the set I (resp. J) of generating (resp. acyclic) cofibrations have that all the sources
of its elements be small with respect to the tensors of its elements over the various hom-spaces of
C. However, it similarly seems that in practice these objects will in fact be small with respect to
the entire ∞-category M, so that this is not actually an issue.
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ordering of its objects that effectively serves the same purpose as an ordinary degree
function (although note that a degree function need not be injective in general), and
Remark T.A.2.9.12 observes that good filtrations always exist.

In any case, these data (either degree functions or good filtrations) both reflect the
most important feature of Reedy categories, namely their amenability to inductive
manipulations. In practice, we will generally only use Reedy categories of the more
restrictive sort, but it is no extra effort to work in the more general setting.

Definition 5.1.13. Given a Reedy category C, we define its latching category at
an object c ∈ C to be the full subcategory

∂
(−→
C /c

)
⊂
−→
C /c

on all objects besides idc, and we define its matching category at an object c ∈ C

to be the full subcategory

∂
(←−
C c/

)
⊂
←−
C c/

on all objects besides idc.

Remark 5.1.14. We will assume familiarity with the basic theory of Reedy categories.
For further details, we refer the reader to [Hir03, Chapter 15] or to §T.A.2.9 (with the
caveat that the latter source works in somewhat greater generality than the former,
as explained in Remark 5.1.12). In particular, given a functor

∂
(−→
C /c

)
F−→M

(e.g. the restriction of a functor C
F−→M) we will write

Lc(F ) = colim
∂(
−→
C /c)

(F ),

and given a functor

∂
(←−
C c/

)
G−→M

(e.g. the restriction of a functor C
G−→M) we will write

Mc(F ) = lim
∂(
←−
C c/)

(G).

(This notation jibes with that of item A(29)).
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Remark 5.1.15. In general, the usual constructions with Reedy categories go through
equally well when the target is an∞-category. In particular, we explicitly record here
that given a bicomplete ∞-category M and a Reedy category C, one can inductively
construct both objects and morphisms of Fun(C,M) in exactly the same manner
as when M is merely a category, using latching/matching objects and (relative)
latching/matching maps. For the construction of objects this is observed as Remark
T.A.2.9.16, but both of these assertions follow easily from Proposition T.A.2.9.14.

As indicated at the beginning of this subsection, the primary reason for our
interest in Reedy categories is the following result.

Theorem 5.1.16. Let M be a model ∞-category, and let C be a Reedy category.
Then there exists a model structure on Fun(C,M), in which a map F → G is

• a weak equivalence if and only if the induced maps

F (c)→ G(c)

are in W ⊂M for all c ∈ C,

• a (resp. acyclic) cofibration if and only if the relative latching maps

F (c)
∐

Lc(F )

Lc(G)→ G(c)

are in C ⊂M (resp. W ∩C ⊂M) for all c ∈ C,

• a (resp. acyclic) fibration if and only if the relative matching maps

F (c)→ Mc(F ) ×
Mc(G)

G(c)

are in F ⊂M (resp. W ∩ F ⊂M) for all c ∈ C.

Proof. The proof is identical to that of Proposition T.A.2.9.19 (or to those of [Hir03,
Theorems 15.3.4(1) and 15.3.5]).

Definition 5.1.17. We refer to the model structure of Theorem 5.1.16 as the Reedy
model structure on Fun(C,M), and we denote this model∞-category by Fun(C,M)Reedy.

Example 5.1.18. There is a Reedy category structure on [n] ∈ ∆ ⊂ Cat deter-

mined by the degree function deg(i) = i. As the inverse subcategory
←−
[n] ⊂ [n]

associated to this Reedy category structure consists only of identity maps, the re-
sulting Reedy model structure Fun([n],M)Reedy coincides with the projective model
structure Fun([n],M)proj of Definition 5.1.8.
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Remark 5.1.19. In particular, Example 5.1.18 shows that the projective model struc-
ture Fun([n],M)proj always exists (without any additional assumptions on M). We
will use this fact repeatedly without further comment.

Remark 5.1.20. It follows essentially directly from the definitions that whenever
they all exist, the projective, injective, and Reedy model structures assemble into a
commutative diagram

Fun(C,M)proj Fun(C,M)inj

Fun(C,M)Reedy

⊥

⊥ ⊥

of Quillen equivalences. (If only two of them exist, then they still participate in the
indicated Quillen equivalence.)

The Reedy model structure is also functorial in exactly the way one would hope.

Theorem 5.1.21. For any Reedy category C, if M � N is a Quillen adjunction
(resp. Quillen equivalence) of model ∞-categories, then the induced adjunction

Fun(C,M)Reedy � Fun(C,N)Reedy

is a Quillen adjunction (resp. Quillen equivalence) as well.

Proof. The proof is identical to that of [Hir03, Proposition 15.4.1].

Of course, much of our interest in functor ∞-categories stems from the fact that
these are the source of co/limit functors. Thus, we will often want to know when a
co/limit functor is a Quillen functor with respect to a given Reedy model structure.
This will not always be the case. However, there does exist a class of “absolute”
examples, as encoded by the following.

Definition 5.1.22. Let C be a Reedy category. We say that C has (model ∞-
categorical) cofibrant constants if for every model ∞-category M admitting
C-shaped limits, the adjunction

const : M� Fun(C,M)Reedy : lim
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is a Quillen adjunction. Dually, we say that C has (model ∞-categorical) fi-
brant constants if for every model ∞-category M admitting C-shaped colimits,
the adjunction

colim : Fun(C,M)Reedy �M : const

is a Quillen adjunction.

This notion differs slightly from the classical definition (see [Hir03, Definition
15.10.1]). We first provide a characterization, and then explain the difference in
Remark 5.1.24.

Proposition 5.1.23. Let C be a Reedy category. Then C has model ∞-categorical
cofibrant constants if and only if for every c ∈ C the groupoid completion(

∂
(−→
C /c

))gpd

of its latching category is either empty or contractible. Dually, C has model ∞-
categorical fibrant constants if and only if for every c ∈ C the groupoid completion(

∂
(←−
C c/

))gpd

of its matching category is either empty or contractible.

Proof. Suppose that for every c ∈ C the latching category ∂
(−→
C /c

)
has either empty

or contractible geometric realization, and suppose that M is a model ∞-category
admitting C-shaped limits. Fix an object c ∈ C. Then, for any object z ∈ M, the
latching object

Lc(const(z)) = colim
∂(
−→
C /c)

const(z)

is either

• always equivalent to ∅M, or

• always equivalent to z itself.

Hence, for any map x→ y in M, the relative latching map

(const(x))(c)
∐

Lc(const(x))

Lc(const(y))→ (const(y))(c)

is either x → y or y → y. It follows that const : M → Fun(C,M)Reedy is a left
Quillen functor, so that the adjunction const : M � Fun(C,M)Reedy : lim is a
Quillen adjunction, as desired.
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Conversely, suppose that for some object c ∈ C the groupoid completion(
∂
(−→
C /c

))gpd

of the latching category at c ∈ C is not empty or contractible. Then for any nonempty
object x ∈ sSetKQ ⊂ sSKQ (i.e. considered in sSKQ), the latching map at c ∈ C of the
functor const(x) will not be a cofibration.

Of course, the dual claim follows from a dual argument.

Remark 5.1.24. In the theory of ordinary model categories, according to [Hir03,
Proposition 15.10.2(1)], a Reedy category has cofibrant constants if and only if the
its latching categories are all either nonempty or connected. In light of the proof of
Proposition 5.1.23, the reason for the difference should now be clear: it 1-category
theory, in order for a constant diagram to have colimit isomorphic to its constant
value, it suffices for the indexing category to merely be connected. By contrast, in
∞-category theory the colimit of a constant diagram recovers the tensoring of the
value with the groupoid completion of the diagram ∞-category.

Example 5.1.25. For any simplicial set K ∈ sSet, its “category of simplices” (i.e.
the category

∆/K = ∆ ×
sSet

sSet/K ,

or equivalently the category Gr−(K) ∈ CFib(∆) obtained by considering K ∈
Fun(∆op, Set)) is a Reedy category with fibrant constants; this follows from the proof
of [Hir03, Proposition 15.10.4]. In particular, the category Gr−(ptsSet)

∼= ∆ itself
has fibrant constants. By dualizing, we obtain that the category ∆op has cofibrant
constants.

Remark 5.1.26. Note that in general, the observations of Example 5.1.25 only pro-
vides Quillen adjunctions

const : M� sMReedy : lim

and
colim : cMReedy �M : const,

which are rather useless in practice (since ∆op has an initial object and ∆ has a
terminal object). To obtain a left Quillen functor sMReedy → M, we will generally
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need to take a resolution of the object const(ptM) ∈ sM (e.g. one coming from a
simplicio-spatial model structure (see Definition 5.6.2)).6

Example 5.1.27. The Reedy trick generalizes from model categories to model ∞-
categories without change. Recall that the walking span category N−1(Λ2

0) = (• ←
• → •) admits a Reedy category structure determined by the degree function de-
scribed by the picture (0 ← 1 → 2). Moreover, it is straightforward to verify that
this Reedy category has fibrant constants (see e.g. the proof of [Hir03, Proposition
15.10.10]). Thus, for any model ∞-category M, we obtain a Quillen adjunction

colim : Fun(N−1(Λ2
0),M)Reedy �M : const,

in which the cofibrant objects of Fun(N−1(Λ2
1),M)Reedy are precisely the diagrams of

the form x← y� z for x, y, z ∈Mc ⊂M.

Example 5.1.28. Clearly, the poset (N,≤) admits a Reedy structure (defined by
the identity map, considered as a degree function) which has fibrant constants. Thus,
for any model ∞-category M, we obtain a Quillen adjunction

colim : Fun((N,≤),M)Reedy �M : const,

in which the cofibrant objects of Fun((N,≤),M)Reedy are precisely those diagrams
consisting of cofibrations between cofibrant objects.7 Dually, we obtain a Quillen
adjunction

const : M� Fun((N,≤)op,M)Reedy : lim,

in which the fibrant objects of Fun((N,≤)op,M)Reedy are precisely those diagrams
consisting of fibrations between fibrant objects.

We end this section by recording the following result.

Lemma 5.1.29. Let C be a Reedy category, and let c ∈ C.

(1) (a) The latching category ∂
(−→
C /c

)
admits a Reedy structure with fibrant con-

stants, in which the direct subcategory is the entire category and the inverse
subcategory contains only the identity maps.

6If C is an ∞-category (which is finitely bicomplete and admits geometric realizations) and we
equip C with the trivial model structure (see Example 1.2.2), then we do obtain a Quillen adjunction
|−| : s(Ctriv)Reedy � Ctriv : const. However, unwinding the definitions, we see that this is really
just the Quillen adjunction |−| : (sC)triv � Ctriv : const.

7In fact, this Reedy poset has cofibrant constants as well. However, the resulting Quillen
adjunction will be trivial since this poset has an initial object.
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(b) With respect to the Reedy structure of part (a), the canonical functor

∂
(−→
C /c

)
→ C induces an isomorphism

∂

(−−−−−→
∂
(−→
C /c

)
/(d→c)

)
∼=−→ ∂

(−→
C /d

)
of latching categories (from that of the object (d → c) ∈ ∂

(−→
C /c

)
to that

of the object d ∈ C).

(2) (a) The matching category ∂
(←−
C c/

)
admits a Reedy structure with cofibrant

constants, in which the direct subcategory contains only the identity maps
and the inverse subcategory is the entire category.

(b) With respect to the Reedy structure of part (a), the canonical functor

∂
(←−
C c/

)
→ C induces an isomorphism

∂

(←−−−−−
∂
(←−
C c/

)
(c→d)/

)
∼=−→ ∂

(←−
C d/

)
of matching categories (from that of (c→ d) ∈ ∂

(←−
C c/

)
to that of d ∈ C).

Proof. Parts (1)(a) and (2)(a) follow from the proof of [Hir03, Proposition 15.10.6],
and parts (1)(b) and (2)(b) follow by inspection.

5.2 Relative co/cartesian fibrations and

bicartesian fibrations

In this brief section, we describe two enhancements of the theory of co/cartesian
fibrations which we will need: in §5.2.1 we study relative co/cartesian fibrations,
while in §5.2.2 we study bicartesian fibrations.

5.2.1 Relative co/cartesian fibrations

Suppose we are given a diagram

C RelCat∞ Cat∞

Cat∞.

F L

URel
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In our proof of Theorem 5.1.1, we will be interested in the relationship between the
upper composite (of the componentwise localization of the diagram F of relative
∞-categories) and the cocartesian fibration

Gr(URel ◦ F )→ C.

In other words, we would like to take some sort of “fiberwise localization” of this
cocartesian fibration. In order to do this, we must keep track of the morphisms which
we would like to invert. This leads us to the following terminology.

Definition 5.2.1. Let C ∈ Cat∞, and suppose we are given a commutative diagram

RelCat∞

C Cat∞.

URel
F

URel◦F

Then, we write GrRel(F ) for the relative∞-category obtained by equipping Gr(URel◦
F ) with the weak equivalences coming from the lift F of URel ◦F . Note that its weak
equivalences all map to equivalences in C, so that we can consider the canonical pro-
jection as a map GrRel(F )→ min(C) of relative∞-categories. We write coCFibRel(C)
for the ∞-category of cocartesian fibrations over C equipped with such a relative
∞-category structure, and we call this the ∞-category of relative cocartesian
fibrations over C. The Grothendieck construction clearly lifts to an equivalence

Fun(C,RelCat∞)
GrRel−−−→
∼

coCFibRel(C).

Of course, we have a dual notion of relative cartesian fibrations over C; these
assemble into an ∞-category CFibRel(C), which comes with an equivalence

Fun(Cop,RelCat∞)
Gr−

Rel−−−→
∼

CFibRel(C).

Remark 5.2.2. Note that an arbitrary cocartesian fibration over C equipped with
a subcategory of weak equivalences which project to equivalences in C does not
necessarily define a relative cocartesian fibration: it must be classified by a diagram
of relative ∞-categories and relative functors between them (i.e. the cocartesian
edges must intertwine the weak equivalences). A dual observation holds for cartesian
fibrations.

We can now precisely state and prove our desired correspondence.
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Proposition 5.2.3. Let C ∈ Cat∞, and let C
F−→ RelCat∞ classify GrRel(F ) ∈

coCFibRel(C). Then the induced map

L (GrRel(F ))→ C

is again a cocartesian fibration. Moreover, we have a canonical equivalence

L (GrRel(F )) ' Gr(L ◦ F )

in coCFib(C), i.e. this cocartesian fibration classifies the composite

C
F−→ RelCat∞

L−→ Cat∞.

Proof. By [GHN, Theorem 7.4], we have a canonical equivalence

Gr(L ◦ F ) ' colim

(
TwAr(C)→ Cop × C

C−/×(L ◦F )
−−−−−−−→ Cat∞ × Cat∞

−×−−−−→ Cat∞

)
.

Since the composite Cat∞
min−−→ RelCat∞

L−→ Cat∞ is canonically equivalent to idCat∞

and the functor RelCat∞
L−→ Cat∞ commutes with finite products by Lemma 2.1.20,

this can be rewritten as

Gr(L ◦F ) ' colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F
−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞
L−→ Cat∞

)
.

Moreover, the functor RelCat∞
L−→ Cat∞ commutes with colimits (being a left ad-

joint), and so this can be rewritten further as

Gr(L ◦F ) ' L

(
colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F
−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

))
.

On the other hand, RelCat∞
URel−−→ Cat∞ also commutes with colimits (being a left

adjoint as well) and is symmetric monoidal for the respective cartesian symmetric
monoidal structures, and so we obtain that

URel

(
colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F
−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

))
' colim

(
TwAr(C)→ Cop × C

C−/×(URel◦F )
−−−−−−−−→ Cat∞ × Cat∞

−×−−−−→ Cat∞

)
' Gr(URel ◦ F ),
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again appealing to [GHN, Theorem 7.4]. In other words, the underlying ∞-category
of the relative ∞-category

colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F
−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

)
is indeed Gr(URel ◦ F ); moreover, by definition its subcategory of weak equivalences
is inherited from the functor F , and hence we have an equivalence

GrRel(F ) ' colim

(
TwAr(C)→ Cop × C

(min ◦C−/)×F
−−−−−−−−→ RelCat∞ × RelCat∞

−×−−−−→ RelCat∞

)
in (RelCat∞)/min(C).

8 Thus, we have obtained an equivalence

Gr(L ◦ F ) ' L (GrRel(F ))

in (Cat∞)/C, which completes the proof of both claims.

5.2.2 Bicartesian fibrations

Recall that an adjunction can be defined as a map to [1] ∈ Cat∞ which is simultane-
ously a cocartesian fibration and a cartesian fibration. As we will be interested not
just in adjunctions but in families of adjunctions (e.g. two-variable adjunctions), it
will be convenient to introduce the following terminology.

Notation 5.2.4. Let C be an∞-category. We denote by biCFib(C) the∞-category
of bicartesian fibrations over C. This is the underlying∞-category of the bicartesian
model structure of Theorem A.4.7.5.10; its objects are those functors to C which
are simultaneously cocartesian fibrations and cartesian fibrations, and its morphisms
are maps over C which are simultaneously morphisms of cocartesian fibrations and
morphisms of cartesian fibrations (i.e. they preserve both cocartesian morphisms and
cartesian morphisms). We thus have canonical forgetful functors

coCFib(C)←↩ biCFib(C) ↪→ CFib(C),

8The structure map for the object on the right comes from its canonical projection to

min(TwAr(C)) ' colim

(
TwAr(C)

const(ptRelCat∞ )
−−−−−−−−−−−→ RelCat∞

)
followed by the composite projection min(TwAr(C))→ min(Cop × C)→ min(C).
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which are both inclusions of (non-full) subcategories, and which both admit left
adjoints by Remark A.4.7.5.12. By Proposition A.4.7.5.17, the composite

biCFib(C) ↪→ coCFib(C)
Gr−→
∼

Fun(C,Cat∞)

identifies biCFib(C) with a certain subcategory of Fun(C,Cat∞),

• whose objects are those functors C
F−→ Cat∞ such that for every map c1 → c2

in C, the induced functor F (c1)→ F (c2) is a left adjoint, and

• whose morphisms are those natural transformations satisfying a certain “right
adjointableness” condition,

and dually for the composite

biCFib(C) ↪→ CFib(C)
Gr−−−→
∼

Fun(Cop,Cat∞).

Remark 5.2.5. Giving an adjunction C � D is equivalent to giving an object of
biCFib([1]) equipped with certain identifications of its fibers, which data can be
encoded succinctly as an object of the pullback

lim


biCFib([1])

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)


in Cat∞. In other words, the space of objects of this pullback is (canonically) equiv-
alent to that of the ∞-category Adjn(C;D). However, note that morphisms of bi-
cartesian fibrations are quite different from morphisms in Adjn(C;D): a map from
an adjunction F : C� D : G to an adjunction F ′ : C� D : G′ is given

• in Adjn(C;D), by either a natural transformation F ′ → F or a natural trans-
formation G→ G′, but

• in biCFib([1]), a certain sort of commutative square in Cat∞.

(So the latter is (∞, 1)-categorical, while the former is inherently (∞, 2)-categorical.)
In fact, it is not hard to see that the above pullback in Cat∞ actually defines an
∞-groupoid: really, this is just a more elaborate version of the difference between
Fun(C,D) and

lim


coCFib([1])

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)

 .
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Despite Remark 5.2.5, we will have use for the following notation.

Notation 5.2.6. For C,D ∈ Cat∞, we denote by coCFib([1];C,D) the second pull-
back in Remark 5.2.5. We will use analogous notation for the various variants of this
construction (namely cartesian, relative co/cartesesian, and bicartesian fibrations
over [1]). For consistency, we will similarly write

Cat∞([1];C,D) = lim


(Cat∞)/[1]

ptCat∞ Cat∞ × Cat∞

(ev0,ev1)

(C,D)

 .

For any R1,R2 ∈ RelCat∞, we also set

RelCat∞([1];R1,R2) = lim


(RelCat∞)/min([1])

ptCat∞ RelCat∞ × RelCat∞

(ev0,ev1)

(R1,R2)

 .

Remark 5.2.7. Using Notation 5.2.6, note that we can identify

N∞(Fun(C,D))• ' coCFib([1]; [•]× C,D)'.

This identification (and related ones) will be useful in the proof of Lemma 5.4.5.

5.3 The proofs of Theorem 5.1.1 and

Corollary 5.1.3

This section is devoted to proving the results stated in §5.1.1, namely

• Theorem 5.1.1 – that a Quillen adjunction has a canonical derived adjunction
–, and

• Corollary 5.1.3 – that the derived adjunction of a Quillen equivalence is an
adjoint equivalence.

We begin with the following key result, the proof of which is based on that of
[BHH, Lemma 2.4.8].

Lemma 5.3.1. Let M be a model ∞-category, and let x ∈M. Then(
Wf

Mx/

)gpd

' ptS.
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Proof. By [Cis10b, Lemme d’asphéricité], it suffices to show that for any finite di-
rected set considered as a category C ∈ Cat, any functor C→Wf

Mx/
is connected to

a constant functor by a zigzag of natural transformations in Fun(C,Wf
Mx/

).9 Note

that such a functor is equivalent to the data of

• the composite functor C→Wf
Mx/
→Wf

M, which we will denote by C
F−→Wf

M,

along with

• a natural transformation const(x)→ F in Fun(C,WM).

We now appeal to Cisinski’s theory of left-derivable categories introduced in
[Cis10a, §1] (there called “catégories dérivables à gauche”), which immediately gener-
alizes to a theory of left-derivable ∞-categories : one simply replaces sets with spaces
and categories with ∞-categories.10 Clearly the model ∞-category M is in particu-

lar a left-derivable ∞-category. Hence, considering C
F−→Wf

M ↪→ M as an object of
Fun(C,M), by [Cis10a, Proposition 1.29] there exists a factorization

F
≈→ F ′ � ptFun(C,M) ' const(ptM)

of the terminal map in Fun(C,M), where F
≈→ F ′ is a componentwise weak equiva-

lence and the map F ′ � ptFun(C,M) is a boundary fibration (there called “une fibration
bordée”). In other words, F ′ is fibrant on the boundaries (there called “fibrant sur
les bords”), and in particular by [Cis10a, Corollaire 1.24] it is objectwise fibrant.
Thus, we can consider F → F ′ as a morphism in Fun(C,Wf

M), and hence for our
main goal it suffices to assume that F itself is fibrant on the boundaries.

Now, our map const(x) → F induces a canonical map x → limC F in M (where
this limit exists because M is finitely complete), and this map in turn admits a
factorization

x
≈→ y � limCF.

Moreover, [Cis10a, Proposition 1.18] implies that limC F ∈ M is fibrant, and hence

9[Cis10b, Lemme d’asphéricité] can also be proved invariantly (i.e. without reference to qua-
sicategories) by using the theory of complete Segal spaces and replacing Cisinski’s appeal to the
Quillen equivalence sd : sSetKQ � sSetKQ : Ex and the functor Ex∞ to their∞-categorical variants
(see §1.6.3).

10However, the notion of finite direct categories (there called “catégories directes finies”) need
not be changed. Note that such categories are gaunt, so 1-categorical pushouts and pullbacks
between them compute their respective ∞-categorical counterparts.
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y ∈M is fibrant as well. Further, in the commutative diagram

const(x) F

const(y) const(limC F )

≈

≈

in Fun(C,M), the dotted arrow is a componentwise weak equivalence by the two-
out-of-three property (applied componentwise). This provides the desired zigzag
connecting the object

(C
F−→Wf

M, const(x)→ F ) ∈ Fun(C,Wf
Mx/

)

to a constant functor, namely the object

(C
const(y)−−−−→Wf

M, const(x)→ const(y)) ∈ Fun(C,Wf
Mx/

),

which proves the claim.

This has the following convenient consequence.

Lemma 5.3.2. For any model ∞-category M, the inclusion Wf ↪→W induces an
equivalence under the functor (−)gpd : Cat∞ → S.

Proof. This functor is final by Theorem A (3.4.10) and Lemma 5.3.1; note that for
an object x ∈W, we have an identification

Wf ×W Wx/ 'Wf
Mx/

.

Hence, the assertion follows from Proposition 3.4.8.

In turn, this allows us to prove the following pair of results, which we will need
in the proof of Theorem 5.1.1.

Proposition 5.3.3. For any model ∞-category M, the inclusion (Mf ,Wf ) ↪→
(M,W) induces an equivalence

NR
∞(Mf ,Wf )→ NR

∞(M,W)

in sS.
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Proof. We must show that for every n ≥ 0, the map

preNR
∞(Mf ,Wf )n → preNR

∞(M,W)n

in Cat∞ becomes an equivalence upon applying (−)gpd : Cat∞ → S. By definition,
this is the map

Fun([n], (Mf ,Wf ))W → Fun([n], (M,W))W.

But this is precisely the inclusion

Wf
Fun([n],M)proj

↪→WFun([n],M)proj
,

which becomes an equivalence upon groupoid completion by Lemma 5.3.2.

Corollary 5.3.4. For any model∞-category M, the inclusion (Mf ,Wf ) ↪→ (M,W)
is a weak equivalence in (RelCat∞)BK, i.e. it induces an equivalence

MfJ(Wf )−1K ∼−→MJW−1K

in Cat∞.

Proof. This follows from Proposition 5.3.3 and the global universal property of the
Rezk nerve (Proposition 2.3.9).

We now give one more easy result which we will need in the proof of Theo-
rem 5.1.1, which we refer to as Kenny Brown’s lemma (for model∞-categories).

Lemma 5.3.5. Let M be a model ∞-category, and let (R,WR) ∈ RelCat∞ be a
relative ∞-category such that WR ⊂ R has the two-out-of-three property. If M→ R

is any functor of underlying∞-categories which takes the subcategory (W∩C)cM ⊂M

into WR ⊂ R, then it also takes the subcategory Wc
M ⊂M into WR ⊂ C.

Proof. Given any map x
≈→ y in Wc

M ⊂M, we can construct a diagram

x y

z

≈

≈

≈

≈

in M, i.e. a factorization of the chosen map and a section of the second map which
are contained in the various subcategories defining the model structure on M as
indicated, exactly as in [Hir03, Lemma 7.7.1] (only omitting the assertion of functo-
riality). Hence, our functor M → R must take our chosen map into WR ⊂ R since
this subcategory contains all the equivalences, has the two-out-of-three property, and
is closed under composition. This proves the claim.



341

We now turn to this section’s primary goal.

Proof of Theorem 5.1.1. Let (M + N) → [1] denote the bicartesian fibration corre-
sponding to the underlying adjunction F a G of the given Quillen adjunction. Let
us equip this with the subcategory of weak equivalences inherited from WM ⊂ M

and WN ⊂ N; its structure map can then be considered as a map to min([1]) in
RelCat∞.11 Let us define full relative subcategories

(Mc + Nf ), (Mc + N), (M + Nf ) ⊂ (M + N)

(which inherit maps to min([1])) by restricting to the cofibrant objects of M and/or
to the fibrant objects of N, as indicated by the notation. Moreover, let us define the
functors F c and Gf to be the composites

Mc M N Nf .

F c

F
⊥
G

Gf

Note that F c and Gf both preserve weak equivalences by Kenny Brown’s lemma
(5.3.5). It follows that we have a canonical equivalence

(Mc + N) ' GrRel(F
c)

in coCFibRel([1]) and a canonical equivalence

(M + Nf ) ' Gr−Rel(G
f )

in CFibRel([1]). By Proposition 5.2.3 (and its dual), it follows that

L (Mc + N) ' Gr(L ◦ F c)

in coCFib([1]) and that

L (M + Nf ) ' Gr−(L ◦Gf )

in CFib([1]).

11Note that this will not generally make this map into a relative cocartesian fibration or a
relative cartesian fibration: left and right Quillen functors are not generally functors of relative
∞-categories.
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Now, by Lemma 5.3.6, the canonical inclusions induce weak equivalences

(Mc + N)
≈←− (Mc + Nf )

≈−→ (M + Nf )

in ((RelCat∞)/min([1]))BK. Hence, applying RelCat∞
L−→ Cat∞ yields a diagram

Gr(L ◦ F c) ' L (Mc + N)
∼←− L (Mc + Nf )

∼−→ L (M + Nf ) ' Gr−(L ◦Gf )

in (Cat∞)/[1], so that in particular the map L (Mc + Nf ) → [1] is a bicartesian
fibration (which as a cocartesian fibration corresponds to F c while as a cartesian
fibration corresponds to Gf ). Appealing to Corollary 5.3.4 (and its dual), we then
obtain a diagram

MJW−1
M K McJ(Wc

M)−1K L (Mc + Nf ) NfJ(Wf
N)−1K NJW−1

N K

{0} [1] {1}

∼ ∼

in which the squares are fiber inclusions and which, upon making choices of inverses
for the equivalences (the spaces of which are contractible), selects the desired ad-
junction.

We now prove a key result which we needed in the proof of Theorem 5.1.1.

Lemma 5.3.6. The inclusions

(Mc + N)←↩ (Mc + Nf ) ↪→ (M + Nf )

are weak equivalences in ((RelCat∞)/min([1]))BK.

Proof. We will show that the inclusion

(Mc + N)←↩ (Mc + Nf )

is a weak equivalence in ((RelCat∞)/min([1]))BK; the other weak equivalence follows
from a dual argument. By the global universal property of Rezk nerve (Proposi-

tion 2.3.9), it suffices to show that applying the functor RelCat∞
NR
∞−−→ sS to this map

yields an equivalence. This is equivalent to showing that for every n ≥ 0, the map

preNR
∞(Mc + Nf )n → preNR

∞(Mc + N)n
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in Cat∞ becomes an equivalence upon groupoid completion. By definition, this is
the postcomposition map

Fun([n], (Mc + Nf ))W → Fun([n], (Mc + N))W.

Now, observe that since neither (Mc+Nf ) nor (Mc+N) has any weak equivalences
covering the unique non-identity map of [1], then these ∞-categories decompose as
coproducts (in Cat∞) over the set of possible composite maps [n]→ (Mc+N(f))→ [1],
and moreover the map between them respects these decompositions. Thus, it suffices
to show that for each choice of structure map [n]→ [1], the resulting map

Fun/[1]([n], (Mc + Nf ))W → Fun/[1]([n], (Mc + N))W

in Cat∞ becomes an equivalence upon applying (−)gpd : Cat∞ → S.

First of all, we obtain an equivalence of fibers over the constant map [n]
const(0)−−−−→

[1]. Moreover, over the constant map [n]
const(1)−−−−→ [1], the above map reduces to

preNR
∞(Nf ,Wf

N)n → preNR
∞(N,WN)n,

in which situation the result follows from Proposition 5.3.3. Thus, let us restrict
our attention to the intermediate cases, supposing that our structure map [n]→ [1]
is given by 0, . . . , i 7→ 0 and i + 1, . . . , n 7→ 1, where 0 ≤ i < n. Let us write
j = n− (i+ 1). Then, we can reidentify these ∞-categories as

Cc,f = Fun/[1]([n], (Mc+Nf ))W ' lim



Fun([j],Nf )W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}


and

Cc = Fun/[1]([n], (Mc + N))W ' lim



Fun([j],N)W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}
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' lim


Fun([j + 1],N)W

Fun([i],Mc)W WN

{0}

F c◦{i}


(with the evident map between them). By Theorem A (3.4.10) and Proposition 3.4.8,
it suffices to show that for any object

x = ((m0 → · · · → mi), (F (mi)→ n0), (n0 → · · · → nj)) ∈ Cc,

the resulting comma ∞-category

D = Cc,f (
Cc
Cc)x/

has that Dgpd ' ptS.
Let us write x|N = (n0 → · · · → nj) ∈ Fun([j],N)W, and using this let us define

the ∞-category E via the commutative diagram

E

D Cc,f Fun([j],Nf )W

(
Fun([j],N)W

)
(x|N)/

(Cc)x/ Cc Fun([j],N)W

Fun([1],N)W WN

Fun([i],Mc)W WN

{0}

{1}

{0}

F c◦{i}

in which all of Cc,f , D, and E are defined as pullbacks (which is what provides the
functor D→ E). By applying Lemma 5.3.1 to the model ∞-category Fun([j],N)proj
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and the object x|N ∈ Fun([j],N), we obtain that Egpd ' ptS. Moreover, unwinding
the definitions, we see that the functor D → E is a right adjoint, with left adjoint
given by taking the object

n0 · · · nj

n′0 · · · n′j

ν0

≈

νj

≈

 ∈ E

to the object
 m0 · · · mi

m0 · · · mi

idm0

≈

idmi

≈

 ,


F (mi) n0

F (mi) n′0

idF (mi)

≈ ν0

≈

 ,


n0 · · · nj

n′0 · · · n′j

ν0

≈

νj

≈


 ∈ D

and acting in the expected way on morphisms.12 Hence, by Corollary 2.1.28, it
follows that Dgpd ' ptS as well. This proves the claim.

Building on the proof of Theorem 5.1.1, we can now prove Corollary 5.1.3.

Proof of Corollary 5.1.3. We will prove that the unit of the derived adjunction

LF : MJW−1
M K� NJW−1

N K : RG

is a natural equivalence; that its counit is also a natural equivalence will follow from
a dual argument. For this, choose any x ∈ MJW−1

M K, and choose any cofibrant
representative x̃ ∈ Mc. Then by Theorem 5.1.1, F (x̃) ∈ N represents (LF )(x) ∈
NJW−1

N K. Let us choose any fibrant replacement

F (x̃)
≈→ R(F (x̃))� ptN

in N. Then, again by Theorem 5.1.1, G(R(F (x̃))) ∈M represents (RG)((LF )(x)) ∈
MJW−1

M K. Moreover, it follows from the proof of Theorem 5.1.1 that the unit map
of LF a RG at x ∈MJW−1

M K is represented by the composite map

x̃
ηFaGx̃−−−→ G(F (x̃))→ G(R(F (x̃)))

in M. As this composite map is adjoint to the original weak equivalence F (x̃)
≈→

R(F (x̃)) in N, it must itself be a weak equivalence in M since F a G is a Quillen
equivalence. So the unit of the adjunction LF a RG is indeed a natural equivalence.

12Rather than exhibit all of the necessary coherences, this existence of this adjunction can be
deduced via (the dual of) Proposition T.5.2.2.8 from the evident counit transformation.
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5.4 Two-variable Quillen adjunctions

Recall that a model ∞-category M may be thought of as a presentation of its local-
ization MJW−1K. The foremost results of this chapter – Theorem 5.1.1 and Corol-
lary 5.1.3 – assert that certain structures on model ∞-categories (namely, Quillen
adjunctions and Quillen equivalences) descend to corresponding structures on their
localizations (namely, derived adjunctions and derived adjoint equivalences). In this
section, we elaborate further on this theme: we define two-variable Quillen adjunc-
tions (see Definition 5.4.3), and prove that they induce canonical derived two-variable
adjunctions (see Theorem 5.4.6). For a more leisurely discussion of two-variable
Quillen adjunctions (between model 1-categories), we refer the reader to [Hov99,
§4.2].

We begin with a few auxiliary definitions.

Definition 5.4.1. Suppose that we are given three∞-categories C, D, and E, along
with a two-variable adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−→ D , Dop × E
homr(−,−)−−−−−−→ C

)
between them.

• We define the corresponding pushout product bifunctor

Fun([1],C)× Fun([1],D)
−�−−−−→ Fun([1],E)

to be given by

(c1 → c2)�(d1 → d2) =

(c2 ⊗ d1)
∐

(c1⊗d1)

(c1 ⊗ d2)→ d1 ⊗ d2

 .

• We define the corresponding left pullback product bifunctor

Fun([1],C)op × Fun([1],E)
hom�

l (−,−)
−−−−−−→ Fun([1],D)

to be given by

hom�l ((c1 → c2)◦, e1 → e2) =

(
homl(c2, e1)→ homl(c2, e1) ×

homl(c1,e2)
homl(c1, e1)

)
.
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• We define the corresponding right pullback product bifunctor

Fun([1],D)op × Fun([1],E)
hom�

r (−,−)−−−−−−→ Fun([1],C)

to be given by

hom�r ((d1 → d2)◦, e1 → e2) =

(
homr(d2, e1)→ homr(d2, e1) ×

homr(d1,e2)
homr(d1, e1)

)
.

Remark 5.4.2. In the situation of Definition 5.4.1, the bifunctor C×D −⊗−−−−→ E is a left
adjoint and hence commutes with colimits. Thus, we obtain canonical equivalences
∅C ⊗ D ' ∅E ' c ⊗ ∅D for any c ∈ C and any d ∈ D. It follows that we obtain
identifications

(c1 → c2)�(∅D → d) ' (c1 → c2)⊗ d.

and
(∅C → c)�(d1 → d2) ' c⊗ (d1 → d2).

Similarly, we obtain an identification

(∅C → c)�(∅D → d) ' (∅E → c⊗ d).

We can now given the main definition of this subsection.

Definition 5.4.3. Suppose that C, D, and E are model ∞-categories, and suppose
we are given a two-variable adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−→ D , Dop × E
homr(−,−)−−−−−−→ C

)
between their underlying ∞-categories. We say that these data define a Quillen
adjunction of two variables (or simply a two-variable Quillen adjunction)
if any of the following equivalent conditions is satisfied:

• the pushout product bifunctor satisfies

– CC�CD ⊂ CE,

– (W ∩C)C�CD ⊂ (W ∩C)E, and

– CC�(W ∩C)D ⊂ (W ∩C)E;

• the left pullback product bifunctor satisfies

– hom�l (CC,FE) ⊂ FD,
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– hom�l ((W ∩C)C,FE) ⊂ (W ∩ F)D, and

– hom�l (CC, (W ∩ F)E) ⊂ (W ∩ F)D;

• the right pullback product bifunctor satisfies

– hom�r (CD,FE) ⊂ FC,

– hom�r ((W ∩C)D,FE) ⊂ (W ∩ F)C, and

– hom�r (CD, (W ∩ F)E) ⊂ (W ∩ F)C.

Before stating the main result of this subsection, we must introduce a parametrized
version of Theorem 5.1.1.

Notation 5.4.4. Let M and N be model ∞-categories. We write QAdjn(M;N) ⊂
Adjn(M;N) for the full subcategory on the Quillen adjunctions, and we write LQAdjt(M,N) ⊂
Fun(M,N) (resp. RQAdjt(N,M) ⊂ Fun(N,M)) for the full subcategory of left (resp.
right) Quillen functors.13 Thus, there are evident equivalences

LQAdjt(M,N)op
∼←− QAdjn(M;N)

∼−→ RQAdjt(N,M).

Similarly, for model∞-categories C, D, and E, we write QAdjn(C,D;E) ⊂ Adjn(C,D;E)
for the full subcategory on the two-variable Quillen adjunctions.

Lemma 5.4.5. For any model ∞-categories M and N, the construction of Theo-
rem 5.1.1 assembles canonically into a functor

QAdjn(M;N)→ Adjn
(
MJW−1

M K;NJW−1
N K
)
.

We will prove Lemma 5.4.5 below. First, we state the main result of this section.

Theorem 5.4.6. Suppose that C, D, and E are model ∞-categories. Then, a two-
variable Quillen adjunction(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−→ D , Dop × E
homr(−,−)−−−−−−→ C

)
induces a canonical two-variable adjunction

CJ(WC)−1K×DJ(WD)−1K −
L
⊗−−−−→ EJ(WE)−1K ,

CJ(WC)−1Kop × EJ(WE)−1K
Rhoml(−,−)−−−−−−−→ DJ(WD)−1K ,

DJ(WD)−1Kop × EJ(WE)−1K
Rhomr(−,−)−−−−−−−→ CJ(WC)−1K


13More precisely, in the latter definitions we might refer only to those functors which admit right

(resp. left) adjoints. The question of whether the resulting adjunction will be a Quillen adjunction
is independent of that choice, however.
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on localizations, whose constituent bifunctors are respectively obtained by applying

the localization functor RelCat∞
L−→ Cat∞ to the composites

Cc ×Dc ↪→ C×D
−⊗−−−−→ E ,

(Cc)op × Ef ↪→ Cop × E
homl(−,−)−−−−−−→ D ,

(Dc)op × Ef ↪→ Dop × E
homr(−,−)−−−−−−→ C

 .

Moreover, this construction assembles canonically into a functor

QAdjn(C,D;E)→ Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K).

We will prove Theorem 5.4.6 at the end of this section (after the proof of Lemma 5.4.5).

Definition 5.4.7. Given a two-variable Quillen adjunction, we refer to the result-
ing two-variable adjunction on localizations of Theorem 5.4.6 as its derived two-
variable adjunction , and we refer to its constituent bifunctors as the derived
bifunctors of those of the original two-variable Quillen adjunction.

Remark 5.4.8. A two-variable adjunction can be thought of as a special sort of in-
dexed family of adjunctions.14 Thus, Lemma 5.4.5 provides a crucial ingredient for
the proof of Theorem 5.4.6. As a result, it is essentially no more work to prove
the parametrized version of Theorem 5.4.6 than it is to prove the unparametrized
version.

Proof of Lemma 5.4.5. Our argument takes place in the diagram in Cat∞ of Fig-
ure 5.1. Our asserted functor is the middle dotted vertical arrow. Moreover,

• the diagonal factorizations follow from Kenny Brown’s lemma (5.3.5),

• the vertical maps out of the targets of these factorizations are those of Re-
mark 2.1.23,

• the vertical equivalences follow from Corollary 5.3.4 (and its dual), and

• the vertical factorizations follow from Theorem 5.1.1.

Thus, it only remains to show that the diagram commutes, i.e. that the two shorter
vertical dotted arrows – which by definition make the outer parts of the diagram
commute – also make the part of the diagram between them commute.

The chief difficulty is in aligning the various sorts of fibrations over [1], which
are the setting of the proof of Theorem 5.1.1, with our ∞-categories of adjunctions

14The “special” here refers to the fact that functor Adjn(C,D;E) → Fun(Cop,Adjn(D;E)) will
not generally be surjective.
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(recall Remark 5.2.5). We can solve this using Remark 5.2.7. For instance, via the
equivalence N∞ : Cat∞

∼−→ CSS, we can identify the right portion of the diagram of
Figure 5.1 as in Figure 5.2.

N∞(RQAdjt(N,M))• CFib([1];M, [•]×N)'

CFib([1];M, [•]×Nf )'

CFibRel([1];M, [•]×Nf )'

CFib([1];MJW−1
M K, [•]×NfJ(Wf

N)−1K)'

CFib([1];MJW−1
M K, [•]×NJW−1

N K)'

N∞(RAdjt(MJW−1
M K,NJW−1

N K))•

∼

Figure 5.2: The nerve of the right portion of the diagram of Figure 5.1.

However, we have not quite reached a symmetric state of affairs: we would like
to somehow relate this to the corresponding identifications of the nerves of the left
side of the diagram of Figure 5.1, but for instance we have

N∞(Fun(M,N))• ' coCFib([1]; [•]×M,N)',

and the fibers here do not match up with those in Figure 5.2 (nor is this rectified
by the fact that we’re actually interested in Fun(M,N)op (recall Remark 2.2.3)). To
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rectify this, we observe that for any n ≥ 0 and any C,D ∈ Cat∞, we have a canonical
map

N∞(Fun(C,D))n ' homCat∞([n]× C,D)

→ homCat∞([n]× C, [n])× homCat∞([n]× C,D)

' homCat∞([n]× C, [n]×D)

selected by the point pr[n] ∈ homCat∞([n] × C, [n]), and this target in turn admits a
forgetful map

homCat∞([n]×C, [n]×D) ' coCFib([1]; [n]×C, [n]×D)→ Cat∞([1]; [n]×C, [n]×D).

Bootstrapping this technique up to the relative case (and piecing the maps together
for all objects [n]◦ ∈ ∆op), we obtain the diagram of Figure 5.3, which provides an
inclusion of the right edge of the diagram of Figure 5.2 into various complete Segal
spaces whose constituent spaces now consists of maps to [1] whose fibers over both
objects 0 ∈ [1] and 1 ∈ [1] are “fattened up”.

From here, we only need mimic the proof of Theorem 5.1.1 and restrict further
along the inclusion Mc ⊂ M: as displayed in the diagram of Figure 5.4, the lower
part of the left edge of the diagram of Figure 5.3 admits an inclusion into a map
which is now completely self-dual. This, finally, gives us a common home for the left
and right sides of the diagram of Figure 5.1: its left side

• admits an identification of its nerve as in Figure 5.2, which in turn

• admits an inclusion into certain “fattened up” objects as in Figure 5.3, which
finally

• connects, by restricting along the inclusion Nf ⊂ N, to the very same map

RelCat∞([1]; [•]×Mc, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×NfJ(Wf

N)−1K)'

as that on the left edge in Figure 5.4.

It is now simply a matter of unwinding the definitions to see that the middle part of
the diagram in Figure 5.1 does indeed commute: all the localization functors admit
full inclusions into the one indicated just above, and the ∞-category

Adjn(MJW−1
M K;NJW−1

N K)
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Cat∞([1]; [•]×M, [•]×N)' CFib([1];M, [•]×N)'

Cat∞([1]; [•]×M, [•]×Nf )' CFib([1];M, [•]×Nf )'

RelCat∞([1]; [•]×M, [•]×Nf )' CFibRel([1];M, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×NfJ(Wf

N)−1K)' CFib([1];MJW−1
M K, [•]×NfJ(Wf

N)−1K)'

Cat∞([1]; [•]×MJW−1
M K, [•]×NJW−1

N K)' CFib([1];MJW−1
M K, [•]×NJW−1

N K)'

∼ ∼

Figure 5.3: An inclusion of the right edge of the diagram of Figure 5.2.

includes as a full subcategory of its target by, after breaking symmetry, once again
appealing to the trick of selecting a canonical projection map to [n] ∈ Cat∞ (though
the entire point is that the two different ways of obtaining this inclusion are canoni-
cally equivalent). This proves the claim.

Proof of Theorem 5.4.6. By Remark 5.4.2, for any c ∈ Cc the induced adjunction

c⊗− : D� E : homl(c,−)
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RelCat∞([1]; [•]×Mc, [•]×Nf )' RelCat∞([1]; [•]×M, [•]×Nf )'

Cat∞([1]; [•]×MJW−1
M K, [•]×NfJ(Wf

N)−1K)' Cat∞([1]; [•]×MJW−1
M K, [•]×NfJ(Wf

N)−1K)'

Cat∞([1]; [•]×MJW−1
M K, [•]×NJW−1

N K)'

∼

∼∼

Figure 5.4: The restriction along Mc ⊂ M of the lower part of the left edge of the
diagram of Figure 5.3.

is a Quillen adjunction. Thus, we obtain a factorization

Fun(Cop,Fun(Dop × E, S)) Fun(Cop,Adjn(D;E))

Adjn(C,D;E) Fun((Cc)op,Adjn(D;E))

QAdjn(C,D;E) Fun((Cc)op,QAdjn(D;E)),

which we compose the functor (Cc)op → QAdjn(D,E) selected by our two-variable
Quillen adjunction with the canonical functor of Lemma 5.4.5 to obtain a composite
functor

(Cc)op → QAdjn(D;E)→ Adjn(DJW−1
D K;EJW−1

E K).

We claim that this composite functor takes weak equivalences to equivalences. To

see this, suppose first that we are given an acyclic cofibration c1

≈
� c2 in Cc. Again

by Remark 5.4.2, for any d ∈ Dc the induced adjunction

−⊗ d : C� E : homr(d,−)
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is a Quillen adjunction, so that in particular we obtain an acyclic cofibration

c1 ⊗ d
≈
� c2 ⊗ d

is an acyclic cofibration in E. Since by Theorem 5.1.1 the derived left adjoints of these
Quillen adjunctions D� E are computed by localizing the composite Dc ↪→ D→ E,
it follows that the induced map (c1 ⊗−)→ (c2 ⊗−) in

LQAdjt(D,E) ' QAdjn(D;E)op

does indeed descend to an equivalence in

LAdjt(DJW−1
D K,EJW−1

E K) ' Adjn(DJW−1
D K;EJW−1

E K)op.

The claim now follows from Kenny Brown’s lemma (5.3.5). We therefore obtain a
factorization

(Cc)op Adjn(DJW−1
D K;EJW−1

E K)

(CcJ(Wc
C)−1K)op

which, appealing to Remark 2.1.23, in fact arises from the induced factorization in
the diagram

QAdjn(C,D;E) Fun((Cc)op,Adjn(DJW−1
D K;EJW−1

E K))

Fun((Cc)op,min(Adjn(DJW−1
D K;EJW−1

E K)))Rel

Fun(CcJ(Wc
C)−1K,Adjn(DJW−1

D K;EJW−1
E K)).
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Thus, it only remains to show that we have a further factorization

QAdjn(C,D;E) Fun(CcJ(Wc
C)−1K,Adjn(DJW−1

D K;EJW−1
E K))

Fun(CJW−1
C K,Adjn(DJW−1

D K;EJW−1
E K))

Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K)

∼

which does not depend on our having privileged C among the model∞-categories C,
D, and E participating in our two-variable Quillen adjunction. We accomplish these
tasks simultaneously by replacing C with D in the above arguments: by essentially
the same argument as the one given in the proof of Theorem 5.4.6 for why the
diagram of Figure 5.1 commutes, one sees that we have a commutative square

QAdjn(C,D;E)

Fun((CJW−1
C K)op,Adjn(DJW−1

D K;EJW−1
E K)) Fun((DJW−1

D K)op,Adjn(CJW−1
C K;EJW−1

E K))

Fun((CJW−1
C K)op × (DJW−1

D K)op × EJW−1
E K, S),

which shows

• that those trifunctors in the image of either of the two (equivalent) compos-
ites are indeed co/representable in all variables and hence define two-variable
adjunctions, and

• that the resulting functor

QAdjn(C,D;E)→ Adjn(CJW−1
C K,DJW−1

D K;EJW−1
E K)

is indeed completely independent of the choice of C, since rotating the two-
variable (Quillen) adjunctions involved – which really just amounts to reorder-
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ing and passing to opposites as appropriate – clearly does not affect the induced
functor either.

5.5 Monoidal and symmetric monoidal model

∞-categories

In this section, we show that the localization of a (resp. symmetric) monoidal model
∞-categories is canonically closed (resp. symmetric) monoidal. For a more leisurely
discussion of monoidal and symmetric monoidal model categories, we again refer the
reader to [Hov99, §4.2].

Definition 5.5.1. Let V ∈ Alg(Cat∞) be a closed monoidal∞-category, and suppose
that V is equipped with a model structure. We say that these data make V into a
monoidal model ∞-category if they satisfy the following evident ∞-categorical
analogs of the usual axioms for a monoidal model category.

MM∞1 (pushout product) The underlying two-variable adjunction(
V× V

−⊗−−−−→ V , Vop × V
homl(−,−)−−−−−−→ V , Vop × V

homr(−,−)−−−−−−→ V

)
is a two-variable Quillen adjunction.

MM∞2 (unit) There exists a cofibrant replacement ∅V � Q1V
≈→ 1V such that the

functors

V
(Q1V→1V)⊗−−−−−−−−−→ Fun([1],V)

and

V
−⊗(Q1V→1V)−−−−−−−−→ Fun([1],V)

take cofibrant objects to weak equivalences.

Remark 5.5.2. The unit axiom MM∞2 is automatically satisfied whenever the unit
object 1V ∈ V is itself cofibrant.

We have the following key example.

Example 5.5.3. The model∞-category sSKQ of Theorem 1.4.4 is a monoidal model
∞-category with respect to its cartesian symmetric monoidal structure:

• that the underlying two-variable adjunction is a Quillen adjunction follows
from (an identical argument to) the proof of [Hov99, Lemma 4.2.4] (see [Hov99,
Corollary 4.2.5]), and
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• the unit object ptsS ' ∆0 ∈ sSKQ is cofibrant.

We then have the following result.

Proposition 5.5.4. Suppose that V is a monoidal model ∞-category. Then the de-
rived two-variable adjunction of its underlying two-variable Quillen adjunction itself
underlies a canonical closed monoidal structure on its localization VJW−1K.

Proof. Observe that the monoidal product preserves cofibrant objects. Hence, the
underlying non-unital monoidal structure on V restricts to one on Vc. Moreover, the
structure maps for Vc ∈ Algnu(Cat∞) preserve weak equivalences by Kenny Brown’s
lemma (5.3.5), so we obtain a natural lift to Vc ∈ Algnu(RelCat∞).

Now, the localization functor is symmetric monoidal by Lemma 2.1.20, so that we
obtain VcJ(Wc)−1K ∈ Algnu(Cat∞). To see that this can in fact be canonically pro-
moted to a unital monoidal structure, we use the guaranteed cofibrant replacement
∅V � Q1V

≈→ 1V. First of all, by assumption, the resulting natural transforma-
tions (Q1V ⊗ −) → (1V ⊗ −) and (− ⊗ Q1V) → (− ⊗ 1V) in Fun(V,V) restrict to
natural weak equivalences in Fun(Vc,V). As the unit object comes equipped with
equivalences

(1V ⊗−) ' idV ' (−⊗ 1V),

it follows that the restrictions along Vc ⊂ V of these functors all lie in the full
subcategory

Fun(Vc,Vc)Rel ⊂ Fun(Vc,Vc) ⊂ Fun(Vc,V),

where they give rise to a diagram

(Q1V ⊗−)
≈→ (1V ⊗−) ' idVc ' (−⊗ 1V)

≈← (−⊗Q1V)

of natural weak equivalences. Applying the canonical functor

Fun(Vc,Vc)Rel → Fun(VcJ(Wc)−1K,VcJ(Wc)−1K)

of Remark 2.1.23 then yields a diagram(
Q1V

L
⊗−

)
∼−→ idVcJ(Wc)−1K

∼←−
(
−

L
⊗Q1V

)
of natural equivalences. Thus, the map ptCat∞

Q1V−−→ VcJ(Wc)−1K is a quasi-unit (in the
sense of Definition A.5.4.3.5) for the non-unital monoidal∞-category VcJ(Wc)−1K ∈
Algnu(Cat∞). It then follows from Theorem A.5.4.3.8 (and Propositions A.4.1.2.15
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and A.5.4.3.2) that there exists a unique refinement VcJ(Wc)−1K ∈ Alg(Cat∞) to a
monoidal ∞-category.15

The assertion is now clear: we have exhibited a canonical monoidal structure
on VcJ(Wc)−1K ' VJW−1K whose underlying monoidal product is precisely the left
derived bifunctor of the original monoidal product on V, and the derived bifunc-
tors Rhoml(−,−) and Rhomr(−,−), being participants in the derived two-variable
adjunction, have no choice but to define left and right internal hom-objects.

We also have the following variant.

Definition 5.5.5. Let V ∈ CAlg(Cat∞) be a closed symmetric monoidal∞-category,
and suppose that V is equipped with a model structure. We say that these data make
V into a symmetric monoidal model ∞-category if they make the underlying
closed monoidal ∞-category V ∈ Alg(Cat∞) into a monoidal model ∞-category.

We then have the following corresponding result.

Proposition 5.5.6. Suppose that V is a symmetric monoidal model ∞-category.
Then the derived two-variable adjunction of its underlying two-variable Quillen ad-
junction itself underlies a canonical closed symmetric monoidal structure on its lo-
calization VJW−1K.

Proof. In light of Proposition 5.5.4, it only remains to show that the symmetric
monoidal structure on V descends canonically to one on VJW−1K (extending its
monoidal structure). Just as in the proof of that result, the underlying datum
V ∈ CAlgnu(Cat∞) restricts to give Vc ∈ CAlgnu(Cat∞), which admits a natural
lift Vc ∈ CAlgnu(RelCat∞), and then the fact that the localization functor is sym-
metric monoidal yields VcJ(Wc)−1K ∈ CAlgnu(Cat∞). The existence of a canonical
lift VcJ(Wc)−1K ∈ CAlg(Cat∞) now follows from Corollary A.5.4.4.7.

Remark 5.5.7. In the special case that our (resp. symmetric) monoidal model ∞-
category V has that its unit object is cofibrant, then its localization VJW−1K obtains
a canonical (resp. symmetric) monoidal structure by Proposition A.4.1.3.4. However,
this result does not alone guarantee a closed (resp. symmetric) monoidal structure,
as does Proposition 5.5.4 (resp. Proposition 5.5.6).

Remark 5.5.8. Though they presumably exist, we do not pursue any notions of “O-
monoidal model ∞-category” for other ∞-operads O here.

15Note that Definition A.5.4.3.5 only requires the existence of a quasi-unit; the quasi-unit itself
is not part of the data.
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Remark 5.5.9. In Definitions 5.5.1 and 5.5.5, one could remove the requirement that
there exist a suitable cofibrant replacement of the unit object (or even that there
exist a unit object at all); then, Propositions 5.5.4 and 5.5.6 would admit non-unital
variants.

5.6 Enriched model ∞-categories

In this final section, we show that the localization of a model ∞-category that is
compatibly enriched and bitensored over a closed monoidal model∞-category is itself
enriched and bitensored over the localization of the enriching model∞-category. For
a more leisurely discussion of monoidal and symmetric monoidal model categories,
we yet again refer the reader to [Hov99, §4.2] (beginning with [Hov99, Definition
4.2.18]).

Definition 5.6.1. Let V ∈ Alg(Cat∞) be a monoidal model ∞-category, let M ∈
RModV(Cat∞) be a right V-module (with respect to its underlying monoidal ∞-
category structure) whose underlying action bifunctor extends to a two-variable ad-
junction (

M× V
−�−−−−→M , Mop ×M

homM(−,−)−−−−−−−→ V , Vop ×M
−t−−−→M

)
,

and suppose that M is equipped with a model structure. We say that these these
data make M into a V-enriched model ∞-category (or simply a V model ∞-
category) if they satisfy the following evident ∞-categorical analogs of the usual
axioms for an enriched model category.

EM∞1 (pushout product) The above two-variable adjunction is a two-variable Quillen
adjunction.

EM∞2 (unit) There exists a cofibrant replacement ∅V

≈
� Q1V

≈→ 1V such that the
functor

M
−�(Q1V→1V)−−−−−−−−→ Fun([1],M)

takes cofibrant objects to weak equivalences.

We use the same terminology in the case that V ∈ CAlg(Cat∞) is in fact a symmetric
monoidal model ∞-category.

Definition 5.6.2. As a special case of Definition 5.6.1, we refer to a sSKQ-enriched
model ∞-category as a simplicial model ∞-category (recall Example 5.5.3).
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Remark 5.6.3. If M is a simplicial model category (i.e. a sSetKQ-enriched model
category), then M can also be considered as a simplicial model∞-category in which

• the co/tensoring over sS is obtained by precomposition with πlw
0 : sS → sSet,

and

• the internal hom is obtained by postcomposition with disclw : sSet ↪→ sS.

Thus, the abuse of terminology is extremely slight.

Example 5.6.4. Given a model ∞-category M, the resolution model ∞-category
sMres (see Example 1.2.7) is simplicial, in direct analogy with the classical resolution
model structure (see [DKS93, 3.1 and 5.3]).

Example 5.6.5. If Ctriv is an∞-category equipped with the trivial model structure
(see Example 1.2.2) and the underlying ∞-category C is bitensored, then Ctriv can
be considered as a simplicial model ∞-category in which

• the co/tensoring over sS is obtained by precomposition with |−| : sS→ S, and

• the internal hom is obtained by postcomposition with const : S ↪→ sS.

Example 5.6.6. if M is a simplicial model ∞-category, then the levelwise action
sM�lw sS→ sM given by (x•�Y )n = xn�Y makes sMReedy into a simplicial model
∞-category.

We now show that the structure of an enriched model ∞-category descends to
localizations as claimed.

Proposition 5.6.7. Suppose that M is a V-enriched model ∞-category. Then the
derived two-variable adjunction of its underlying two-variable Quillen adjunction it-
self underlies a canonical enrichment and bitensoring of MJW−1

M K over VJW−1
V K.

Proof. The proof is almost identical to that of Proposition 5.5.4, only now we re-
place the appeal to Theorem A.5.4.3.8 with an appeal to (the dual of) Proposition
A.5.4.3.16.

Remark 5.6.8. Let M be a simplicial model ∞-category. As being bitensored over S

is actually a condition (rather than additional structure), it follows that the derived
bitensoring over sSJW−1

KQK ' S of MJW−1K guaranteed by Proposition 5.6.7 must
indeed be a bitensoring in the usual sense.
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Chapter 6

Model ∞-categories III: the
fundamental theorem

In this chapter, we prove that a model structure on a relative ∞-category (M,W)
gives an efficient and computable way of accessing the hom-spaces homMJW−1K(x, y)
in the localization. More precisely, we show that when the source x ∈M is cofibrant
and the target y ∈M is fibrant, then this hom-space is a “quotient” of the hom-space
homM(x, y) by either of a left homotopy relation or a right homotopy relation.

6.0 Introduction

6.0.1 Model ∞-categories

A relative ∞-category is a pair (M,W) of an ∞-category M and a subcategory
W ⊂M containing all the equivalences, called the subcategory of weak equivalences.
Freely inverting the weak equivalences, we obtain the localization of this relative
∞-category, namely the initial functor

M→MJW−1K

from M which sends all maps in W to equivalences. In general, it is extremely
difficult to access the localization. The purpose of this chapter is to show that the
additional data of a model structure on (M,W) makes it far easier: we prove the
following fundamental theorem of model ∞-categories .1

1For the precise definition a model ∞-category, we refer the reader to §1.1. However, for the
present discussion, it suffices to observe that it is simply a direct generalization of the standard
definition of a model category.
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Theorem (6.1.9). Suppose that M is a model ∞-category. Then, for any cofibrant
object x ∈Mc and any fibrant object y ∈Mf , the induced map

homM(x, y)→ homMJW−1K(x, y)

on hom-spaces is a π0-surjection. Moreover, this becomes an equivalence upon impos-
ing either of a “left homotopy relation” or a “right homotopy relation” on the source
(see Definition 6.1.7).

We view this result – and the framework of model∞-categories more generally –
as providing a theory of resolutions which is native to the ∞-categorical setting.
To explain this perspective, let us recall Quillen’s classical theory of model categories,
in which for instance

• replacing a topological space by a CW complex constitutes a cofibrant resolu-
tion – that is, a choice of representative which is “good for mapping out of”
– of its underlying object of Top[W−1

w.h.e.] (i.e. its underlying weak homotopy
type), while

• replacing anR-module by a complex of injectives constitutes a fibrant resolution
– that is, a choice of representative which is “good for mapping into” – of its
underlying object of ChR[W−1

q.i.].

Thus, a model structure on a relative (1- or ∞-)category (M,W) provides simul-
taneously compatible choices of objects of M which are “good for mapping out
of” and “good for mapping into” with respect to the corresponding localization
M→MJW−1K.

A prototypical example of this phenomenon arises from the interplay of left and
right derived functors (in the classical model-categorical sense), i.e. of left and
right adjoint functors of ∞-categories. For instance,

• in a left localization adjunction C � LC, we can think of the subcategory
LC ⊂ C as that of the “fibrant” objects, while every object is “cofibrant”,
while dually

• in a right localization adjunction RC � C, we can think of the subcategory
RC ⊂ C as that of the “cofibrant” objects, while every object is “fibrant”.2

As a model structure generally has neither all its objects cofibrant nor all its objects
fibrant, it can therefore be seen as a simultaneous generalization of the notions of
left localization and right localization.

2See Examples 1.2.12 and 1.2.17 for more details on such model structures.
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Remark 6.0.1. Indeed, this observation encompasses one of the most important ex-
amples of a model ∞-category, which was in fact the original motivation for their
theory.

Suppose we are given a presentable ∞-category C along with a set G of gen-
erators which we assume (without real loss of generality) to be closed under finite
coproducts. Then, the corresponding nonabelian derived ∞-category is the ∞-
category PΣ(G) = FunΣ(Gop, S) of those presheaves on G that take finite coproducts
in G to finite products in S. This admits a canonical projection

sC

s(PΣ(G))

PΣ(G),

hom
lw
C

(=,−)

|−|

the composition of the (restricted) levelwise Yoneda embedding (a right adjoint)
followed by (pointwise) geometric realization (a left adjoint): given a simplicial object
Y• ∈ sC and a generator Sβ ∈ G, this composite is given by

Y•

homlw
C (Sβ, Y•) ∣∣homlw

C (Sβ, Y•)
∣∣ ,

where we use the abbreviation “lw” to denote “levelwise”. In fact, this composite is
a free localization (but neither a left nor a right localization): denoting by Wres ⊂ sC
the subcategory spanned by those maps which it inverts, it induces an equivalence

sCJW−1
resK

∼−→ PΣ(G).

In future work, we will provide a resolution model structure on the ∞-category
sC in order to organize computations in the nonabelian derived ∞-category PΣ(G).
(The resolution model structure on the ∞-category sC, which might also be called
an “E2 model structure”, is based on work of Dwyer–Kan–Stover and Bousfield (see
[DKS93] and [Bou03], resp.).)

Remark 6.0.2. In turn, the original motivation for the resolution model structure was
provided by Goerss–Hopkins obstruction theory (see §1.0.3). However, the nonabelian
derived ∞-category also features prominently for instance in Barwick’s universal
characterization of algebraic K-theory (see [Bara]), as well as in his theory of spectral
Mackey functors (which provide an ∞-categorical model for genuine equivariant
spectra) (see [Barc]).
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6.0.2 Outline

We now provide a more detailed outline of the contents of this chapter.

• In §6.1, we give a precise statement of the fundamental theorem of model
∞-categories (6.1.9). This involves the notions of a cylinder object cyl•(x) ∈
cM and a path object path•(y) ∈ sM for our chosen source and target objects
x, y ∈M, which generalize their corresponding model 1-categorical namesakes
and play analogous roles thereto.

• In §6.2, we prove that the spaces of left homotopy classes of maps (defined
in terms of a cylinder object cyl•(x)) and of right homotopy classes of maps
(defined in terms of a path object path•(y)) are both equivalent to a more
symmetric bisimplicial colimit (defined in terms of both cyl•(x) and path•(y)).

• In §6.3, we prove that it suffices to consider the case that our cylinder and path
objects are special.

• In §6.4, we digress to introduce model diagrams, which corepresent diagrams in
a model ∞-category M of a specified type (i.e. whose constituent morphisms
can be required to be contained in (one or more of) the various defining sub-
categories W,C,F ⊂M).

• In §6.5, we prove that when our cylinder and path objects are both special,
the bisimplicial colimit of §6.2 is equivalent to the groupoid completion of a
certain ∞-category 3̃(x, y) of special three-arrow zigzags from x to y.

• In §6.6, we prove that the inclusion 3̃(x, y) ↪→ 3(x, y) into the ∞-category
of (all) three-arrow zigzags from x to y induces an equivalence on groupoid
completions.

• In §6.7, we prove that the inclusion 3(x, y) ↪→ 7(x, y) into a certain∞-category
of seven-arrow zigzags from x to y induces an equivalences on groupoid com-
pletions.

• In §6.8, in order to access the hom-spaces in the localization MJW−1K, we
prove that the Rezk nerve NR

∞(M,W) (see §2.3) of (the underlying relative
∞-category of) a model ∞-category is a Segal space. (By the local univer-
sal property of the Rezk nerve (Theorem 2.3.8), this Segal space necessarily
presents the localization MJW−1K.)
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• In §6.9, we prove that the groupoid completion 7(x, y)gpd of the∞-category of
seven-arrow zigzags from x to y is equivalent to the hom-space homMJW−1K(x, y).

• In §6.10, using the fundamental theorem of model ∞-categories (6.1.9), we
prove that the Rezk nerve NR

∞(M,W) is in fact a complete Segal space.
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6.1 The fundamental theorem of model

∞-categories

Given an∞-category M equipped with a subcategory W ⊂M, the primary purpose
of extending these data to a model structure is to obtain an efficient and computable
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presentation of the hom-spaces in the localization MJW−1K. In this section, we work
towards a precise statement of this presentation, which comprises the fundamental
theorem of model ∞-categories (6.1.9).

A key feature of a model structure is that it allows one to say what it means for two
maps in M to be “homotopic”, that is, to become equivalent (in the ∞-categorical
sense) upon application of the localization functor M → MJW−1K. Classically,
to pass to the homotopy category of a relative 1-category (i.e. to its 1-categorical
localization), one simply identifies maps that are homotopic. In keeping with the
core philosophy of higher category theory, we will instead want to remember these
homotopies, and then of course we’ll also want to keep track of the higher homotopies
between them.

In the theory of model 1-categories, to abstractify the notion of a “homotopy”
between maps from an object x to an object y, one introduces the dual notions
of cylinder objects and path objects. In the ∞-categorical setting, at first glance it
might seem that it will suffice to take cylinder and path objects to be as they were
before (namely, as certain factorizations of the fold and diagonal maps, respectively):
we’ll recover a space of maps from a cylinder object for x to y, and we might hope
that these spaces will keep track of higher homotopies for us. However, this is not
necessarily the case: it might be that a particular homotopy between homotopies
only exists after passing to a cylinder object on the cylinders themselves. Of course,
it is not possible to guarantee that this process will terminate at some finite stage,
and so we must allow for an infinite sequence of such maneuvers.

Although the geometric intuition here no longer corresponds to mere cylinders
and paths, we nevertheless recycle the terminology.

Definition 6.1.1. Let M be a model∞-category. A cylinder object for an object
x ∈ M is a cosimplicial object cyl•(x) ∈ cM equipped with an equivalence x '
cyl0(x), such that

• the codegeneracy maps cyln(x)
σi−→ cyln−1(x) are all in W, and

• the latching maps Ln cyl•(x)→ cyln(x) are in C for all n ≥ 1.

The cylinder object is called special if the codegeneracy maps are all also in F and
the matching maps cyln(x) → Mn cyl•(x) are in W ∩ F for all n ≥ 1. We will use
the notation σcyl•(x) ∈ cM to denote a special cylinder object for x ∈M.

Dually, a path object for an object y ∈M is a simplicial object path•(y) ∈ sM
equipped with an equivalence y ' path0(y), such that

• the degeneracy maps pathn(y)
σi−→ pathn+1(y) are all in W, and
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• the matching maps pathn(y)→ Mn path•(y) are in F for all n ≥ 1.

The path object is called special if the degeneracy maps are all also in C and the
latching maps Ln path•(y) → pathn(y) are in W ∩C for all n ≥ 1. We will use the
notation σpath•(y) ∈ sM to denote a special path object for y ∈M.

Remark 6.1.2. Restricting a cylinder object cyl•(x) ∈ cM to the subcategory ∆≤1 ⊂
∆ and employing the identification x ' cyl0(x), we recover the classical notion of a
cylinder object, i.e. a factorization

x t x� cyl1(x)
≈→ x

of the fold map; the specialness condition then restricts to the single requirement
that the weak equivalence cyl1(x)

≈→ x also be a fibration. In particular, if ho(M)
is a model category – recall from Example 1.2.11 that this will be the case as long
as ho(M) satisfies limit axiom M∞1 (i.e. is finitely bicomplete), e.g. if M is itself a
1-category –, then a cylinder object cyl•(x) ∈ cM for x ∈M gives rise to a cylinder
object for x ∈ ho(M) in the classical sense. Of course, dual observations apply to
path objects.

Remark 6.1.3. One might think of a cylinder object as a “cofibrant W-cohypercover”,
and dually of a path object as a “fibrant W-hypercover”. Indeed, if x ∈ Mc then a
cylinder object cyl•(x) ∈ cM defines a cofibrant replacement

∅cM� cyl•(x)
≈→ const(x)

in cMReedy, and dually if y ∈Mf then a path object path•(y) ∈ sM defines a fibrant
replacement

const(y)
≈→ path•(y)� ptsM

in sMReedy.3 Note, however, that under Definition 6.1.1, not every such co/fibrant
replacement defines a cylinder/path object, simply because of our requirements that
the 0th objects remain unchanged. In turn, we have made this requirement so that
Remark 6.1.2 is true, i.e. so that our definition recovers the classical one.

By contrast, in [DK80b, 4.3], Dwyer–Kan introduce the notions of “co/simplicial
resolutions” of objects in a model category (with the “special” condition appearing
in [DK80b, Remark 6.8]). These are functionally equivalent to our cylinder and path
objects; the biggest difference is just that the 0th object of one of their resolutions

3Since the object [0] ∈ ∆ is terminal we obtain an adjunction (−)0 : cM � M : const, via
which the equivalence cyl0(x)

∼−→ x in M determines a map cyl•(x) → const(x) in cM; the map
const(y)→ path•(y) arises dually.
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is required to be a co/fibrant replacement of the original object. Of course, we’ll
ultimately only care about cylinder objects for cofibrant objects and path objects
for fibrant objects, and on the other hand they eventually reduce their proofs to the
case of co/simplicial resolutions in which this replacement map is the identity (so
that in particular the original object is co/fibrant). Thus, in the end the difference
is almost entirely aesthetic.

Remark 6.1.4. Since Definition 6.1.1 is somewhat involved, here we collect the in-
tuition and/or justification behind each of the pieces of the definition, focusing on
(special) path objects.

• A path object is supposed to be a sort of simplicial resolution. Thus, the
first demand we should place on this simplicial object is that it be “homotopi-
cally constant”, i.e. its structure maps should be weak equivalences. This is
accomplished by the requirement that the degeneracy maps lie in W ⊂M.

• On the other hand, a path object should also be “good for mapping into”
(as discussed in Remark 6.1.3). This fibrancy-like property is encoded by the
requirement that the matching maps lie in F ⊂M. (By the dual of Lemma 6.2.2
(whose proof uses (the dual of) this condition), when y ∈M is fibrant then so
are all the objects pathn(y) ∈M, for any path object path•(y) ∈ sM.)

• The first condition for the specialness of path•(y) – that the degeneracy maps
are (acyclic) cofibrations – guarantees that for each n ≥ 0, the unique struc-
ture map y ' path0(y) → pathn(y) is also a cofibration. This is necessary
for Lemma 6.5.2 to even make sense, and also appears in the proof of the
factorization lemma (6.4.24).

• The second condition for the specialness of path•(y) – that the latching maps be
acyclic cofibrations – guarantees that special path objects are “weakly initial”
among all path objects (in a sense made precise in Lemma 6.3.2(2)).

Of course, these notions are only useful because of the following existence result.

Proposition 6.1.5. Let M be a model ∞-category.

(1) Every object of M admits a special cylinder object.

(2) Every object of M admits a special path object.

Proof. We only prove part (2); part (1) will then follow by duality. So, suppose we
are given any object y ∈ M. First, set path0(y) = y. Then, we inductively define
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pathn(y) by taking a factorization

Ln path•(y) Mn path•(y)

pathn(y)

≈

of the canonical map using factorization axiom M∞5.4 As observed in Remark 5.1.15,
this procedure suffices to define a simplicial object path•(y) ∈ sM.

Now, by construction, above degree 0 the latching maps are all in W ∩C while
the matching maps are all in F. Thus, it only remains to check that the degeneracy
maps are all in W ∩ C. For this, note that for any n ≥ 0, every degeneracy map
pathn(y)

σi−→ pathn+1(y) factors canonically as a composite

pathn(y)→ Ln+1 path•(y)
≈
� pathn+1(y)

in M, where the first map is the inclusion into the colimit at the object

([n]◦
σi−→ [n+ 1]◦) ∈ ∂

(−−→
∆op

/[n+1]◦

)
.

So, it suffices to show that this first map is also in W∩C. This follows from applying
Lemma 6.1.6 to the data of

• the model ∞-category M,

• the Reedy category ∂
(−−→
∆op

/[n+1]◦

)
,

• the maximal object ([n]◦
σi−→ [n+ 1]◦) ∈ ∂

(−−→
∆op

/[n+1]◦

)
, and

• the composite functor

∂
(−−→
∆op

/[n+1]◦

)
↪→
−−→
∆op

/[n+1]◦ →
−−→
∆op ↪→∆op path•(y)−−−−−→M.

Indeed, ∂
(−−→
∆op

/[n+1]◦

)
is a Reedy category equal to its own direct subcategory by

Lemma 5.1.29 (1) (a), and it is clearly a poset. Moreover, our composite functor

4At n = 1, the map L1 path•(y)→ M1 path•(y) is just the diagonal map y → y × y.
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satisfies the hypothesis of Lemma 6.1.6 by Lemma 5.1.29 (1) (b); in fact, all the
latching maps are acyclic cofibrations except for possibly the one at the initial object

([0]◦ → [n+ 1]◦) ∈ ∂
(−−→
∆op

/[n+1]◦

)
.

Therefore, the degeneracy map pathn(y)
σi−→ pathn+1(y) is indeed an acyclic cofi-

bration, and hence the object pathn(y) ∈ sM defines a special path object for an
arbitrary object y ∈M.

The proof of Proposition 6.1.5 relies on the following result.

Lemma 6.1.6. Let M be a model ∞-category, let C be a Reedy poset which is equal
to its own direct subcategory, and let m ∈ C be a maximal element. Suppose that

C
F−→ M is a functor such that for any c ∈ C which is incomparable to m ∈ C (i.e.

such that homC(c,m) = ∅Set), the latching map LcF → F (c) lies in (W ∩C) ⊂ M.
Then, the induced map F (m)→ colimC(F ) also lies in (W ∩C) ⊂M.

Proof. We begin by observing that for any object c ∈ C, the forgetful map C/c → C

is actually the inclusion of a full subposet. Now, writing C′ = (C\{m}) ⊂ C, it is
easy to see that we have a pushout square

∂(C/m) C/m

C′ C

in Cat∞ of inclusions of full subposets. By Proposition T.4.4.2.2, this induces a
pushout square

LmF F (m)

colimC′(F ) colimC(F )

in M (where the colimits all exist by limit axiom M∞1, and where we simply write
F again for its restriction to any subposet of C).5 Thus, it suffices to show that the
map LmF → colimC′(F ) lies in (W∩C) ⊂M, since this subcategory is closed under
pushouts.

5In the statement of Proposition T.4.4.2.2, note that the requirement that one of the maps be
a monomorphism (i.e. a cofibration in sSetJoyal) guarantees that this pushout is indeed a homotopy
pushout in sSetJoyal (by the left properness of sSetJoyal, or alternatively by the Reedy trick).
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For this, let us choose an ordering

C′\∂(C/m) = {c1, . . . , ck}

such that for every 1 ≤ i ≤ k the object ci is minimal in the full subposet {ci, . . . , ck} ⊂
C.6 Let us write

Ci = (∂(C/m) ∪ {c1, . . . , ci}) ⊂ C′

for the full subposet, setting C0 = ∂(C/m) for notational convenience, so that we have
the chain of inclusions

∂(C/m) = C0 ⊂ · · · ⊂ Ck = C′.

Our requirement on the ordering of the objects ci guarantees that we have

∂(C/ci) ⊂ Ci−1,

and from here it is not hard to see that in fact we have a pushout square

∂(C/ci) Ci−1

C/ci Ci

in Cat∞ for all 1 ≤ i ≤ k, from which by again applying Proposition T.4.4.2.2 we
obtain a pushout square

LciF colimCi−1
(F )

F (ci) colimCi(F )

in M. But since homC(ci,m) = ∅Set by assumption, our hypotheses imply that the
map LciF → F (ci) lies in (W ∩ C) ⊂ M; since this subcategory is closed under
pushouts, it follows that it contains the map colimCi−1

(F ) → colimCi(F ) as well.
Thus, we have obtained the map LmF → colimC′(F ) as a composite

LmF = colim∂(C/m)(F ) = colimC0(F )
≈
� · · ·

≈
� colimCk(F ) = colimC′(F )

of acyclic cofibrations in M, so it is itself an acyclic cofibration. This proves the
claim.

6If the Reedy structure on C is induced by a degree function N(C)0
deg−−→ N (which must be pos-

sible by its finiteness), then this can be accomplished simply by requiring that deg(ci) ≤ deg(ci+1)
for all 1 ≤ i < k.
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Now that we have shown that (special) cylinder and path objects always exist,
we come to the following key definitions. These should be expected: taking the
quotient by a relation in a 1-topos corresponds to taking the geometric realization
of a simplicial object in an ∞-topos. (Among these, equivalence relations then
correspond to ∞-groupoid objects (see Definition T.6.1.2.7).)

Definition 6.1.7. Let M be a model ∞, and let x, y ∈ M. We define the space
of left homotopy classes of maps from x to y with respect to a given cylinder
object cyl•(x) for x to be

hom
l∼
M(x, y) =

∣∣homlw
M(cyl•(x), y)

∣∣ .
Dually, we define the space of right homotopy classes of maps from x to y with
respect to a given path object path•(y) for y to be

hom
r∼
M(x, y) =

∣∣homlw
M(x, path•(y))

∣∣ .
A priori these spaces depend on the choices of cylinder or path objects, but we
nevertheless suppress them from the notation.

Remark 6.1.8. Note that homlw
M(x, path•(y)) is not itself an ∞-groupoid object in S.

To ask for this would be too strict: it would not allow for the “homotopies between
homotopies” that we sought at the beginning of this section. (Correspondingly, by
Yoneda’s lemma this would also imply that path•(y) is itself an ∞-groupoid object
in M, which is clearly a far stronger condition than the “fibrant W-hypercover”
heuristic of Remark 6.1.3 would dictate.)

We can now state the fundamental theorem of model ∞-categories , which
says that under the expected co/fibrancy hypotheses, the spaces of left and right
homotopy classes of maps both compute the hom-space in the localization.

Theorem 6.1.9. Let M be a model ∞-category, suppose that x ∈ Mc is cofibrant
and cyl•(x) ∈ cM is any cylinder object for x, and suppose that y ∈ Mf is fibrant
and path•(y) ∈ sM is any path object for y. Then there is a diagram of equivalences

hom
l∼
M(x, y)

∥∥homlw
M(cyl•(x), path•(y))

∥∥ hom
r∼
M(x, y)

homMJW−1K(x, y)

∼

∼

∼

in S.
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Proof. The horizontal equivalences are proved as Proposition 6.2.1(3) and its dual.
By Proposition 6.3.4, it suffices to assume that both cyl•(x) and path•(y) are special.
The vertical equivalence is then obtained as the composite of the equivalences∥∥homlw

M(σcyl•(x), σpath•(y))
∥∥ ' 3̃(x, y)gpd ' 3(x, y)gpd ' 7(x, y)gpd ' homMJW−1K(x, y)

(where the as-yet-undefined objects of which will be explained in Notation 6.4.10 and
Definition 6.4.15) which are respectively proved as Propositions 6.5.1 (and 6.3.4),
6.6.1, 6.7.1, and 6.9.1.

Remark 6.1.10. The proof of the fundamental theorem of model∞-categories (6.1.9)
roughly follows that of [DK80b, Proposition 4.4] (and specifically the fix given in
[Man99, §7] for [DK80b, 7.2(iii)]). Speaking ahistorically, the main difference is that
we have replaced the ultimate appeal to the hammock localization as providing a
model for the hom-space homMJW−1K(x, y) with an appeal to the (∞-categorical)

Rezk nerve NR
∞(M,W), which we will prove (as Proposition 6.8.1) likewise provides

a model for this hom-space (by the local universal property of the Rezk nerve (The-
orem 2.3.8)).

An easy consequence of the fundamental theorem of model ∞-categories (6.1.9)
is its “homotopy” version.

Corollary 6.1.11. Let M be a model ∞-category, suppose that x ∈ Mc is cofibrant
and cyl•(x) ∈ cM is any cylinder object for x, and suppose that y ∈Mf is fibrant and
path•(y) ∈ sM is any path object for y. Then there is a diagram of isomorphisms(

[x, y]M

[cyl1(x), y]M

)
[x, y]MJW−1K

(
[x, y]M

[x, path1(y)]M

)
∼ ∼

in Set.

Proof. Observe that we have a commutative square

sS sSet

S Set

πlw
0

colimS
∆op (−) colimSet

∆op (−)

π0

in Cat∞, since all four functors are left adjoints and the resulting composite right
adjoints coincide. The claim now follows immediately from Theorem 6.1.9.
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Remark 6.1.12. In the particular case that M is a model 1-category, we obtain equiv-
alences ho(M)

∼−→ M and ho(MJW−1K) ∼−→ M[W−1]. Hence, Corollary 6.1.11 spe-
cializes to recover the classical fundamental theorem of model categories (see e.g.
[Hir03, Theorems 7.4.9 and 8.3.9]).

Remark 6.1.13. In contrast with Remark 6.1.8, the proof of [Hir03, Theorem 7.4.9]
carries over without essential change to show that in the situation of Corollary 6.1.11,
the diagram

[cyl1(x), y]M [x, path1(y)]M

[x, y]M

does define a pair of equal equivalence relations (in Set).

6.2 The equivalence

hom
l∼
M(x, y) '

∥∥homlw
M (cyl•(x), path•(y))

∥∥
Without first setting up any additional scaffolding, we can immediately prove the hor-
izontal equivalences of Theorem 6.1.9. The following result is an analog of [DK80b,
Proposition 6.2, Corollary 6.4, and Corollary 6.5].

Proposition 6.2.1. Let M be a model∞-category, suppose that x ∈Mc is cofibrant,
and let cyl•(x) ∈ cM be any cylinder object for x.

(1) The functor

M
homlw

M(cyl•(x),−)
−−−−−−−−−−→ sS

sends (W ∩ F) ⊂M into (W ∩ F)KQ ⊂ sS.

(2) The same functor sends (Mf ∩W) ⊂M into WKQ ⊂ sS.

(3) If y ∈Mf is fibrant, then for any path object path•(y) ∈ sM for y, the canonical
map const(y)→ path•(y) in sM induces an equivalence∣∣homlw

M(cyl•(x), y)
∣∣ ∼−→ ∥∥homlw

M(cyl•(x), path•(y))
∥∥ .

Proof. To prove part (1), we use the criterion of Proposition 1.7.2 (that sSKQ has
a set of generating cofibrations given by the boundary inclusions IKQ = {∂∆n →
∆n}n≥0). First, note that to say that x is cofibrant is to say that the 0

th
latching
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map ∅M ' L0 cyl•(x)→ cyl0(x) ' x of cyl•(x) ∈ cM is also a cofibration. Then, for

any n ≥ 0, suppose we are given an acyclic fibration y
≈
� z in M inducing the right

map in any commutative square

∂∆n homlw
M(cyl•(x), y)

∆n homlw
M(cyl•(x), z)

in sS. This commutative square is equivalent data to that of a commutative square

Ln cyl•(x) y

cyln(x) z,

≈

in M, and moveover a lift in either one determines a lift in the other. But the latter
admits a lift by lifting axiom M∞4. Hence, the induced map homlw

M(cyl•(x), y) →
homlw

M(cyl•(x), z) is indeed in (W ∩ F)KQ.
Next, part (2) follows immediately from part (1) and the dual of Kenny Brown’s

lemma (5.3.5).
To prove part (3), note that all structure maps in any path object are weak

equivalences, and note also that when y is fibrant, then any path object path•(y)
consists of fibrant objects by the dual of Lemma 6.2.2. Hence, using

• Fubini’s theorem for colimits,

• part (2), and

• the fact that simplicial objects whose structure maps are equivalences must be
constant,

we obtain the string of equivalences∥∥homlw
M(cyl•(x), path•(y))

∥∥ = colim([m]◦,[n]◦)∈∆op×∆op homM(cylm(x), pathn(y))

' colim[n]◦∈∆op

(
colim[m]◦∈∆op homM(cylm(x), pathn(y))

)
= colim[n]◦∈∆op

∣∣homlw
M(cyl•(x), pathn(y))

∣∣
'
∣∣homlw

M(cyl•(x), path0(y))
∣∣

'
∣∣homlw

M(cyl•(x), y)
∣∣ ,

proving the claim.
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We needed the following auxiliary result in the proof of Proposition 6.2.1.

Lemma 6.2.2. If x ∈Mc is cofibrant, then for any cylinder object cyl•(x) ∈ cM for
x, for every n ≥ 0 the object cyln(x) ∈M is cofibrant.

Proof. Since cyl0(x) ' x by definition, the claim holds at n = 0 by assumption. For
n ≥ 1, by definition we have a cofibration Ln cyl•(x)� cyln(x), so it suffices to show
that the object Ln cyl•(x) ∈ M is cofibrant. We prove this by induction: at n = 0,
we have L0 cyl•(x) = cyl0(x) t cyl0(x) ' x t x, which is cofibrant.

Now, recall that by definition,

Ln cyl•(x) = colim
∂(
−→
∆/[n])

cyl•(x),

i.e. the latching object is given by the colimit of the composite

∂
(−→

∆/[n]

)
↪→
−→
∆/[n] →

−→
∆ ↪→∆

cyl•(x)−−−−→M.

Now, by Lemma 5.1.29(1)(a), the latching category ∂
(−→

∆/[n]

)
admits a Reedy cate-

gory structure with fibrant constants, so that we obtain a Quillen adjunction

colim : Fun
(
∂
(−→

∆/[n]

)
,M
)

Reedy
�M : const

(since M is finitely cocomplete by limit axiom M∞1). Thus, it suffices to check

that the above composite defines a cofibrant object of Fun
(
∂
(−→

∆/[n]

)
,M
)

Reedy
. For

this, given an object ([m] ↪→ [n]) ∈ ∂
(−→

∆/[n]

)
, by Lemma 5.1.29(1)(b), its latching

category is given by

∂

(−−−−−−→
∂
(−→

∆/[n]

)
/([m]↪→[n])

)
∼= ∂

(−→
∆/[m]

)
.

Hence, the latching map of the above composite at this object simply reduces to the
cofibration

Lm cyl•(x)� cylm(x).

Therefore, the above composite does indeed define a cofibrant object of Fun
(
∂
(−→

∆/[n]

)
,M
)

Reedy
,

which proves the claim.
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6.3 Reduction to the special case

In order to proceed with the string of equivalences in the proof of the fundamental
theorem of model ∞-categories (6.1.9), we will need to be able to make the assump-
tion that our cylinder and path objects are special. In this section, we therefore
reduce to the special case.

Notation 6.3.1. Let M be a model ∞-category. For any x ∈M, we write

{cyl•(x)} ⊂
(
cM ×

(−)0,M,x
ptCat∞

)
for the full subcategory on the cylinder objects for x, and we write

{path•(x)} ⊂
(
sM ×

(−)0,M,x
ptCat∞

)
for the full subcategory on the path objects for x.

We now have the following analog of [DK80b, Propositions 6.9 and 6.10].

Lemma 6.3.2. Suppose that x ∈M.

(1) Every special cylinder object σcyl•(x) ∈ {cyl•(x)} is weakly terminal: any
cyl•(x) ∈ {cyl•(x)} admits a map

cyl•(x)→ σcyl•(x)

in {cyl•(x)}.

(2) Every special path object σpath•(x) ∈ {path•(x)} is weakly initial: any path•(x) ∈
{path•(x)} admits a map

σpath•(x)→ path•(x)

in {path•(x)}.

Proof. We only prove the first of two dual statements. We will construct the map
by induction. The given equivalences

cyl0(x) ' x ' σcyl0(x)
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imply that there is a unique way to begin in degree 0. Then, assuming the map has
been constructed up through degree (n− 1), Definition 6.1.1 and lifting axiom M∞4
guarantee the existence of a lift in the commutative rectangle

Ln cyl•(x) Ln σcyl•(x) σcyln(x)

cyln(x) σcyln(x) Mn σcyl•(x)
≈

in M, which provides an extension of the map up through degree n.

Lemma 6.3.3. Let M be a model ∞-category, let x ∈ Mc be cofibrant, let y ∈ Mf

be fibrant, let cyl•1(x)→ cyl•2(x) be a map in {cyl•(x)}, and suppose that path•(y) ∈
{path•(y)}. Then the induced maps∣∣homlw

M(cyl•2(x), y)
∣∣→ ∣∣homlw

M(cyl•1(x), y)
∣∣

and ∥∥homlw
M(cyl•2(x), path•(y))

∥∥→ ∥∥homlw
M(cyl•1(x), path•(y))

∥∥
are equivalences in S.

Proof. By Proposition 6.2.1(3) and its dual, these data induce a commutative dia-
gram ∣∣homlw

M(cyl•2(x), y)
∣∣ ∣∣homlw

M(cyl•1(x), y)
∣∣

∥∥homlw
M(cyl•2(x), path•(y))

∥∥ ∥∥homlw
M(cyl•1(x), path•(y))

∥∥
∣∣homlw

M(x, path•(y))
∣∣

∼ ∼

∼ ∼

of equivalences in S.

Proposition 6.3.4. Let M be a model ∞-category, let x, y ∈ M, let cyl•(x) ∈ cM
be a cylinder object for x, and let path•(y) ∈ sM be a path object for y. Then there
exist

• a map cyl•(x)→ σcyl•(x) to a special cylinder object for x, and

• a map path•(y)→ σpath•(y) to a special path object for y,
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such that the induced square

homlw
M(σcyl•(x), σpath•(y)) homlw

M(σcyl•(x), path•(y))

homlw
M(cyl•(x), σpath•(y)) homlw

M(cyl•(x), path•(y))

in ssS becomes an equivalence upon applying the colimit functor

ssS
‖−‖−−→ S.

Proof. The maps are obtained from Lemma 6.3.2; the claim then follows from Lemma 6.3.3.

6.4 Model diagrams and left homotopies

In the remainder of the proof of the fundamental theorem of model ∞-categories
(6.1.9), it will be convenient to have a framework for corepresenting diagrams of
a specified type in our model ∞-category M. This leads to the notion of a model
∞-diagram, which we introduce and study in §6.4.1. Then, in §6.4.2, we specialize
this setup to describe the data that thusly corepresents a “left homotopy” in the
model ∞-category sSKQ. (In fact, in order to be completely concrete and explicit
we will further specialize to deal only with model diagrams (as opposed to model
∞-diagrams), since in the end this is all that we will need.)

6.4.1 Model diagrams

We will be interested in ∞-categories of diagrams of a specified shape inside of a
model ∞-category. These are corepresented, in the following sense.

Definition 6.4.1. A model ∞-diagram is an ∞-category D equipped with three
wide subcategories W,C,F ⊂ D. These assemble into the evident ∞-category,
which we denote by Model∞. Of course, a model∞-category can be considered as a
model∞-diagram. A model diagram is a model∞-diagram whose underlying∞-
category is a 1-category. These assemble into a full subcategory Model ⊂Model∞.

Remark 6.4.2. We introduced model diagrams in [MG16, Definition 3.1], where we
required that the subcategory of weak equivalences satisfy the two-out-of-three prop-
erty. As this requirement is superfluous for our purposes, we have omitted it from
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Definition 6.4.1. (However, the wideness requirement is necessary: it guarantees that
a map of model diagrams can take any map to an identity map, which in turn jibes
with the requirement that the three defining subcategories of a model ∞-category
be wide.)

Remark 6.4.3. A relative ∞-category (R,W) can be considered as a model ∞-
diagram by taking C = F = R'. In this way, we will identify RelCat∞ ⊂ Model∞
and RelCat ⊂Model as full subcategories.7

Notation 6.4.4. In order to disambiguate our notation associated with various
model ∞-diagrams, we will sometimes decorate them for clarity: for instance, we
may write (D1,W1,C1,F1) and (D2,W2,C2,F2) to denote two arbitrary model∞-
diagrams. (This is consistent with both Notations 1.1.2 and 2.1.3.)

Remark 6.4.5. Among the axioms for a model ∞-category, all but limit axiom M∞1
(so two-out-of-three axiom M∞2, retract axiom M∞3, lifting axiom M∞4, and fac-
torization axiom M∞5) can be encoded by requiring that the underlying model ∞-
diagram has the extension property with respect to certain maps of model diagrams.

Since we will be working with a model∞-category with chosen source and target
objects of interest, we also introduce the following variant.

Definition 6.4.6. A doubly-pointed model ∞-diagram is a model ∞-diagram
D equipped with a map ptModel∞ t ptModel∞ → D. The two inclusions ptModel∞ ↪→
ptModel∞ t ptModel∞ select objects s, t ∈ D, which we call the source and target ;
we will sometimes subscript these to remove ambiguity, e.g. as sD and tD. These
assemble into the evident ∞-category

(Model∞)∗∗ = (Model∞)(ptModel∗∗tptModel∗∗ )/.

Of course, there is a forgetful functor (Model∞)∗∗ → Model∞. We will often im-
plicitly consider a model ∞-diagram equipped with two chosen objects as a doubly-
pointed model ∞-diagram. We write Model∗∗ ⊂ (Model∞)∗∗ for the full subcat-
egory of doubly-pointed model diagrams , i.e. of those doubly-pointed model
∞-diagrams whose underlying ∞-category is a 1-category.

Remark 6.4.7. Similarly to Remark 6.4.3, we will consider (RelCat∞)∗∗ ⊂ (Model∞)∗∗
and RelCat∗∗ ⊂Model∗∗ as full subcategories.

7This inclusion exhibits RelCat∞ as a right localization of Model∞. In fact, RelCat∞ is also a
left localization of Model∞ via the inclusion which sets both C and F to be the entire underlying
∞-category, but this latter inclusion will not play any role here.



382

Notation 6.4.8. In order to simultaneously refer to the situations of unpointed
and doubly-pointed model ∞-diagrams, we will use the notation (Model∞)(∗∗) (and
similarly for other related notations). When we use this notation, we will mean
for the entire statement to be interpreted either in the unpointed context or the
doubly-pointed context. (This is consistent with Notation 4.2.3.)

It will be useful to expand on Definition 4.2.5 (in view of Remark 6.4.7) in the
following way.

Definition 6.4.9. We define a model word to be a (possibly empty) word m in any
of the symbols A, W, C, F, (W ∩C), (W ∩ F) or any of their inverses. Of course,
these naturally define doubly-pointed model diagrams; we continue to employ the
convention set in Definition 4.2.5 that we read our model words forwards, so that for
instance the model word m = [C; (W ∩ F)−1; A] defines the doubly-pointed model
diagram

s • • t.≈

We denote this object by m ∈Model∗∗. Of course, via Remark 6.4.7, we can consider
any relative word as a model word.

Notation 6.4.10. Since they will appear repeatedly, we make the abbreviation

3̃ = [(W ∩ F)−1; A; (W ∩C)−1]

for the model word
s • • t≈ ≈

(which is a variant of Notation 4.3.2), and we make the abbreviation

7 = [W; W−1; W; A; W; W−1; W]

for the model word (in fact, relative word)

s • • • • • • t.≈ ≈ ≈ ≈ ≈ ≈

We now make rigorous “the ∞-category of (either unpointed or doubly-pointed)
D-shaped diagrams in M (and either natural transformations or natural weak equiv-
alences between them)”.

Notation 6.4.11. Recall from Notation 2.1.6 that RelCat∞ is a cartesian closed
symmetric monoidal ∞-category, with internal hom-object given by(

Fun(R1,R2)Rel,Fun(R1,R2)W
)
∈ RelCat∞
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for (R1,W1), (R2,W2) ∈ RelCat∞. It is not hard to see that Model∞ is enriched
and tensored over (RelCat∞,×). Namely, for any

(D1,W1,C1,F1), (D2,W2,C2,F2) ∈Model∞,

we define (
Fun(D1,D2)Model,Fun(D1,D2)W

)
∈ RelCat∞

by setting
Fun(D1,D2)Model ⊂ Fun(D1,D2)

to be the full subcategory on those functors which send the subcategories W1,C1,F1 ⊂
D1 into W2,C2,F2 ⊂ D2 respectively, and setting

Fun(D1,D2)W ⊂ Fun(D1,D2)Model

to be the (generally non-full) subcategory on the natural weak equivalences; more-
over, the tensoring is simply the cartesian product in Model∞ (composed with the
inclusion RelCat∞ ⊂Model∞ of Remark 6.4.3).

Notation 6.4.12. Similarly to Notations 6.4.11 and 4.2.2, (Model∞)∗∗ is enriched
and tensored over (RelCat∞,×). As for the enrichment, for any

(D1,W1,C1,F1), (D2,W2,C2,F2) ∈ (Model∞)∗∗,

in analogy with Notation 4.2.2 we define the object

(
Fun∗∗(D1,D2)Model,Fun∗∗(D1,D2)W

)
= lim


(
Fun(D1,D2)Model,Fun(D1,D2)W

)
ptRelCat∞ (D2,W2)× (D2,W2)

(evs1 ,evt1 )

(s2,t2)


of RelCat∞ (where we write s1, t1 ∈ D1 and s2, t2 ∈ D2 to distinguish between the
source and target objects). Then, the tensoring is obtained by taking (R,WR) ∈
RelCat∞ and (D,WD,CD,FD) ∈ (Model∞)∗∗ to the pushout

colim


R× {s, t} R×D

ptModel∞ × {s, t}


in Model∞, with its double-pointing given by the natural map from ptModel∞ t
ptModel∞ ' ptModel∞ × {s, t}.
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Remark 6.4.13. While we are using the notation Fun(−,−)W both in the context of
relative ∞-categories and model ∞-diagrams, due to the identification RelCat∞ ⊂
Model∞ of Remark 6.4.3 this is actually not an abuse of notation. The notation
Fun∗∗(−,−)W is similarly unambiguous.

Notation 6.4.14. Similarly to Notation 4.2.4, we will write

(Model∞)(∗∗) × RelCat∞
−�−−−−→ (Model∞)(∗∗)

to denote either tensoring of Notation 6.4.11 or of Notation 6.4.12 (using the con-
vention of Notation 6.4.8).

Corresponding to Definition 6.4.9, we expand on Definition 4.2.9 as follows.

Definition 6.4.15. Given a model ∞-diagram M ∈ Model∞ (e.g. a model ∞-
category) equipped with two chosen objects x, y ∈ M, and given a model word
m ∈Model∗∗, we define the ∞-category of zigzags in M from x to y of type m to
be

mM(x, y) = Fun∗∗(m,M)W.

If the model ∞-diagram M is clear from context, we will simply write m(x, y).

Definition 6.4.16. For any model∞-diagram M and any objects x, y ∈M, we will
refer to

3̃(x, y) = Fun∗∗(3̃,M)W ∈ Cat∞

as the ∞-category of special three-arrow zigzags in M from x to y (which is a
variant of Definition 4.3.3), and we will refer to

7(x, y) = Fun∗∗(7,M)W ∈ Cat∞

as the ∞-category of seven-arrow zigzags in M from x to y.

Now, the reason we are interested in the tensorings of Notation 6.4.14 is the
following construction.

Notation 6.4.17. We define a functor

(Model∞)(∗∗)
c•
(∗∗)−−→ c(Model∞)(∗∗)

by setting
c•(∗∗)D = D� [•]W

for any D ∈ (Model∞)(∗∗) (where [•]W denotes the composite ∆ ↪→ Cat
max−−→

RelCat ↪→ RelCat∞). Of course, this restricts to a functor

Model(∗∗)
c•
(∗∗)−−→ cModel(∗∗).
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Example 6.4.18. If we consider [C; (W ∩ F)−1; A] ∈ Model∗∗, then [C; (W ∩
F)−1; A]� [2]W ∈Model∗∗ is given by

• •

s • • t.

• •

≈

≈

≈

≈

≈

≈

≈

On the other hand, if we consider [C; (W ∩ F)−1; A] ∈ Model, then [C; (W ∩
F)−1; A]� [2]W ∈Model is given by

• • • •

• • • •

• • • •.
≈ ≈

≈
≈ ≈

≈ ≈

≈

≈ ≈

≈

In turn, Notation 6.4.17 is itself useful for the following reason.

Lemma 6.4.19. For any D,M ∈ (Model∞)(∗∗), we have an equivalence

homlw
(Model∞)(∗∗)

(c•(∗∗)D,M) ' N∞
(
Fun(∗∗)(D,M)W

)
in sS which is natural in both variables.

Proof. For any n ≥ 0 we have a composite equivalence

N∞
(
Fun(∗∗)(D,M)W

)
n

= homCat∞

(
[n],Fun(∗∗)(D,M)W

)
' homRelCat∞

(
[n]W,

(
Fun(∗∗)(D,M)Model,Fun(∗∗)(D,M)W

))
' hom(Model∞)(∗∗)(D� [n]W,M)

= hom(Model∞)(∗∗)(c
n
(∗∗)D,M)

which clearly commutes with the simplicial structure maps on both sides.

We now introduce slightly more elaborate versions of the concepts we have been
exploring – an ∞-categorical version of [MG16, Variant 3.3] – which will be used in
the proofs of Proposition 6.6.1, Proposition 6.7.1, and Lemma 6.8.2.
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Definition 6.4.20. A decorated model ∞-diagram is a model ∞-diagram with
some subdiagrams decorated as colimit or limit diagrams. For instance, if we define
D to be the “walking pullback square”, then for any other model ∞-diagram M, we
let hom>

Model∞(D,M) ⊂ homModel∞(D,M), Fun>(D,M)Model ⊂ Fun(D,M)Model, and
Fun>(D,M)W ⊂ Fun(D,M)W denote the subobjects spanned by those morphisms
D → M of model ∞-diagrams which select a pullback square in M. Of course, we
define a doubly-pointed decorated model ∞-diagram similarly.

In fact, we will only use this variant in the doubly-pointed case, and then only
for pushout and pullback squares. So, in the interest of easing our TikZographical
burden, we will simply superscript these model diagrams with “p.o.” and/or “p.b.”
as appropriate; the question of which square we are referring to is fully disambiguated
by the fact that our pushouts will only be of acyclic cofibrations while our pullbacks
will only be of acyclic fibrations.

Note that the constructions hom>
(Model∞)(∗∗)

(D,M) ∈ S and Fun>
(∗∗)(D,M)W ∈

Cat∞ are not generally functorial in the target M. On the other hand, they are func-
torial for some maps in the source D. We will refer to such maps as decoration-
respecting . These define an ∞-category (Model∞)>(∗∗). (Note the distinction be-

tween hom(Model∞)>
(∗∗)

(−,−) and hom>
(Model∞)(∗∗)

(−,−).) We consider (Model∞)(∗∗) ⊂
(Model∞)>(∗∗) simply by considering undecorated model ∞-diagrams as being triv-
ially decorated. We will not need a general theory for understanding which maps of
decorated model diagrams are decoration-respecting; rather, it will suffice to observe
once and for all that given a square which is decorated as a pushout or pullback
square, it is decoration-respecting to either

• take it to another similarly decorated square, or

• collapse it onto a single edge (since a commutative square in which two parallel
edges are equivalences is both a pushout and a pullback).

Note that if the source of a map of decorated model ∞-diagrams is actually
undecorated, then the map is automatically decoration-respecting; in other words,
we must only check that maps in which the source is decorated are decoration-
respecting.

Remark 6.4.21. Of course, adding in Definition 6.4.20 allows us to also demand
finite bicompleteness of a model ∞-diagram via lifting conditions, and hence all of
the axioms for a model ∞-diagram to be a model ∞-category can now be encoded
in this language (recall Remark 6.4.5).

We will need the following analog of Lemma 4.3.5 for model ∞-diagrams.
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Lemma 6.4.22. Given a pair of maps D1 ⇒ D2 in (Model∞)>(∗∗), a morphism

between them in Fun>
(∗∗)(D1,D2)W induces, for any M ∈ (Model∞)(∗∗), a natural

transformation between the two induced functors

Fun>
(∗∗)(D2,M)W ⇒ Fun>

(∗∗)(D1,M)W.

Proof. It is not hard to see that the proof of Lemma 4.3.5 carries over without
essential change (this time using the enrichment of (Model∞)(∗∗) over RelCat∞).

In order to state the final result of this subsection, we need to introduce a bit of
notation.

Notation 6.4.23. For any objects x, y ∈M, we denote

• by
Wx

� ⊂Wx/

the full subcategory on those objects (x
≈
� z) ∈Wx/ whose structure map is

a cofibration,

• by
W �

y ⊂W/y

the full subcategory on those objects (z
≈
� y) ∈W/y whose structure map is a

fibration, and

• by
Wx

� �

y = Wx

� ×W W �

y ⊂Wx//y

the full subcategory on those objects (x
≈
� z

≈
� y) ∈ Wx//y whose structure

maps are respectively a cofibration and fibration (as indicated).

We now give an extremely useful result, an analog of [DK80b, 8.1], which will
appear in the proofs of Proposition 6.6.1, Proposition 6.7.1, and Lemma 6.8.2. We
refer to it as the factorization lemma .

Lemma 6.4.24. Let M be a model ∞-category, and let x, y ∈ M. For any model
words m and n, applying Fun∗∗(−,M)W to the evident inclusion

(
s • • t

m ≈ n
)
→

 s • • t

•

m ≈ n

≈≈


in Model∗∗ induces a map in WTh ⊂ Cat∞.
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Proof. We first observe that the target of this inclusion in Model∗∗ is isomorphic to
the model word

[m; (W ∩ F)−1; (W ∩C)−1; n],

it is just drawn so that the “evident inclusion” is truly evident. So, the induced map
can be expressed as

[m; (W ∩ F)−1; (W ∩C)−1; n](x, y)→ [m; W−1; n](x, y).

To abbreviate notation, we will write this map in Cat∞ simply as C1 → C2.
Now, showing that the induced map C

gpd
1 → C

gpd
2 is an equivalence in S is equiv-

alent to showing that the induced map (Cop1 )gpd → (Cop2 )gpd is an equivalence in S,
and for this by Proposition 3.4.8 it suffices to show that the functor C

op
1 → C

op
2 is

final. According to the characterization of Theorem A (3.4.10), this is equivalent to
showing that for any object

f =
(
x x1 y1 y

m ≈ n
)
∈ C2,

the groupoid completion of the comma ∞-category

(C1)op ×
(C2)op

((C2)op)f◦/ '
(
C1 ×

C2

(C2)/f

)op
is contractible, which is in turn equivalent to showing that the groupoid completion
of the comma ∞-category

C3 = C1 ×
C2

(C2)/f

is contractible.
For this, let us first choose a factorization y1

≈
� z1

≈
� x1 in M using factoriza-

tion axiom M∞5; we can consider this as defining an object Z1 = (y1

≈
� z1

≈
� x1) ∈

My1//x1 . Then, working in the model∞-category My1//x1 (see Example 1.2.3), we ap-
ply Proposition 6.1.5(2) to obtain a special path object path•(Z1) ∈ s(My1//x1). Note
that every constituent object pathn(Z1) ∈My1//x1 is in fact bifibrant: it is cofibrant
since specialness implies that the unique structure map Z1 ' path0(Z1)→ pathn(Z1)
(a composite of degeneracy maps) is an acyclic cofibration and Z1 itself is cofibrant,
and it is fibrant by the dual of Lemma 6.2.2 since Z1 itself is fibrant. Moreover, since
W has the two-out-of-three property, it follows that in fact path•(Z1) ∈ s(Wy1

� �

x1
).

Now, observe that there is a natural functor

Wy1

� �

x1
→ C3
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which takes an object (y1

≈
� w1

≈
� x1) ∈Wy1

� �

x1
to the object

x1 w1 y1

x y

x1 y1

≈

≈ ≈
n

≈

m

m

≈

n

 ∈ C3

(in which diagram the bottom zigzag is the chosen object f ∈ C2 and the top zigzag

(an object of C1) is obtained by simply splicing the zigzag x1

≈
� w1

≈
� y1 into it,

and all vertical weak equivalences (including those not pictured) are identity maps).
Thus, we obtain a composite

∆op path•(Z1)−−−−−→Wy1

� �

x1
→ C3,

which we will again denote simply by path•(Z1) ∈ s(C3). Since (∆op)gpd ' ptS (as
∆op is sifted), again referring to Proposition 3.4.8 we see that it suffices to show that
this functor is final. Then, again referring to Theorem A (3.4.10), we see that this is
equivalent to showing that for any object

g =


x2 z2 y2

x y

x1 y1

≈

≈ ≈
n

≈

m

m

≈

n

 ∈ C3

(in which diagram the bottom zigzag is again the chosen object f ∈ C2 but now
the top zigzag is an arbitrary object of C1), the groupoid completion of the comma
∞-category

C4 = ∆op ×
C3

(C3)g/

is contractible.
For this, let us define a simplicial space Y ∈ sS by setting

Y• = homlw
C3

(g, path•(Z1)).

On the one hand, considering Y ∈ sS = Fun(∆op, S), we have an equivalence

srep(Y ) ' N∞(C4)
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in sS: for any n ≥ 0 we have an equivalence

srep(Y )n '
∐

α∈N(∆op)n

Yα(0)

=
∐

α∈N(∆op)n

homC3(g, pathα(0)(Z1))

' N∞(C4)n,

and it is not hard to see that these respect the structure maps of the two simplicial
spaces. But on the other hand, unwinding the definitions we obtain an identification

Y• ' lim


homlw

W/x1
(z2, path•(Z1))

ptsS homlw
W/x1

(y2, path•(Z1))

 ,

in which pullback

• we implicitly consider path•(Z1) ∈ s(W/x1) via the evident forgetful functor
Wy1

� �

x1
→W/x1 ,

• the vertical map is given by levelwise precomposition with y2

≈
� z2, and

• the horizontal map is given by the composite

ptsS → homlw
W/x1

(z1, path•(Z1))→ homlw
W/x1

(y1, path•(Z1))→ homlw
W/x1

(y2, path•(Z1))

of the canonical point of homlw
W/x1

(z1, path•(Z1)) followed by the maps induced

by precomposition with the composite y2
≈→ y1

≈
� z1.

Considering M/x1 as a model ∞-category (again see Example 1.2.3), the simplicial
object path•(Z1) ∈ s(M/x1) defines a path object for the fibrant object z1 ∈ (M/x1)f .
Thus, by the dual of Proposition 6.2.1(1), the vertical map in this pullback lies in
(W∩F)KQ ⊂ sS. Hence, by Proposition 1.6.5 (and Proposition 1.7.2) it follows that
|Y•| ' ptS. Finally, combining the two equivalences we have just obtained with the
Bousfield–Kan colimit formula (Theorem 3.5.8) and Proposition 2.2.4, we obtain the
string of equivalences

ptS ' |Y•| ' |srep(Y )•| ' |N∞(C4)•| ' (C4)gpd,

which completes the proof.
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6.4.2 Left homotopies

Given two parallel maps D•1 ⇒ D•2 in cModel(∗∗), and any M ∈ Model(∗∗), applying
the functor

cModel(∗∗)
homlw

(Model∞)(∗∗)
(−,M)

−−−−−−−−−−−−−→ sS

yields two parallel maps

homlw
(Model∞)(∗∗)

(D•2,M)⇒ homlw
(Model∞)(∗∗)

(D•1,M)

in sS. We will be interested explicitly describing additional data which causes these
maps become equivalent upon geometric realization. This motivates the following
definition.

Definition 6.4.25. Given two parallel maps f, g ∈ homsS(Y, Z), a left homotopy
from f to g (in the model ∞-category sSKQ) is a map h ∈ homsS(Y ×∆1, Z) fitting
into a commutative diagram

Y Y ×∆{0} Y ×∆1 Y ×∆{1} Y

Z

∼

f h

∼

g

in sS.

Of course, this comes with the following expected result.

Lemma 6.4.26. A left homotopy Y ×∆1 → Z in sSKQ between two parallel maps
Y ⇒ Z in sS induces an equivalence between the two induced parallel maps |Y |⇒ |Z|
in S.

Proof. The maps Y ' Y ×∆{i} → Y ×∆1 are in WKQ since geometric realization
(as a sifted colimit) commutes with finite products. Hence, the diagram

Y Y ×∆{0} Y ×∆1 Y ×∆{1} Y

Z

∼ ≈ ≈ ∼

in sSKQ induces, upon geometric realization, the diagram

|Y | |Y ×∆{0}| |Y ×∆1| |Y ×∆{1}| |Y |

|Z|

∼ ∼ ∼ ∼
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in S, which selects the desired equivalence between the two induced maps |Y | ⇒
|Z|.

In our cases of interest, the left homotopy between two parallel maps

homlw
(Model∞)(∗∗)

(D•2,M)⇒ homlw
(Model∞)(∗∗)

(D•1,M)

will be natural in the variable M ∈ (Model∞)(∗∗). By Yoneda’s lemma, the data of
such a left homotopy itself will be corepresentable by some additional data relating
D•1 and D•2. This leads us to the following definition.

Definition 6.4.27. Given ϕ•, ψ• ∈ homcModel(∗∗)(D
•
1,D

•
2), a left homotopy corep-

resentation from ϕ• to ψ• is a family of maps

{hin ∈ homModel(∗∗)(D
n+1
1 ,Dn

2 )}0≤i≤n≥0

satisfying the identities

h0
nδ

0 = ϕn

hnnδ
n+1 = ψn

hjnδ
i =


δihj−1

n−1, i < j
hj−1
n δi, i = j 6= 0

δi−1hjn−1, i > j + 1

hjnσ
i =

{
σjhj+1

n+1, i ≤ j

σi−1hjn+1, i > j.

Remark 6.4.28. These identities are nothing but the duals of those defining a “sim-
plicial homotopy” in the classical sense (see e.g. [May92, Definitions 5.1]).

Then, we have the following expected result.

Lemma 6.4.29. Fix some ϕ•, ψ• ∈ homcModel(∗∗)(D
•
1,D

•
2). Then, giving a left homo-

topy corepresentation

{hin ∈ homModel(∗∗)(D
n+1
1 ,Dn

2 )}0≤i≤n≥0

from ϕ• to ψ• is equivalent to giving a left homotopy

homlw
(Model∞)(∗∗)

(D•2,M)×∆1 → homlw
(Model∞)(∗∗)

(D•1,M)

from homlw
(Model∞)(∗∗)

(ϕ•,M) to homlw
(Model∞)(∗∗)

(ψ•,M) which is natural in the variable

M ∈ (Model∞)(∗∗).
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Proof. Suppose we have such a natural left homotopy. If we apply it to Dn
2 , the

natural map
∆n → homlw

Model(∗∗)
(D•2,D

n
2 )

in sS corresponding to idDn2
gives rise to the composite map

∆n ×∆1 → homlw
Model(∗∗)

(D•2,D
n
2 )×∆1 → homlw

Model(∗∗)
(D•1,D

n
2 ).

Evaluating this at the n+ 1 nondegenerate (n+ 1)-simplices of ∆n×∆1 and ranging
over all n ≥ 0 yields the maps defining the left homotopy corepresentation; that
these satisfy the identities follows from applying the natural left homotopy to the
cosimplicial structure maps of D•2 ∈ cModel(∗∗).

Conversely, given a left homotopy representation, we define a natural left homo-
topy given in level n by the map

hom(Model∞)(∗∗)(D
n
2 ,M)×(∆1)n '

∐
(∆1)n

hom(Model∞)(∗∗)(D
n
2 ,M)→ hom(Model∞)(∗∗)(D

n
1 ,M)

which, on the summand corresponding to the element of (∆1)n ∼= hom∆([n], [1])
associated to the decomposition

[n] = {0, . . . , n− i} t {(n+ 1)− i, . . . , n}

(for i ∈ {0, . . . , n+ 1}), is corepresented by the map
ϕn = h0

nδ
0, i = 0

hi−1
n δi = hinδ

n, 0 < i < n+ 1
ψn = hnnδ

n+1, i = n+ 1

in homModel(∗∗)(D
n
1 ,D

n
2 ); that these do indeed define a left homotopy follows from

the fact that our choices here are induced by the simplicial structure maps of ∆1 ∈
sSet ⊂ sS.

Definition 6.4.30. In the situation of Lemma 6.4.29, we refer to an induced map

homlw
(Model∞)(∗∗)

(D•2,M)×∆1 → homlw
(Model∞)(∗∗)

(D•1,M)

as a corepresented left homotopy (in the model∞-category sSKQ) associated to
the left homotopy corepresentation.
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6.5 The equivalence∥∥homlw
M (σcyl

•(x), σpath•(y))
∥∥ ' 3̃(x, y)gpd

We now proceed with an analog of [Man99, Proposition 7.3].

Proposition 6.5.1. Suppose we have x, y ∈ M with x cofibrant and y fibrant, and
let σcyl•(x) ∈ cM and σpath•(y) ∈ sM be a special cylinder object for x and a special
path object for y, respectively. Then∥∥homlw

M(σcyl•(x), σpath•(y))
∥∥ ' 3̃(x, y)gpd.

Proof. To prove the claim, we construct a commutative diagram

M• Q• P•

N• P• P• ×∆1

in sS whose maps are all in WKQ, such that

|M•| '
∥∥homlw

M(σcyl•(x), σpath•(y))
∥∥

and
|Q•| ' 3̃(x, y)gpd.

We first define the simplicial spaces of the diagram. Certain auxiliary definitions
will appear superfluous, but they will be used later in the proof.

• We begin by defining the object M• ∈ sS by

M• = srep
(
∆op ×∆op homM(σcyl•(x),σpath•(y))−−−−−−−−−−−−−−−→ S

)
•
.

By the Bousfield–Kan colimit formula (Theorem 3.5.8), we have that

|M•| '
∥∥homlw

M(σcyl•(x), σpath•(y))
∥∥ ,

as desired. Note that, since [n] ∈ Cat and ∆ × ∆op ∈ Cat are gaunt, up to
making the identification

homCat∞([n],∆op) ' homCat∞([n]op,∆op) ' homCat∞([n],∆),

we have that

Mn ' colim(α,β)∈homCat∞ ([n],∆×∆op) homM(σcylα(n)(x), σpathβ(0)(y))

'
∐

(α,β)∈N(∆)n×N(∆op)n

homM(σcylα(n)(x), σpathβ(0)(y)).
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• We define the objects N•, Q•, P• ∈ sS simultaneously, as follows. For any
m,n ≥ 0, let pm,n denote the doubly-pointed model diagram

s

α(0) · · · α(m)

β(0) · · · β(m) γ(0) · · · γ(n)

t.

≈

≈

≈

≈

≈ ≈ ≈ ≈ ≈

≈ ≈ ≈

≈

Moreover, let nm,n ⊂ pm,n denote the full subcategory on the objects

{s, t, α(i), γ(j)}0≤i≤m,0≤j≤n

and let qm,n ⊂ pm,n denote the full subcategory on the objects

{s, t, α(i), β(j)}0≤i,j≤m,

both considered as doubly-pointed model diagrams in the evident way. Let
us use the placeholders Y ∈ {N,Q, P} and y ∈ {n,q,p}. Then, the various
objects ym,n ∈ Model∗∗ assemble into the evident bicosimplicial object y•• ∈
cModel∗∗, and we auxiliarily define

Y•• = homlw
(Model∞)∗∗(y

••,M) ∈ ssS.

Then, we define y• = diag∗(y••) ∈ cModel∗∗, and we set

Y• = homlw
(Model∞)∗∗(y

•,M) ∈ sS,

so that Y• ' diag∗(Y••).

We now provide alternative identifications of the simplicial spaces N• and Q•.

– As for N•, we clearly have

Nn ' colim
(α,γ)∈homCat∞

(
[n],W �

x×Wy

�

) homM(α(n), γ(0)).
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Moreover, examining the structure maps of N• ∈ sS, we see that up to
making the identification

homCat∞

(
[n],
(
W �

x

)op) ' homCat∞

(
[n]op,

(
W �

x

)op) ' homCat∞

(
[n],W �

x

)
,

we have that

N• ' srep

((
W �

x

)op ×Wy

�

(
(x′
≈
�x)◦,(y

≈
�y′)

)
7→homM(x′,y′)

−−−−−−−−−−−−−−−−−−−→ S

)
•

.

– As for Q•, note first of all that qm,n ∈ Model∗∗ (and hence Qm,n ∈ S) is
independent of n. Moreover, since we have an evident isomorphism q• ∼=
c•∗∗3̃ in cModel∗∗ – indeed, the only difference is that we have named the
intermediate objects of the constituent model diagrams of q• ∈ cModel∗∗
– it follows from Lemma 6.4.19 that

Q• ' N∞(3̃(x, y))•.

Hence, Proposition 2.2.4 this implies that

|Q•| ' 3̃(x, y)gpd,

as desired.

Finally, we observe that since ∆op diag−−→ ∆op ×∆op is final (as ∆op is sifted),
then by Fubini’s theorem for colimits, continuing to use the placeholder Y ∈
{N,Q, P} we have an identification

|Y•| ' ‖Y••‖
= colim([m]◦,[n]◦)∈∆op×∆op Ym,n

' colim[n]◦∈∆op

(
colim[m]◦∈∆op Ym,n

)
= colim[n]◦∈∆op |Y•,n|,

and similarly we have an identification

|Y•| ' colim[m]◦∈∆op |Ym,•|.

We now define the maps in the diagram, and along the way we show that the
subdiagram

M• Q• P•

N• P• P• ×∆1
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lies in WKQ, which suffices to prove that the entire diagram is in WKQ by the two-
out-of-three property.8

• We have a commutative diagram

∆op ×∆op
(
W �

x

)op ×Wy

�

S

([m]◦,[n]◦)7→
(

(σcylm(x)
≈
�x)◦,(y

≈
�σpathn(y))

)

homlw
M(σcyl•(x),σpath•(y))

(
(x′
≈
�x)◦,(y

≈
�y′)

)
7→homM(x′,y′)

in Cat∞; considering this as a map in (Cat∞)/S, we obtain the map M• → N•
from Proposition 3.5.13(2). The upper map in this diagram is the product of
two functors which are each final, the second by Lemma 6.5.2 and the first by
the opposite of its dual. Hence, this functor is itself final by Proposition 3.4.9.
Thus, the map M• → N• is in WKQ by the Bousfield–Kan colimit formula
(Theorem 3.5.8).

• The map N• → Q• is corepresented by the morphism in homcModel∗∗(q
•,n•)

given in level n by the unique functor satisfying α(i) 7→ α(i) and β(i) 7→ γ(i).
(Note that there are composite morphisms α(i)→ β(i) implicit in the diagram
defining nn.)

• The map M• → Q• is the composition M• → N• → Q•.

• The map P• → N• is corepresented by the morphism in homcModel∗∗(n
•,p•)

which is simply the defining inclusion in each level. Note that this is obtained by

applying ccModel∗∗
diag∗−−−→ cModel∗∗ to the morphism in homccModel∗∗(n

••,p••)
which is again simply the defining inclusion in each bidegree. This latter map
corepresents a map P•• → N•• in ssS, from which the map P• → N• in sS is

therefore obtained by applying ssS
diag∗−−−→ sS.

Now, since |P•| ' colim[n]◦∈∆op |P•,n| and |N•| ' colim[n]◦∈∆op |N•,n|, to prove
that the map P• → N• is in WKQ, it suffices to prove that for each [n]◦ ∈∆op,

8Of course, really it would already have sufficed to obtain the zigzag M• → N• ← P• → Q• of
maps in WKQ, but this proof is almost no more work and has the added benefit of showing that
the map inducing the equivalence is the expected one.
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the map |P•,n| → |N•,n| is an equivalence in S, i.e. that the map P•,n → N•,n is
in WKQ.

To see this, we construct an inverse up to left homotopy in sSKQ for this map.
This is corepresented by the map in homcModel∗∗(p

•,n,n•,n) given in level m by
the unique functor satisfying α(i) 7→ α(i), β(i) 7→ γ(0), and γ(i) 7→ γ(i). As
the resulting composite map n•,n → p•,n → n•,n in cModel∗∗ is the identity, it
follows that the corepresented composite map N•,n → P•,n → N•,n is also the
identity.

On the other hand, the composite map p•,n → n•,n → p•,n is not equal to the
identity. However, it suffices to give a left homotopy corepresentation

{phim ∈ homModel∗∗(p
m+1,n,pm,n)}0≤i≤m≥0

from this composite to idp•,n , which we define by taking ph
i
m to be the unique

functor satisfying

α(j) 7→
{
α(j), j ≤ i
α(j − 1), j > i

β(j) 7→
{
β(j), j ≤ i
γ(0), j > i

γ(j) 7→ γ(j).

(It is tedious but straightforward to verify that these formulas do indeed define
such a left homotopy corepresentation.) By Lemma 6.4.29 this gives us a left
homotopy in sSKQ from the corepresented composite map P•,n → N•,n → P•,n
to idP•,n , and so by Lemma 6.4.26 this corepresented composite map becomes
equivalent upon geometric realization to id|P•,n|. Thus, the map P•,n → N•,n
does indeed lie in WKQ for all [n]◦ ∈ ∆op, so that the map P• → N• lies in
WKQ as well.

• The vertical map P• → Q• is of course given by the composition P• → N• →
Q•. More explicitly, it is corepresented by the morphism in homcModel∗∗(q

•,p•)
given in level n by the unique functor satisfying α(i) 7→ α(i) and β(i) 7→ γ(i).

• The horizontal map P• → Q• is corepresented by the morphism in homcModel∗∗(q
•,p•)

which is simply the the defining inclusion in each level. Note that this is ob-

tained by applying ccModel∗∗
diag∗−−−→ cModel∗∗ to the morphism in homccModel∗∗(q

••,p••)
which is again simply the defining inclusion in each bidegree. This latter map
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corepresents a map P•• → Q•• in ssS, from which the horizontal map P• → Q•

in sS is therefore obtained by applying ssS
diag∗−−−→ sS.

Now, since |P•| ' colim[m]◦∈∆op |Pm,•| and |Q•| ' colim[m]◦∈∆op |Qm,•|, to prove
that the horizontal map P• → Q• is in WKQ, it suffices to prove that for each
[m]◦ ∈ ∆op, the map |Pm,•| → |Qm,•| ' Qm is an equivalence in S (where the
given equivalence comes from the fact that Qm,• ' const(Qm)).

Via the map Pm,• → Qm,• ' const(Qm), we can consider Pm,• as a simplicial
object

∆op Pm,•−−→ S/Qm ;

moreover, |Pm,•| is still its colimit in this∞-category since colimits in S/Qm are
created in S. Now, we have a composite equivalence

Fun(Qm, S)
Gr−→
∼

LFib(Qm) ' S/Qm

(recall Remark 3.1.5), under which the above simplicial object corresponds to
a simplicial object

∆op Gr−1(Pm,•)−−−−−−→ Fun(Qm, S).

Hence, to show that |Pm,•| ∈ S/Qm is a terminal object (i.e. to show that

|Pm,•|
∼−→ Qm), it suffices to obtain an equivalence

|Gr−1(Pm,•)| ' ptFun(Qm,S).

As colimits in Fun(Qm, S) are computed pointwise, for this it suffices to show
that for any point q ∈ Qm, we have

|Gr−1(Pm,•)(q)| ' ptS.

Moreover, the naturality of the Grothendieck construction implies that we can
identify the constituent simplicial spaces of this geometric realization as

Gr−1(Pm,n)(q) ' lim


Pm,n

ptS Qmq
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for all n ≥ 0 in a way compatible with the simplicial structure maps; in other
words, we have an equivalence

Gr−1(Pm,•)(q) ' lim


Pm,•

ptsS const(Qm)
const(q)


in sS.

Now, by definition Qm = hom(Model∞)∗∗(q
m,M), and so our point q ∈ Qm cor-

responds to some map qm
q′−→M in (Model∞)∗∗. Via this map we can consider

M ∈ ((Model∞)∗∗)qm/, and it is not hard to see that we have equivalences

lim


Pm,•

ptsS const(Qm)
const(q)

 ' homlw
((Model∞)∗∗)qm/

(pm,•,M)

' N∞

((
Wy

�

)
(y
≈
�q′(β(i)))/

)
.

But this last simplicial space is the nerve of an ∞-category with an initial
object, so it has contractible geometric realization by Proposition 2.2.4 and
the opposite of Corollary 3.4.11. Thus, we have shown that |Pm,•|

∼−→ Qm,
which as we have seen implies that |P•|

∼−→ |Q•|, i.e. that P• → Q• lies in WKQ.

• The maps P• → P• ×∆1 are given by

P• ' P• ×∆{i} → P• ×∆1,

where we take i = 0 for the horizontal map and i = 1 for the vertical map.
These lie in WKQ since the geometric realization functor |−| : sS → S (as a
sifted colimit) commutes with finite products.

• The map P• ×∆1 → Q• is the corepresented left homotopy associated to the
left homotopy corepresentation

{{qhin ∈ homModel∗∗(q
n+1,pn)}0≤i≤n}n≥0
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given by defining qh
i
n to be the unique functor satisfying

α(j) 7→
{
α(j), j ≤ i
α(j − 1), j > i

β(j) 7→
{
β(j), j ≤ i
γ(j), j > i.

(It is tedious but straightforward to verify that these formulas do indeed define
a suitable left homotopy corepresentation.)

Thus, we have exhibited the above original commutative diagram in sS and shown
that it lies entirely in WKQ. In particular, it follows that |M•|

∼−→ |Q•|, i.e. that∥∥homlw
M(σcyl•(x), σpath•(y))

∥∥ ∼−→ 3̃(x, y)gpd,

as desired.

We now prove an auxiliary result which was needed in the proof of Proposi-
tion 6.5.1, an analog of [DK80b, Proposition 6.11].9

Lemma 6.5.2. If y ∈ Mf is fibrant and σpath•(y) ∈ sM is any special path object
for y, then the functor

∆op →Wy

�

[n]◦ 7→ (y
≈
� σpathn(y))

is final.

Proof. According to the characterization of Theorem A (3.4.10), it suffices to show

that for any object (y
≈
� z) ∈ Wy

� , the groupoid completion of the comma ∞-
category

∆op ×
Wy

�

(
Wy

�

)
(y
≈
�z)/

9The proof of [DK80b, Proposition 6.11] contains a mild but rather confusing typo. There, it is
claimed that a certain category is isomorphic to the homotopy colimit of a simplicial set, which is
then claimed to have the same homotopy type as another simplicial set. In fact, it is the nerve of the
category which is isomorphic to the first simplicial set itself (without saying “homotopy colimit”),
and then this simplicial set is equivalent to the other simplicial set because the latter is the nerve
of the category of simplices of the former. This last statement can be seen as coming from the fact
that there are two ways to take the homotopy colimit of a simplicial set: either by taking its usual
geometric realization, or by taking the geometric realization of its simplicial replacement.
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is contractible.
First of all, note that the chosen equivalence y ' σpath0(y) endows the object

homlw
M(y, σpath•(y)) ∈ sS with a canonical basepoint ptsS → homlw

M(y, σpath•(y)).
The dual of Proposition 6.2.1(1) implies that the map

homlw
M(z, σpath•(y))→ homlw

M(y, σpath•(y))

is in (W∩F)KQ, which implies (by Proposition 1.6.5) that its fiber over that basepoint
has contractible geometric realization. As fibers (being limits) in sS = Fun(∆op, S)
are computed objectwise, this fiber is given in level n by

hom(
Wy

�

) (y ≈
� z, y

≈
� σpathn(y)

)
.

(Note that the inclusions Wy

� ⊂ Wy/ ⊂ My/ are both inclusions of full subcate-
gories (the latter by the two-out-of-three property).) By the Bousfield–Kan colimit
formula (Theorem 3.5.8), the geometric realization of this simplicial space is equiv-
alent to the geometric realization of its simplicial replacement when considered in
sS = Fun(∆op, S). In level n, this simplicial replacement is given by∐

α∈N(∆op)n

hom(
Wy

�

) (y ≈
� z, y

≈
� σpathα(0)(y)

)
.

We claim that this latter simplicial space is precisely the nerve of the comma
∞-category

∆op ×
Wy

�

(Wy

� )
(y
≈
�z)/

.

To see this, observe that

N∞

(
∆op ×

Wy

�

(Wy

� )
(y
≈
�z)/

)
n

= homCat∞

(
[n],∆op ×

Wy

�

(
Wy

�

)
(y
≈
�z)/

)

' lim


homCat∞

(
[n],
(
Wy

�

)
(y
≈
�z)/

)

homCat∞([n],∆op) homCat∞

(
[n],Wy

�

)

 .

Since homCat∞([n],∆op) ' N(∆op)n is discrete, this pullback is equivalent to a co-
product over its elements of the corresponding fibers. Over the element α ∈ N(∆op)n,
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this fiber is

lim


homCat∞

(
[n],
(
Wy

�

)
(y
≈
�z)/

)
{

[n]
α−→∆op →Wy

�

}
homCat∞

(
[n],Wy

�

)



' lim


homCat∞

(
{(−1)→ · · · → n},Wy

�

)

homCat∞([n],Wy

� )
{

[n]
α−→∆op →Wy

�

}
homCat∞

(
{(−1)},Wy

�

)
{(y

≈
� z)}



' lim


homCat∞

(
{(−1)→ 0},Wy

�

)

homCat∞

(
[0],Wy

�

){
(y

≈
� σpathα(0)(y))

}
homCat∞

(
{(−1)},Wy

�

)
{(y

≈
� z)}


' hom(

Wy

�

) (y ≈
� z, y

≈
� σpathα(0)(y)

)
.

Moreover, it is clear that the structure maps of this simplicial space agree with those
of the above simplicial replacement: both are ultimately induced by the structure
maps of σpath•(y) ∈ sM. So, these are indeed equivalent simplicial spaces.

We have just shown that the geometric realization of the complete Segal space

N∞

(
∆op ×

Wy

�

(Wy

� )
(y
≈
�z)/

)
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is contractible. Thus, by Proposition 2.2.4, the groupoid completion(
∆op ×

Wd

�

(Wd

� )
(d
≈
�d′)/

)gpd

is indeed contractible.

6.6 The equivalence 3̃(x, y)gpd ' 3(x, y)gpd

We now prove that the∞-category of three-arrow zigzags from x to y has equivalent
groupoid completion to that of its subcategory of special three-arrow zigzags.

Proposition 6.6.1. For any model ∞-category M and any x, y ∈ M, the unique
map 3→ 3̃ in Model∗∗ induces an equivalence

3̃(x, y)gpd ∼−→ 3(x, y)gpd

on groupoid completions of ∞-categories of zigzags in M from x to y.

Proof. We apply the functor
(
Fun>

∗∗(−,M)W
)gpd

to the sequence of maps in Model>∗∗
given in the proof of [MG16, Proposition 3.11(1)] (which factors the unique map
3 → 3̃ in Model∗∗). To show that the induced maps in S are all equivalences, the
arguments given there generalize as follows.

• To show that the maps ϕ1 and ϕ4 defined there induce equivalences in S, we
replace the appeal to [MG16, Lemma 3.9(1)] with an appeal to the factorization
lemma (6.4.24).

• The maps ϕ2 and ϕ5 defined there even induce equivalences in Cat∞ upon
application of Fun>

∗∗(−,M)W; to see this, we use the argument given in the
proof of Proposition 6.7.1 for why the maps ϕ2, ϕ4, ϕ9, and ϕ11 (of that proof)
have this same property.

• To show that the maps ϕ3 and ϕ6 defined there induce equivalences in S, we
use the argument given in the proof of Proposition 6.7.1 for why the maps ϕ7

and ϕ14 (of that proof) have this same property.

Thus, we obtain the desired equivalence 3̃(x, y)gpd ' 3(x, y)gpd in S.
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6.7 The equivalence 3(x, y)gpd ' 7(x, y)gpd

We now prove that the ∞-categories of three-arrow zigzags and seven-arrow zigzags
from x to y have equivalent groupoid completions.

Proposition 6.7.1. If M is a model ∞-category, then for any x, y ∈ M, the map
7 → 3 in Model∗∗ given by collapsing the middle four instances of W± induces an
equivalence

3(x, y)gpd ∼−→ 7(x, y)gpd

on groupoid completions of ∞-categories of zigzags in M from x to y.

Proof. In essence, we use the factorization lemma (6.4.24) to remove each instance
of W−1 in 7 which is adjacent to the unique instance of A, and then we “compose
out” the remaining instances of W. To be precise, we define a diagram

7
ϕ1−→ I1

ϕ2−→ I2
ϕ3←− I3

ϕ4−→ I4
ϕ5←− I5

ϕ6←− I6
ϕ7←− I7

ϕ8−→ I8
ϕ9−→ I9

ϕ10←−− I10
ϕ11−−→ I11

ϕ12−−→ I12
ϕ13←−− I13

ϕ14←−− 3

in Model>∗∗, given by

7 =
(
s • • • • • • t≈ ≈ ≈ ≈ ≈ ≈

)
ϕ1−→

 s • • • • • • t

•

≈ ≈ ≈

≈

≈ ≈ ≈

≈


ϕ2−→

 s • • • • • • t

• •

≈ ≈ ≈

≈

≈ ≈ ≈

≈

≈ ≈


p.b.

ϕ3←−

 s • • • • • • t

• •

≈ ≈ ≈

≈

≈ ≈ ≈

≈

≈ ≈


ϕ4−→

 s • • • • • • t

• • •

≈ ≈ ≈

≈ ≈

≈ ≈ ≈

≈

≈ ≈


p.o.



406

ϕ5←−

 s • • • • • • t

• • •

≈ ≈ ≈

≈ ≈

≈ ≈ ≈

≈

≈ ≈


ϕ6←−
(
s • • • • • t≈ ≈ ≈ ≈ ≈

)
ϕ7←−
(
s • • • • t≈ ≈ ≈ ≈

)
ϕ8−→

 s • • • • t

•

≈ ≈ ≈

≈

≈

≈


ϕ9−→

 s • • • • t

• •

≈ ≈ ≈

≈

≈

≈ ≈


p.b.

ϕ10←−−

 s • • • • t

• •

≈ ≈ ≈

≈

≈

≈ ≈


ϕ11−−→

 s • • • • t

• • •

≈ ≈ ≈

≈ ≈

≈
≈ ≈

≈


p.o.

ϕ12←−−

 s • • • • t

• • •

≈ ≈ ≈

≈ ≈

≈

≈ ≈

≈


ϕ13←−−

(
s • • • t≈ ≈ ≈

)
ϕ14←−−

(
s • • t≈ ≈

)
= 3,

where all maps are the completely evident inclusions, except that

• ϕ6 and ϕ13 are the “lower inclusions” (whose images omit any objects in the
upper rows that are the source or target of a drawn-in diagonal arrow – note
that there are certain “hidden” diagonal maps in I5 and I12, which are only
composites of drawn-in arrows), and



407

• ϕ7 and ϕ14 are obtained by taking the unique copy of A onto the composite
[W; A] or [A; W], respectively.

We claim that this induces a diagram of equivalences in S upon application of(
Fun>

∗∗(−,M)W
)gpd

. The arguments can be grouped as follows.

• The maps ϕ1 and ϕ8 induce equivalences in S by the factorization lemma
(6.4.24).

• The maps ϕ2, ϕ4, ϕ9, and ϕ11 actually even induce equivalences in Cat∞ upon
application of Fun>

∗∗(−,M)W; this follows from the facts that

– M is finitely bicomplete,

– the subcategories (W ∩ F), (W ∩ C) ⊂ M are respectively closed under
pullbacks and pushouts, and

– the subcategory W ⊂M has the two-out-of-three property

(see e.g. Proposition T.4.3.2.15).

• Upon application of Fun>
∗∗(−,M)W, the maps ϕ3 and ϕ10 induce functors which

admit left adjoints, and so they induce equivalences in S upon application of(
Fun>

∗∗(−,M)W
)gpd

by Corollary 2.1.28. Dually, the maps ϕ5 and ϕ12 also
induce equivalences in S.

• The maps ϕ6, ϕ7, ϕ13, and ϕ14 admit evident retractions ψ6, ψ7, ψ13, and ψ14,
respectively. Moreover,

– there are evident cospans of doubly-pointed natural weak equivalences
connecting idI5 with ϕ6 ◦ ψ6 and connecting idI12 with ϕ13 ◦ ψ13, and

– there are evident doubly-pointed natural weak equivalences ϕ7 ◦ψ7
≈→ idI6

and idI13

≈→ ϕ14 ◦ ψ14.

Hence, by Lemmas 6.4.22 and 2.1.26, these maps all induce equivalences in S.

Thus, we obtain the desired equivalence 3(x, y)gpd ' 7(x, y)gpd in S which, tracing
back through the above zigzag in Model>∗∗, it is clear is indeed induced by the asserted
map 7→ 3 in Model∗∗.
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6.8 Localization of model ∞-categories

So far, given a model ∞-category M and suitably co/fibrant objects x, y ∈ M, we
have related the spaces of left/right homotopy classes of maps from x to y to the
groupoid completions of various ∞-categories of zigzags from x to y. However, in
order to show that these are all actually equivalent to the space homMJW−1K(x, y)
of maps from x to y in the localization MJW−1K, we must access this latter hom-
space. This aim is one of the primary purposes of the local universal property of the
Rezk nerve (Theorem 2.3.8) and the calculus theorem (4.5.1), which we now bring
to fruition. The following result will be strictly generalized by Theorem 6.10.1, but
the latter actually requires the full force of the fundamental theorem of∞-categories
(Theorem 6.1.9). Thus, to avoid circularity, we prove only this weaker version first.

Proposition 6.8.1. If M is a model∞-category with underlying relative∞-category
(M,W), then NR

∞(M,W) ∈ SS, and moreover the morphism N∞(M)→ LCSS(N
R
∞(M,W))

in CSS corresponds to the morphism M→MJW−1K in Cat∞.

Proof. The first claim is obtained by combining Lemma 6.8.2 and the calculus the-
orem (4.5.1(1)), while the second claim follows from the local universal property of
the Rezk nerve (Theorem 2.3.8).

We now give an auxiliary result on which the proof of Proposition 6.8.1 relies.

Lemma 6.8.2. If M is a model ∞-category, then its underlying relative ∞-category
(M,W) admits a homotopical three-arrow calculus.

Proof. After choosing any pair of objects x, y ∈M, we apply the functor
(
Fun>

∗∗(−,M)W
)gpd

to the diagram in Model>∗∗ given in the proof of [MG16, Proposition 3.16(1)]. To
show that the induced maps in S are all equivalences, the arguments given there
generalize as follows.

• To show that the map ρ1 defined there induces an equivalence in S, we replace
the appeal to [MG16, Lemma 3.9(1)] with an appeal to the factorization lemma
(6.4.24).

• The map ρ2 defined there even induces an equivalence in Cat∞ upon application
of Fun>

∗∗(−,M)W; to see this, we repeatedly apply the argument given in the
proof of Proposition 6.7.1 for why the maps ϕ2, ϕ4, ϕ9, and ϕ11 (of that proof)
have this same property.
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• The map ρ3 defined there induces an equivalence in S in exactly the same
manner; we replace the appeal to [MG16, Lemma 3.10] with an appeal to
Lemmas 6.4.22 and 2.1.26.

Thus, the underlying relative ∞-category (M,W) of the model ∞-category M does
indeed admit a homotopical three-arrow calculus.

6.9 The equivalence 7(x, y)gpd ' homMJW−1K(x, y)

In this section, we show that the groupoid completion of the ∞-category of seven-
arrow zigzags from x to y is equivalent to the hom-space homMJW−1K(x, y), thus
completing the string of equivalences in the proof of the fundamental theorem of
model ∞-categories (6.1.9).

Proposition 6.9.1. For any model ∞-category M and any x, y ∈ M, we have a
canonical equivalence

7(x, y)gpd ∼−→ homMJW−1K(x, y).

Proof. First of all, by Proposition 6.8.1 (and Remark 4.1.5), we have

homMJW−1K(x, y) ' lim


NR
∞(M,W)1

ptS NR
∞(M,W)0 × NR

∞(M,W)0

(s,t)

(x,y)



' lim



ptS

NR
∞(M,W)1 NR

∞(M,W)0

ptS NR
∞(M,W)0

y

t

s

x
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= lim



ptS

(Fun([1],M)W)gpd (Fun([0],M)W)gpd

ptS (Fun([0],M)W)gpd

y

tgpd

sgpd

x



' lim



(ptCat∞)gpd

(Fun([1],M)W)gpd Wgpd

(ptCat∞)gpd Wgpd

ygpd

tgpd

sgpd

xgpd


.

Note that this final limit is that of a diagram in S coming from a diagram in Cat∞
via postcomposition with (−)gpd : Cat∞ → S. We will compute this limit by first
computing the pullback of the lower left cospan (defined by the maps x and s) and
then computing the pullback of the resulting cospan; for both pullbacks we will
appeal to Theorems Bn and Cn (3.4.23 and 3.4.26), noting once and for all that Wop

has property C3 by Lemmas 6.9.2 and 6.8.2.
First of all, by Theorem Cn (3.4.26), the functor

(ptCat∞)op
x◦−→Wop

has property B3. Hence, by Theorem Bn (3.4.23), we have a homotopy pullback
square

(x◦((ptCat∞)op) ↓3 s
op((Fun([1],M)W)op)) (Fun([1],M)W)op

(ptCat∞)op Wop

t

s sop

x◦

in (Cat∞)Th; unwinding the definitions, we can identify the homotopy pullback as

(Fun∗◦([W
−1; W; W−1; A],M)W)op,

where the object x ∈ M determines the pointing. As homotopy pullback squares in
(Cat∞)Th are preserved under the involution (−)op : Cat∞ → Cat∞, it follows that
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we have a pullback square

(Fun∗◦([W
−1; W; W−1; A],M)W)gpd (Fun([1],M)W)gpd

(ptCat∞)gpd Wgpd

sgpd

xgpd

in S, and hence we can simplify the above limit computing homMJW−1K(x, y) to give
the identification

homMJW−1K(x, y) ' lim


(ptCat∞)gpd

(Fun∗◦([W
−1; W; W−1; A],M)W)gpd Wgpd

y

tgpd

 .

Then, again by Theorem Cn (3.4.26), the functor

(Fun∗◦([W
−1; W; W−1; A],M)W)op

top−→Wop

has property B3, so that by Theorem Bn (3.4.23) we have a homotopy pullback square

(top((Fun∗◦([W
−1; W; W−1; A],M)W)op) ↓3 y

◦((ptCat∞)op)) (ptCat∞)op

(Fun∗◦([W
−1; W; W−1; A],M)W)op Wop

t

s y◦

top

in (Cat∞)Th; this time, unwinding the definitions we can identify the homotopy
pullback as

(Fun∗∗([W
−1; W; W−1; A; W−1; W; W−1],M)W)op,

where the objects x, y ∈ M determine the double-pointing. Hence we obtain an
equivalence

7(x, y)gpd = (Fun∗∗([W
−1; W; W−1; A; W−1; W; W−1],M)W)gpd ∼−→ homMJW−1K(x, y),

as desired.

We now provide a result which was needed in the proof of Proposition 6.9.1.

Lemma 6.9.2. If (R,W) ∈ RelCat∞ admits a homotopical three-arrow calculus and
W ⊂ R has the two-out-of-three property, then Wop has property C3.
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Proof. To show that Wop has property C3, we must show that any functor ptCat∞

r◦−→
Wop (selecting an object r◦ ∈Wop) has property B3, i.e. that the induced functor

Wop (r◦(ptCat∞ )↓3−)
−−−−−−−−−→ Cat∞

has property Q, i.e. that for any map z◦
ϕ◦−→ y◦ in Wop (opposite to a map z

ϕ←− y in
W), the induced map

(r◦(ptCat∞) ↓3 z
◦)→ (r◦(ptCat∞) ↓3 y

◦)

is in WTh ⊂ Cat∞. Unwinding the definitions, we can identify this map simply as
the functor

3(W,W)(r, z)→ 3(W,W)(r, y)

that postconcatenates a zigzag r
≈← • ≈→ • ≈← z with the map ϕ (considered as a

[W−1]-shaped zigzag) and then composes the last two maps.10 Thus, the nerve of
the above map in Cat∞ sits as the upper composite in a commutative square

N∞(3(r, z)) N∞([W−1; A; (W−1)◦2](r, y)) N∞(3(r, y))

homLH(W,W)(r, z) homLH(W,W)(r, y)

≈ ≈

≈

χ
LH (W,W)
r,z,y (−,ϕ−1)

in sSKQ, in which

• the lower map

– is the evaluation of the composition map

homLH(W,W)(y, z)× homLH(W,W)(z, r)
χ

LH (W,W)
z,y,r−−−−−−−→ homLH(W,W)(y, r)

in L H(W,W) ∈ CatsS (recall Definition 4.1.8) at the point chosen by the
composite

ptsS → N∞([W−1](z, y))→ homLH(W,W)(z, y)

in which the first map is selected by ϕ and the second map is the defining
inclusion into the colimit, and

10Recall that z3 = (s→ • ← • → t) (see Notation 3.4.14) while 3 = (s
≈← • → • ≈← t), so there

are two orientation-reversals going on here (counting the passage between Wop and W), which
cancel each other out.
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– lies in WKQ ⊂ sS by Proposition 4.4.8,

• the triangle commutes by the definition of the hammock simplicial space as a
colimit over Zop (see Definition 4.2.17),

• the trapezoid commutes by the definition of composition in the hammock lo-
calization (see §4.4), and

• the vertical maps are in WKQ by the fundamental theorem of homotopical
three-arrow calculi (4.3.4) since the relative ∞-category (W,W) ∈ RelCat∞
admits a homotopical three-arrow calculus by Lemma 6.9.3.

The upper map is therefore also in WKQ since WKQ ⊂ sS has the two-out-of-three
property, and hence the result follows from Proposition 2.2.4.

In the proof of Lemma 6.9.2, we needed the following stability property of homo-
topical three-arrow calculi.

Lemma 6.9.3. If (R,W) ∈ RelCat∞ admits a homotopical three-arrow calculus and
W ⊂ R has the two-out-of-three property, then (W,W) ∈ RelCat∞ also admits a
homotopical three-arrow calculus.

Proof. This follows directly from Definition 4.3.1: if W ⊂ R has the two-out-of-three
property, then the vertical maps in the commutative square

Fun∗∗([W
−1; A◦i; A◦j; W−1],W)W Fun∗∗([W

−1; A◦i; W−1; A◦j; W−1],W)W

Fun∗∗([W
−1; A◦i; A◦j; W−1],R)W Fun∗∗([W

−1; A◦i; W−1; A◦j; W−1],R)W

induced by the map (W,W) → (R,W) in RelCat∞ induce monomorphisms in S

upon groupoid completion.

6.10 Localization of model ∞-categories, redux

For completeness, we include the following improvement of Proposition 6.8.1, whose
proof relies on the fundamental theorem of model ∞-categories (6.1.9).

Theorem 6.10.1. If M is a model ∞-category with underlying relative ∞-category
(M,W), then NR

∞(M,W) ∈ CSS, and moreover the morphism N∞(M)→ NR
∞(M,W)

in CSS corresponds to the morphism M→MJW−1K in Cat∞.
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Proof. In light of Proposition 6.8.1, it only remains to show that NR
∞(M,W) is not

just a Segal space, but is in fact complete. By the calculus theorem (4.5.1(2)), this
follows from Lemma 6.10.2 and the fact that W ⊂ M satisfies the two-out-of-three
property.

We needed the following result in the proof of Theorem 6.10.1.

Lemma 6.10.2. If M is a model∞-category, then its underlying relative∞-category
(M,W) is saturated.

Proof. We would like to show that the localization functor M → MJW−1K creates
the subcategory W ⊂ M. This is equivalent to showing that the functor ho(M) →
ho(MJW−1K) creates the subcategory ho(W) ⊂ ho(M). For this, we must show
that if a map x → y in ho(M) is taken to an isomorphism in ho(MJW−1K), then
it lies in the subcategory ho(W). By two-out-of-three axiom M∞2, it suffices to
show this in the case that both objects x, y ∈ Mcf ⊂ M are bifibrant. From here,
with Corollary 6.1.11 in hand, the proof runs identically to that of [Hir03, Theorem
7.8.5].
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Chapter 7

Goerss–Hopkins obstruction
theory for ∞-categories

In this chapter, we construct Goerss–Hopkins obstruction theory for an arbitrary
presentably symmetric monoidal stable ∞-category.

7.0 Introduction

For now, we refer the reader to to §0.3 (particularly §§0.3.3 and 0.3.4) for an overview;
a future version of this thesis (available on the author’s webpage) will contain a proper
introduction to this chapter.

7.0.1 Acknowledgments

This chapter has provided the underlying motivation for much of the material in this
thesis, and as a result, anyone who has contributed to another chapter has effectively
contributed to this chapter as well.

This project was born purely by chance, on a train ride that I happened to share
with Markus Spitzweck in late 2012, during which he introduced me to the world
of motivic homotopy theory and first piqued my interest in the idea of producing a
motivic Goerss–Hopkins obstruction theory (and, someday, motivic modular forms!).
It is a pleasure to thank him for his inspiration and collaboration. I would also
like to thank Dave Carchedi and Justin Noel for their friendship and continued
mathematical support in those early days of this project back in Bonn.

The next phase of this project took place during my time at MIT. I am grateful
to many people who helped this project along during that period: Mark Behrens,
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for believing in me, and for generously sharing his time and expertise; Gijs Heuts,
for convincing me to ditch the hunt for a suitable model category of motivic spectra
and instead learn to work with ∞-categories; Omar Antoĺın Camarena and Gijs
Heuts (again), for their abundant and cheerful enthusiasm throughout our many
conversations, even as we failed over and over to really understand the spiral exact
sequence and reconstruct it homotopy-invariantly; and Dustin Clausen, Jacob Lurie,
Akhil Mathew, and Clark Barwick and the Bourbon Seminar for their many helpful
insights.

I would like to express my deepest thanks to Paul Goerss, Mike Hopkins, and
Haynes Miller for working out such a beautiful and compelling story, and to Paul
Goerss in particular for his many patient and thorough explanation of its finer points.
David Gepner has also been an essential resource throughout the duration of this
project.

Lastly, I would like to thank the Max Planck Institute, MIT, the NSF gradu-
ate research fellowship program (grant DGE-1106400), UC Berkeley’s geometry and
topology RTG (grant DMS-0838703), Philz, and 1369 for their hospitality and/or
financial support during the time that this work was carried out.

7.1 The resolution model structure

We lift results from [GJ09, Chapter II] in order to provide sufficient conditions for
the existence of certain simplicial model ∞-category structures.

Remark 7.1.1. In this section, we will be constructing certain resolution model struc-
tures. These are closely related to the model structures of [DKS93] and [Bou03];
indeed, it is straightforward (but tedious) to verify that the proof of [Bou03, Theo-
rem 3.3] immediately generalizes to an arbitrary right proper model ∞-category M

equipped with a set of h-cogroup objects (in the model ∞-categorical sense). How-
ever, those model structures are in a sense more difficult: they’re built by modifying
(sM)Reedy, and in the end the fibrant objects are exactly the Reedy fibrant objects.
By contrast, using model ∞-categories effectively allows us to obtain a model struc-
ture presenting the desired ∞-category by starting with a trivial model ∞-category
(so that the Reedy model structure on simplicial objects therein will also be trivial).

7.1.1 Enrichments and bitensorings in the presence of
presentability

We begin by providing sufficient conditions for constructing enrichments and biten-
sorings among presentable ∞-categories, and for lifting adjunctions between ∞-
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categories equipped with these to enriched adjunctions.

Proposition 7.1.2. Let V ∈ Alg(PrL) be a presentably monoidal ∞-category, and
let D ∈ ModV(PrL) be a presentable ∞-category equipped with a left action of V.
Then this action − � − : V ×D → D extends to an enrichment and bitensoring of
D over V, encoded by a two-variable adjunction(

V×D
−�−−−−→ D , Vop ×D

−t−−−→ D ,Dop ×D
homD(−,−)−−−−−−→ V

)
.

Proof. The fact that the action takes place in the symmetric monoidal ∞-category
PrL guarantees that it commutes with colimits separately in each variable. From
here, presentability guarantees the co/representability required by the definition of
a two-variable adjunction.

Lemma 7.1.3. Let D be a bicomplete ∞-category, and let I ∈ Cat∞ be a dia-
gram ∞-category. Then the levelwise tensoring of Fun(I,D) over Fun(I, S) com-
mutes with colimits separately in each variable and extends to an action Fun(I,D) ∈
LModFun(I,S)(PrL).

Proof. The levelwise tensoring is given by the composite

Fun(I, S)× Fun(I,D) ' Fun(I, S×D)
Fun(I,−�−)−−−−−−−→ Fun(I,D);

indeed, we obtain Fun(I,D) ∈ LModFun(I,S)(Cat∞) by applying Fun(I,−) to the
data of D ∈ LModS(Cat∞). Moreover, by definition the tensoring − � − : S ×
D→ D commutes with colimits separately in each variable; as colimits in a functor
∞-category are computed pointwise, the above composite commutes with colimits
separately in each variable as well.

Corollary 7.1.4. For any D ∈ PrL, the levelwise tensoring of sD over sS extends
to an enrichment and bitensoring.

Proof. By Lemma 7.1.3, the levelwise tensoring defines an action sD ∈ ModsS(PrL),
and so the claim follows from Proposition 7.1.2.

Observation 7.1.5. Given two ∞-categories D and E, one can define an adjunc-
tion D � E to be a functor A : Dop × E → S satisfying certain co/representability
conditions (see item A(25)). If for some closed monoidal ∞-category V these ∞-
categories are equipped with lifts D and E to V-enriched ∞-categories, then an
enriched adjunction D � E can be defined as a functor A : Dop × E → V satisfying
analogous co/representability conditions. (This recovers an ordinary adjunction be-
tween the underlying unenriched ∞-categories by postcomposition with the functor
homV(1V,−) : V→ S.)



418

Lemma 7.1.6. Let V ∈ Alg(Cat∞) be a presentable monoidal ∞-category, suppose
that two ∞-categories D and E are enriched and bitensored over V, and suppose
we are given an adjunction F : D � E : G between their underlying ∞-categories.
Suppose further that we have a natural equivalence F (− �D −) ' (−) �E F (−) in
Fun(V×D,E). Then the adjunction F a G lifts to a V-enriched adjunction F : D :�
E : G, and moreover we have a natural equivalence G(− tE −) ' (−) tD G(−) in
Fun(Vop × E,D).

Proof. First of all, the final claim follows from our assumption (and the Yoneda
lemma) by the string of natural equivalences

homD(d,G(v tE e)) ' homE(F (d), v tE e) ' homE(v �E F (d), e)

' homE(F (v �D d), e) ' homD(v �D d,G(e))

' homD(d, v tD G(e)).

Now, consider the functor Dop × E → P(V) which takes a pair of objects (d◦, e) ∈
Dop × E to the presheaf taking v◦ ∈ Vop to the space

homD(v�Dd,Ge) ' homE(F (v�Dd), e) ' homE(v�EF (d), e) ' homE(F (d), v tE e).

Since V is presentable, this factors through the Yoneda embedding V
ょV
↪−→ P(V). By

construction, this defines an enriched adjunction F : D � E : G lifting the original
adjunction F a G.

Corollary 7.1.7. For any D ∈ PrL and any monad t ∈ Alg(End(sD)), we ob-
tain a canonical enrichment and bitensoring of Algt(sD) over sS, and moreover the
adjunction Ft : sD� Algt(sD) : Ut is canonically enriched over sS.

Proof. As any object of Algt(sD) is a colimit of free objects, for any K ∈ sS and
any Y ∈ Algt(sD) we define

K � Y = colim(X→Ut(Y ))∈sN/Ut(Y )
Ft(K �X)

(using the action sD ∈ LModsS(PrL) of Corollary 7.1.4). This defines a bifunctor
− � − : sS × Algt(sD) → Algt(sD) which by construction commutes with colimits
separately in each variable. Thus it defines an action Algt(sD) ∈ LModsS(PrL), and
so by Proposition 7.1.2 extends to an enrichment and bitensoring of Algt(sD) over
sS. Then, the enrichment of the adjunction Ft a Ut follows from Lemma 7.1.6.
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7.1.2 Simplicial model structures

We now provide a lifting theorem for constructing simplicial model∞-category struc-
tures. This requires two auxiliary pieces of terminology.

Definition 7.1.8. Given a set I of homotopy classes of maps in C, the subcategory
I-proj of I-projectives is the subcategory of maps with llp(I).

Definition 7.1.9. Let V be a monoidal model∞-category, and suppose that M and
N are V-enriched model ∞-categories. Then a V-enriched Quillen adjunction
between M and N is a V-enriched adjunction F : M� N : G such that the underlying
adjunction F : M� N : G is a Quillen adjunction.

Theorem 7.1.10. Let M be a bicomplete ∞-category, and let F : sS�M : G be an
adjunction such that G commutes with filtered colimits. Write WM = G−1(WsS

KQ),

FM = G−1(FsS
KQ), and CM = (W ∩ F)M-proj. Suppose that the following condition

holds: (
CM ∩ (FM-proj

)
) ⊂WM. (∗)

Then M admits a resolution model structure, denoted Mres, with WM
res = WM,

CM
res = CM, and FM

res = FM, and the above adjunction becomes a Quillen adjunction
F : sSKQ �Mres : G.

Proof. The proof is almost identical to that of [GJ09, Theorem II.4.1] (despite the
fact that there they only work in the special case of a category of simplicial objects);
the only modification which must be made is that in the proofs of [GJ09, Lemmas
II.4.2 and II.4.3] (which construct required factorizations) one must take a coproduct
over homotopy classes of commutative squares.

Remark 7.1.11. In practice, there seems to more-or-less always be (at least) one thing
that’s difficult to check in constructing a model structure. In this case, condition (∗)
of Theorem 7.1.10 effectively requires that those would-be cofibrations that more-
over have the left lifting property for all would-be fibrations are also would-be weak
equivalences. We will give sufficient conditions for this condition to hold in §7.1.3.

Remark 7.1.12. It follows from the proof of Theorem 7.1.10 that one can replace the
condition (∗) with the following pair of conditions:

(∗′) for every map Λn
i → ∆n in JsSKQ, the induced map F (Λn

i ) → F (∆n) lies in

WM ⊂M;

(∗′′) the maps in (W ∩C)M are closed under coproducts, pushouts, and sequential
colimits.
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This is explained in [GJ09, Remark II.4.5].

Theorem 7.1.13. In the setting of Theorem 7.1.10, suppose that we have an ac-
tion M ∈ LModsS(Cat∞), denoted − � − : sS ×M → M, such that this bifunctor
commutes with colimits separately in each variable, and suppose that we have a nat-
ural equivalence F (− × −) ' (−) � F (−) in Fun(sS × sS,M). Then the resolution
model structure canonically enhances to a simplicial model ∞-category Mres, and
the Quillen adjunction canonically enhances to an sSKQ-enriched Quillen adjunction
F : sSKQ �Mres : G.

Proof. Using Lemma 7.1.6, the proof is identical to that of [GJ09, Theorem II.4.4].

7.1.3 Sufficient criteria for the satisfaction of condition (∗)
of Theorem 7.1.10

We now provide various conditions guaranteeing that condition (∗) of Theorem 7.1.10
is satisfied.

The key result is the following.

Proposition 7.1.14. In the setting of Theorem 7.1.10, suppose that there exists an
endofunctor R : M → M which factors through the subcategory FM ⊂ M and which
admits a map idM → R whose components lie in WM. Then condition (∗) holds.

Proof. The proof is identical to that of [GJ09, Lemma II.5.1].

Corollary 7.1.15. In the setting of Theorem 7.1.10, suppose that for every object
X ∈M the terminal map X → ptM lies in FM. Then condition (∗) holds.

Proof. This follows from Proposition 7.1.14, taking R = idM (equipped with the
identity coaugmentation).

Corollary 7.1.16. Let N be a bicomplete ∞-category, and for any object Z ∈ N

consider the adjunction

−� const(Z) : sS� sN : homlw
N (Z,−).

If the object Z ∈ N is small, then this adjunction satisfies condition (∗) of Theo-
rem 7.1.10.

Proof. With the theory of the Ex∞ functor for sSKQ of §1.6 in hand (specifically
Proposition 1.6.22 and Remark 1.6.23), this follows from Proposition 7.1.14 by an
identical argument to that of [GJ09, Proposition II.5.5].
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Remark 7.1.17. The technique of Corollary 7.1.16 cannot work for a general (bicom-
plete) ∞-category equipped with a right adjoint functor to sS: it must be an ∞-
category of simplicial objects. In effect, this is because the endofunctor Ex is a right
adjoint, but it is not an enriched right adjoint. Indeed, the functor homsS(∆

1,−) :
sS → sS is an example of an enriched limit and so commutes with any enriched
right adjoint, but the canonical map Ex(homsS(∆

1,−)) → homsS(∆
1,Ex(−)) is not

an equivalence; this can be seen by evaluating on ∆1, since the source has three
0-simplices but the target has five.

Corollary 7.1.18. Let N ∈ PrL, and let Z ∈ N be a small object. Then with the
enrichment and bitensoring of sN over sS of Corollary 7.1.4, there exists a simplicial
model structure on sN created by the sS-enriched Quillen adjunction

−� const(Z) : sSKQ � sNres : homlw
N (Z,−).

Proof. By Corollary 7.1.16, this adjunction satisfies condition (∗) of Theorem 7.1.10
and hence creates a model structure on sN. By Lemma 7.1.3, this adjunction fur-
thermore satisfies the hypotheses of Theorem 7.1.13, so that sNres and the Quillen
adjunction becomes compatibly sSKQ-enriched.

We will also be interested in the following “many-object” version of Corollary 7.1.18.

Theorem 7.1.19. Let N ∈ PrL, and suppose we are given a set of small objects
Zα ∈ N. Then with the enrichment and bitensoring of sN over sS of Corollary 7.1.4,
there exists a simplicial model structure on sN created by the sS-enriched Quillen
adjunction ∐

α

prα(−)� const(Zα) :
∏
α

sSKQ � sNres :
(
homlw

N (Zα,−)
)
.

Proof. Given the above results, the proof is essentially identical to that of [GJ09,
Proposition II.5.9].

Remark 7.1.20. In Theorem 7.1.19, if the objects Zα form a set of compact projective
generators (in the sense of Definition T.5.5.8.23) and the ∞-category N has enough
projectives, then weak equivalences and fibrations in sNres will be detected by all
projective objects (see [GJ09, Example II.5.10]).

We now identify the underlying ∞-category of the resolution model structure of
Theorem 7.1.19.
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Definition 7.1.21. For an ∞-category D admitting finite coproducts, we write
PΣ(D) = Fun×(Dop, S) for its nonabelian derived∞-category of product-preserving
presheaves (i.e. of functors taking finite coproducts in D to finite products in S).
We write PδΣ(D) ⊂ PΣ(D) for its subcategory of discrete objects; thus PδΣ(D) '
Fun×(Dop, Set) ' Fun×(ho(D)op, Set).

Theorem 7.1.22. In the situation of Theorem 7.1.19, writing G ⊂ N for the full
subcategory generated by the objects Zα under finite coproducts, we have a canonical
Quillen adjunction

Fun(Gop, sSKQ)proj � sNres

with derived adjunction given by the canonical adjunction

P(G)� PΣ(G)

whose right adjoint is the defining inclusion.

Proof. The projective model structure can also be seen as lifted via Theorem 7.1.19
from the same product of copies of the model ∞-category sSKQ, which implies that
this is indeed a Quillen adjunction. As the functor |−| : sS→ S commutes with finite
products, it follows that the derived right adjoint factors through the subcategory
PΣ(G) ⊂ P(G). Moreover, as N is presentable, the restricted Yoneda embedding
participates in an adjunction PΣ(G) � N, from which it follows that this derived
right adjoint surjects onto PΣ(G) (by taking the constant simplicial object on a given
object of N, seen as a product-preserving presheaf on G). So, it will suffice to show
that the functor sNJW−1

resK→ P(G) is fully faithful. First of all, taking any X ∈ sNf
res,

since sNres is simplicial, for any K ∈ sSet = sScKQ we have that

homsNJW−1
resK(K � const(Zα), X) ' homsN(K � const(Zα), X)

' homsS(K, homsN(const(Zα), X))

' homsS(K, homlw
N (Zα, X))

' homS(|K|, | homlw
N (Zα, X)|)

(where the last equivalence uses the fact that sSKQ is a simplicial model∞-category).
The claim now follows from the fact that IsNres = {IsSKQ � const(Zα)} forms a set of
generating cofibrations of sNres, so that we can construct a cofibrant replacement of
any object as a transfinite composition of pushouts of these maps.

We end this subsection with the following result, which gives a convenient class
of examples for which the condition of Corollary 7.1.15 holds (i.e. that all objects are
(“would-be”) fibrant). It is an ∞-categorical analog of the classical fact that every
simplicial group is in particular a Kan complex.
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Lemma 7.1.23. In the adjunction FsGrp(S) : sS � sGrp(S) : UsGrp(S), the right

adjoint factors through the subcategory sSfKQ ⊂ sS of fibrant objects with respect to
the Kan–Quillen model structure.

Proof. Observe that the adjunction FGrp(S) : S � Grp(S) : UGrp(S) factors as the
composite adjunction

S Mon(S) Grp(S).
FMon(S)

UMon(S)

(−)gp

We claim that the diagram

Set Mon Grp

S Mon(S) Grp(S)

FMon (−)gp

FMon(S) (−)gp

commutes.1 Indeed, recall the factorization

Mon(S) Grp(S),

S∗

(−)gp

B Ω

and recall that the functor Mon(S)
B−→ S∗ can itself be obtained as the composite

Mon(S)
B−→ (Cat∞)∗

(−)gpd

−−−−→ (Gpd∞)∗ ' S∗

(where B denotes the “categorical delooping” functor). The claim now follows from
the commutativity of the diagram

Set Mon Cat∗ Gpd∗

S Mon(S) (Cat∞)∗ (Gpd∞)∗,

FMon B (−)gpd

FMon(S) B (−)gpd

1If we were to add in the middle vertical inclusion Mon ↪→ Mon(S), the left square would
commute (simply by inspection of the functor FMon(S)), but the right square would not: its extreme
failure to do so is encoded by [McD79, Theorem 1].
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which itself follows from [DK80c, 5.4].
Now, applying Fun(∆op,−) to the original commutative rectangle, we obtain a

commutative square

sSet sGrp

sS sGrp(S).

FsGrp

FsGrp(S)

In particular, the image of any element Λn
i → ∆n of JsSet

KQ = JsSKQ under the composite

sSet ↪→ sS
FsGrp(S)−−−−→ sGrp(S)

admits a retraction (see e.g. [GJ09, Lemma I.3.4]). This proves the claim.

7.2 Topology

In this section, we lay out the basic topological framework (absent any operadic
structure).

7.2.1 Foundations of topology

Assumption 7.2.1. We begin with a presentably symmetric monoidal stable ∞-
category C = (C,⊗,1). By presentability, this will automatically be closed (i.e. admit
an internal hom bifunctor).

Remark 7.2.2. When it is convenient, we will consider C as being enriched over
the symmetric monoidal ∞-category (S∗,∧, S0) of pointed spaces equipped with the
smash product: the basepoint 0 ∈ homC(X, Y ) is given by the unique “zero map”
X → 0C → Y , and the fact that the composition maps factor through the smash
products amounts to the observation that any sequence of composable maps in which
at least one of the maps is a zero map composes canonically to another zero map.
Moreover, C admits a canonical bitensoring over S∗ which is compatible with this
enrichment. (It is not hard to make these assertions precise using the formalism of
[GHa].)

Notation 7.2.3. We write D = homC(−,1) : Cop → C for the “linear dual” functor,
and we write Cinv ⊂ Cd ⊂ C for the full subcategories of invertible objects and of
dualizable objects.
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Assumption 7.2.4. We assume that the unit object 1 ∈ C is compact, i.e. that the
functor homC(1,−) : C→ S commutes with filtered colimits.

Observation 7.2.5. It follows immediately from Assumption 7.2.4 that any invert-
ible object of C is necessarily compact. In fact, because of the assumption that the
symmetric monoidal structure commutes with colimits separately in each variable,
it follows that any dualizable object is compact as well: this is a consequence of the
natural equivalence homC(X,−) ' homC(1,DX ⊗−) in Fun(C, S).

Assumption 7.2.6. We assume the existence of a small subcategory G ⊂ C of
(strong) generators, which we generally denote by Sβ ∈ G (with the “S” and “β”
chosen to evoke the notion of a “bigraded sphere” (from motivic stable homotopy
theory)); that is, we assume that the functors

homC(Sβ,−) : C→ S

are jointly conservative. We moreover assume that the subcategory G ⊂ C

• contains the unit object 1 ∈ C,

• is closed under de/suspensions,

• consists of invertible objects, and

• is closed under the monoidal product of C.

We write Sn+β = ΣnSβ for any n ∈ Z.

Notation 7.2.7. We write Gδ = π0(G') ∈ AbGrp for the abelian group of equivalence
classes of objects of G, with addition given by the monoidal product of C. We denote
the element corresponding to Sβ ∈ G simply by β ∈ Gδ.

Definition 7.2.8. For any β ∈ Gδ, we refer to the equivalence Sβ⊗− : C
∼−→ C as the

β-fold suspension . The ordinary notion of suspension is recovered as (Σn1)⊗− :
C
∼−→ C. We will henceforth refer to any β-fold suspension as a “suspension”, and

refer to this latter more restrictive notion as a categorical suspension . We denote
β-fold suspension by Σβ, and categorical suspension simply by Σn. (Note that these
conventions jibe with those of Assumption 7.2.6.) While through this definition the
term “desuspension” technically becomes superfluous, we will nevertheless continue
to employ it for aesthetic reasons.

Notation 7.2.9. We write A = Fun(Gδ,Ab) for the category of Gδ-graded abelian
groups, equipped with the Day convolution monoidal structure relative to (Gδ,+) =
(Gδ,⊗C) and (Ab,⊗Z). This receives a “homotopy” functor π> : C → A, given by
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πβX = (π>X)(Sβ) = [Sβ, X]C.2 This functor is is itself lax monoidal, and in fact
descends along the monoidal functor C → ho(C) to another lax monoidal functor
π> : ho(C)→ A.

Remark 7.2.10. As a result of Assumption 7.2.6, to say that G ⊂ C is a subcategory
of strong generators is precisely to say that the functor π> : C → A creates the
equivalences in C.

Remark 7.2.11. One could alternatively consider the “homotopy” functor as taking
values in PδΣ(G∨) = Fun((G∨)op, Set), the category of product-preserving presheaves
of sets on the closure of G ⊂ C under finite coproducts (which remain coproducts
in ho(C) since π0 : S → Set preserves products). This is analogous to the “Π-
algebra” perspective taken by Dwyer–Kan–Stover in [DKS95] and by Blanc–Dwyer–
Goerss in [BDG04]. However, in order to obtain a computable obstruction theory,
Goerss–Hopkins take an alternative route, considering the homotopy groups of a
spectrum simply as a Z-graded abelian group (rather than as a module over the
stable homotopy groups of spheres).3

We conclude this subsection with a few remarks concerning the choice of ambient
∞-category.

Remark 7.2.12. If we remove the requirement that C be stable, it becomes necessary
to assume that the generators admit desuspensions in order for Lemma 7.2.45 to
hold. It also becomes necessary to assume that the generators are h-cogroup objects
(with respect to the wedge sum) in order to construct the relevant spectral sequence,
but of course this is a strictly weaker assumption. More broadly, a great many of
the arguments would become substantially more delicate.

Remark 7.2.13. If we only require C to be monoidal (instead of symmetric monoidal),
then by the so-called “microcosm principle” it will only make sense to discuss as-
sociative algebras in C, instead of commutative algebras. In the setting of ordinary
spectra, associative algebras can be constructed via Hopkins–Miller obstruction the-
ory (see [Rez98]), which is far simpler than Goerss–Hopkins obstruction theory since
it is not necessary to resolve the associative operad (see §7.3.3.2). On the other
hand, if we set our sights lower and remove the operad from the picture entirely,
we simply recover an abstract version of Blanc–Dwyer–Goerss obstruction theory

2This is the composite of the canonical projection C→ ho(C) followed by the restricted Yoneda
embedding along the functor Gδ → ho(C); note that we have a canonical equivalence Gδ ' (Gδ)op

since this category has no nonidentity morphisms.
3Nevertheless, product-preserving presheaves pervade this story. We will mostly suppress them,

but we will need to discuss them explicitly in §7.4.4.
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(see [BDG04]). In any case, we expect that practical examples of interest will carry
symmetric monoidal structures anyways.

7.2.2 The resolution model structure

Notation 7.2.14. Let E ∈ CAlg(ho(C)) be a homotopy commutative algebra object
in C. This induces E> = π>E ∈ CAlg(A), and we write A = ModE>(A) for its
category of modules. Then we obtain a “homology” functor E> : C→ A by E>X =
π>(E ⊗X).

Definition 7.2.15. An E>-equivalence in C is a morphism which becomes an
isomorphism under the functor E> : C→ A.

Notation 7.2.16. By definition, the E>-equivalences are created by the composite

C
E⊗−−−−→ C

π∗−→ A (as isomorphisms in A are created in A). However, Remark 7.2.10

implies that they are also created by the functor C
E⊗−−−−→ C. Our assumption that

C is presentably symmetric monoidal immediately implies that the E>-equivalences
are strongly saturated (in the sense of Definition T.5.5.4.5), and so by Proposition
T.5.5.4.15 there exists a left localization adjunction LE> : C� LE(C) : UE> .

Definition 7.2.17. We define the subcategory Aproj ⊂ A of projective objects just
as in classical algebra.

Assumption 7.2.18. We assume henceforth that E satisfies Adams’s condition ,
and fix a witnessing datum: this consists of a filtered diagram E• : J → Cd

/E =

Cd ×C C/E with colim(J
E•−→ C)

∼−→ E, such that for every α ∈ J,

• E>DEα ∈ Aproj, and

• for every M ∈ ModE(ho(C)), the canonical map

[DEα,M ]C → homA(E>DEα, π>M)(
DEα

f−→M
)
7→
(
E>DEα

E>(f)−−−→ E>M = π>(E ⊗M)→ π>M
)

is an isomorphism.

Remark 7.2.19. The canonical map of Assumption 7.2.18 can be equivalently seen
as the composite

[DEα,M ]C ∼= [E ⊗DEα,M ]ModE(ho(C))
π>−→ homA(E>DEα, π>M).
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Observation 7.2.20. For any X ∈ C and any β ∈ Gδ, we have the string of isomor-
phisms

colimα∈J[Σ
βDEα, X]C ∼= colimα∈J[S

β, Eα ⊗X]C ∼= [Sβ, colimα∈J(Eα ⊗X)]C
∼= [Sβ, colimα∈J(Eα)⊗X]C ∼= [Sβ, E ⊗X]C = EβX

in Ab.

Notation 7.2.21. Strings of adjunction isomorphisms having the same flavor as
that of Observation 7.2.20 will frequently be useful to us. Rather than spell out
the isomorphisms each time, we simply refer to this line of reasoning as a colimit
argument .

Notation 7.2.22. We write GEC ⊂ C for the smallest full subcategory containing G

and {DEα}α∈J that is closed under de/suspension and finite coproducts. We generally
write Sε ∈ GEC for an arbitrary object (the letter “ε” being suggestive of the letter
“E”), although we continue to write Sβ ∈ G ⊂ GEC for an arbitrary object of G when

considered as an object of GEC . We write GEC
δ

= π0((GEC )'), and so (just as we write

β ∈ G) we also simply write ε ∈ GEC
δ

to denote an arbitrary element.

Observation 7.2.23. For any Sε ∈ GEC and any M ∈ ModE(ho(C)), we have an
isomorphism

[Sε,M ]
∼=−→ homA(E>S

ε, π>M).

This can be seen as follows.

• For Sε = DEα, this follows from Assumption 7.2.18.

• For Sε = Sβ ∈ G, note that E>S
β ∼= E> ⊗1> π>S

β, and so we are interested in
the composite

[Sβ,M ]C ∼= [E⊗Sβ,M ]ModE(ho(C))
π>−→ homA(E>S

β, π>M) ∼= homMod1> (A)(π>S
β, π>M),

which is an isomorphism with inverse given by evaluation at the universal
element of πβS

β.

• In general, this property is preserved both by de/suspension and by the forma-
tion of finite coproducts.

Notation 7.2.24. Recall that sC is canonically enriched and bitensored over sS (see
Corollary 7.1.4); these data assemble into a two-variable adjunction, which we denote
by (

sS× sC −�−−−−→ sC , sSop × sC −t−−−→ sC , sCop × sC homC(−,−)−−−−−−→ sS

)
.
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Definition 7.2.25. We fix the following terminology.

(1) A morphism in ho(C) is called a GEC -epimorphism if the restricted Yoneda
functor ho(C)→ PδΣ(GEC ) takes it to a componentwise surjection.

(2) An object of ho(C) is called GEC -projective if it has the extension property for
all GEC -epimorphisms.

(3) A morphism in ho(C) is called a GEC -projective cofibration if it has the left
lifting property for all GEC -epimorphisms.

Theorem 7.2.26. There is a resolution model structure on sC, denoted sCres,
which enjoys the following properties.

(1) Its weak equivalences and fibrations are created by the functor

sC
X 7→(Sε 7→homlw

C (Sε,X))
−−−−−−−−−−−−−→

∏
GE
C

δ

sSKQ.

(2) It is simplicial.

(3) Its cofibrations are precisely those morphisms whose relative latching maps are
GEC -projective cofibrations.

(4) All objects are fibrant in it.

(5) It is cofibrantly generated by the sets

IsCres = {IsSKQ�const(Sε)}Sε∈GE
C

= {∂∆n�const(Sε)→ ∆n�const(Sε)}n≥0,Sε∈GE
C

and

JsCres = {JsSKQ�const(Sε)}Sε∈GE
C

= {Λn
i�const(Sε)→ ∆n�const(Sε)}0≤i≤n≥1,Sε∈GE

C
.

Proof. This follows from Theorem 7.1.19 and Lemma 7.1.23.

Remark 7.2.27. It will follow from the localized spiral exact sequence of Construc-
tion 7.2.52 that the weak equivalences of sCres are created by the functor

sC
[=,−]lw

C−−−−→ sFun(GEC ,Ab) ' Fun(GEC , sAbKQ)proj.

(In fact, the fibrations are as well.)
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Definition 7.2.28. We define the subcategory of E>-equivalences , denoted WElw
>

=

WsC
Elw

>
⊂ sC, to be created by pulling back the subcategory WsA

KQ ⊂ sAKQ under the

functor Elw
> : sC→ sAKQ.

Notation 7.2.29. Rather than overburden notation, we simply write πn : sAb→ Ab
for the composite

sAb
|−|−→ AbGrp(S∗)

AbGrp(πn)−−−−−−→ AbGrp(Set∗) = Ab.

This can be obtained more abstractly as a “homotopy” functor from a derived ∞-
category to its heart, and indeed we use this same notation πn to denote all corre-
sponding functors sSet∗ → Set∗, sA→ A, sA→ A, etc.

Observation 7.2.30. Suppose that X
≈→ Y is a weak equivalence in sCres. By

Remark 7.2.27, this means that for every Sε ∈ GEC we obtain a weak equivalence

[Sε, X]lwC
≈→ [Sε, Y ]lwC in sAbKQ, i.e. that we obtain isomorphisms πn([Sε, X]lwC )

∼=−→
πn([Sε, Y ]lwC ) in Ab for all n ≥ 0. In particular, letting Sε range over the set
{ΣβDEα}β∈Gδ,α∈J, by Observation 7.2.20 and since homotopy groups in sSet∗ com-

mute with filtered colimits, we obtain a weak equivalence Elw
> X

≈→ Elw
> Y in sAKQ.

In other words, we have an inclusion Wres ⊂WElw
>

of subcategories of sC.

Observation 7.2.31. In our setting, after a colimit argument the standard filtration
spectral sequence for an object X ∈ sC runs πnE

lw
β X ⇒ Eβ+n|X|. (This agrees with

the spectral sequence associated to the localized spiral exact sequence of Construc-
tion 7.2.52 (see [GHb, Lemma 3.1.5 and Remark 3.1.6]).) Thus, an E>-equivalence
in sC (for instance a weak equivalence in sCres, by Observation 7.2.30) induces an
isomorphism on E2 pages of this spectral sequence. In other words, there exists a
factorization

sC C A

sCJW−1
Elw

>
K

|−| E>

through the localization functor.

Definition 7.2.32. We refer to this spectral sequence E2 = πnE
lw
β X ⇒ E∞ =

Eβ+n|X| as the spiral spectral sequence .

Remark 7.2.33. By Theorem 7.1.22, the resolution model structure presents the

nonabelian derived ∞-category PΣ(GEC ). Moreover, the composite C
const−−−→ sC →

sCJW−1
resK ' PΣ(GEC ) clearly coincides with the restricted Yoneda embedding. We

will generally omit this from the notation.
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7.2.3 The spiral exact sequence

Definition 7.2.34. Choose any n ≥ 0 and any ε ∈ GEC
δ
.

(1) We define the corresponding classical homotopy group functor to be the
composite

πnπε : sC
[Sε,−]lw

C−−−−→ sAb
πn−→ Ab.

(2) We define the corresponding natural homotopy group functor to be either
equivalent composite

sCJW−1
resK

π\n,ε : sC Grp(ho(S∗)) Ab,

Grp(ho(sS∗))

hom
sCJW−1

res K
(Sε,−)

homsC(const(Sε),−)

πn

|−|

where

• the commutativity of the square follows from the fact that sCres

– is simplicial,

– has const(Sε) ∈ sCcres cofibrant, and

– has all objects fibrant,

and

• the fact that the down-and-right functors land in h-group objects follows
from the fact that Sε ∈ C is an h-cogroup object (so that const(Sε) ∈ sC
is as well).

Definition 7.2.35. LetK ∈ sS∗, and letX ∈ sC. We define the reduced tensoring
of X over K to be the pushout

ptsS �X K �X

ptsS � 0sC K�X



432

in sC. This assembles into an action sS∗ × sC→ sC.

Notation 7.2.36. We write Dn
∆ = ∆n/Λn

0 ∈ sSet∗ ⊂ sS∗ for the “reduced pointed
simplicial n-disk” and Sn∆ = ∆n/∂∆n ∈ sSet∗ ⊂ sS∗ for the “reduced pointed sim-
plicial n-sphere”.

Observation 7.2.37. The canonical composite

Sn−1
∆ → Dn

∆ → Sn∆

(where the first map is obtained by considering ∆n−1 ∼= ∆{0,...,n−1} ⊂ ∆n) is a cofiber
sequence not just in sSet∗ but also in sS∗.

Lemma 7.2.38. For any n ≥ 0 and any Sε ∈ GEC , there is a natural isomorphism

π\n,ε(−) ∼= [Sn∆�const(Sε),−]sCJW−1
resK

in Fun(sC,Ab).

Proof. In light of the facts

• that sCres is simplicial,

• that Sn∆�const(Sε) ∈ sCcres is cofibrant, and

• that all objects of sCres are fibrant,

we have the string of natural isomorphisms

[Sn∆�const(Sε),−]sCJW−1
resK
∼= π0|homsC(Sn∆�const(Sε),−)|

∼= π0

∣∣∣∣∣∣∣∣∣lim


homsC(Sn∆ � const(Sε),−)

homsC(ptsS � 0C,−) homsC(ptsS � const(Sε),−)


∣∣∣∣∣∣∣∣∣

∼= π0

∣∣∣∣∣∣∣∣∣∣
lim


homsS(S

n
∆, homsC(const(Sε),−))

ptsS homsC(const(Sε),−)

ev∗

0


∣∣∣∣∣∣∣∣∣∣
.

In order to continue the string of isomorphisms, we make the following observations.
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• The compatibility of sCres with sSKQ implies that the vertical map in this last
expression is a fibration, so that we can commute the limit with the geometric
realization.

• As const(Sε) ∈ sCcres is cofibrant and all objects of sCres are fibrant, then
homsC(const(Sε),−) : sC→ sSfKQ takes values in fibrant objects of sSKQ.

• The object Sn∆ ∈ sScKQ is cofibrant.

Using these, we continue as

∼= π0 lim


|homsS(S

n
∆, homsC(const(Sε),−))|

|ptsS| |homsC(const(Sε),−)|

|ev∗|

|0|



∼= π0 lim


homS(|Sn∆|, |homsC(const(Sε),−)|)

ptS |homsC(const(Sε),−)|

|ev∗|

|0|



∼= π0 lim


homS(S

n, homsCJW−1
resK(S

ε,−))

ptS homsCJW−1
resK(S

ε,−)

ev∗

0


∼= π0 homS∗(S

n, homsCJW−1
resK(S

ε,−))

∼= πn homsCJW−1
resK(S

ε,−),

proving the claim.

Definition 7.2.39. Let K ∈ sS∗, and let X ∈ sC. We define the reduced coten-
soring of K into X to be the pullback

KtX K t X

ptsS t 0sC ptsS t X

in sC. This assembles into an action (sS∗)
op × sC→ sC.



434

Observation 7.2.40. The reduced co/tensoring bifunctors participate into an evi-
dent two-variable adjunction(

sS∗ × sC
−�−−−−→ sC , (sS∗)

op × sC −t−−−→ sC , sCop × sC homC(−,−)−−−−−−→ sS∗

)
,

obtained by recognizing that the (enriched) hom-objects of sC are naturally pointed
since sC has a zero object.

Observation 7.2.41. If

• on the one hand we restrict the reduced tensoring bifunctor to the constant
simplicial objects of C via the composite

sS∗ × C
idsS∗×const
−−−−−−−→ sS∗ × sC

−�−−−−→ sC,

while

• on the other hand we postcompose the reduced cotensoring bifunctor with the
limit functor to obtain the composite

(sS∗)
op × sC −t−−−→ sC

(−)0−−→ C,

then we similarly obtain a two-variable adjunction(
sS∗ × C

−�const(−)−−−−−−−→ sC , (sS∗)
op × sC (−t−)0−−−−→ C , Cop × sC homC(−,−)−−−−−−→ sS∗

)
.

Notation 7.2.42. In analogy with the “generalized matching object” bifunctor

M(−)(−) : sSop × sC (−t−)0−−−−→ C,

we write

M(−)(−) : (sS∗)
op × sC (−t−)0−−−−→ C

for the “reduced generalized matching object” bifunctor.

Definition 7.2.43. We define the (nonabelian) normalized n-chains functor
to be

Nn : sC
MDn

∆
(−)

−−−−−→ C,

and we define the (nonabelian) n-cycles functor to be

Zn : sC
MSn

∆
(−)

−−−−−→ C.

Note that these would reduce to the usual notions if C were an abelian category.
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Observation 7.2.44. The cofiber sequence Sn−1
∆ → Dn

∆ → Sn∆ in sS∗ of Observa-
tion 7.2.37 induces a fiber sequence

Zn → Nn → Zn−1

in Fun(sC,C).

Lemma 7.2.45. For any Sε ∈ GEC , there is a natural isomorphism

[Sε, Nn(−)]C ∼= Nn[Sε,−]lwC

in Fun(sC,Ab).

Proof. Fix a test object X ∈ sC. As by definition Nn(X) = MDn∆
(X), we have a

pullback square

Nn(X) MDn∆
(X)

MptsS(0sC) MptsS(X)

in C. In light of the pushout square

Λn
0 ∆n

∆0 Dn
∆

both in sSet and in sS, we also have a pullback square

MDn∆
(X) M∆n(X)

M∆0(X) MΛn0
(X)

in C, which simplifies to a pullback square

MDn∆
(X) Xn

X0 MΛn0
(X)
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As the relevant corepresenting maps ptsS → Dn
∆ and ∆0 → Dn

∆ in sSet ⊂ sS coincide,
we obtain the composite pullback square

Nn(X) MDn∆
(X) M∆n(X)

MptsS(0sC) MptsS(X) ' M∆0(X) MΛn0
(X)

in C, which simplifies to a pullback square

Nn(X) Xn

0C MΛn0
(X)

in C. Moreover, replacing 0 ∈ [n] with any i ∈ [n], we obtain analogous pullback
squares

M(∆n/Λni )(X) Xn

0C MΛni
(X)

in C. From here, the (dual of the corresponding cosimplicial) double induction argu-
ment of [GJ09, Chapter VIII, Lemma 1.8] yields the claim.

Lemma 7.2.46. For any Sε ∈ GEC , there is a natural exact sequence

[Sε, Nn+1(−)]C → [Sε, Zn(−)]C → π\n,ε(−)→ 0

in Fun(sC,Ab).

Proof. For any test object X ∈ sC, we have

π\n,εX = πn homsCJW−1
resK(S

ε, X) ∼= π0 homS∗(S
n, homsCJW−1

resK(S
ε, X)).

Now, since const(Sε) ∈ sCcres and X ∈ sCfres, we have that homsC(const(Sε), X) ∈
sSfKQ and moreover |homsC(const(Sε), X)| ' homsCJW−1

resK(S
ε, X). On the other hand,

Sn∆ ∈ sScKQ. Since co/fibrancy in (sS∗)KQ is created in sSKQ, the fundamental theo-
rem of model ∞-categories applied to (sS∗)KQ implies that we have a surjection

homsS∗(S
n
∆, homsC(const(Sε), X))→ homS∗(S

n, homsCJW−1
resK(S

ε, X))
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in S. Applying π0, by adjunction this yields a surjection

[Sε, Zn(X)]C → π\n,εX

in Set. As epimorphisms are Ab are created in Set, this proves exactness at π\n,ε(−).
Now, suppose we are given an element of ker([Sε, Zn(X)]C → π\n,εX): this is

witnessed by an extension

Sn homsCJW−1
resK(S

ε, X)

ptS∗

in S∗. Since Dn+1
∆ ∈ (sSSn∆/)

c
KQ and homsC(const(Sε), X) ∈ (sSSn∆/)

f
KQ, the funda-

mental theorem of model ∞-categories applied to (sSSn∆/)KQ implies that the above
extension in S∗ is presented by an extension

Sn∆ homsC(const(Sε), X)

Dn+1
∆

in sS∗. This proves exactness at [Sε, Zn(−)]C.

Corollary 7.2.47. There is a natural isomorphism π0πε(−) ∼= π\0,ε(−) in Fun(sC,Ab).

Proof. Fix a test object X ∈ sC. Applying Lemma 7.2.46 in the case that n = 0, we
obtain an isomorphism

coker([Sε, N1(X)]C → [Sε, Z0(X)]C)
∼=−→ π\0,εX

in Ab. Unwinding the definition of Z0(X), we see that Z0(X) ' X0 ∈ C, so that

[Sε, Z0(X)]C ∼= [Sε, X0]C = ([Sε, X]lwC )0.

Under this identification, unwinding the definition of N1X, we see that the image of
the map

[Sε, N1X]C → [Sε, Z0X]C ∼= ([Sε, X]lwC )0

is the set of those 0-simplices in [Sε, X]lwC ∈ sAb that are the “source” of a 1-simplex
with “target” the basepoint 0-simplex 0 ∈ ([Sε, X]lwC )0 ∈ Ab. So we obtain an
isomorphism

coker([Sε, N1(X)]C → [Sε, Z0(X)]C) ∼= π0πεX,

from which the claim follows.
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Construction 7.2.48. For any object X ∈ sC and any Sε ∈ GEC , by Observa-
tion 7.2.44 we have long exact sequences

· · · → [Sε+1, Zn−1(X)]C → [Sε, Zn(X)]C → [Sε, Nn(X)]C → [Sε, Zn−1(X)]C

in Ab (which actually continue indefinitely to the right as well since C is stable).
These splice together into an exact couple

[Sε+i+1, Zn−1(X)]C [Sε+i+1, Zn(X)]C

[Sε+i+1, Nn(X)]C.

(ε+i+1) (ε+i)

Using Lemmas 7.2.45 and 7.2.46, we can identify its derived long exact sequence as

· · · πi+1πε(X) π\i−1,ε+1(X) π\i,ε(X) πiπε(X) · · ·

· · · π\0,ε+1(X) π\1,ε(X) π1πε(X) 0.

δ δ

δ

We refer to this as the spiral exact sequence .

7.2.4 The localized spiral exact sequence

In the end, we will not be interested in the natural and classical homotopy groups,
but rather in their corresponding E-homology groups.

Notation 7.2.49. We simply write E : sC
(E⊗−)lw

−−−−−→ sC for the “tensor levelwise with
E” functor.

Definition 7.2.50. Choose any n ≥ 0 and any β ∈ Gδ.

(1) We define the corresponding classical E-homology group functor to be the
composite

πnEβ : sC
E−→ sC

πnπβ−−−→ Ab.

(2) We define the corresponding natural E-homology group functor to be the
composite

E\
n,β : sC

E−→ sC
π\n,β−−→ Ab.
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When considered as indexed over all β ∈ G simultaneously, we write these functors
simply as πnE> and E\

n,>, respectively.

Lemma 7.2.51. There is a natural isomorphism π0Eβ(−) ∼= E\
0,β(−) in Fun(sC,Ab).

Proof. This follows from Corollary 7.2.47 and a colimit argument.

Construction 7.2.52. For any X ∈ sC, the spiral exact sequence for EX ∈ sC with
respect to any β ∈ Gδ becomes

· · · πi+1EβX E\
i−1,β+1X E\

i,βX πiEβX · · ·

· · · E\
0,β+1X E\

1,βX π1EβX 0.

δ δ

δ

We refer to this as the localized spiral exact sequence .

7.3 Algebraic topology

In this section, we add operadic structures to the mix.

7.3.1 Foundations of algebraic topology

Definition 7.3.1. By operad we mean what might otherwise be called a “single-
colored ∞-operad”. These are presented by monoids for the composition product
in symmetric sequences in topological spaces or in simplicial sets (via the “operadic
nerve” of Definition A.2.1.1.23). We write Op for the∞-category of operads. For any
O ∈ Op, we write O(n) ∈ Fun(BSn, S) for the space of n-ary operations, equipped
with its canonical action of the symmetric group Sn.

Notation 7.3.2. For any O ∈ Op, we write AlgO(C) for the∞-category of O-algebras
in C, and we write

FO : C� AlgO(C) : UO

for the corresponding free/forget monadic adjunction.

Observation 7.3.3. The monad corresponding to the monadic adjunction FO a UO

can be computed as

UO(FO(X)) '
∐
n≥0

(O(n)�X⊗n)Sn

(where we use the diagonal action to form the quotient).
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Observation 7.3.4. Any map O
ϕ−→ O′ in Op determines an adjunction

ϕ∗ : AlgO(C)� AlgO′(C) : ϕ∗

between ∞-categories of algebras in C, whose right adjoint is given by restriction of
structure. The assignment ϕ 7→ ϕ∗ assembles into a functor

Alg(−)(C) : Op→ PrL.

Remark 7.3.5. We restrict to single-colored operads for simplicity, and because most
operads of interest are single-colored. However, note that if one were interested
in obtaining e.g. a commutative algebra A ∈ CAlg(C) as well as a module M ∈
ModA(C), one might proceed in steps, first using a single-colored obstruction theory
in C to produce A, and then using a single-colored obstruction theory in ModA(C)
to produce M .

7.3.2 Simplicial algebraic topology

Definition 7.3.6. Let T ∈ sOp be a simplicial object in operads. We define the
∞-category AlgT (sC) of simplicial T -algebras in C to be the lax limit of the
composite

∆op T−→ Op
Alg(−)(C)
−−−−−→ PrL.

Remark 7.3.7. The composite

∆op T−→ Op
Alg(−)(C)
−−−−−→ PrL

U
PrL−−−→ Cat∞

classifies a cocartesian fibration, which is in fact a bicartesian fibration; by (the
dual of) [GHN, Proposition 7.1] (combined with Proposition T.5.5.3.13), its ∞-
category of sections is precisely AlgT (sC). Thus, we can think of a simplicial T -
algebra X = X• ∈ AlgT (sC) as being specified by the following data:

• for each object [n]◦ ∈∆op, an object Xn ∈ AlgTn(C);

• for each morphism [n]◦
ϕ−→ [m]◦ in ∆op, a morphism from Xn ∈ AlgTn(C) to

Xm ∈ AlgTm(C) in (the bicartesian fibration over [1] corresponding to) the
adjunction

(Tϕ)∗ : AlgTn(C)� AlgTm(C) : (Tϕ)∗

arising from the induced map Tn
Tϕ−→ Tm in Op, i.e. a point in the space

homAlgTn (C)(Xn, (Tϕ)∗Xm) ' homAlgTm (C)((Tϕ)∗Xn, Xm);
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• higher coherence data for these structure maps corresponding to strings of
composable morphisms in ∆op.

Observation 7.3.8. Any map T
ϕ−→ T ′ in sOp determines an adjunction

ϕ∗ : AlgT (sC)� AlgT ′(sC) : ϕ∗

between ∞-categories of simplicial algebras in C, whose right adjoint is given by
restriction of structure. In particular, taking T to be trivial yields a monadic ad-
junction

FT ′ : sC� AlgT ′(sC) : UT ′ ,

whose underlying monad is computed levelwise.

Observation 7.3.9. Let O ∈ Op be an operad, and consider the the corresponding
constant simplicial operad const(O) ∈ sOp. Since the resulting composite

∆op const(O)−−−−→ Op
Alg(−)(C)
−−−−−→ PrL

is constant at AlgO(C), it follows that we have a canonical equivalence

Algconst(O)(sC) ' s(AlgO(C)).

Observation 7.3.10. For any T ∈ sOp, we have a canonical composite adjunction

AlgT (sC) Algconst(|T |)(sC) ' s(Alg|T |(C)) Alg|T |(C),
(ηT )∗

⊥
(ηT )∗

|−|
⊥

const

where

• the first adjunction follows by applying Observation 7.3.8 to the component
T

ηT−→ const(|T |) of the unit of the adjunction |−| : sOp� Op : const(−);

• the equivalence is that of Observation 7.3.9; and

• the second adjunction is the colimit/constant adjunction in Alg|T |(C).

Notation 7.3.11. For simplicity, we simply write

|−| : AlgT (sC)� Alg|T |(C) : const

for the composite adjunction of Observation 7.3.10. When convenient and unam-
biguous, we will omit the right adjoint from the notation.
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Lemma 7.3.12. The diagram

AlgT (sC) Alg|T |(C)

sC C

|−|

UT U|T |

|−|

commutes.

Proof. Both vertical functors are right adjoints which commute with sifted colimits.

Theorem 7.3.13. There is a resolution model structure on AlgT (sC), denoted
AlgT (sC)res; it is obtained by lifting the resolution model structure sCres along the
adjunction

FT : sC� AlgT (sC) : UT ,

which therefore becomes a Quillen adjunction. It enjoys the following properties.

(1) Its weak equivalences and fibrations are created by pullback along the right ad-
joint UT .

(2) It is simplicial.

(3) All objects are fibrant in it.

(4) It is cofibrantly generated by the sets

IAlgT (sC)
res = FT (IsCres) = {FT (IsSKQ � const(Sε))}Sε∈GE

C

= {FT (∂∆n � const(Sε))→ FT (∆n � const(Sε))}n≥0,Sε∈GE
C

and

JAlgT (sC)
res = FT (JsCres) = {FT (JsSKQ � const(Sε))}Sε∈GE

C

= {FT (Λn
i � const(Sε))→ FT (∆n � const(Sε))}0≤i≤n≥1,Sε∈GE

C
.

Proof. The model structure follows from Theorem 7.1.10, the enrichment and biten-
soring over sS follows from Corollary 7.1.7, and their compatibility follows from
Theorem 7.1.13.
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Notation 7.3.14. Extending Definition 7.2.28, we write WElw
>

= W
AlgT (sC)

Elw
>

⊂
AlgT (sC) for the preimage of WsC

Elw
>
⊂ sC under the forgetful functor UT : AlgT (sC)→

sC. Since WsC
res ⊂WsC

Elw
>

by Observation 7.2.30, then also W
AlgT (sC)
res ⊂W

AlgT (sC)

Elw
>

.

Observation 7.3.15. In the end, our moduli spaces of interest will not be sub-
groupoids of the localization AlgT (sC)JW−1

resK, but rather of the further localization
AlgT (sC)JW−1

Elw
>

K. However, in order to compute hom-spaces in this latter localiza-

tion, it suffices to observe that the induced functor AlgT (sC)JW−1
resK→ AlgT (sC)JW−1

Elw
>

K
is actually a left localization: then, we can simply work in AlgT (sC)res but require
that our target objects present local objects in AlgT (sC)JW−1

resK (with respect to this
left localization). It follows from Theorem 7.1.22 (and the monadic derived adjunc-
tion underlying the monadic Quillen adjunction FT a UT ) that AlgT (sC)JW−1

resK is
presentable, so we can apply the recognition result Proposition T.5.5.4.15: it suffices
to show that the image in AlgT (sC)JW−1

resK of WElw
>
⊂ AlgT (sC) is strongly saturated

(in the sense of Definition T.5.5.4.5). The first two conditions follow from [GHb,
Lemma 1.5.2], while the two-out-of-three property follows from the fact that it is ul-
timately pulled back from a subcategory WKQ ⊂ sA which has the two-out-of-three
property.

Notation 7.3.16. We will write LElw
>

: AlgT (sC)JW−1
resK � AlgT (sC)JW−1

Elw
>

K : UElw
>

for the left localization adjunction of Observation 7.3.15.

Remark 7.3.17. The existence of a fully faithful right adjoint to the canonical functor
AlgT (sC)JW−1

resK → AlgT (sC)JW−1
Elw

>
K should not be surprising: in [GHb], this is

constructed as a left Bousfield localization (cf. [GHb, Theorems 1.4.9 and 1.5.1]).

Remark 7.3.18. Taking T to be trivial, we obtain a left localization adjunction LElw
>

:

sCJW−1
resK� sCJW−1

Elw
>

K : UElw
>

.

Remark 7.3.19. Whereas we have identified sCJW−1
resK as a nonabelian derived ∞-

category, it appears that sCJW−1
Elw

>
K does not generally take this form. It will become

clear over the course of the construction that we really do need to be working in a
nonabelian derived ∞-category.

7.3.3 Operads, revisited

We give a brief unified treatment of all of the sorts of operads, their homotopy, and
their related structures that we will be considering. The material in this subsection
is undergirded by the foundational work [CH].



444

7.3.3.1 Operads and their algebras

Notation 7.3.20. For an ∞-category V, we write VS = Fun(Set',V) for the ∞-
category of symmetric sequences in V. Given O ∈ VS, we write O(n) = O({1, . . . , n})
for simplicity. Assuming V has an initial object, we consider V ⊂ VS via left Kan
extension along {ptSet} ↪→ Set'. When V additionally admits a symmetric monoidal
structure that commutes with colimits separately in each variable (e.g. if the symmet-
ric monoidal structure is closed), the∞-category VS acquires a composition product
monoidal structure (VS, ◦,1V), algebras for which are precisely (“single colored”)
V-operads (a/k/a “operads internal to V”). We denote the ∞-category of these by
Op(V), and write

FOp(V) : VS � Op(V) : UOp(V)

for the resulting monadic adjunction. For brevity, we will simply say that V “admits
operads” in this case.

When V is the ∞-category S of spaces (equipped with the cartesian symmetric
monoidal structure), we (continue to) omit it from all our notation and terminol-
ogy; in particular, we (continue to) refer to the objects of Op simply as “operads”.
For emphasis, we may refer to objects of Op(V) for some possibly unspecified V as
“internal operads”.

Notation 7.3.21. Let D ∈ LModV(Cat∞) be an ∞-category admitting an action of
V, and assume that D is cocomplete and finitely complete. Then for any O ∈ Op(V)
we denote by AlgO(D) the ∞-category of O-algebras in D. This is monadic over D,
and we write

FO : D� AlgO(D) : UO

for the monadic adjunction.

Observation 7.3.22. Let V be an ∞-category that admits operads, and let I be
any diagram ∞-category. Then Fun(I,V) also admits operads: it inherits a compo-
nentwise symmetric monoidal structure from V, and colimits (including the empty
colimit) are computed componentwise. In fact, it is not hard to see that we have an
equivalence

Op(Fun(I,V)) ' Fun(I,Op(V)).

Proposition 7.3.23. Let V be a symmetric monoidal ∞-category that admits oper-
ads and admits finite limits, and suppose that the unit object 1V ∈ V is compact. Then
there exists a Boardman–Vogt model structure on the∞-category of sV-operads,
denoted Op(sV)BV, which is simplicial and participates in a Quillen adjunction∏

n≥0

sSKQ � Op(sV)BV :
(
homlw

V (1V,USn((−)(n)))
)
n≥0
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of simplicial model ∞-categories, where FSn : V � Fun(BSn,V) : USn denotes the
left Kan extension adjunction for the canonical functor ptCat∞ → BSn.

Proof. This follows from Theorems 7.1.10 and 7.1.13.

Remark 7.3.24. In the end, we will only use Proposition 7.3.23 in situations when V

is a 1-category. In this case, the result is ultimately more-or-less just a consequence
of [Qui67, Chapter II, §4, Theorem 4]. The name of the model structure pays homage
to the foundational work [BV73], which introduced the study of homotopy-coherent
algebraic structures. The Boardman–Vogt model structure of Proposition 7.3.23 is
also closely related to those of [BM03, Theorems 3.1 and 3.2], as explained in [BM03,
Example 3.3.1].

Observation 7.3.25. Let V and V′ be two ∞-categories equipped with symmetric
monoidal structures that commute with colimits separately in each variable. Then
any lax symmetric monoidal functor V→ V′ induces a functor Op(V)→ Op(V′).

We single out two particular cases of interest.

• The functor −� 1 : S→ C is symmetric monoidal (with respect to (S,×, ptS)
and (C,⊗,1)).

• The homology functor E> : C→ A is lax symmetric monoidal: for any X, Y ∈
C, we have a canonical map E>X ⊗E> E>Y → E>(X ⊗ Y ) in A, which takes
the element (

Sβ
ϕ−→ E ⊗X

)
⊗
(
Sβ
′ ϕ′−→ E ⊗ Y

)
to the element(
Sβ+β′ ' Sβ ⊗ Sβ′ ϕ⊗ϕ′−−−→ E ⊗X ⊗ E ⊗ Y ' E⊗2 ⊗X ⊗ Y µE⊗idX⊗idY−−−−−−−−→ E ⊗X ⊗ Y

)
.

It follows that the composite functor

S
−�1−−→ C

E>−−→ A

is lax symmetric monoidal, and hence induces a composite functor on internal oper-
ads, which for brevity we denote simply as

E> : Op = Op(S)
Op(−�1)−−−−−→ Op(C)

Op(E>)−−−−→ Op(A).
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7.3.3.2 Resolutions of operads

Definition 7.3.26. We say that an operad O ∈ Op is π0-S-free if for each n ≥ 0
the induced action of Sn on π0(O(n)) is free.

Remark 7.3.27. As early in the literature as [May72, Definition 1.1], the term “S-
free” is used to describe a point-set operad (e.g. in topological spaces) whose sym-
metric group actions are free at the point-set level. Of course, such an operad need
not present a π0-S-free operad in the sense of Definition 7.3.26.

Lemma 7.3.28. The functor FOp : SS → Op takes values in π0-S-free operads.

Proof. This is immediate from the explicit description of FOp that follows from
[Rez96, Proposition A.0.2 and Remark A.0.1].

Notation 7.3.29. We simply write

Bar(−)• : Op
Bar(ptS,UOpFOp,−)•−−−−−−−−−−−−→ sOp

for the bar construction on the monad UOpFOp ∈ Alg(End(SS)) with respect to the
left module given by the unit ptS ∈ SS and an unspecified operad considered as a
right module.

Corollary 7.3.30. The functor Bar : Op → sOp takes values in levelwise π0-
S-free simplicial operads, and admits a natural equivalence |Bar(−)•| ' idOp in
Fun(Op,Op).

Proof. This follows from Lemma 7.3.28.

Corollary 7.3.31. Given an operad O, suppose that E>(O(n)) ∈ Aproj for all
n ≥ 0. Then Elw

> Bar(O)• ∈ sOp(A) ' Op(sA)BV is cofibrant, and the augmen-

tation Bar(O)• → const(O) induces a weak equivalence Elw
> Bar(O)•

≈→ const(E>O)
in Op(sA)BV.

Proof. This is immediate from the explicit description of FOp that follows from
[Rez96, Proposition A.0.2 and Remark A.0.1].

Remark 7.3.32. While we will ultimately be interested in a simplicial operad resolving
our operad of primary interest, much of the theory goes through equally well for any
simplicial operad.
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7.4 Algebra

7.4.1 Foundations of algebra

Recall that we write Gδ = π0(G) for our chosen group of Picard elements, A =
Fun(Gδ,Ab) for the category of Gδ-graded abelian groups, and A = ModE>(A) for
the category of E>-modules in A.

Assumption 7.4.1. We assume that E>E ∈ A is flat.

Notation 7.4.2. It follows from Assumption 7.4.1 that (E>, E>E) is a Hopf alge-
broid in A. We write Ã = Comod(E>,E>E) for its category of left comodules (which
in light of Assumption 7.4.1 is abelian by [Rav86, Theorem A1.1.3]), and we consider
our homology theory as a functor E> : C→ Ã taking values in (E>, E>E)-comodules.

Remark 7.4.3. In general, the forgetful functor Ã
U

Ã−−→ A does not admit a left adjoint
(e.g. it does not preserve products (see [Hov04, §1.2])).

Observation 7.4.4. For any β ∈ Gδ we obtain an evident endofuctor Σβ : Ã
∼−→ Ã.

This allows us to consider Ã as enriched over A, where for M,N ∈ Ã we set

homÃ(M,N) = {homÃ(ΣβM,N)}β∈Gδ ∈ A.

7.4.2 Compatibility

The resolutions of operads considered in §7.3.3.2 are necessary but not alone suf-
ficient to render the obstruction theory to be tractable: we have introduced a new
simplicial direction on the topology side, but we have not yet exerted any control
on the simplicial direction that results on the algebra side. Indeed, this will bring
our E-homology computations into the realm of homotopical algebra, with its own
attendant notions of “cofibrant resolution”, and we must ensure that our homology
functor E> preserves resolutions.

We introduce three increasingly general notions of compatibility; the first is
merely to fix ideas, the second is auxiliary, and the last is our real goal.

Definition 7.4.5. We say that an operad O ∈ Op is adapted to E if it comes with
a corresponding monad OE ∈ Alg(End(A)) admitting a lift

AlgO(C) AlgOE
(A)

C A

E>

UO UOE

E>
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such that the following condition holds:

• for any Z ∈ C with E>Z ∈ Aproj, the natural map FOE(E>Z)→ E>(FO(Z)) is
an isomorphism in AlgOE

(A).

Definition 7.4.6. We say that a simplicial operad T ∈ sOp is adapted to E if it
comes with a corresponding monad TE ∈ Alg(End(sA)) admitting a lift

AlgT (sC) AlgTE(sA)

sC sA

Elw
>

UT UTE

E>

such that the following condition holds:

• for any Z ∈ sC with Elw
> Z ∈ sAc

KQ, the natural map FTE(Elw
> Z)→ Elw

> (FT (Z))
is an isomorphism in AlgTE(sA).

This has the following consequence.

Lemma 7.4.7 ([GHb, Lemma 1.4.15]). If T ∈ sOp is adapted to E, then any

cofibration between cofibrant objects in AlgT (sC)res is a retract of a map X
ϕ−→ Y

such that the underlying map of degeneracy diagrams of Elw
> (ϕ) is isomorphic to one

of the form Elw
> (X)→ Elw

> (X)
∐
TE(M), where M is s-free on an object of Aproj.

Definition 7.4.8. Suppose that the simplicial operad T ∈ sOp is adapted to Elw
> :

sC → sA. We then say that T is homotopically adapted to E if there exists a
monad T̃E ∈ Alg(End(sÃ)) which lifts the monad TE ∈ Alg(End(sA)) (i.e. they’re
intertwined by s(UÃ)) and which admits a lift

AlgT (sC) AlgT̃E(sÃ)

sC sÃ

Elw
>

UT UT̃E

E>

such that the following conditions hold:

• the adjunction FTE : sA � AlgTE(sA) : UTE creates a simplicial model struc-
ture on AlgTE(sA); and
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• there exists a simplicial model structure on AlgT̃E(sÃ) such that the forget-

ful functor AlgT̃E(sÃ) → AlgTE(sA) creates weak equivalences and preserves
fibrations.

Building on Lemma 7.4.7, this has the following key consequence.

Lemma 7.4.9 ([GHb, Corollary 1.4.18]). If T ∈ sOp is homotopically adapted to
E, then the induced functor Elw

> : AlgT (sC)res → AlgT̃E(sÃ)π∗ preserves both weak
equivalences as well as cofibrations between cofibrant objects.

This result, in turn, has the following ∞-categorical significance.

Corollary 7.4.10. If T ∈ sOp is homotopically adapted to E, then the functor
Elw

> : AlgT (sC)JW−1
resK→ AlgT̃E(sÃ)JW−1

π∗ K preserves colimits.

Proof. This follows by combining Lemma 7.4.9 with the theory of homotopy colimits
in model∞-categories of §5.1.2; more specifically, the model∞-categories AlgT (sC)res

and AlgT̃E(sÃ)π∗ are both cofibrantly generated and hence admit projective model
structures, and the functor of model∞-categories preserves projective cofibrancy by
Lemma 7.4.9.

Remark 7.4.11. Given two ∞-categories that admit finite coproducts and a functor
between them that preserves these, applying the functor PΣ automatically gives a
cocontinuous functor: up to further left localizations (which commute with colimits),
this is precisely the situation that Corollary 7.4.10 addresses. However, it is only
through Theorem 7.1.22 that we can identify it as such.

Assumption 7.4.12. We henceforth assume that T is homotopically adapted to E,
and fix the corresponding monad T̃E ∈ Alg(End(sÃ)).

Example 7.4.13. For any O ∈ Op, we can take T to be a cofibrant object of
Op(sSet)BV which presents it: each T (n) will have a free Sn-action (as a simplicial
set), and we can take T̃E to be the monad corresponding to the operad E>T ∈
Op(sÃ).
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7.4.3 The module structure on the localized spiral exact
sequence

Definition 7.4.14. An augmentation of the monad T̃E ∈ Alg(End(sÃ)) is the
data of a monad Φ ∈ Alg(End(Ã)) and a natural isomorphism making the diagram

sÃ sÃ

Ã Ã

T̃E

π0 π0

Φ

commute, satisfying the diagrammatic coherence conditions of [GHb, Definition
2.5.7]. We write this as T̃E ↓ Φ, though note that this does not depict a morphism
in any category.

Assumption 7.4.15. We henceforth assume the existence of an augmentation T̃E ↓
Φ.

In order to describe the key consequence of Assumption 7.4.15, we must introduce
some terminology.

Definition 7.4.16. For any A ∈ AlgΦ(Ã), we define the category of A-modules
(relative to Φ) as the category ModΦ

A(Ã) = Ab(AlgΦ(Ã)/A) of abelian group objects
in its overcategory. To align our notation with standard intuition, we write

Ã ModΦ
A(Ã) AlgΦ(Ã)

kerÃ(ϕ) (B
ϕ−→ A) B

UA −nA

for the two forgetful functors.

Lemma 7.4.17 ([GHb, Propositions 2.5.9 and 2.5.10]). There exists a canonical lift

AlgΦ(Ã)

AlgT̃E(sÃ) sÃ Ã,

UΦ
π0

UT̃E
π0

and this lift is the left adjoint in an adjunction

π0 : AlgT̃E(sÃ)� AlgΦ(Ã) : const.

Moreover, for any X ∈ AlgT̃E(sÃ) and any n ≥ 1, the object πnX ∈ Ã admits a
canonical lift through the functor
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ModΦ
π0X

(Ã)
Uπ0X−−−→ Ã.

Corollary 7.4.18. There exists a canonical lift

AlgΦ(Ã)

AlgT (sC) AlgT̃E(sÃ) sÃ Ã.

UΦ

π0Elw
>

Elw
> UT̃E

π0

Moreover, for any X ∈ AlgT (sC) and any n ≥ 1, the object πnE
lw
> X ∈ Ã admits a

canonical lift through the functor

ModΦ
π0Elw

> X(Ã)
U
π0E

lw
> X

−−−−−→ Ã.

We record a useful fact about the adjunction of Lemma 7.4.17.

Lemma 7.4.19. The adjunction of Lemma 7.4.17 lifts to a Quillen adjunction

π0 : AlgT̃E(sÃ)π∗ � AlgΦ(Ã)triv : const,

whose derived adjunction is a left localization adjunction.

Proof. To see that this is a Quillen adjunction, we observe that the left adjoint

• trivially preserves cofibrations, and

• preserves acyclic cofibrations by definition of the subcategory Wπ∗ ⊂ AlgT̃E(sÃ).

Then, to see that the derived adjunction is a left localization adjunction, we check
that its counit is a componentwise equivalence. Since every object of AlgΦ(Ã)triv is
fibrant, the composite

AlgΦ(Ã)
const−−−→ AlgT̃E(sÃ)→ AlgT̃E(sÃ)JW−1

π∗ K

computes the derived right adjoint Rconst. Now, let

∅AlgT̃E
(sÃ) � Qconst(A)

≈→ const(A)

be a cofibrant replacement in AlgT̃E(sÃ)π∗ . Then by definition the induced map

π0(Qconst(A))→ π0(const(A)) ∼= A

is an isomorphism in AlgΦ(Ã). So the counit is indeed an equivalence.
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Notation 7.4.20. As both functors in the Quillen adjunction of Lemma 7.4.19
preserve all weak equivalences, we will simply write

π0 : AlgT̃E(sÃ)JW−1
π∗ K� AlgΦ(Ã) : const

for its derived adjunction (as opposed to Lπ0 a Rconst). Moreover, we will often
leave implicit both the right Quillen functor as well as its derived right adjoint.

We have just seen that classical homology groups admit certain algebraic struc-
ture. In fact, natural homology groups do too.

Lemma 7.4.21 ([GHb, Examples 3.1.14 and 3.1.17]). There exists a canonical lift

AlgΦ(Ã)

AlgT (sC) A.

UA◦UÃ
◦UΦ

E\0,>

E\0,>

Moreover, for any X ∈ AlgT (sC) and any n ≥ 1, the object E\
n,>X ∈ A admits a

canonical lift through the functor

ModΦ

E\0,>X
(Ã)

UA◦UÃ
◦U

E
\
0,>X−−−−−−−−−→ A.

Moreover, these algebraic structures are compatible in the following way.

Lemma 7.4.22 ([GHb, Corollary 3.1.18]). The isomorphism π0E
lw
> (−) ∼= E\

0,>(−) in

Fun(AlgT (sC),A) of Lemma 7.2.51 is compatible with the lifts to Fun(AlgT (sC),AlgΦ(Ã))
of Corollary 7.4.18 and Lemma 7.4.21.

Notation 7.4.23. For simplicity, we may write E0 : AlgT (sC) → AlgΦ(Ã) for the
functor π0E

lw
>
∼= E\

0,>.

Lemma 7.4.24 ([GHb, Example 3.1.13]). For any A ∈ AlgΦ(Ã) and any n ≥ 1, the
endofunctor Ωn : Ã

∼−→ Ã lifts to an endofunctor Ωn : ModΦ
A(Ã)

∼−→ ModΦ
A(Ã).

Remark 7.4.25. In fact, if we define Σβ
+S

ε = (1 ⊕ Sβ) ⊗ Sε, then the construction

of [GHb, Example 3.1.13] generalizes to define lifted endofunctors Ωβ : ModΦ
A(Ã)

∼−→
ModΦ

A(Ã) for any β ∈ Gδ.

We can now give the module structure on the localized spiral exact sequence.



453

Proposition 7.4.26 ([GHb, Corollary 3.1.18]). For any X ∈ AlgT (sC), assembling
the localized spiral exact sequence in Ab over all β ∈ Gδ, we obtain an exact sequence

· · · πi+1E>X Ω(E\
i−1,>X) E\

i,>X πiE>X · · ·

· · · Ω(E\
0,>X) E\

1,>X π1E>X 0

δ δ

δ

in ModΦ
E0X

(Ã).

7.4.4 The module structure on the spiral exact sequence

We will make certain computations before appealing to a colimit argument, and
for these we will need to obtain analogous structure on the unlocalized spiral exact
sequence. In fact, this is an input to the module structure on the localized spiral
exact sequence (via a colimit argument, as always), but the algebraic objects at play
are slightly less familiar so we have reversed their order here. However, the story is
nearly identical to that of §7.4.3, and so we only highlight the key points.

Notation 7.4.27. We write T (GEC ) ⊂ AlgT (sC)JW−1
resK for the full subcategory

spanned by the image of the composite

GEC ↪→ C
const
↪−−→ sC

FT−→ AlgT (sC)→ AlgT (sC)JW−1
resK.

Observation 7.4.28. The functor GEC
FT−→ T (GEC ) preserves coproducts, and so in-

duces a forgetful functor PδΣ(T (GEC ))
U
T (GE

C
)

−−−−→ PδΣ(GEC ).

Definition 7.4.29. For any A ∈ PδΣ(T (GEC )), we define the category of A-modules

(relative to T (GEC )) as the category Mod
T (GE

C
)

A (PδΣ(GEC )) = Ab(PδΣ(T (GEC ))/A) of
abelian group objects in its overcategory. This admits two forgetful functors, which
we denote by

PδΣ(GEC ) Mod
T (GE

C
)

A (PδΣ(GEC )) PδΣ(T (GEC )).

kerP
δ
Σ(GE

C
)(ϕ) (B

ϕ−→ A) B

UA −nA

The following example will be of use later.
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Notation 7.4.30. Let A ∈ AlgΦ(Ã). Then we obtain an objectょE(A) ∈ PδΣ(T (GEC ))
by declaring that

ょE(A)(FT (Sε)) = homAlgΦ(Ã)(π0E
lw
> FT (Sε), A).

Similarly, if M ∈ ModΦ
A(Ã), we obtain an objectょE(M) ∈ Mod

T (GE
C

)

ょ
Elw
> (A)

(PδΣ(GEC )) by

declaring that
ょE(M)(Sε) = homÃ(π0E

lw
> S

ε,M);

technically, the A-action arises through Definitions 7.4.16 and 7.4.29 (in terms of
abelian objects in overcategories), but morally it just comes from postcomposition.

Observation 7.4.31. As the functor AlgT (sC) → ho(AlgT (sC)) preserves finite
coproducts, by adjunction both composite functors

AlgT (sC) sC PδΣ(GEC )
UT

π\0,>

π0πlw
>

admit lifts through PδΣ(T (GEC ))
U
T (GE

C
)

−−−−→ PδΣ(GEC ) for any n ≥ 0.

Lemma 7.4.32. The isomorphisms π0π
lw
ε (−) ∼= π\0,ε(−) in Fun(AlgT (sC),Fun(GEC

δ
,Ab))

of Corollary 7.2.47 are compatible with the lifts to Fun(AlgT (sC),PδΣ(T (GEC ))) of Ob-
servation 7.4.31.

Notation 7.4.33. For simplicity, we may write π0 : AlgT (sC)→ PδΣ(T (GEC )) for the
functor π0π

lw
>
∼= π\0,>.

Proposition 7.4.34 ([GHb, Theorem 3.1.15]). For any X ∈ AlgT (sC), assembling

the spiral exact sequence in Ab over all ε ∈ GEC
δ
, we obtain an exact sequence

· · · πi+1π>X Ω(π\i−1,>X) π\i,>X πiπ>X · · ·

· · · Ω(π\0,>X) π\1,>X π1π>X 0

δ δ

δ

in Mod
T (GE

C
)

π0X
(PδΣ(GEC )).
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7.5 Homotopical algebra

7.5.1 Postnikov towers in algebra

Definition 7.5.1. For any n ≥ 0, an object X ∈ AlgT̃E(sÃ)JW−1
π∗ K is called n-

truncated if π>nX = 0. Such objects form a full subcategory AlgT̃E(sÃ)JW−1
π∗ K
≤n ⊂

AlgT̃E(sÃ)JW−1
π∗ K, and as n varies these subcategories are evidently nested as

AlgT̃E(sÃ)JW−1
π∗ K←↩ · · · ←↩ AlgT̃E(sÃ)JW−1

π∗ K
≤1 ←↩ AlgT̃E(sÃ)JW−1

π∗ K
≤0
.

By presentability, these inclusions admit left adjoints, and we denote the correspond-
ing left localization adjunctions by

P alg
n : AlgT̃E(sÃ)JW−1

π∗ K� AlgT̃E(sÃ)JW−1
π∗ K
≤n

: Ualg
n .

We therefore obtain a tower of functors

idAlgT̃E
(sÃ)JW−1

π∗ K → · · · → P alg
1 → P alg

0 .

We refer to its value on an object of AlgT̃E(sÃ)JW−1
π∗ K as its Postnikov tower . We

write

idAlgT̃E
(sÃ)JW−1

π∗ K
τalg
n−−→ P alg

n

for the natural transformation (or for its composite with Ualg
m for any m ≥ 0), which

we refer to as the n-truncation map.

7.5.2 Cohomology

Our obstructions will take place in (André–Quillen) cohomology groups in AlgT̃E(sÃ)JW−1
π∗ K.

We will only need to consider them with respect to a base object lying in AlgΦ(Ã),
so we restrict to this special case.

We begin by defining the representing objects for cohomology.

Definition 7.5.2. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 1.

(1) We say that an object X ∈ AlgT̃E(sÃ)JW−1
π∗ K is of type KA if there exists an

equivalence X ' A, i.e. if

• there exists an isomorphism π0X ∼= A in AlgΦ(Ã), and

• πiX = 0 for i > 0.
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(2) We say that an object Y ∈ AlgT̃E(sÃ)JW−1
π∗ K is of type KA(M,n) if

• there exists an isomorphism π0Y ∼= A in AlgΦ(Ã),

• there exists an isomorphism πnY ∼= M via the resulting equivalence of
categories ModΦ

π0Y
(Ã) ' ModΦ

A(Ã), and

• πiY = 0 for i /∈ {0, n}.

(3) We say that a morphism X → Y in AlgT̃E(sÃ)JW−1
π∗ K is of type ~KA(M,n) if

• X is of type KA,

• Y is of type KA(M,n), and

• the map π0X → π0Y is an isomorphism in AlgΦ(Ã).

(4) We say that an object is of type KA(M, 0) in AlgT̃E(sÃ)JW−1
π∗ K if it is of type

KMnA, and we say that a morphism in AlgT̃E(sÃ)JW−1
π∗ K is of type ~KA(M, 0)

if it admits an equivalence to the map const(A→M n A).

We refer to objects of type KA and KA(M,n) collectively as algebraic Eilenberg–

Mac Lane objects, and to morphisms of type ~KA(M,n) collectively as algebraic
Eilenberg–Mac Lane morphisms . We will see that these all exist and are unique
in Propositions 7.5.25 and 7.5.26; justified by this, we may simply write KA or
KA(M,n) for convenience when referring to an algebraic Eilenberg–Mac Lane object
of the indicated type.

Observation 7.5.3. Suppose that X → Y is morphism in AlgT̃E(sÃ)JW−1
π∗ K of type

~KA(M,n) for some n ≥ 1. Then P alg
0 (Y ) is of type KA, and the composite

X → Y
τalg
0−−→ P alg

0 (Y )

with the canonical 0-truncation map is an equivalence. Fixing an equivalence X ' A
then allows us to consider

KA(M,n) ∈ AlgT̃E(sÃ)JW−1
π∗ KA//A.

Of course, such consideration is immediate for n = 0.
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Observation 7.5.4. For any n ≥ 0, taking the pullback of a map of type ~KA(M,n+
1) with itself yields a fiber square

KA(M,n) A

A KA(M,n+ 1)

τalg
0

τalg
0

in AlgT̃E(sÃ)JW−1
π∗ K. Hence, the objects{

KA(M,n) ∈ AlgT̃E(sÃ)JW−1
π∗ KA//A

}
n≥0

assemble into an Ω-spectrum object

KAM ∈ Stab
(

AlgT̃E(sÃ)JW−1
π∗ KA//A

)
.

Definition 7.5.5. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 0. Suppose

that k → A = const(A) is a morphism in AlgT̃E(sÃ)JW−1
π∗ K, and use this to consider

KA(M,n) ∈ AlgT̃E(sÃ)JW−1
π∗ Kk//A. Then, choose any objectX ∈ AlgT̃E(sÃ)JW−1

π∗ Kk//A.

(1) We define the nth (André–Quillen) cohomology group of X with coeffi-
cients in M to be the abelian group

Hn
T̃E

(X/k;M) = [X,KA(M,n)]AlgT̃E
(sÃ)JW−1

π∗ K
k//A

∈ Ab.

(2) We define the nth (André–Quillen) cohomology space of X with coeffi-
cients in M to be the based space

H n
T̃E

(X/k;M) = homAlgT̃E
(sÃ)JW−1

π∗ K
k//A

(X,KA(M,n)) ∈ S∗.

Thus, we have that
Hn
T̃E

(X/k;M) = π0(H n
T̃E

(X/k;M)),

and moreover it follows from Observation 7.5.4 that

Hn−i
T̃E

(X/k;M) = πi(H
n
T̃E

(X/k;M))

for 0 ≤ i ≤ n. (In particular, cohomology groups are indeed abelian groups, and
cohomology spaces are infinite loopspaces.)
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Observation 7.5.6. In the setting of Definition 7.5.5, there is an evident pullback
square

homAlgT̃E
(sÃ)JW−1

π∗ K
X//A

(A,KA(M,n)) homAlgT̃E
(sÃ)JW−1

π∗ K
k//A

(A,KA(M,n))

{X → A→ KA(M,n)} homAlgT̃E
(sÃ)JW−1

π∗ K
k//A

(X,KA(M,n))

in S∗, which is by definition a pullback square

H n
T̃E

(A/X;M) H n
T̃E

(A/k;M)

{0} H n
T̃E

(X/k;M).

This gives rise to a long exact sequence

0 H0
T̃E

(A/X;M) H0
T̃E

(A/k;M) H0
T̃E

(X/k;M) · · ·

· · · Hn
T̃E

(A/X;M) Hn
T̃E

(A/k;M) Hn
T̃E

(X/k;M) Hn+1

T̃E
(A/X;M) · · ·

δ

δ δ

in Ab; exactness at H0
T̃E

(A/X;M) follows from the fact that the space

homAlgT̃E
(sÃ)JW−1

π∗ K
k//A

(X,KA(M, 0)) ' homAlgΦ(Ã)π0k//A
(π0X,M n A)

is discrete (and so in particular has vanishing π1). We refer to this as the transitivity
sequence .

Remark 7.5.7. When M ∈ Ã is an extended comodule, these cohomology computa-
tions reduce to analogous ones in AlgTE(sÃ)JW−1

π∗ K (see [GHb, Proposition 2.4.7]).

7.5.3 Moduli spaces in algebra

We will be interested in various moduli spaces of algebraic objects: ultimately, our ob-
struction theory will be based on homotopy groups in the∞-category AlgT̃E(sÃ)JW−1

π∗ K.
In order to be able to effectively control these homotopy groups, we need to make

the following assumption.
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Assumption 7.5.8. We assume that AlgT̃E(sÃ)JW−1
π∗ K has Blakers–Massey ex-

cision : for any pushout square

X Z

Y W

ψ

ϕ ρ

such that π<m(fib(ϕ)) = π<n(fib(ψ)) = 0, the map πk(fib(ϕ)) → πk(fib(ρ)) is an
isomorphism for k < m+ n and is surjective for k = m+ n.

Corollary 7.5.9 ([GHb, Corollary 2.3.15]). Suppose that

X Z

Y W

ψ

ϕ

is a pushout square in AlgT̃E(sÃ)JW−1
π∗ K such that π<m(fib(ϕ)) = π<n(fib(ψ)) = 0.

Then there is an induced partial long exact sequence

πm+n(Y )⊕ πm+n(Z) πm+n(W ) πm+n−1(X) · · ·

· · · π0(X) π0(Y )⊕ π0(Z) π0(W ) 0

δ

δ

in Ã, which we refer to as the Blakers–Massey long exact sequence.

Remark 7.5.10. Assumption 7.5.8 holds in examples of interest, e.g. when T̃E is the
monad corresponding to an operad E>(T ) ∈ Op(sÃ) for any T ∈ Op(sSet) (see
[GHb, Theorem 2.3.13 and Remark 2.3.14]).

Our moduli spaces will be related by the following natural construction.

Construction 7.5.11. Let X
ϕ−→ Y be a map in AlgT̃E(sÃ)JW−1

π∗ K, and write

palg
0 (ϕ) = Y

∐
X

P alg
0 X = colim


X P alg

0 (X)

Y

τalg
0

ϕ
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for the indicated pushout. For any n ≥ 0 we obtain a commutative diagram

X P alg
0 (X)

Y palg
0 (ϕ) P alg

n+1(palg
0 (ϕ))

τalg
0

ϕ
δn(ϕ)

τalg
n+1

in AlgT̃E(sÃ)JW−1
π∗ K, and we refer to the map δn(ϕ) as the nth difference construc-

tion on the map ϕ. This defines an augmented endofunctor on Fun([1],AlgT̃E(sÃ)JW−1
π∗ K).

We will generally only apply this in the case that n ≥ 1, and in the case that π<n(ϕ)
is an isomorphism.

Lemma 7.5.12. Suppose that the map X
ϕ−→ Y in AlgT̃E(sÃ)JW−1

π∗ K is an iso-

morphism on π<n for some n ≥ 1. Write A = π0X ∼= π0Y ∈ AlgΦ(Ã) and
M = πn fib(ϕ) ∈ ModΦ

A(Ã). Then, the map

P alg
0 (X)

δn(ϕ)−−−→ P alg
n+1(palg

0 (ϕ))

is of type ~KA(M,n+ 1).

Proof. This follows from Assumption 7.5.8.

Corollary 7.5.13 ([GHb, Proposition 2.5.13]). Let X
ϕ−→ Y be a map in AlgT̃E(sÃ)JW−1

π∗ K.
Suppose that π∗ fib(ϕ) is concentrated in degree n. The the square

X P alg
0 (X)

Y P alg
n+1(palg

0 (ϕ))

τalg
0

ϕ δn(ϕ)

is a pullback in AlgT̃E(sÃ)JW−1
π∗ K.

Observation 7.5.14. In the setting of Corollary 7.5.13, if additionally X (and hence
Y ) is n-truncated, then we can identify the map X → Y as τ alg

≤nX → τ alg
≤(n−1)X, and

from here Lemma 7.5.12 allows us to identify the pullback square of Corollary 7.5.13
as

P alg
n X KA

P alg
n−1X KA(M,n+ 1)

τalg
n−1
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(in which the right vertical map is of type ~KA(M,n + 1)). This is a functorial
construction of k-invariants in AlgT̃E(sÃ)JW−1

π∗ K.

Notation 7.5.15. We fix an object k ∈ AlgT̃E(sÃ)JW−1
π∗ K. We will generally work

in its undercategory AlgT̃E(sÃ)JW−1
π∗ Kk/; in particular, we will generally have fixed

a map k → A = const(A). Everything will take place in this undercategory, so that

e.g. a morphism in AlgT̃E(sÃ)JW−1
π∗ Kk/ of type ~KA(M,n) will be understood to mean

a commutative triangle

k

KA KA(M,n)

in AlgT̃E(sÃ)JW−1
π∗ K in which the left vertical arrow identifies with the fixed map.

Notation 7.5.16. Suppose that Y ∈ AlgT̃E(sÃ)JW−1
π∗ Kk/ is (n − 1)-truncated for

some n ≥ 1, write A = π0Y ∈ AlgΦ(Ã)k/, and suppose M ∈ ModΦ
A(Ã). We write

Mk(Y ⊕ (M,n)) ⊂ AlgT̃E(sÃ)JW−1
π∗ Kk/

for the moduli space of those objects X such that

• X is n-truncated,

• there exists an equivalence P alg
n−1X

∼−→ Y , and

• there exists an isomorphism πnX ∼= M via the resulting equivalence ModΦ
π0X

(Ã) '
ModΦ

A(Ã).

Notation 7.5.17. In our moduli spaces, we will use the symbol # to denote a
restriction to morphisms which are isomorphisms on homotopy groups in those di-
mensions for which both the source and the target have nonvanishing homotopy.

Proposition 7.5.18 ([GHb, Theorem 2.5.16]). Suppose that Y ∈ AlgT̃E(sÃ)JW−1
π∗ Kk/

is (n − 1)-truncated for some n ≥ 1, write A = π0Y ∈ AlgΦ(Ã)k/, and suppose

M ∈ ModΦ
A(Ã). Then the functor

X 7→
(
P alg
n−1(X)→ P alg

n+1(palg
0 ((τ alg

n−1)X))
δn((τalg

n−1)X)
←−−−−−−− P alg

0 (X)

)



462

determines an equivalence

Mk(Y ⊕ (M,n))
∼−→Mk(Y # KA(M,n+ 1)" KA)

in S.

Proof. An inverse is provided by the pullback functor.

Notation 7.5.19. For any A ∈ AlgΦ(Ã)k/, we write

MA/k ⊂ AlgT̃E(sÃ)JW−1
π∗ Kk/

for the moduli space of objects of type KA/k. For any M ∈ ModΦ
A(Ã) and any n ≥ 1,

we write
MA/k(M,n) ⊂ Fun([1],AlgT̃E(sÃ)JW−1

π∗ Kk/)

for the moduli space of morphisms of type ~KA/k(M,n).

Notation 7.5.20. It will be of auxiliary use to write

MA/k(M, 0)

for the moduli space of pairs of an object X ∈ AlgT̃E(sÃ)JW−1
π∗ K and an abelian

(∞-)group object Y ∈ Ab(AlgT̃E(sÃ)JW−1
π∗ K/X) in its overcategory which are in the

image of (A,M) under the derived right adjoint

AlgΦ(Ã)/A
const−−−→ AlgT̃E(sÃ)JW−1

π∗ K/A

of the Quillen adjunction of Lemma 7.4.19.

Proposition 7.5.21. Let A ∈ AlgΦ(Ã)k/, let M ∈ ModΦ
A(Ã), and let n ≥ 0. Then

the functor

(X → Y ) 7→ lim
AlgT̃E

(sÃ)JW−1
π∗ K

X/

 X

X Y


defines an equivalence

MA/k(M,n+ 1)
∼−→MA/k(M,n)

in S.
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Proof. For n ≥ 1, an inverse is provided by the functor

(Z → W ) 7→ δn(W → P alg
0 (W )).

For n = 0, an inverse is provided by the functor taking the pair(
W ∈ AlgT̃E(sÃ)JW−1

π∗ K , Z ∈ Ab(AlgT̃E(sÃ)JW−1
π∗ K/W )

)
,

say with structure map Z
ϕ−→ W , to the map

Kπ0W → Kπ0W (ker(π0(ϕ)), 1)

(which is evidently of type ~KA(M, 1)).

Proposition 7.5.22 ([GHb, Lemma 2.5.18]). Let A ∈ AlgΦ(Ã)k/, let M ∈ ModΦ
A(Ã),

let X ∈ AlgT̃E(sÃ)JW−1
π∗ Kk/, and let n ≥ 0. Then there exists a natural isomorphism

[X,KA(M,n)]AlgT̃E
(sÃ)JW−1

π∗ K
k/

∼=
∐

homAlgΦ(Ã)k/
(π0X,A)

Hn
T̃E

(X/k;M)

in Ab (where the implicit structure map X → A = const(A) in AlgT̃E(sÃ)k/ necessary
for defining the cohomology of X varies over the indexing set).

Notation 7.5.23. Given an∞-category D and objects d1, d2 ∈ D, we write hom'D(d1, d2) ⊂
homD(d1, d2) for the subspace of equivalences. For any other sort of decoration de-
noting a certain property of a morphism, we use corresponding exponent notation
to denote the subspace of the hom-space corresponding to morphisms having this
property.

Notation 7.5.24. For any A ∈ AlgΦ(Ã)k/, we write Autk(A) = AutAlgΦ(Ã)k/
(A).

Moreover, for any M ∈ ModΦ
A(Ã), we write Autk(A,M) for the group of pairs(

ϕ ∈ Autk(A) , ψ ∈ hom
∼=
ModΦ

A(Ã)
(M,ϕ∗(M))

)
.

Proposition 7.5.25 ([GHb, Proposition 2.5.19(1)]). For any A ∈ AlgΦ(Ã)k/, we
have an equivalence MA/k ' BAutk(A) in S.

Proof. This is the assertion that the canonical map

AutAlgΦ(Ã)k/
(A)→ AutAlgT̃E

(sÃ)JW−1
π∗ K

k/

(const(A))
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induced by the functor

AlgΦ(Ã)
const−−−→ AlgT̃E(sÃ)JW−1

π∗ K

is an equivalence, which follows from Lemma 7.4.19 since it implies that this functor
is a full inclusion.

Proposition 7.5.26 ([GHb, Proposition 2.5.19(2)]). Suppose that A ∈ AlgΦ(Ã)k/
and that M ∈ ModΦ

A(Ã). Then for any n ≥ 0 we have an equivalence MA/k(M,n) '
BAutk(A,M).

Proof. This follows from combining Proposition 7.5.21 with the essentially defini-
tional equivalence MA/k(M, 0) ' BAutk(A,M).

Notation 7.5.27. Given an object X ∈ AlgT̃E(sÃ)JW−1
π∗ Kk/, we write

Mk(X) ⊂ AlgT̃E(sÃ)JW−1
π∗ Kk/

for the full subgroupoid generated by it.

Lemma 7.5.28 ([GHb, Proposition 2.5.22]). For any X ∈ AlgT̃E(sÃ)JW−1
π∗ Kk/, there

exists a canonical pullback square∐
hom

∼=
AlgΦ(Ã)

(π0X,A)

H n
T̃E

(X/k;M) Mk(X # KA(M,n)" A)

ptS Mk(X)×BAutk(A,M)
(X,id(A,M))

in S.

Proof. This is immediate from the definitions.

Notation 7.5.29. We write

Ĥ n
T̃E

(A/k;M) =
(
H n

T̃E
(A/k;M)

)
Autk(A,M)

∈ S∗

for the based space of coinvariants of the canonical action of Autk(A,M) on H n
T̃E

(A/k;M) ∈
S∗.
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Corollary 7.5.30. There exists a canonical pullback square

H n
T̃E

(A/k;M) Mk(A# KA(M,n)" A)

ptS BAutk(A,M)

in S, whose induced action of Autk(A,M) on H n
T̃E

(A/k;M) is the natural one, and

which induces an equivalence

Mk(A# KA(M,n)" A) ' Ĥ n
T̃E

(A/k;M)

in S.

Proof. First of all, applying Lemma 7.5.28 in the case that X = A yields a pullback
square ∐

hom
∼=
AlgΦ(Ã)

(A,A)

H n
T̃E

(A/k;M) Mk(A# KA(M,n)" A)

ptS Mk(A)×BAutk(A,M)
(X,id(A,M))

in S. By Proposition 7.5.25, we have Mk(A) ' BAutk(A) = AutAlgΦ(Ã)k/
(A), and

the action on the fibers is clearly the canonical one and is hence free on its path
components. Thus, pulling back along the map

BAutk(A,M) ' {A} ×BAutk(A,M)→Mk(A)×BAutk(A,M)

yields a pullback square

H n
T̃E

(A/k;M) Mk(A# KA(M,n)" A)

ptS BAutk(A,M)
id(A,M)

in S. The claim now follows readily from Proposition 3.3.1.
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7.6 Homotopical topology

7.6.1 Postnikov towers in topology

We now study the homotopy theory of the ∞-category AlgT (sC) of simplicial T -
algebras; we will mostly work in its localization AlgT (sC)JW−1

resK, but we will ulti-
mately be interested in deducing results about its further localization AlgT (sC)JW−1

Elw
>

K
(recall Observation 7.3.15).

Definition 7.6.1. For any n ≥ 0, an object X ∈ AlgT (sC)JW−1
resK is called n-

truncated if π\>n,εX = 0 for all ε ∈ GEC
δ
. Such objects form a full subcategory

AlgT (sC)JW−1
resK
≤n ⊂ AlgT (sC)JW−1

resK, and as n varies these subcategories are evi-
dently nested as

AlgT (sC)JW−1
resK←↩ · · · ←↩ AlgT (sC)JW−1

resK
≤1 ←↩ AlgT (sC)JW−1

resK
≤0
.

By presentability considerations, these inclusions admit left adjoints, and we denote
the corresponding left localization adjunctions by

P top
n : AlgT (sC)JW−1

resK� AlgT (sC)JW−1
resK
≤n

: Utop
n .

We therefore obtain a tower of functors

idAlgT (sC)JW−1
resK → · · · → P top

1 → P top
0 .

We refer to its value on an object of AlgT (sC)JW−1
resK as its Postnikov tower . We

write

idAlgT (sC)JW−1
resK

τ top
n−−→ P top

n

for the natural transformation (or its for composite with Utop
m for any m ≥ 0), which

we refer to as the n-truncation map.

Observation 7.6.2. By a colimit argument, if X ∈ AlgT (sC)JW−1
resK is n-truncated

then E\
≤n,>X = 0 as well.

7.6.2 Topological Eilenberg–Mac Lane objects

We now define certain objects of AlgT (sC)JW−1
resK which will represent the various

functors “apply Elw
> , then take cohomology”.

Definition 7.6.3. Let A ∈ AlgΦ(Ã), let M ∈ ModΦ
A(Ã), and let n ≥ 1.
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(1) We say that an object X ∈ AlgT (sC)JW−1
resK is of type BA if there exists a

universal map Elw
> X → KA inducing natural equivalences

homAlgT (sC)JW−1
resK(Z,X)

∼−→ homAlgT̃E
(sÃ)JW−1

π∗ K(E
lw
> Z,KA)

for all Z ∈ AlgT (sC)JW−1
resK.

(2) We say that an object Y ∈ AlgT (sC)JW−1
resK is of type BA(M,n) if there exists

a universal map Elw
> Y → KA(M,n) inducing natural equivalences

homAlgT (sC)JW−1
resK(Z,X)

∼−→ homAlgT̃E
(sÃ)JW−1

π∗ K(E
lw
> Z,KA(M,n))

for all Z ∈ AlgT (sC)JW−1
resK.

(3) We say that a map X → Y in AlgT (sC)JW−1
resK is of type ~BA(M,n) if X is

of type BA, Y is of type BA(M,n) and the map π0E
lw
> X → π0E

lw
> Y is an

isomorphism in AlgΦ(Ã).

We refer to objects of type BA and BA(M,n) collectively as topological Eilenberg–

Mac Lane objects, and to morphisms of type ~KA(M,n) collectively as topological
Eilenberg–Mac Lane morphisms .

Lemma 7.6.4. For any A ∈ AlgΦ(Ã), and M ∈ ModΦ
A(Ã), and any n ≥ 1, there

exist objects of type BA and BA(M,n), and there exists a morphism of type ~BA(M,n).

Proof. By the presentability of AlgT (sC)JW−1
resK (which follows from Theorem 7.1.22

and the derived monadic adjunction underlying the monadic Quillen adjunction FT a
UT ), this follows from Corollary 7.4.10.

Notation 7.6.5. Justified by Lemma 7.6.4, we may simply write BA or BA(M,n)
for convenience when referring to a topological Eilenberg–Mac Lane object of the
indicated type.

Observation 7.6.6. If X ∈ AlgT (sC)JW−1
resK is an object of type BA, it follows

immediately that π\0,>X
∼=ょπ0Elw

> (A) in PδΣ(T (GEC )) and that π\>0,∗X = 0. By the
spiral exact sequence, it follows that

πiπ>X ∼=


ょE(A), i = 0
ょE(ΩA), i = 2
0, i /∈ {0, 2}.

For convenience, we simply write π∗π>X ∼=ょE(A)×ょE(ΩA)[2].
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Now, suppose that X → Y is a map of type ~BA(M,n). It follows from the
definition of an object of type BA(M,n) that π\0,SεY

∼=ょE(A) in PδΣ(T (GEC )) and
that for i ≥ 1,

π\i,>Y
∼=
{
ょE(M), i = n
0, i 6= n

in ModΦ
A(Ã). Then, note further that if X → Y is a map of type ~BA(M,n), then

the composite X → Y → P top
0 (Y ) is an equivalence; combining this with the spiral

exact sequence yields that π∗π>Y ∼= π∗π>X ×ょE(M)[n]×ょE(ΩM)[n+ 2].

7.6.3 Moduli spaces in topology

We begin by mimicking Construction 7.5.11.

Construction 7.6.7. Let X
ϕ−→ Y be a map in AlgT (sC)JW−1

resK, and write

ptop
0 (ϕ) = Y

∐
X

P top
0 X = colim


X P top

0 (X)

Y

τ top
0

ϕ


for the indicated pushout. For any n ≥ 0 we obtain a commutative diagram

X P top
0 (X)

Y ptop
0 (ϕ) P top

n+1(ptop
0 (ϕ))

τ top
0

ϕ
δn(ϕ)

τ top
n+1

in AlgT (sC)JW−1
resK, and we refer to the map δn(ϕ) as the nth difference construc-

tion on the map ϕ. This defines an augmented endofunctor on Fun([1],AlgT (sC)JW−1
resK).

We will generally only apply this in the case that n ≥ 1, and in the case that π\<n,>(ϕ)
is an isomorphism.

We now employ our assumption that T is homotopically adapted to E, which
provides a fundamental link between our computations in homotopical topology and
homotopical algebra.

Proposition 7.6.8. Let X
ϕ−→ Y be a map in AlgT (sC)JW−1

resK, let n ≥ 1, and suppose
that E\

<n,>(ϕ) is an isomorphism and that E\
n,>(ϕ) is surjective. Write A = E\

0,>X
∼=

E\
0,>Y in AlgΦ(Ã), and write M = fib(E\

n,>(ϕ)) ∈ Ã.
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(1) We can canonically consider M ∈ ModΦ
A(Ã).

(2) The map δn(ϕ) becomes equivalent to a morphism of type ~BA(M,n) under the
localization functor LElw

>
: AlgT (sC)JW−1

resK→ AlgT (sC)JW−1
Elw

>
K.

(3) If π\i,>(fib(ϕ)) = 0 for i 6= n+ 1, then the square

X P top
0 (X)

Y P top
n+1(ptop

0 (ϕ))

τ top
0

ϕ δn(ϕ)

becomes a pullback under the localization functor LElw
>

: AlgT (sC)JW−1
resK →

AlgT (sC)JW−1
Elw

>
K.

Proof. It follows from Corollary 7.4.10 that the functor

AlgT (sC)JW−1
resK

Elw
>−−→ AlgT̃E(sÃ)JW−1

π∗ K

preserves pushouts. Thus, the square

Elw
> X Elw

> (P top
0 (X))

Elw
> Y Elw

> (ptop
0 (ϕ))

Elw
> (τ top

0 )

Elw
> (ϕ)

is a pushout in AlgT̃E(sÃ)JW−1
π∗ K. From here, the proof is essentially identical to

that of [GHb, Proposition 3.2.9].

In order to work in a relative setting, we fix the following.

Notation 7.6.9. We assume we are given an object Y ∈ AlgO(C) equipped with an
isomorphism Elw

> Y
∼= k in AlgΦ(Ã) for some chosen object k ∈ AlgΦ(Ã) (specialized

via the derived right adjoint AlgΦ(Ã)
const−−−→ AlgT̃E(sÃ)JW−1

π∗ K from our previous

assumption from Notation 7.5.15 that k ∈ AlgT̃E(sÃ)JW−1
π∗ K). A map k → A in

AlgΦ(Ã) gives rise to a composite

Elw
> const(Y )

∼=−→ k → A
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in AlgΦ(Ã), via which for any choice of topological Eilenberg–Mac Lane object BA

we obtain a canonical map const(Y ) → BA. We will simply write Y = const(Y ) ∈
AlgT (sC)JW−1

resK, and we will work in AlgT (sC)JW−1
resKY//BA .

Observation 7.6.10. Fix any morphism BA → BA(M,n) in AlgT (sC)JW−1
resK of

type ~BA(M,n). From Observation 7.6.6 and Notation 7.6.9, we obtain a sequence of
composable morphisms

Y → BA → BA(M,n)→ BA

(in which the composite of all but the first map is an equivalence). For any X ∈
AlgT (sC)JW−1

resKY//BA and as soon as n ≥ 2, we immediately obtain equivalences

homAlgT (sC)JW−1
resKY/

(X,BA)
∼−→ homAlgΦ(Ã)k/

(π0E
lw
> X,A)

and
homAlgT (sC)JW−1

resKY//BA
(X,BA(M,n))

∼−→H n
T̃E

(Elw
> (X)/k;M)

in S∗.

Notation 7.6.11. We write MY (A) ⊂ AlgT (sC)JW−1
resKY/ for the moduli space

of objects Y → X such that X is of type BA and moreover the map Elw
0 Y →

Elw
0 X is equivalent to the map k → A in AlgT̃E(sÃ)JW−1

π∗ K. Moreover, we write
MA/Y (M,n) ⊂ AlgT (sC)JW−1

resKY/ for the moduli space of morphisms Z → W of

type ~BA(M,n) under Y such that (Y → Z) ∈MY (A).

Proposition 7.6.12. The functor

X 7→ P alg
0 Elw

> (X)

defines an equivalence
MY (A)

∼−→Mk(A),

and the functor
ϕ 7→ δn−1(E>(ϕ))

defines an equivalence

MA/Y (M,n)
∼−→MA/k(M,n) ' BAutk(A,M).

Proof. These assertions both follow immediately from the functors that topological
Eilenberg–Mac Lane objects are defined to represent, just as in the proof of [GHb,
Proposition 3.2.17].



471

7.7 Decomposition of moduli spaces

7.7.1 Realizations and n-stages

We finally come to our main theorems: these provide an inductive procedure for
understanding our moduli space of ultimate interest, which we begin by introducing.

Definition 7.7.1. With respect to

• our fixed base object Y ∈ AlgO(C),

• our chosen morphism k → A in AlgΦ(Ã), and

• our chosen isomorphism E>Y ∼= k in AlgΦ(Ã),

we define a realization to be an object (Y
ϕ−→ X) ∈ AlgO(LE(C))Y/ such that there

exists an isomorphism E>X ∼= A in AlgΦ(Ã)k/. We write

MA/Y ⊂ AlgO(LE(C))Y/

for the moduli space of realizations (and E>-equivalences between them).

Before diving in, we provide a bit of big-picture intuition.

Remark 7.7.2. Given a simplicial T -algebra Z, a good way to control E>|Z| is to
control its spiral spectral sequence. More to the point, the easiest way to ensure that
|Z| be a realization is to demand that E2 = π∗E

lw
> Z
∼= π0E

lw
> Z
∼= A, so that the

spectral sequence collapses immediately.
However, it is not so straightforward to obtain such an object or understand its

automorphisms: the E2 page consists of natural E-homology groups, but it is the
classical E-homology groups that are more closely connected to the actual homotopy
theory of the ∞-category AlgT (sC)JW−1

resK.
Luckily, however, we have a tool that relates these two types of E-homology

groups: the localized spiral exact sequence. As it is one-third classical and two-
thirds natural, it allows us to exert control over the classical E-homology groups by
manipulating the natural E-homology groups.

Thus, our method will be to attempt to interpolate one stage at a time from

• objects which are easy to understand (read: have controlled natural E-homology)
but do not have the correct E2 pages (read: have the wrong classical E-
homology), towards

• objects which are somewhat more difficult to understand (read: have more
complicated natural E-homology) but have E2 pages which are closer and closer
to collapsing at A (read: their classical E-homology is equivalent to A itself
(concentrated in degree 0) in an increasingly large range).
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Of course, such interpolation will not always be possible, but in the course of our
attempt we will discover the precise cohomological obstructions to their possibility.

We now define certain objects of AlgT (sC)JW−1
resK which, via geometric realization,

provide approximations to realizations.

Definition 7.7.3. For 0 ≤ n ≤ ∞, we say that an object Z ∈ AlgT (sC)JW−1
resKY/ is

an n-stage if the following conditions hold:

(1) there exists an isomorphism π0E
lw
> Z
∼= A in AlgΦ(Ã)k/;

(2) π\>n,>Z = 0; and

(3) πiE
lw
> Z = 0 for 1 ≤ i ≤ n+ 1.

We write
Mn(A/Y ) ⊂ AlgT (sC)JW−1

Elw
>

K
Y/

for the moduli space of n-stages (and E>-equivalences between them).

Observation 7.7.4. Suppose that Z ∈ Mn(A/Y ). By condition (3), the tail end
of the localized spiral exact sequence degenerates into a sequence of isomorphisms.
By induction, this implies that E\

i,>Z
∼= ΩiA for all i ≤ n: the base case of i =

0 follows from condition (1) and Lemma 7.4.22. Then, after a colimit argument,

condition (2) implies that we have an isomorphism πn+2E
lw
> Z

∼=−→ Ω(E\
n,>Z) and that

π>n+2E
lw
> Z = 0. The table of Figure 7.1 summarizes these computations. Moreover,

i 0 1 2 · · · n− 1 n n+ 1 n+ 2 n+ 3 · · ·
πiE

lw
> Z A 0 0 · · · 0 0 0 Ωn+1A 0 · · ·

E\
i,>Z A ΩA Ω2A · · · Ωn−1A ΩnA 0 0 0 · · ·

Figure 7.1: The classical and natural E-homology groups of an n-stage Z ∈
Mn(A/Y ).

the same argument shows that if n = ∞ then E\
i,>Z

∼= ΩiA for all i ≥ 0 and that

π∗E
lw
> Z
∼= π0E

lw
> Z
∼= A.

We now provide the connection between realizations and n-stages.

Theorem 7.7.5. Geometric realization induces an equivalence

M∞(A/Y )
∼−→MA/Y .
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Proof. The adjunction |−| : AlgT (sC) � AlgO(C) : const evidently descends (or
perhaps rather restricts) to an adjunction |−| : AlgT (sC)JW−1

Elw
>

K � AlgO(LE(C)) :

const by the universal property of localization. In turn, the spiral spectral sequence
implies that (after taking undercategories of Y ) this latter adjunction restricts to
give the desired equivalence.

Remark 7.7.6. Note that we do not generally have a pullback square

M∞(A/Y ) MA/Y

AlgT (sC)JW−1
Elw

>
K
Y/

AlgO(LE(C))Y/.|−|

Rather, as alluded to in Remark 7.7.2, an ∞-stage is exactly an object whose spiral
spectral sequence has E2 = π∗E

lw
> X

∼= π0E
lw
>
∼= A, so that in particular it collapses

immediately.

Theorem 7.7.7. For any 0 ≤ n ≤ m ≤ ∞, the n-truncation functor

AlgT (sC)JW−1
resK

P top
n−−→ AlgT (sC)JW−1

resK

induces a map
Mm(A/Y )→Mn(A/Y ),

and these assemble to give an equivalence

M∞(A/Y )
∼−→ lim

(
· · ·

P top
2−−→M2(A/Y )

P top
1−−→M1(A/Y )

P top
0−−→M0(A/Y )

)
.

Proof. First of all, it is immediate from the localized spiral exact sequence that
the n-truncation of an m-stage is an n-stage. From here, the asserted equivalence
follows from an (∞-categorical but otherwise) identical argument to that of [DK84a,
4.6].

Theorem 7.7.8. The functor

AlgT (sC)JW−1
Elw

>
K
π0Elw

>−−−→ AlgΦ(Ã)

induces an equivalence
M0(A/Y )

∼−→MA/k.

Proof. Inspection of the definitions reveals an equivalence M0(A/Y ) 'MY (A) with
the moduli space of objects under Y of type BA, and from here the claim follows
from Proposition 7.6.12.
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7.7.2 Climbing the tower

We now come to the essential result, which explains how to move up the tower of
moduli spaces.

Theorem 7.7.9. For any n ≥ 1, there is a natural pullback square

Mn(A/Y ) BAutk(A,Ω
nA)

Mn−1(A/Y ) Ĥ n+2

T̃E
(A/k; ΩnA)

P top
n−1

in S.

In order to prove this, we will first develop an understanding of the object-by-
object passage between (n − 1)-stages and n-stages, and then we will analyze how
this behaves in families.

Observation 7.7.10. Directly from the definitions, topological Eilenberg–Mac Lane
objects are local with respect to the left localization adjunction LElw

>
: AlgT (sC)JW−1

resK�
AlgT (sC)JW−1

Elw
>

K : UElw
>

. Nevertheless, we will often keep the localization functor in

the notation for clarity.

Observation 7.7.11. Suppose first that Z ∈Mn(A/Y ). Then P top
n−1(Z) ∈Mn−1(A/Y )

by Theorem 7.7.7, and moreover Proposition 7.6.8(3) implies that we have a pullback
square

LElw
>

(Z) LElw
>

(BA)

LElw
>

(P top
n−1(Z)) LElw

>
(BA(ΩnA, n+ 1))

L
Elw
>

(τ top
n−1)

in AlgT (sC)JW−1
Elw

>
K.

Let us attempt to reverse this process. Suppose that W ∈ Mn−1(A/Y ), and
suppose that we form a pullback

LElw
>

(W̃ ) LElw
>

(BA)

LElw
>

(W ) LElw
>

(BA(ΩnA, n+ 1))ϕ
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in AlgT (sC)JW−1
Elw

>
K. Then, LElw

>
(W̃ ) ∈Mn(A/Y ) if and only if the induced compos-

ite

Elw
> W

E>(ϕ)−−−→ Elw
> (BA(ΩnA, n+ 1))→ KA(ΩnA, n+ 1)

with the universal map is an equivalence in AlgT̃E(sÃ)JW−1
π∗ K: this follows from the

long exact sequence in classical E-homology induced by a pullback square.

Observation 7.7.12. We can interpret the conclusion of Observation 7.7.11 as fol-
lows. By Observation 7.7.4, the object Elw

> W ∈ AlgT̃E(sÃ)JW−1
π∗ K has homotopy

concentrated in degrees 0 and n + 1 and moreover P alg
n (Elw

> W ) ' A. By Proposi-
tion 7.5.18, this object therefore corresponds to a unique pullback square

Elw
> W KA

A KA(ΩnA, n+ 2)χ

in AlgT̃E(sÃ)JW−1
π∗ K.

Recall from Observation 7.5.4 that we have a pullback square

KA(ΩnA, n+ 1) KA

KA KA(ΩnA, n+ 2)

in AlgT̃E(sÃ)JW−1
π∗ K. Now, we claim that there exists an equivalence Elw

> W
∼−→

KA(ΩnA, n + 1) in AlgT̃E(sÃ)JW−1
π∗ K if and only if χ represents the zero element

0 ∈ Hn+2

T̃E
(A/k; ΩnA).

• Indeed, if [χ] = 0, then the existence of an equivalence is manifest.

• Conversely, if such an equivalence exists, then by Proposition 7.5.18 there exists
an equivalence between these two pullback squares, implying that [χ] = 0.

Thus, the obstructions to a given (n − 1)-stage lifting to an n-stage are given by
elements of Hn+2

T̃E
(A/k; ΩnA). In particular, if this group vanishes then every (n−1)-

stage lifts to an n-stage.

We now provide the key piece of input to the proof of Theorem 7.7.9: in effect,
we work with Mn−1(A/Y ) one path component at a time.
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Notation 7.7.13. For any Z ∈Mn−1(A/Y ), we write Mn/Z(A/Y ) ⊂Mn(A/Y ) for
the subspace of those n-stages W ∈Mn(A/Y ) such that there exists an equivalence
Pn−1(W ) ' Z in AlgT (sC)JW−1

Elw
>

K
Y/

.

Observation 7.7.14. Note that the space Mn/Z(A/Y ) may well be empty; indeed,
by Observation 7.7.12 it will be empty if and only if Mk(E

lw
> Z # KA(ΩnA, n + 1))

is empty.

Notation 7.7.15. For any Z ∈ Mn−1(A/Y ), we write Z
e−→ BA(ΩnA, n) for a

morphism in AlgT (sC)JW−1
resKY/ which classifies an equivalence Elw

> Z
∼−→ KA(ΩnA, n)

in AlgT̃E(sÃ)JW−1
π∗ Kk/.

Lemma 7.7.16. Suppose that Z ∈ Mn−1(A/Y ) for some n ≥ 1. Then there is a
natural pullback square

Mn/Z(A/Y ) Mk(E
lw
> Z # KA(ΩnA, n+ 1)" KA)

MY (Z) Mk(E
lw
> Z)

P top
n−1

Elw
>

in S.

Proof. The difference construction provides a map Mn/Z(A/Y )→MY (Z
e−→ BA(ΩnA, n+

1) " BA), which is an equivalence by Observation 7.7.11. Thus we obtain a com-
mutative diagram

Mn/Z(A/Y ) MY (Z
e−→ BA(ΩnA, n+ 1)" BA) Mk(E

lw
> Z # KA(ΩnA, n+ 1)" KA)

MY (Z) MY (Z) Mk(E
lw
> Z)

∼

P top
n−1

∼ Elw
>

in S, in which

• the right square is obtained by applying Elw
> and using the universal charac-

terization of topological Eilenberg–Mac Lane objects,

• the left square is tautologically a pullback, and
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• our goal is to show that the outer rectangle is a pullback;

thus, it suffices to show that the right square is a pullback.
In the right square, both downwards maps are obtained by forgetting certain data:

a morphism of type ~BA(ΩnA, n+1) on the left, and a morphism of type ~KA(ΩnA, n+
1) on the right. Thus, it is convenient to use the equivalence MA/Y (ΩnA, n + 1)

∼−→
MA/k(Ω

nA, n+1) of Proposition 7.6.12 (between the moduli spaces of such Eilenberg–
Mac Lane morphisms) to obtain a larger commutative square

MY (Z
e−→ BA(ΩnA, n+ 1)" BA) Mk(E

lw
> Z # KA(ΩnA, n+ 1)" KA)

MY (Z)×MA/Y (ΩnA, n+ 1) Mk(E
lw
> Z)×MA/k(Ω

nA, n+ 1)

which it then suffices to show is a pullback.
Now, observe that both spaces on the bottom row are connected (by definition and

by Propositions 7.5.26 and 7.6.12). So for any basepoint of MY (Z)×MA/Y (ΩnA, n+
1), it suffices to check that the induced map on fibers is an equivalence. Unwinding
the definitions, we see that this is the map

home
AlgT (sC)JW−1

Elw
>

K(Z,BA(ΩnA, n+ 1))→ hom'
AlgT̃E

(sÃ)JW−1
π∗ K(E

lw
> Z,KA(ΩnA, n+ 1)).

As AlgT (sC)JW−1
Elw

>
K ⊂ AlgT (sC)JW−1

resK is a full subcategory, we see that this is by

definition an equivalence of subspaces of the equivalence

homAlgT (sC)JW−1
resK(Z,BA(ΩnA, n+ 1))

∼−→ homAlgT̃E
(sÃ)JW−1

π∗ K(E
lw
> Z,KA(ΩnA, n+ 1))

characterizing the object BA(ΩnA, n+ 1) ∈ AlgT (sC)JW−1
resK.

We can now prove our main decomposition theorem.

Proof of Theorem 7.7.9. We begin with the commutative square

Mk(KA(ΩnA, n+ 1)" KA) Mk(KA(Ωn, n+ 2)" KA)

Mk(KA ⊕ (ΩnA, n+ 1)) Mk(KA # KA(ΩnA, n+ 2)" KA)

∼

∼

in S, in which
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• the upper horizontal map is (the inverse of) the equivalence of Proposition 7.5.21,

• the left vertical map is forgetful,

• the right vertical map repeats the given morphism,

• the lower horizontal map is the equivalence of Proposition 7.5.18.

This is tautologically a pullback square.
Now, suppose that Z ∈ Mn−1(A/Y ). We claim that there exists a pullback

square

Mn/Z(A/Y ) Mk(KA(ΩnA, n+ 2)" KA)

MY (Z) Mk(KA # KA(ΩnA, n+ 2)" KA)

in S. To see this, we separate the argument into two cases, depending on whether or
not there exists an equivalence Elw

> Z
∼−→ KA(ΩnA, n+ 1) in AlgT̃E(sÃ)JW−1

π∗ K.

• Suppose that no such equivalence exists. Then Mn/Z(A/Y ) is empty by Obser-
vation 7.7.14. In this case, the subspace Mk(E

lw
> Z) ⊂Mk(KA ⊕ (ΩnA, n+ 1))

is not in the image of the left vertical map of our original tautological pullback
square. These facts imply that the above square is indeed (equally tautologi-
cally) a pullback.

• Suppose that such an equivalence exists. In this case, we obtain an evident
forgetful equivalence

Mk(E
lw
> Z # KA(ΩnA, n+ 1)" KA)

∼−→Mk(KA(ΩnA, n+ 1)" KA)

in S, which reduces the pullback square of Lemma 7.7.16 to a pullback square

Mn/Z(A/Y ) Mk(KA(ΩnA, n+ 1)" KA)

MY (Z) Mk(KA(ΩnA, n+ 1)).

The right vertical arrow of this pullback square includes as a subobject of the
left vertical arrow of our original tautological pullback square, yielding the
claim.
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Now, assembling this pullback square over all Z ∈ Mn−1(A/Y ), we obtain a
pullback square

Mn(A/Y ) Mk(KA(Ωn, n+ 2)" KA)

Mn−1(A/Y ) Mk(KA # KA(ΩnA, n+ 2)" KA).

From here, the equivalence

Mk(KA(ΩnA, n+ 2)" KA) = MA/k(Ω
nA, n+ 2) ' BAutk(A,Ω

nA)

of Proposition 7.5.26 and the equivalence

Mk(KA # KA(ΩnA, n+ 2)" KA) ' Ĥ n+2

T̃E
(A/k; ΩnA)

of Corollary 7.5.30 allow us to rewrite this as a pullback square

Mn(A/Y ) BAutk(A,Ω
nA)

Mn−1(A/Y ) Ĥn+2

T̃E
(A/k; ΩnA),

which completes the proof.
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Chapter 8

E∞ automorphisms of motivic
Morava E-theories

In this chapter, we show that the motivic Morava E-theories always admit E∞ struc-
tures, but that these may admit “exotic” E∞ automorphisms not coming from the
usual Morava stabilizer group.

8.0 Introduction

8.0.1 Overview

In this short chapter, we equip the motivic Morava E-theory spectra with canonical
E∞ structures, and compute their automorphisms as E∞ ring spectra. We find
that these automorphism groups are (homotopically) discrete, but that they are
apparently distinct from the usual Morava stabilizer group. We refer the reader to
Theorem 8.1.1 for a precise statement of our main result, and to Remark 8.1.4 for a
discussion of these automorphism groups. In Remark 8.1.5, we explain the precise
relationship between our work and that of Naumann–Spitzweck–Østvær [NSØ15] on
motivic algebraic K-theory (i.e. in the height-1 case).

Our proof is patterned directly on that of Goerss–Hopkins [GH04, GHb] for the
ordinary (i.e. non-motivic) Morava E-theory spectra (which is based on much prior
work, notably that of Hopkins–Miller [Rez98]). Whereas their proof is based in
Goerss–Hopkins obstruction theory for ordinary spectra, our proof uses our general-
ization of Goerss–Hopkins obstruction theory to an arbitrary presentably symmetric
monoidal stable ∞-category obtained in Chapter 7.

The most immediate consequence of the present work is that it endows the mo-
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tivic cohomology theories represented by the motivic Morava E-theories with the
rich algebraic structure of power operations. However, we also view it as a first
step towards a moduli-theoretic construction of a motivic spectrum mmf of motivic
modular forms, in analogy with the ordinary spectrum tmf of topological modular
forms [DFHH14].1 As the construction of tmf has been highly influential in chro-
matic homotopy theory, so would the construction of mmf significantly advance the
chromatic approach to motivic homotopy theory, which is a highly active area of re-
search [Voe98, HK01, Vez01, Bor03, Hor, LM07, PPR08, NSØ09b, NSØ09a, Bal10,
Isa09, Isa, And, Hoy15a, Hor18, Joa, HO, Ghe].

There has been much recent interest in “genuine” operadic structures, e.g. gen-
uine G-spectra with multiplications indexed by maps of finite G-sets (instead of just
finite sets) [BH15, HH, BHb, BHc, Rub, BP, GW18], as well as analogous struc-
tures in motivic homotopy theory [BHa]. We do not contend with such structures
here. However, we are optimistic that our generalization of Goerss–Hopkins obstruc-
tion theory admits a fairly direct enhancement to one that would handle them in a
formally analogous way. Thereafter, it seems quite plausible that the present work
would admit a straightforward extension to give “motivically genuine” E∞ structures
on the motivic Morava E-theory spectra.

8.0.2 Conventions

• We write Spmot for the (presentably symmetric monoidal stable)∞-category of
motivic spectra.2 This comes equipped with a distinguished group of invertible
objects

G = {Si,j}i,j∈Z ∼= Z× Z,

the motivic sphere spectra: the unit object is 1 = S0,0, its categorical suspension
is Σ1 = S1,0, and then by definition we have Σ∞Gm = S1,1. In particular, it
follows that S2,1 = Σ∞P1.

• For any X ∈ Spmot, we write X∗∗ = π∗∗X for its bigraded homotopy groups,
i.e. Xi,j = πi,jX = [Si,j, X]Spmot . Additionally, we write X∗ = π∗X for its
(2, 1)-line of homotopy groups, i.e. Xi = πiX = [S2i,i, X]Spmot .

1The works [Ric, GIKR] take a different approach, producing motivic spectra over R and C
whose cohomologies coincide with that expected of mmf (in analogy with tmf). These constructions
are indirect, and relatively specific to the chosen base fields; in particular, the resulting motivic
spectra are not manifestly related to any theory of elliptic motivic spectra.

2We implicitly work over a regular noetherian base scheme of finite Krull dimension, but this is
only in order to employ the results of [NSØ09b]. We will additionally use a result of [GS09], which
requires a (not necessarily regular) noetherian base scheme of finite Krull dimension.
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• We write Spmot
cell ⊂ Spmot for the coreflective subcategory of cellular motivic

spectra. This is the subcategory generated under colimits by the motivic sphere
spectra. It can also be characterized as the subcategory of colocal objects for
the “bigraded homotopy groups” functor; in particular, within this subcategory,
bigraded homotopy groups detect equivalences.

• We fix a finite field k of characteristic p > 0, and we fix a formal group law G0

over k of finite height n.

• We write E(k,G0) for the corresponding Lubin–Tate deformation ring, we
write m ⊂ E(k,G0) for its unique maximal ideal, and we fix an isomorphism
E(k,G0)/m ∼= k.

• We fix a versal deformation G of G0 over E(k,G0). To be precise, G is a formal
group law over E(k,G0), and pushes forward to G0 along the now-canonical
map E(k,G0)→ k. Geometrically, this corresponds to a pullback

G0 G

Spec(k) Spf(E(k,G0))

of formal groups (where we notationally identify formal group laws with their
underlying formal groups).

• We write
Etop = Etop

k,G0
∈ Sp

for the (ordinary) Morava E-theory spectrum corresponding to the pair (k,G0),
coming from the Landweber exact functor theorem (see e.g. [Rez98, Theorem
6.4 and 6.9]) applied to the formal group law G over E(k,G0).3 To be precise,
we have a chosen isomorphism

Etop
∗
∼= E(k,G0)[u±]

(with |u| = 2), and the degree-(−2) formal group law G on Etop
∗ coming from

its complex orientation corresponds to G via the unit u ∈ Etop
2 , considered as

a degree-0 formal group law on Etop
∗ .

3This is known to be E∞, by [GH04, Corollary 7.6] (which is precisely the result we generalize
here).
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• We write
E = Emot = Emot

k,G0
∈ Spmot

cell

for the motivic Morava E-theory spectrum corresponding to the pair (k,G0)
coming from the motivic Landweber exact functor theorem of [NSØ09b, The-
orem 8.7]. This is cellular by construction, and comes equipped with a quasi-
multiplication (i.e. a multiplication up to phantom maps). Moreover, writing
MGL ∈ Spmot for the algebraic bordism spectrum and MU ∈ Sp for the com-
plex bordism spectrum, we have isomorphisms

E∗∗ ∼= MGL∗∗ ⊗MU∗ E
top
∗

and
E∗∗E ∼= E∗∗ ⊗Etop

∗
Etop
∗ Etop,

and the structure maps of the Hopf algebroid (E∗∗, E∗∗E) are tensored up from
those of (E∗, E∗E).

8.0.3 Acknowledgments

David Gepner was instrumental in deducing this application of∞-categorical Goerss–
Hopkins obstruction theory, and it is a pleasure to acknowledge his help. We would
also like to acknowledge Markus Spitzweck for his helpful correspondence, as well
as the NSF graduate research fellowship program (grant DGE-1106400) for financial
support during the time that this research was carried out.

8.1 E∞ automorphisms of motivic Morava

E-theories

We now state the main result.

Theorem 8.1.1. The motivic Morava E-theory spectrum E = Emot
k,G0

has a unique
E∞ structure refining the ring structure on its bigraded homotopy groups, and as such
generates a subgroupoid of CAlg(Spmot) equivalent to

B(AutCAlg(Comod(E∗∗,E∗∗E))(E∗∗E)).

In particular, its space of automorphisms is discrete.

Lemma 8.1.2. Any Landweber exact motivic spectrum satisfies Adams’s condition.
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Proof. The proof is almost identical to that of [Rez98, Proposition 15.3]. First of
all, the general statement follows from the universal case of MGL. In turn, we can
present MGL as a filtered colimit of Thom spectra over finite Grassmannians, which
are then dualizable. Let us write this as MGL ' colimαMGLα.4 So, it only remains
to verify that MGL∗∗(D(MGLα)) is projective as an MGL∗∗-module. In bidegree
(0, 0), we observe that MGL∗∗(D(MGLα)) ∼= (MGL∗∗MGLα)∨, so that here the
claim follows from the algebra presentation of [GS09, Proposition 2.19], which in
particular implies (by inducting on the dimension of the Grassmannians) that this
algebra itself is actually free as an MGL∗∗-module. From here, in an arbitrary
bidegree (i, j) we then compute that

MGLi,j(D(MGLα)) ∼= MGL0,0(S−i,−j ⊗D(MGLα))

∼= MGL0,0(S−i,−j)⊗MGL0,0 MGL0,0(D(MGLα))

(using the Künneth theorem).

Observation 8.1.3. By definition, E∗∗-localization in Spmot is the localization de-
termined by the E∗∗-acyclics, i.e. those objects Z such that E∗∗Z ∼= 0. Note that
such motivic spectra Z may not be E-acyclic, i.e. it might still be the case that
E ⊗ Z 6' 0. On the other hand, if Z is also cellular, since E is cellular then so is
E⊗Z (since Spmot

cell is a colocalization of Spmot and the symmetric monoidal structure
commutes with colimits in each variable). Thus, when restricted to cellular motivic
spectra, the localizations LE and LE∗∗ agree. This is summarized by the diagram

LE∗∗(CAlg(Spmot
cell )) LE∗∗(CAlg(Spmot))

LE(CAlg(Spmot
cell )) LE(CAlg(Spmot))

CAlg(Spmot
cell ) CAlg(Spmot)

∼

of ∞-categories.

Proof of Theorem 8.1.1. The proof is formally identical to that of [GH04, Corollary
7.6], only we work in the ∞-category Spmot

cell : the key pieces of input are Theorems
7.7.5, 7.7.8, and 7.7.9, which are respectively generalizations of [GH04, Proposition
5.2, Proposition 5.5, and Theorem 5.8]. The passage from the ordinary case to the
motivic case runs as follows.

4Explicitly, D(MGLα) is also a Thom spectrum via the formula D(Xξ) ' X−ξ.
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First of all, a priori we only have a quasi-multiplication on E ∈ Spmot
cell . However,

this suffices to give all the required structure on its bigraded E-homology groups:
these are by definition homotopy classes of maps out of bigraded spheres, which by
definition cannot detect phantom maps.

Next, a priori, Goerss–Hopkins obstruction theory in Spmot
cell using the homology

theory E∗∗ computes a moduli space in LE∗∗(CAlg(Spmot
cell )). However, as explained

in Observation 8.1.3, we have an equivalence

LE∗∗(CAlg(Spmot
cell )) ' LE(CAlg(Spmot

cell )),

and the usual proof that E is E-local then applies (see e.g. [Rav84, Proposition 1.17]).
Thus we have E ∈ LE∗∗Spmot

cell , and hence the moduli space that we construct inside
of CAlg(LE∗∗(Spmot

cell )) ' LE∗∗(CAlg(Spmot
cell )) is that of an object whose underlying

motivic spectrum is indeed E itself.
Now, let us turn to the remainder of the proof of [GH04, Corollary 7.6] and

its ingredients. We do not carry over the last line (which identifies the relevant
automorphism group with an automorphism group in a category of formal group
laws).5 However, everything else used there is entirely algebraic, and works equally
well replacing ordinary gradings with bigradings. Note that the gradings appearing
in [GH04, §6] arise from the external simplicial direction (and the internal gradings
play no real role); note too that the “Dyer–Lashof operations” arising there arise from
the algebraic theory given in [May70] (and in particular have nothing whatsoever to
do with operations in motivic homology).

Remark 8.1.4. Using various adjunctions as well as the fact that all morphisms re-
spect bigradings, one can identify the endomorphism monoid

EndCAlg(Comod(E∗∗,E∗∗E))(E∗∗E)

(the classifying space of whose maximal subgroup appears in the statement of The-
orem 8.1.1) with the hom-set

homCAlg(Mod
E

top
∗

)(E
top
∗ Etop,MGL∗ ⊗MU∗ E

top
∗ ).

This appears to fall under the auspices of [Rez98, §17], and thus ought to have a
moduli-theoretic interpretation.

A reasonable guess would be that, if we define the map χ via the pullback diagram

Spec(Emot
∗ ) Spec(Etop

∗ )

Spec(MGL∗) Spec(MU∗),

χ

5However, see Remark 8.1.4.



486

then the group in question should be the group of (strict) automorphisms of the
formal group law χ∗G over

Emot
∗ = MGL∗ ⊗MU∗ E

top
∗ .

However, we have not managed to verify this claim. If it holds, however, it would
be in keeping with the general philosophy that motivic homotopy theory should be
thought of as a flavor of parametrized homotopy theory: the pullback of a sheaf over
a small space to a larger one will generally admit more automorphisms than the
original sheaf itself.

In any case, there is an evident map to this automorphism group from the Morava
stabilizer group, which therefore acts on the object Emot ∈ CAlg(Spmot) as well.
Moreover, this map should be an inclusion whenever the map MU∗ → MGL∗ is
(indeed, in certain cases the latter is even an isomorphism (see [Hoy15b])).

Remark 8.1.5. in [NSØ15], Naumann–Spitzweck–Østvær prove that the motivic al-
gebraic K-theory spectrum KGL (over a noetherian base scheme of finite Krull di-
mension) admits a unique E∞ structure refining the canonical multiplication on its
represented motivic cohomology theory. Meanwhile, Goerss–Hopkins obstruction
theory takes a commutative algebra in comodules and returns the moduli space of
realizations. These are not directly comparable: the former addresses the ques-
tion of E∞ structures on a given object, while the latter addresses the question of
the ∞-groupoid of objects that realize some chosen algebraic datum. Moreover,
[NSØ15] addresses KGL as an integral object, whereas Theorem 8.1.1 only applies
to Emot

k,Ĝm
' KGL∧p .

To clarify, for a variable object X ∈ Spmot
cell we locate both the main theorem of

[NSØ15] as well as Theorem 8.1.1 in the diagram

homOp(Comm,EndSpmot
cell

(X))

homOp(Comm,Endho(Spmot
cell )(X))) CAlg(Comod(E∗∗,E∗∗E))

'

S/LE∗∗ (CAlg(Spmot
cell ))

E∗∗

M (−)

(where End denotes the endomorphism operad): the two downwards arrows are the
settings for the respective theorems.

• On the one hand, taking X = KGL, there is a canonical point in the set
homOp(Comm,Endho(Spmot

cell )(KGL)) which selects the standard multiplication
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on KGL in ho(Spmot
cell ). The main theorem of [NSØ15] can then be interpreted

as saying that the fiber over this point is nonempty and contractible.

• On the other hand, Goerss–Hopkins obstruction takes an algebraic object in
CAlg(Comod(E∗∗,E∗∗E))

' and provides a spectral sequence converging to the ho-
motopy groups of its moduli space of realizations (which in our case collapses),
considered as a subgroupoid of the ∞-category LE∗∗(CAlg(Spmot

cell )). The inclu-
sion of this subgroupoid is the target of this algebraic object under the lower
vertical map.

A toy example illustrating the difference between these two approaches is the
difference between E∞ structures on a fixed two-element set (of which there are four)
and the moduli space of such objects in CAlg(Set) (which consists of two discrete
components).6 These two approaches are both explored in the more sophisticated
setting of algebras over an operad in [Rez96].

Note that the horizontal map in this diagram may not be injective: it is a pri-
ori possible that distinct multiplications on X in ho(Spmot

cell ) might induce the same
commutative algebra object structure on E∗∗X ∈ Comod(E∗∗,E∗∗E). This represents a
further obstruction to a direct comparison of these two approaches to the realization
problem.

6However, this analogy fails in that the upper vertical map is already an equivalence since
Set

∼−→ ho(Set).
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Appendix A

Notation, terminology, and
conventions

In this appendix we spell out all the precise foundations on which this thesis is built.

A.1 On ∞-categories

We begin with our philosophy surrounding the semantics of the signifier “∞-category”.

(1) For definiteness, we ground ourselves in the theory of quasicategories : an ∞-
category is a quasicategory. We will refer to these as “quasicategories” only
when we mean to make specific reference to their properties or manipulation as
such, which we will avoid doing to the largest extent possible. We use [Lur09b]
as our primary reference, but we note that many of the ideas given there have
their origins in [Joyc, Joyb, Joya].

In order to proceed with the enumeration of our foundations, we must imme-
diately lay out the following basic conventions.

(a) We will be ignoring all set-theoretic issues. They are irrelevant to our
aims, and in any case can be dispensed with by appealing to the usual
device of Grothendieck universes (see e.g. §T.1.2.15).

(b) If an ∞-category C has an initial (resp. terminal) object, we will write
∅C (resp. ptC) for any such object, or we will simply write ∅ (resp. pt)
if the ambient ∞-category C is clear from the context. For ∞-categories
of co/pointed objects, we will make the abbreviations C∅ = C/∅ and
C∗ = Cpt/.
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(c) We write S for the ∞-category of spaces. Up to equivalence, we can take
this to be either TopJW−1

w.h.e.K or sSetJW−1
w.h.e.K, where in both cases the

symbol Ww.h.e. denotes the weak homotopy equivalences.1,2 In particu-
lar, by “space” we will mean an object of S; when we mean to refer to
an object of Top, we will instead use the term “topological space”. The
∞-category S of spaces plays the same fundamental role in the theory
of ∞-categories that the category Set of sets plays in the theory of cate-
gories: whereas categories are naturally enriched in sets,∞-categories are
naturally enriched in spaces (see item (21)).

We adopt the following conventions regarding S.

• A map in S is called

– étale if it induces a π≥1-isomorphism for every basepoint of the
source;

– a monomorphism (or, more informally, the inclusion of a sub-
space) if it is étale and additionally induces a π0-monomorphism;

– a surjection if it induces a π0-surjection.3

• There is an evident adjunction π0 : S � Set : disc, and we call a
space discrete if it is in the image of the right adjoint (see item (24)).
We will only include this right adjoint in the notation if we mean to
emphasize it.

• More generally, for any n ≥ 0 we have a truncation adjunction τ≤n :
S� S≤n : U≤n and a cotruncation adjunction U≥n : S≥n∗ � S≥1

∗ : τ≥n.
(In the special case that n = 0, the truncation adjunction reduces to
the adjunction π0 : S� Set : disc given above.)

• We write Sfin ⊂ S for the full subcategory on the finite spaces.4

• We will refer to spaces as ∞-groupoids when we mean to emphasize
the fact that they are just particular examples of ∞-categories.

1Of course, by Top we mean to denote any “convenient” category of topological spaces.
2More invariantly, one can also characterize the ∞-category of spaces as the free cocompletion

of the terminal ∞-category (see item (23)).
3Surjections are also called “effective epimorphisms”, but note that they are not generally

epimorphisms in S (see item (22)).
4A space is finite exactly when it can be presented either by a finite CW complex or by a finite

simplicial set (i.e. a simplicial set with finitely many nondegenerate simplices). More invariantly,
one can also characterize Sfin as the initial ∞-category admitting all finite colimits.
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(d) We write Cat∞ for the∞-category of ∞-categories. We adopt the follow-
ing conventions regarding Cat∞.

• A functor C
F−→ D of ∞-categories is an equivalence precisely if it is

(homotopically) fully faithful and surjective: that is,

– for all x, y ∈ C, the induced map

homC(x, y)→ homD(F (x), F (y))

is an equivalence in S, and moreover

– for every z ∈ D there is some w ∈ C and an equivalence F (w) ' z
in D.5

• To say that an ∞-category C is a subcategory of some other ∞-
category D means, in the most invariant possible language, that we

have a chosen functor C
F−→ D which is (homotopically) faithful: that

is, for all x, y ∈ C, the induced map

homC(x, y)→ homD(F (x), F (y))

is a monomorphism in S. We will call the functor F the inclusion of
a subcategory, but we will usually suppress it from the notation and
simply write C ⊂ D as shorthand.6 A subcategory C ⊂ D is uniquely
specified by the resulting subcategory ho(C) ⊂ ho(D) of its homotopy
category.

• More generally, if I is a class of maps in S, then a functor in Cat∞ is
called a local I if all the induced maps on hom-spaces are in I. (So
for instance, the inclusion of a subcategory might otherwise be called
a local monomorphism.)

• An ∞-category will be called a category, or sometimes a 1-category
for emphasis, if its hom-spaces are discrete, i.e. they lie in the full
subcategory Set ⊂ S. These form a full subcategory Cat ⊂ Cat∞,

5This is essentially Definition T.1.1.5.14, which makes use of the left Quillen equivalence
sSetJoyal → (CatsSet)Bergner of Theorem T.2.2.5.1. (Note that all objects of sSetJoyal are cofibrant.)

6Note that these are not quite the monomorphisms in Cat∞ (see item (22)). Rather, the
monomorphisms are precisely the pseudomonic functors, i.e. the inclusions of subcategories which
are full on equivalences. This is perhaps most easily seen by appealing to the equivalence Cat∞ '
CSS of item (2)(c) below: as the inclusion CSS ⊂ sS preserves limits (being a right adjoint), a map
in CSS is a monomorphism precisely if it is a monomorphism when considered in sS.
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the inclusion of which we will denote by UCat : Cat ↪→ Cat∞. This
inclusion is the right adjoint in an adjunction

ho : Cat∞ � Cat : UCat

whose left adjoint is given by the homotopy category functor. Given
an ∞-category C and any pair of objects c, d ∈ C, we will sometimes
write

[c, d]C = homho(C)(c, d)

for the corresponding hom-set in the homotopy category ho(C) of C.
By definition, the map

homC(c, d)→ homho(C)(c, d)

in S induced by projection C→ ho(C) (i.e. the unit of the adjunction
ho a UCat) is precisely the projection to the set of path components
(i.e. the unit of the adjunction π0 a disc).

• We write US : S ↪→ Cat∞ for the inclusion of spaces as ∞-groupoids.

– This inclusion is the left adjoint in an adjunction

US : S� Cat∞ : (−)'

whose right adjoint is given by the maximal subgroupoid functor.7

– This inclusion is the right adjoint in an adjunction

(−)gpd : Cat∞ � S : US

whose left adjoint is given by the (∞-)groupoid completion func-
tor.8

• We write Fun(C,D) ∈ Cat∞ for the ∞-category of functors from C

to D. This is the internal hom in (Cat∞,×), and admits a canonical
equivalence Fun(C,D)' ' homCat∞(C,D) in S.9

7The adjunction US : S� Cat∞ : (−)' is presented by an adjunction of sSet-enriched categories
between that of Kan complexes and that of quasicategories, whose left adjoint is the canonical
inclusion and whose right adjoint takes a quasicategory to the largest Kan complex that it contains
(see Proposition T.1.2.5.3 and Corollary T.5.2.4.5).

8The adjunction (−)gpd : Cat∞ � S : US is presented by the Quillen adjunction idsSet :
sSetJoyal � sSetKQ : idsSet (see item (34) (and Remark T.1.2.5.6)).

9As the model category sSetJoyal is cartesian (as can easily be seen from Corollary T.2.2.5.4),
the ∞-category of functors is presented therein by the internal hom in (sSet,×).
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• We write (−)op : Cat∞
∼−→ Cat∞ for the involution given by taking

opposites.

(2) Despite our grounding declared in item (1), our notion of “∞-category” is
nevertheless a rather flexible one: over the course of this thesis, we interchange
fluidly between a number of distinct but essentially equivalent notions thereof.
In accordance with current best practices, those that we will employ all appear
naturally as objects in various model categories. For the reader’s convenience,
we itemize these notions and their ambient model categories here, and we give
some indication of the roles that they play in this thesis.

(a) The notion of a quasicategory plays a distinguished role in this thesis, as
indicated in item (1). These are precisely the bifibrant objects in sSetJoyal,
the category of simplicial sets equipped with the Joyal model structure of
Theorem T.2.2.5.1. We view these as the most convenient of the notions
to employ as an ambient framework, which advantage is surely in large
part due to the abundance of theory that has been built up around them.

(b) The notion which most closely adheres to the intuition of a “category
enriched in spaces” is that of a category enriched in simplicial sets, or
simply a sSet-enriched category for short. These organize into the model
category (CatsSet)Bergner under the Bergner model structure of [Ber07, The-
orem 1.1] (or see Proposition T.A.3.2.4 for a generalization). Just as
when one uses simplicial sets to present spaces one should generally be
working with Kan complexes, when considering a sSet-enriched cate-
gory as an ∞-category one should generally be working with a category
which is in fact enriched in Kan complexes: indeed, these are precisely
the fibrant objects of (CatsSet)Bergner (which sits in a Quillen equivalence
C : sSetJoyal � (CatsSet)Bergner : Nhc (see Theorem T.2.2.5.1)), though note
that not all objects are cofibrant. This model category provides an explicit
bridge from RelCatBK to sSetJoyal (see subitem (2)(d)).

(c) The notion which is most “homotopy invariant” is that of a complete Segal
space. These are actually bisimplicial sets, thought of as simplicial spaces
via choices of distinguished “simplicial” and “geometric” directions. They
are precisely the bifibrant objects in ssSetRezk, the category of bisimpli-
cial sets equipped with the Rezk model structure of [Rez01, Theorem 7.2]
(there called the “complete Segal space” model structure).
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However, it is also fruitful to consider a theory of complete Segal spaces
internally to the world of ∞-categories, i.e. to define them as a sub-
category CSS ⊂ sS of the ∞-category of simplicial spaces.10 From this
viewpoint, a complete Segal space can be thought of as a homotopical
analog of the nerve of a category: the equivalence N∞ : Cat∞

∼−→ CSS

takes an ∞-category C to its ∞-categorical nerve, namely the simplicial
space

N∞(C)• = homlw
Cat∞([•],C)

(i.e. the levelwise hom-space from the standard cosimplicial category [•] :
∆ ↪→ Cat).11,12,13 The inverse equivalence takes a complete Segal space
Y• ∈ CSS to the ∞-category ∫ [n]∈∆

Yn × [n]

(where we implicitly consider Yn ∈ Cat∞ via the inclusion US : S ↪→
Cat∞).14 In fact, this inclusion is the right adjoint in an adjunction LCSS :
sS � CSS : UCSS.

15 It is fruitful to think of the resulting composite
adjunction

sS CSS Cat∞
LCSS

⊥
UCSS

N−1
∞
∼

N∞

as being a homotopical analog of the usual “nerve/homotopy category”
adjunction

sSet Cat
LCat

⊥
N

(see subitem (4)(c)).

10This perspective is explored in detail (and in greater generality) in [Lur09c, §1].
11Indeed, a simplicial set is the nerve of a category precisely if it satisfies the Segal condition.
12Note that the ∞-categorical nerve of a 1-category does not generally coincide with its 1-

categorical nerve.
13Throughout §A, for the sake of clarity we will exclusively refer to this construction as the “∞-

categorical nerve”. However, it appears quite frequently in the main body of this thesis (beginning
with its reintroduction in §2.2), and so for brevity we will omit the modifier “∞-categorical” there
except when we mean to emphasize the distinction.

14This formula follows from [Lur09c, Corollary 4.3.15], but note that this is ultimately just an
instance of the “generalized nerve/realization” Quillen equivalence first proved as [DK84b, Theorem
3.1].

15This adjunction is presented by the left Bousfield localization idssSet : s(sSetKQ)Reedy �
ssSetRezk : idssSet (see item (34)).
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(d) Finally, the simplest notion is that of a relative category. These organize
into the model category RelCatBK under the Barwick–Kan model structure
of [BK12b, Theorem 6.1]. We write L H

δ : RelCatBK → (CatsSet)Bergner

for the hammock localization functor, which is a relative functor (see
[BK12a, Theorem 1.8]); in fact, it is even a weak equivalence in RelCatBK

(see [BK12a, Theorem 1.7] and item (3)).16,17

We mainly use relative categories (and the Barwick–Kan model structure)
as a technical device that allows us to make rigorous sense of the underly-
ing ∞-category of a relative category (in particular of a model category).
In this situation, we say that the model category gives a presentation of
its underlying ∞-category. See §A.3 for details regarding our usage of
model categories as presentations of ∞-categories.

(3) The assertion made in item (2) that these various notions of ∞-categories are
all “essentially equivalent” is rather multifaceted. We therefore give a careful
account of this assertion. Our perspective is espoused in a number of relatively
recent papers, notably [BSP] (from the introduction of which this item is more
or less directly lifted), and seems to represent the emerging consensus among
practitioners of higher category theory.

First of all, these four model categories are all connected by a diagram of Quillen
equivalences along with the weak equivalence L H

δ : RelCatBK
≈→ (CatsSet)Bergner

in RelCatBK (see [BSP, Figure 1] and the references cited therein). Thus, any
homotopically meaningful manipulations that we might make using one of these
notions can equally well be made using any other notion.

However, there is still cause for potential concern: the diagram of [BSP, Figure
1] does not commute, even up to natural isomorphism. However, a moment’s
reflection should reassure us that this is a stronger request than we should
really be making: after all, we would generally like to consider objects of a
model category up to weak equivalence, not up to isomorphism. Thus, it is
helpful to reinterpret this diagram within one of the given model categories.
Rather than choose a particular one, we will simply refer to objects of this
model category as ‘∞-categories’ (with scare-quotes) for the remainder of the

16In fact, the Rezk nerve functor NR : RelCatBK → ssSetRezk (see [Rez01, 3.3], where it is
called the “classification diagram” functor) also creates the weak equivalences by [BK12b, Theorem
6.1(i)]. However, the objects in its image are not generally fibrant, even up to weak equivalence in
s(sSetKQ)Reedy (see [LMG15]).

17The letter δ in the notation LH
δ stands for “discrete”: in Chapter 4 we study an∞-categorical

version of this functor, which we denote simply by LH .
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item; as explained in item (34), Quillen equivalences between model categories
induce weak equivalences of underlying ‘∞-categories’.

This conceptual leap leads us to the alternative point of view that what we
are looking at is a not-necessarily-commutative diagram of weak equivalences
of ‘∞-categories’. This may not seem like an improvement in and of itself, but
in fact we are saved by the following remarkable facts ([Toë05, Théorème 6.3],
reproved as [Lur09c, Theorem 4.4.1] and generalized as [BSP, Theorem 8.2]),
originally stated within the model category ssSetRezk of complete Segal spaces.

• The ‘∞-category’ of complete Segal spaces (i.e. the ‘∞-category’ corre-
sponding to ssSetRezk) – and hence any ‘∞-category’ weakly equivalent
to it – has a discrete derived automorphism space, which is equivalent as
a group to Z/2.

• Furthermore, the unique nontrivial derived automorphism of this ‘∞-
category’ is given by the involution of taking opposites, and is therefore
detected by considering its restriction to the full subcategory generated
by the objects [0], [1] ∈ Cat (considered as objects of each of these various
model categories).

It now follows readily that the diagram of [BSP, Figure 1] commutes as a
diagram in an ∞-category : more precisely, as a diagram internal to the quasi-
category corresponding to the ambient model category of ‘∞-categories’.

A.2 Conventions regarding ∞-categories

We now establish some conventions surrounding our usage of ∞-categories.

(4) As a rule, the statements we make will generally be invariant under equivalence
of∞-categories. In fact, when we make statements about∞-categories, we will
generally mean to be working in the∞-category of∞-categories. However, this
is only a matter of taste: the sufficiently motivated reader should readily be able
to turn our invariant arguments about ∞-categories into simplex-by-simplex
arguments about quasicategories and model-categorical arguments in sSetJoyal.

The choice of such a foundational regime compels us to lay out the following
related conventions.
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(a) When working∞-categorically, we will omit the modifier “essential” (and
its variants) wherever it might be used in its technical capacity. For in-
stance, we simply say unique where one might otherwise say “essentially
unique”: in the invariant world, the adjective “unique” has no other pos-
sible meaning.

(b) We reserve the symbol = to indicate nothing other than

• that some equivalence holds by definition, or

• the equality of two elements of a set, and in particular

– the equivalence of two subobjects of a given object (see item (22)).

Along these same lines, whereas we generally use the symbol ' to denote
an equivalence in an arbitrary ∞-category, if that ∞-category is in fact a
1-category then we may instead write ∼= (and refer to the equivalence as
an isomorphism).

(c) We will have to be slightly careful with our definition of ordinary cate-
gories. For instance, we will sometimes want to refer to the nerve of a
1-category, but this is not a well-defined operation on the full subcate-
gory Cat ⊂ Cat∞: for example, the notion of “the set of objects” is not
invariant under equivalence of categories.

Thus, we will use the term strict category (or even strict 1-category) to
mean a simplicial set satisfying the Segal condition. These assemble into
a full subcategory Cat ⊂ sSet. This 1-category of categories now admits a
nerve functor

Cat
N−→ sSet,

although this is entirely cosmetic: according to our definition, it is simply
the defining inclusion. Note that this inclusion sits as the right adjoint in
a left localization adjunction

sSet Cat,
LCat

⊥
N

and hence commutes with limits.

The 1-category of strict categories also admits a functor Cat
UCat−−→ Cat,

namely the factorization of the composite functor

Cat
N
↪−→ sSet→ sSetJ(WJoyal)

−1K ' Cat∞

through its image, but this is not the inclusion of a subcategory. On the
other hand, the gaunt objects of Cat – that is, those in which every isomor-
phism is in fact an identity morphism – do include as a full subcategory
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of Cat. In fact, the map homCat(C,D) → homCat(UCat(C),UCat(D)) is an
equivalence in S whenever D is gaunt. Note in particular that we obtain
full inclusions

∆ Cat.

Cat

In fact, note further that we can consider ∆ itself as a strict category: in
such situations, we will take ∆ to be skeletal, i.e. to be the full subcategory
∆ ⊂ Cat on the gaunt categories [n] ∈ Cat (rather than the full subcategory
on all finite nonempty totally ordered sets).

The functor Cat→ Cat does not preserve monomorphisms. At the risk of
confusion, we will nevertheless use the same notation C ⊂ D to indicate
a monomorphism in Cat.

In contrast with subitem (4)(a), we will use terms such as “essentially
surjective” to refer to maps in Cat, since otherwise the meaning would be
ambiguous.

We will similarly speak of strict groupoids, strict relative categories, etc.,
likewise shrinking the capital letters in their names as Gpd, RelCat, etc. to
indicate the 1-categories of these. (For us, sSet-enriched categories will
always be strict; the 1-category of these is correspondingly denoted by
CatsSet.) We will also write

Fun(−,−) : Catop × Cat→ Cat

for the internal hom bifunctor in (Cat,×), which can be computed by the
internal hom bifunctor in (sSet,×); since sSetJoyal is cartesian, for any
C,D ∈ Cat we have a canonical equivalence

UCat(Fun(C,D))
∼−→ Fun(UCat(C),UCat(D))

in Cat ⊂ Cat∞.

However, now that we have carefully clarified this distinction, we will often
simply ignore it (e.g. referring to strict categories just as “categories”)
rather than overburden our terminology, unless it warrants emphasis. Our
meaning should always be clear from context.

(5) An object c ∈ C defines a functor ptCat∞ → C. For convenience, we will
generally denote this functor by {c} ↪→ C (even though it will not generally
be a monomorphism!); that is, we take the notation {c} to denote a terminal
object of Cat∞ which is equipped with a preferred map to C.
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(6) We will generally write s, t : Fun([1],C) → C for the source and target maps,
i.e. for the evaluation maps at 0 ∈ [1] and 1 ∈ [1] respectively. Relatedly,
as various flavors of categories will sometimes be defined as simplicial objects
(recall e.g. subitems (2)(c) and (4)(c)), for such a simplicial object Y• ∈ sC we
may write the two structure maps Y1 ⇒ Y0 in C as δ1 = s and δ0 = t.

(7) In general, given an object c ∈ C, we will write Fun(C,D)
evc−−→ D for the functor

given by evaluation at c (i.e. the pullback along the functor {c} ↪→ C).

(8) For ∞-categories I and C, we will generally write constI : C → Fun(I,C) for
the constant diagram functor. However, when it is clear from context, we may
omit the subscript and simply write const : C→ Fun(I,C).

(9) For an object c ∈ C, we write diag : c→ c×c for the diagonal map (if it exists).
This will usually be applied in the case that C = Cat∞.

(10) We will sometimes want to identify a bifunctor C × D → E with its adjunct
C → Fun(D,E). For clarity, if the original bifunctor is denoted by F (−,−),
then this adjunct will be denoted by F (−,=). That is, we will use the symbols
− and = to respectively indicate the slot being filled first and the slot being
considered as a free variable. We will use similar notation for adjuncts of
multivariable functors.

(11) Given a functor I
F−→ C, we will generally denote its colimit (if it exists), an

object of C, by

• colim(I
F−→ C), or

• colimI(F ), or

• colimC
I (F ) if we’d like to emphasize the∞-category C in which the colimit

is being taken, or

• colimi∈I F (i) if we’d like to emphasize the functoriality of F for i ∈ I, or

• colimC
i∈IF (i) to combine the previous two notations.

Dually, we will denote its limit (if it exists), also an object of C, by lim(I
F−→ C),

or limI(F ) ∈ C, or limC
I (F ) ∈ C, or limi∈I F (i), or limC

i∈I F (i).

For convenience, we will often write |−| = colim∆op(−) for any colimit functor
sC = Fun(∆op,C) → C and refer to it as geometric realization. Similarly,
we will often write ‖−‖ = colim∆op×∆op(−) for any colimit functor ssC =
Fun(∆op ×∆op,C)→ C.
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(12) Given a span d
ϕ←− c

ψ−→ e in an ∞-category C, we may denote by

d
∐
ϕ,c,ψ

e

its colimit (i.e. its pushout). Dually, given a cospan d
ϕ−→ c

ψ←− e in an ∞-
category C, we may denote by

d ×
ϕ,c,ψ

e

its limit (i.e. its limit). On the other hand, we may omit either or both of
the maps from the subscript if they are clear from context. Meanwhile, in the
absolute cases, given a set of objects {ci ∈ C}i∈I , we may write∐

i∈I

ci

for their coproduct and ∏
i∈I

ci

for their product.

(13) Given a functor I
F−→ J and an ∞-category C, restriction along F induces a

functor Fun(J,C)
F ∗−→ Fun(I,C). In many cases (for instance if C is cocomplete)

this admits a left adjoint, which we denote by F! : Fun(I,C) → Fun(J,C) and
refer to as the left Kan extension (along F ) functor. (See §T.4.3.)

(14) We will occasionally use the theory of coends and ends : given a functor Cop ×
C

F−→ D, we will denote its coend by∫ c∈C
F (c, c) ∈ D

and its end by ∫
c∈C

F (c, c) ∈ D.

(We refer the reader to [GHN, §2] for a brief review of the theory of co/ends
in the ∞-categorical setting.)
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(15) Suppose we are given a bifunctor I × J
F−→ C. Then, Fubini’s theorem for

colimits asserts that we have a canonical equivalence

colimC
(i,j)∈I×J F (i, j) ' colimC

i∈I
(
colimC

j∈J F (i, j)
)

in C, if either side exists. This can be proved by the juggling of iterated coends
(which explains the name), but it is really just a consequence of the observation
that the composite

C
constJ
↪−−−→ Fun(J,C)

constI
↪−−−→ Fun(I,Fun(J,C)) ' Fun(I× J,C)

coincides with the functor

C
constI×J

↪−−−−→ Fun(I× J,C)

(at least when C is cocomplete, or else embedding C into its free cocompletion
for precisely those colimits that it lacks).

(16) We will often implicitly use the fact (which is proved as [Joyb, Chapter 5,
Theorem C] (combined with [Joyb, Proposition 4.8])) that a natural transfor-
mation between functors of ∞-categories is an equivalence precisely if it is a
componentwise equivalence.

(17) We will often implicitly use the fact (which is proved as Corollary T.5.1.2.3
and its dual) that co/limits in a functor ∞-category are computed objectwise.

(18) Given a functor I → C that factors through the inclusion C' ⊂ C of the
maximal subgroupoid (i.e. that takes all maps in I to equivalences in C), there
exists a unique induced extension

I C

Igpd C'

in Cat∞ over the canonical projection I→ Igpd to the groupoid completion. In
other words, restriction induces an equivalence

Fun(Igpd,C')
∼−→ Fun(I,C') ↪→ Fun(I,C)

onto the (non-full) subcategory of Fun(I,C) on such functors (and natural
equivalences between them). In particular, if Igpd ' ptS, then this subcategory
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can be canonically identified with the subcategory of constant functors (and the
natural equivalences between them), which of course is canonically equivalent
to C' itself.

(19) An ∞-category I is called sifted if it is nonempty and its diagonal map diag :
I→ I× I is final (see Definition T.5.5.8.1, Definition 3.4.4, and Remark 3.4.7).
The most important single example of a sifted ∞-category is ∆op (see Lemma
T.5.5.8.4), but note too that all filtered ∞-categories are also sifted (see Ex-
ample T.5.5.8.3).

The following facts regarding sifted ∞-categories will be important to us.

• If I is a sifted ∞-category, then Igpd ' ptS (see Proposition T.5.5.8.7).

• If

– I is a sifted ∞-category,

– C is an ∞-category admitting finite products and I-indexed colimits,
and

– the product bifunctor C× C
−×−−−−→ C preserves I-indexed colimits sep-

arately in each variable,

then colim : Fun(I,C)→ C preserves finite products (see Lemma T.5.5.8.11).
In particular, this holds when C = S, or more generally when C is an ∞-
topos (see Remark T.5.5.8.12).

(20) Given a relative ∞-category (R,W) ∈ RelCat∞, its localization RJW−1K ∈
Cat∞ might be more carefully termed its free localization. This construction is
left adjoint to the functor Cat∞ → RelCat∞ taking an∞-category C to its cor-
responding minimal relative∞-category (C,C'), and can hence be constructed
explicitly as the pushout

RJW−1K ' colim


W Wgpd

R

 .

(These notions are all discussed in detail in §2.1.)

We warn the reader that this notion does not generally agree with the definition
of “localization” studied in §T.5.2.7 (see Warning T.5.2.7.3), namely a functor
admitting a fully faithful right adjoint. When we discuss it, we will refer to
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this latter notion as a left localization; its right adjoint may then be referred
to as the inclusion of a reflective subcategory. We will denote general such
adjunctions by L a U (with additional decorations in specific instances). These
are actually a special case of free localizations (see Proposition T.5.2.7.12 or
Remark 2.1.25).18

Of course, there is the dual notion of a right localization (into a coreflective
subcategory), although due to the overall handedness of mathematics (boiling
down to the fact that we’re generally more comfortable thinking about Set
than about Setop), this arises less frequently in practice and in particular does
not appear anywhere in [Lur09b] (hence the unambiguity of the terminology
“localization” used there). We will similarly denote general such adjunctions
by U a R.

Note that a (free) localization which is neither a left nor a right localization
can nevertheless admit a section; see for instance Example 1.2.19.

(21) Many of our arguments will implicitly rely on the existence of a hom bifunctor

Cop × C
homC(−,−)−−−−−−→ S

for an arbitrary ∞-category C. This is achieved by the twisted arrow ∞-
category construction (see Proposition A.5.2.1.11). If C is an enriched ∞-
category, we will write homC(−,−) for the enriched hom-object and continue
to write homC(−,−) for its underlying hom-spaces. (For the most part, the
enriched categories we will encounter will be of the particularly special sort
described in item (28).)

(22) A morphism c → d in an ∞-category C is called a monomorphism if for any
other object e ∈ C, the induced map homC(e, c) → homC(e, d) is a monomor-
phism in S: these are precisely the morphisms for which it is merely a condition
(as opposed to requiring additional data) for there to exist a factorization

e

c d

18Somewhat confusingly, accessible left localizations of presentable ∞-categories additionally
satisfy a universal property among left adjoint functors (see Proposition T.5.5.4.20).
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of a given map e → d in C. This is equivalent to the requirement that the
commutative square

c c

c d

in C is a pullback.

Dually, a morphism c → d in an ∞-category C is called an epimorphism if
for any other object e ∈ C, the induced map homC(d, e) → homC(c, e) is a
monomorphism in S: similarly, these are precisely the morphisms for which it
is merely a condition for there to exist an extension

c d

e

of a given map c → e in C. This is equivalent to the requirement that the
commutative square

c d

d d

in C is a pushout.

(23) For any ∞-category C, we will write

ょC = homC(=,−) : C→ Fun(Cop, S)

for the Yoneda functor, namely the indicated adjunct to the hom bifunctor of
item (21); we may simply writeょif the∞-category C is clear from context.19 (If
C is a 1-category, we may also writeょC : C→ Fun(Cop, Set) for its factorization
through the subcategory of discrete objects (see item (24)).) We generally
write

P(C) = Fun(Cop, S)

for the∞-category of presheaves (of spaces) on C, the target of the Yoneda func-
tor. An ∞-categorical version of Yoneda’s lemma (see Proposition T.5.1.3.1)
asserts that, just as in ordinary category theory, this functor is fully faithful;

19Pronounced “yo”, the characterょ is the first letter of “Yoneda” in Hiragana.
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we therefore will also refer to it as the Yoneda embedding. We will also use the
fact (proved as Theorem T.5.1.5.6) that the Yoneda embedding models the free
cocompletion, i.e. that for any cocomplete ∞-category D, restriction along the
Yoneda embedding defines an equivalence

Funcolim(P(C),D)
(ょC)∗−−−→
∼

Fun(C,D)

(where we write Funcolim to denote the full subcategory of the functor ∞-
category on those functors which preserve colimits), with inverse given by left
Kan extension alongょC.

(24) An object c ∈ C of an ∞-category C is called discrete if the functor

ょC(c) = homC(−, c) : Cop → S

factors through the subcategory Set ⊂ S.20 For instance, Set ⊂ S is the
inclusion of the full subcategory of discrete objects. It is not hard to see that
in a presheaf ∞-category P(D) = Fun(Dop, S), an object F ∈ P(D) is discrete
if and only if it itself factors through Set: that is, discreteness is determined
objectwise. Thus, for instance, sSet ⊂ sS is likewise the inclusion of the full
subcategory of discrete objects.

(25) Given two∞-categories C,D ∈ Cat∞, an adjunction F : C� D : G is uniquely
determined by a bifunctor

Cop ×D
A−→ S,

where A ' homC(−, G(−)) ' homD(F (−),−).21 In fact, we can define an

adjunction to be an arbitrary bifunctor Cop×D A−→ S which is “co/representable

in each slot”. More precisely, this means that for any c ∈ C the functor D
A(c,−)−−−−→

S must be corepresentable, while for any d ∈ D the functor Cop
A(−,d)−−−−→ S must

be representable. Since the Yoneda embedding is fully faithful, we recover the

20This condition is equivalent to requiring that the diagonal mapょC(c)→ょC(c)×ょC(c) in P(C)
be a monomorphism. If the product c × c exists in C, then we have an equivalenceょC(c × c) '
ょC(c)×ょC(c) in P(C) and it follows easily that this condition can also be checked in C.

21That this agrees with Definition T.5.2.2.1 follows easily from the formalism of correspondences
(see §T.2.3.1 and §T.5.2.1 (and the model-independent theory of co/cartesian fibrations laid out in
[MG])).
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adjoint functors via the unique factorizations

Cop P(Dop)

Dop

A(−,=)

F op
ょDop

and

D P(C)

C.

A(=,−)

G
ょC

Following standard conventions, in our diagrams that involve adjunctions, we
keep left adjoints above and/or to the left of their right adjoints to whatever
extent possible. (In-line adjunctions will always have their left adjoints on
top.) For added clarity, we often use the “turnstile” symbol ⊥, which sits on
the right adjoint and points towards the left adjoint. Even in the absence of
an ambient diagram, we write F a G to indicate that F is left adjoint to G.

We define the∞-category of adjunctions from C to D to be the full subcategory

Adjn(C;D) ⊂ Fun(Cop ×D, S)

on those bifunctors that define adjunctions. If the objects A,A′ ∈ Adjn(C;D)
determine adjunctions F a G and F ′ a G′, then a map A→ A′ in Adjn(C;D) is
uniquely determined by either datum of a morphism F ′ → F in Fun(C,D) or a
morphism G→ G′ in Fun(D,C).22 We will write LAdjt(C,D) ⊂ Fun(C,D) for
the full subcategory on those functors which are left adjoints, and we will write
RAdjt(D,C) ⊂ Fun(D,C) for the full subcategory on those functors which are
right adjoints. We therefore have equivalences

LAdjt(C,D)op
∼←− Adjn(C;D)

∼−→ RAdjt(D,C)

by the uniqueness of adjoints.

We also note here that given an adjunction C � D and any ∞-category E,
applying the functor Fun(E,−) : Cat∞ → Cat∞ yields a canonical adjunc-
tion Fun(E,C) � Fun(E,D). (This follows easily by combining Proposition
T.5.2.2.8 with [Gla, Proposition 2.3] (or with [GHN, Proposition 5.1]).)

22One might say that these two natural transformations are conjugates with respect to the given
adjunctions (as in [ML98, Chapter IV, §7], except that our variance is reversed).
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(26) More generally, we define an adjunction of i contravariant variables and j
covariant variables to be a multifunctor

(C1)op × · · · × (Ci)
op ×D1 × · · · ×Dj

A−→ S

satisfying the condition that fixing all but any one of the slots yields a co/representable
functor.23 Note that by definition, fixing any number of slots in such an ad-
junction yields an adjunction in the remaining free variables.24 We similarly
define a full subcategory

Adjn(C1, . . . ,Ci;D1, . . . ,Dj) ⊂ Fun((C1)op × · · · (Ci)op ×D1 × · · ·Dj, S)

on such multivariable adjunctions.

Aside from ordinary adjunctions, we will mainly be interested in (what have
come to be called) adjunctions of two variables (or simply two-variable adjunc-
tions), namely the case i = 2 and j = 1. A two-variable adjunction is thus a
trifunctor

Cop ×Dop × E
A−→ S,

in which the co/representability condition furnishes three bifunctors denoted
in general as(

C×D
−⊗−−−−→ E , Cop × E

homl(−,−)−−−−−−→ D , Dop × E
homr(−,−)−−−−−−→ C

)
,

which come equipped with uniquely determined natural equivalences

A(c, d, e) ' homC(c, homr(d, e)) ' homD(d, homl(c, e)) ' homE(c⊗ d, e)

in Fun(Cop ×Dop × E, S) (for c ∈ C, d ∈ D, and e ∈ E). Just as with ordinary
adjunctions, we will often denote a two-variable adjunction simply by listing
its constituent bifunctors, leaving the natural equivalences implicit.

(27) Given an∞-category C, an object c ∈ C, and a space Y ∈ S, a tensor of c over
Y is an object c� Y ∈ C equipped with an equivalence

homC(c� Y,−) ' homS(Y, homC(c,−))

23The 1-categorical version of this notion (in the case i = 1 and j = n, called there an “adjunction
of n variables”) is defined in [CGR14, Definition 2.1] (see [CGR14, Theorem 2.2]).

24Thus, by convention, an adjunction in a single variable in just a functor to S, and an adjunction
in zero variables is just an object of S.
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in Fun(C, S). (We may sometimes write this as Y � c ∈ C for notational
convenience.) Dually, a cotensor of Y with c is an object Y t c ∈ C equipped
with an equivalence

homC(−, Y t c) ' homS(Y, homC(−, c))

in Fun(Cop, S). (As this is a sort of generalized mapping object, we will never
reverse the order of the objects.) We will say that C is tensored (over S) if it
admits all tensors, and that it is cotensored (over S) if it admits all cotensors.
We will say that C is bitensored if it is both tensored and cotensored.

If we denote by (S×C)� ⊂ S×C the full subcategory on those pairs admitting
a tensoring, then by definition we can construct the tensoring as a bifunctor
via the factorization

(S× C)� P(Cop)

C

homS(−,homC(−,=))

−�−
ょ

through the fully faithful Yoneda embedding, and we can similarly construct
the (maximal) cotensoring as a bifunctor

(Sop × C)t
−t−−−→ C.

Using the same argument, if C is tensored (resp. cotensored), it is not hard to
extend the tensoring (resp. cotensoring) bifunctor to an action of the symmetric
monoidal ∞-category (S,×) ∈ CAlg(Cat∞) (resp. (Sop,×) ∈ CAlg(Cat∞)) on
the ∞-category C ∈ Cat∞.25 If C is bitensored, then we obtain a two-variable
adjunction(

C× S
−�−−−−→ C , Cop × C

homC(−,−)−−−−−−→ S , Sop × C
−t−−−→ C

)
.

By Corollary T.4.4.4.9, considering Y ∈ S ⊂ Cat∞, we have an equivalence

c� Y ' colimC
Y const(c)

in C (assuming either side exists). Thus, a tensoring is a sort of colimit, and
hence a cocomplete∞-category is in particular tensored. Dually, a cotensoring

25If C is additionally presentable (and hence in particular cocomplete), we can alternatively re-
cover the tensoring action from the symmetric monoidal structure on the∞-category of presentable
∞-categories, for which S is the unit object (see Proposition A.4.8.1.14 and Example A.4.8.1.19).
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is a sort of limit, and hence a complete ∞-category is in particular coten-
sored. Similarly, an ∞-category which is finitely co/complete is in particular
co\tensored over Sfin ⊂ S.

(28) More generally, suppose that (V,⊗) ∈ Alg(Cat∞) is a closed monoidal ∞-
category, and suppose that C ∈ RModV(Cat∞) is a right V-module.26 Writing

C× V
−�−−−−→ C

for the underlying bifunctor of the right action of V on C, let us suppose further
that this extends to a two-variable adjunction. Such an extension is precisely
the data of an enrichment and bitensoring of C over V: the action defines the
tensoring, and we write

Cop × C
homC(−,−)−−−−−−→ V

and
Vop × C

−t−−−→ C

for the other two constituent bifunctors; as the notation indicates, these come
with natural equivalences

homC(c� v, d) ' homV(v, homC(c, d)) ' homC(c, v t d)

in Fun(Cop × Vop × C, S) (for c, d ∈ C and v ∈ V).27

To see that this gives an enrichment of C, observe first that we have equivalences

homV(1V, homC(c, d)) ' homC(c� 1V, d) ' homC(c, d)

by the unitality of the action of V on C. The enriched composition maps are
obtained from the evaluation maps

homC(c� homC(c, d), d) ' homV(homC(c, d), homC(c, d))
idhomC(c,d)←−−−−−− ptS

as the composites

homV(homC(c0, c1)⊗ homC(c1, c2), homC(c0, c2))

26For us, a monoidal ∞-category being closed by definition means that it is both left closed and
right closed. Note that this is actually just a property, not additional structure: left/right closure
only demands the existence of certain adjoints.

27If we are simply given a two-variable adjunction of this signature without an extension of
the first bifunctor to an action of V on C, then there will not be any compatibility between the
symmetric monoidal structure on V and the bifunctors comprising the two-variable adjunction.
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' homC(c0 � (homC(c0, c1)⊗ homC(c1, c2)), c2)

' homC((c0 � homC(c0, c1))� homC(c1, c2), c2)

← homC(c1 � homC(c1, c2), c2)

← homC(c2, c2)

idc2←−− ptS,

and the higher composition maps are obtained by essentially this same con-
struction. It is not hard to see that applying the functor homV(1V,−) : V→ S,
which is canonically lax monoidal, recovers the original composition maps in
C.

Then, to see that these functors define enriched co/tensors, we check that for
an arbitrary test object w ∈ V,

homV(w, homC(c� v, d)) ' homC((c� v)� w, d)

' homC(c� (v ⊗ w), d)

' homV(v ⊗ w, homC(c, d))

' homV(w, homV(v, homC(c, d)))

and similarly

homV(w, homC(c, v t d)) ' homV(w, homV(v, homC(c, d)));

by Yoneda’s lemma, we obtain the desired natural equivalences

homC(c� v, d) ' homV(v, homC(c, d)) ' homC(c, v t d)

of enriched hom-objects in V.28

Finally, we observe that the cotensoring bifunctor can be canonically extended
to a left action of (Vop,⊗op) ∈ Alg(Cat∞) on C ∈ Cat∞ (i.e. we can consider
C ∈ LModVop(Cat∞)), simply by passing the tensoring action through the ad-
junction; for instance, for any c, d ∈ C and any v, w ∈ V we have a natural
string of equivalences

homC(c, w t (v t d)) ' homC(c� w, v t d) ' homC((c� w)� v, d)

' homC(c� (w ⊗ v), d) ' homC(c, (w ⊗ v) t d),

28This is the only place we have used that V is closed; without this assumption, the given data
still define a V-enrichment of C along with unenriched co/tensors over V (in the evident sense).
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which by Yoneda’s lemma provides a canonical natural equivalence

w t (v t d) ' (w ⊗ v) t d

in Fun(Vop × Vop × C,C).

Of course, this same discussion goes through without essential change in the
special case that V is in fact symmetric monoidal.

(29) Given a finitely complete∞-category C, its corresponding generalized matching
object bifunctor

(sSfin)op × sC
M(−)(−)
−−−−−→ C

is given by

MK(Y ) =

∫ [n]∈∆op

Kn t Yn.

By construction, this comes equipped with an equivalence

homC(−,MK(Y )) ' homsS(K, homlw
C (−, Y ))

in Fun(Cop, S), so that in particular when C is in fact bicomplete we obtain a
two-variable adjunction(

C× sS (−�−)lw

−−−−−→ sC , Cop × sC
homlw

C (−,−)
−−−−−−−→ sS , (sS)op × sC

M(−)(−)
−−−−−→ C

)
.

Dually, given a finitely cocomplete∞-category C, its corresponding generalized
latching object bifunctor

sSfin × cC
L(−)(−)
−−−−→ C

is given by

LK(Z) =

∫
[n]∈∆op

Zn �Kn.

By construction, this comes equipped with an equivalence

homC(LK(Z),−) ' homsS(K, homlw
C (Z,−))

in Fun(C, S), so that in particular when C is in fact bicomplete we obtain a
two-variable adjunction(

sS× cC
L(−)(−)
−−−−→ C , (sS)op × C

(−t−)lw

−−−−−→ cC , (cC)op × C
homlw

C (−,−)
−−−−−−−→ sS

)
.

These notions are extensions of the usual theory of matching and latching
objects in Reedy categories, and correspondingly we make the abbreviations
Mn(−) = M∂∆n(−) and Ln(−) = L∂∆n(−).
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A.3 On model categories as presentations of

∞-categories

Note that we are considering model categories as objects of study in their own right:
they are nothing more than model∞-categories whose hom-spaces are discrete. How-
ever, we will also be using model categories as presentations of their underlying
∞-categories (as indicated in subitem (2)(d)). Thus, we must also establish our
conventions regarding their manipulation in this capacity.

For historical context, we will make some attempt to reference the primary sources
for results concerning model categories. However, the body of literature is vast, and
so as catch-all resources we will generally refer to [Hir03] and [GJ99], especially for
the more classical results.29

(30) As a consistency check, we observe that our consideration of objects of RelCatBK

as presentations of∞-categories does indeed identify a relative category (R,W) ∈
RelCat with its ∞-categorical localization RJW−1K ∈ Cat∞ (as defined in item
(20)). More precisely, the natural commutative diagram

W L H
δ (W,W)

R L H
δ (R,W)

is a homotopy pushout square in (CatsSet)Bergner (and hence presents a pushout
in Cat∞ (see item (36))), and moreover the object L H

δ (W,W) ∈ (CatsSet)Bergner

presents the groupoid completion Wgpd ∈ Cat∞.30,31 More succinctly, we can

29The former requires that its model categories have functorial factorizations, whereas we do
not. We will never use general results on model categories that depend on functorial factorizations.

30The proof of this assertion is mostly contained in [BK12a, 3.4]. However, note that there, they
do not work in (CatsSet)Bergner, but rather work in the Dwyer–Kan model structure on “simplicial
O-categories” (see [DK80c, Proposition 7.2], though note that their citation for this model structure
should actually be to [Qui67, Chapter II, §4, Theorem 4]). However, the characterization [DK80c,
Proposition 7.6] of the cofibrations implies that the forgetful functor to (CatsSet)Bergner preserves
cofibrations, so that it also preserves homotopy pushouts (since it also preserves ordinary pushouts).
Moreover, the assertion that LH

δ (W,W) ∈ (CatsSet)Bergner presents Wgpd ∈ Cat∞ follows from
[DK80c, 5.5] and [DK80a, Proposition 2.2].

31As described in item (36), it is only known that homotopy co/limits in combinatorial simpli-
cial model categories present co/limits in their underlying ∞-categories. However, even though
(CatsSet)Bergner is not a combinatorial simplicial model category, it is easy enough to show that
homotopy pushouts therein coincide up to a zigzag of natural weak equivalences with those com-
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(apparently circularly but now in fact soundly) summarize this assertion by
saying that the localization functor

RelCat→ RelCatJW−1
BKK ' Cat∞

is itself given by localization.

(31) In keeping with our general desire for our language to remain independent of
any noncanonical choices, when we choose a representative in a model cate-
gory of an object or a map in its underlying ∞-category, we will only mean
a representative up to equivalence in the underlying ∞-category. When doing
so, we indicate this noncanonical choice using “typewriter text”, so that for in-
stance, given an ∞-category C ∈ Cat∞, we might write C ∈ sSetfJoyal to denote
a quasicategory representing it.

(32) Given a simplicial model category M• (with underlying model category M),
another notion of “underlying ∞-category” is given by the full simplicial sub-
category Mcf

• ⊂ M• on the bifibrant objects. By [DK80b, Proposition 4.8],
this is weakly equivalent to L H

δ (M,W) in (CatsSet)Bergner.
32,33 In making con-

nections between model categories and ∞-categories, the results of [Lur09b]
generally assume that the given model categories are simplicial. As a result,
some of the connections that we make will carry this same caveat.

(33) As we have indicated in (1), the primary model category we will use to present
the ∞-category Cat∞ will be sSetJoyal. Unfortunately, this does not enjoy all
the nice properties that one might hope; in particular, it is not a simplicial
model category. However, all is not lost: there exist both left and right Quillen
equivalences to the combinatorial simplicial model category ssSetRezk given
by [JT07, Theorems 4.11 and 4.12]. These allow us to port many convenient
features of ssSetRezk over to sSetJoyal (such as in items (36) and (38) below).

(34) Suppose that F : M � N : G is a Quillen adjunction. Note that the functors
F and G do not define functors of underlying relative categories: they do

puted in the combinatorial simplicial model category ssSetRezk (using the Quillen equivalence
ssSetRezk � (CatsSet)Bergner and the functorial factorizations guaranteed by cofibrant generation).

32In the diagram in the statement of [DK80b, Proposition 4.8], the right arrow should also be
labeled as a weak equivalence (in (CatsSet)Bergner), as indicated by its proof.

33This is also proved directly to present the ∞-categorical localization McJ(Wc)−1K as Theo-
rem A.1.3.4.20 (and there is a canonical equivalence McJ(Wc)−1K ∼−→ MJW−1K e.g. by [MG16,
Lemma 2.8]).
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not generally preserve weak equivalences. Nevertheless, we prove as [MG16,
Theorem 2.1] that a Quillen adjunction between model categories induces an
associated adjunction of quasicategories.34 By Kenny Brown’s lemma (or rather
its immediate consequence [Hir03, Corollary 7.7.2]), the composites

Mc ↪→M
F−→ N

and
M

G←− N←↩ Nf

do preserve weak equivalences, and these respectively present the left and right
adjoint functors. As a particular case, we immediately obtain that left Bousfield
localizations present left localizations (and dually).

(35) If M is a model category and x
f−→ y is any map in M, it is easy to check that

the induced adjunction Mx/ � My/ is automatically a Quillen adjunction. If
f is additionally a weak equivalence, we might hope that this is then a Quillen
equivalence. For this to hold, however, we need for every pushout of f along a
cofibration to be a weak equivalence. This will be true either

• if f is an acyclic cofibration, or

• if M is left proper.

This observation allows us to partially address the question of when the induced
model structure on Mx/ present the undercategory MJW−1Kx/ (or dually, when
the induced model structure on M/y presents the overcategory MJW−1K/y): we
only establish the connection for simplicial model categories, though this will
suffice for our purposes. Namely, let M• be a simplicial model category.

• Suppose that x ∈Mc. If we choose any factorization x
≈
� x′ � ptM, then

we obtain a Quillen equivalence (Mx/)• � (Mx′/)• with x′ ∈ Mcf . Since
Quillen equivalences induce equivalences of underlying ∞-categories, the
dual result to Lemma T.6.1.3.13 implies that (Mx/)• (and hence also the
underlying model category Mx/) presents the undercategory of the object
of the underlying ∞-category of M• corresponding to x.

• On the other hand, if M• is left proper, then this statement holds for any
x ∈ M. Indeed, if we choose any factorization ∅M � x′′

≈→ x, then we

34In the case of a Quillen adjunction of simplicial model categories, this result is proved as
Proposition T.5.2.4.6.
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obtain a Quillen equivalence (Mx′′/)• � (Mx/)•, which reduces us to the
previous case.

(36) We will use the term homotopy co/limit in a model category M to refer to a (not
necessarily commutative) diagram which becomes a (commutative) co/limit
diagram in MJW−1K.

If M• is a combinatorial simplicial model category, then it follows from Remark
T.A.3.3.11, Proposition T.A.3.3.12, Remark T.A.3.3.13, and Theorem T.4.2.4.1
that homotopy co/limits in M• (in the classical sense) compute co/limits in its
underlying ∞-category. (See those results for a precise statement.)

Homotopy co/limits are generally computed using model structures on functor
categories, of which there are three main examples.35

• An injective model structure on Fun(C,M), denoted Fun(C,M)inj, has its
weak equivalences and cofibrations determined objectwise. This is guar-
anteed to exist when M is combinatorial.

• A projective model structure on Fun(C,M), denoted Fun(C,M)proj, has its
weak equivalences and fibrations determined objectwise. This is guaran-
teed to exist when M is cofibrantly generated.

• Given a category C endowed with a Reedy structure, the correspond-
ing Reedy model structure on Fun(C,M), denoted Fun(C,M)Reedy, has its
weak equivalences determined objectwise (but its cofibrations and fibra-
tions depend on the Reedy structure), and exists without any additional
assumptions on M.36

These enjoy the following properties.

• Whenever these various model structures exist, the identity adjunction

35For details on these, see respectively: §T.A.2.8; [Hir03, §11.6] and §T.A.2.8; [Hir03, Chapter
15] and §T.A.2.9.

36If the Reedy structure on C has
←−
C = C, then the Reedy and injective model structures on

Fun(C,M) coincide (and both always exist). Dually, if the Reedy structure on C has
−→
C = C, then

the Reedy and projective model structures on Fun(C,M) coincide (and both always exist). Thus,
in general, the Reedy model structure can be seen as a “mixture” of the injective and projective
model structures (see Example T.A.2.9.22).
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gives rise to Quillen equivalences

Fun(C,M)proj Fun(C,M)inj

Fun(C,M)Reedy

⊥

⊥ ⊥

between them.

• Applying Fun(C,−) to a Quillen adjunction (resp. Quillen equivalence)
M � N gives rise to another Quillen adjunction (resp. Quillen equiva-
lence) with respect to any of these model structures that exist on both
Fun(C,M) and Fun(C,N).

• These various model structures participate in Quillen adjunctions as fol-
lows.

– We have a Quillen adjunction

const : M� Fun(C,M)inj : lim

whenever the injective model structure and the limit functor both
exist.

– We have a Quillen adjunction

colim : Fun(C,M)proj �M : const

whenever the projective model structure and the colimit functor both
exist.

– If C is endowed with a Reedy model structure with cofibrant constants
then we are guaranteed a Quillen adjunction

const : M� Fun(C,M)Reedy : lim,

while if C is endowed with a Reedy model structure with fibrant con-
stants then we are guaranteed a Quillen adjunction

colim : Fun(C,M)Reedy �M : const.
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However, these adjunctions (if they exist) can still be Quillen ad-
junctions even without these restrictions on C, albeit (necessarily by
definition) only for specific choices of M.

At least when M• is a combinatorial simplicial model category, any of these
model structures on Fun(C,M) presents the ∞-category Fun(C,MJW−1K) by
Proposition T.4.2.4.4 and Remark T.4.2.4.5.37 As the functor const : M →
Fun(C,M) in RelCatBK clearly presents the functor const : MJW−1K→ Fun(C,MJW−1K),
combining item (34) with the uniqueness of adjoints shows that the derived
functors of these various Quillen adjunctions do indeed compute homotopy
co/limits. (In particular, as foreshadowed in item (33), from here it is straight-
forward to see that homotopy co/limits in the combinatorial model category
sSetJoyal do indeed compute co/limits in Cat∞.)

(37) As a particular case of item (36), there is a Reedy structure on the walking
span category

N−1(Λ2
0) = (• ← • → •)

determined by the degree function described by the picture (0← 1→ 2). This
has fibrant constants (see e.g. the proof of [Hir03, Proposition 15.10.10]), so
that for any model category M we obtain a Quillen adjunction

colim : Fun(N−1(Λ2
0),M)Reedy �M : const.

Moreover, the cofibrant objects of Fun(N−1(Λ2
0),M)Reedy are precisely the dia-

grams of the form
x← y� z

for x, y, z ∈Mc ⊂M.

Dually, there is a Reedy structure on the walking cospan category

N−1(Λ2
2) = (• → • ← •)

determined by the degree function described by the picture (0→ 1← 2). This
has cofibrant constants, so that for any model category M we obtain a Quillen
adjunction

const : M� Fun(N−1(Λ2
2),M)Reedy : lim .

37Moreover, the results of [Dug01] and [RSS01] can sometimes be used to replace a model
category (via a Quillen equivalence) with a combinatorial simplicial one.



517

Moreover, the fibrant objects of Fun(N−1(Λ2
2),M)Reedy are precisely the dia-

grams of the form
x→ y � z

for x, y, z ∈Mf ⊂M.

We will refer to either of these dual techniques simply as the Reedy trick.

(38) We will at times make computations in functor ∞-categories using model
structures on functor categories; that these present the desired functor ∞-
categories will always follow from the observations of items (36) and (33).
We also recall here that the model structures s(sSetKQ)Reedy and s(sSetKQ)inj

coincide by Example T.A.2.9.21. From this, it follows that the model struc-
tures s(sSetJoyal)Reedy and s(sSetJoyal)inj also coincide: they have the same weak
equivalences by definition, and their cofibrations coincide since those of sSetJoyal

coincide with those of sSetKQ.

A.4 Miscellanea

We end §A by laying out a few other miscellaneous conventions.

(39) Whenever we draw a diagram which takes place in a model (∞-)category, we
explicitly mention the ambient model structure for emphasis. However, we will
only decorate those aspects of the diagram (e.g. a morphism as a co/fibration)
which are relevant to the argument.

(40) Given an ∞-category C and an object c ∈ C, for emphasis we may denote the
corresponding object by c◦ ∈ Cop: explicitly, if the object c ∈ C is selected
by a morphism [0]

χ−→ C in Cat∞, then the object c◦ ∈ Cop is selected by the
composite

[0]
∼=−→ [0]op

χop−−→ Cop

in Cat∞. Similarly, if a morphism f in C is selected by a morphism [1]
ϕ−→ C in

Cat∞, then we may denote by f ◦ the morphism in Cop selected by the composite

[1]
∼=−→ [1]op

ϕop−−→ Cop
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in Cat∞, where the isomorphism is determined by the assignments 0 7→ 1◦ and
1 7→ 0◦. On the other hand, we will sometimes omit these decorations in order
not to overburden our notation.38

(41) Given a set I of homotopy classes of maps in an∞-category C, we write llp(I)
and rlp(I) for the sets of (homotopy classes of) maps that have the left or
right lifting property with respect to I, respectively. (A lifting property with
respect to a subcategory by definition means a lifting property with respect to
the homotopy classes of maps contained in that subcategory.) To be explicit,
note that a commutative square in an ∞-category is presented by a map from
∆1×∆1 to a quasicategory. To obtain a lift through that commutative square
is then to obtain an extension over the map

∆1 ×∆1 ∼= ∆{013}
∐

∆{03}

∆{023}� ∆3

in sSetJoyal. Alternatively (and invariantly), given a pair of maps x
i−→ y and

z
p−→ w, to say that i ∈ llp({p}) (or equivalently that p ∈ rlp({i})) is precisely

to say that the induced map

homC(y, z)→ lim


homC(y, w)

homC(x, z) homC(x,w)

i∗

p∗


in S is a surjection.

(42) When working in the cosimplicial indexing category ∆, we will often indicate
an inclusion simply by specifying its image, so that for instance the notation

[0]
{i}−→ [n] refers to the map given by 0 7→ i. (In particular, we will therefore

denote by ∆{i0,...,ij} ⊂ ∆n the evident subobject in sSet.) We will also employ
the standard notations

38One might naively hope to simply write e.g. cop for the object of Cop corresponding to the object
c ∈ C, but then one would run into trouble as soon as different “category levels” begin to mix: for
example, the notation [n]op could then either refer to an object of Cat (which is in fact (equivalent
to) the object [n] ∈ ∆ ⊂ Cat) or to an object of ∆op. Thus, we reserve the superscript (−)op to
denote the involution of Cat∞. Note, however, that this does not just induce a covariant action on
the objects and morphisms of Cat∞, but also induces a contravariant action on its 2-morphisms: for
any C,D ∈ Cat∞ we have a canonical identification Fun(Cop,Dop) ' Fun(C,D)op, so that a pair of
functors F,G : C⇒ D and a natural transformation α : F → G in Fun(C,D) corresponds to a pair
of functors F op, Gop : Cop ⇒ Dop and a natural transformation αop : Gop → F op in Fun(Cop,Dop).
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• δim ∈ hom∆([m− 1], [m]) for the coface maps (for 0 ≤ i ≤ m), and

• σjn ∈ hom∆([n+ 1], [n]) for the codegeneracy maps (for 0 ≤ j ≤ n),

or we may simply write δi or σj (resp.) if the source and/or target are clear
from the context.

(43) Given any ∞-category C, we write cC = Fun(∆,C) for the ∞-category of
cosimplicial objects in C, and we write sC = Fun(∆op,C) for the ∞-category
of simplicial objects in C. For any objects Y ∈ cC and Z ∈ sC,

• we denote their constituent objects of C by Y n = Y ([n]) and Zn = Z([n]◦),
and

• we variously denote their structure maps as follows:

– a coface map [m]
δim−→ [m+ 1] in ∆ induces

∗ a coface map Y m δim−→ Y m+1 and

∗ a face map Zm+1

δmi−→ Zm
(or simply δi and δi, resp.);

– a codegeneracy map [n+ 1]
σjn−→ [n] induces

∗ a codegeneracy map Y n+1 σjn−→ Y n and

∗ a degeneracy map Zn
σnj−→ Zn+1 (or simply σj and σj, resp.);

– an arbitrary map [m]
ϕ−→ [n] (not explicitly identified as a coface or

codegeneracy) induces

∗ a map Y m ϕ−→ Y n and

∗ a map Zn
ϕ−→ Zm

(or Y (ϕ) and Z(ϕ) (or even Z(ϕ◦)), resp., if we wish to emphasize
the functoriality of Y : ∆→ C or Z : ∆op → C).

(44) There are certain decorations which are sometimes useful to include for em-
phasis or clarity but are at other times useful to exclude for simplicity. For
instance, we may write (−)• to emphasize that an object is cosimplicial, but
we may omit this decoration if we are considering the entire cosimplicial object
at once and have no plans to extract its constituents. We list these here.

decoration meaning
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(−)• cosimplicial object

(−)• simplicial object

(−)lw functor being taken levelwise

(−)◦ corresponding object or morphism in the opposite ∞-category

(Given a functor C
F−→ D, we will sometimes (but not always) write cC

F lw

−−→ cD

and sC
F lw

−−→ sD to denote the induced functors on∞-categories of co/simplicial
objects given by postcomposition with F (instead of cF or sF , resp.).)

(45) We will at times refer to various “named” results, both within this thesis and
in external citations. For the reader’s convenience, we will always refer to these
both by name and by number. We take the conventions that

• if the name of the result includes the type of result (e.g. “theorem”,
“lemma”, etc.) then we won’t repeat it – so for instance we’ll simply refer
to “Kenny Brown’s lemma (5.3.5)” –, whereas

• if the name of the result does not include its type, then we will include
it – so for instance we’ll refer to “the small object argument (Proposi-
tion 1.3.6)”.
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Appendix B

Index of notation

For the reader’s convenience, in this appendix we provide an index of all (potentially
not-completely-standard) mathematical symbols that we use throughout this thesis.
We list them in alphabetical order (to the greatest extent possible) and indicate
where they are defined or first appear. We generally list multi-use decorations as
separate entries (e.g. the subscript indicating a “named” model ∞-category) so as
to minimize repetition.

|−|: A(11), 4.1.15
‖−‖: A(11)
�: 1.1.1
�: 1.1.1
≈→: 1.1.1
 : 3.2.1
op
 : 3.2.1
(−)∗: A(1)(b)
(−)∗∗: 4.2.1, 6.4.6
(−)(∗∗): 4.2.3, 6.4.8
�: 5.4.1
�̂: 1.7.3
�: A(27), A(28), 4.2.4, 6.4.14
⊗: A(26)
t: A(27), A(28)
(−)•: A(44)
(−)×(•+1): 4.1.2
(−)•: A(44)∐

: A(12)

(−)◦: A(40)
�: T.4.2.2.1
∅: A(1)(d)
(−)∅: A(1)(b)
=: A(4)(b)
(=): A(10)
∼=: A(4)(b)
(−)': A(1)(d)
≈: 1.1.1
(−)!: A(13)
(−)[: §T.3.1∫

: A(14)
(−)J(−)−1K: §1.0.1, 2.1.8
(−)[(−)−1]: §1.0.1
(−)\: T.3.1.1.8∏

: A(12)
(−)]: §1.8, §T.3.1
a: A(25)
(−)x/: T.1.2.9.5
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(−)/x: T.1.2.9.4
[−): 3.4.17
(−]: 3.4.17
[−,−]: A(1)(d)
[−; . . . ;−]: 4.2.5, 6.4.9
(− ↓n −): 3.4.15
(−)([1];−,−): 5.2.6
3: 4.3.2
3̃: 6.4.10
7: 6.4.10

Adjn: A(25), A(26)
Alg: A.4.1.1.9
Algnu: §A.5.4.3

Bar: A.4.4.2.7
(−)Bergner: A(2)(b)
biCFib: 5.2.4
(−)BK: 2.1.16, A(2)(d)

C: 1.1.1
C: A(2)(b)
−→
C : 5.1.11←−
C : 5.1.11
c(−): A(43), 6.4.17
(−)c: 1.1.3
CAlg: A.2.1.3.1
CAlgnu: §A.5.4.4
(−)can: 1.6.13
Cat: A(1)(d)
Cat∞: A(1)(d)
Cat: A(4)(c)
CatsSet: A(2)(b)
(−)-cell: 1.3.3
CFib: 3.1.1
CFibRel: 5.2.1
coCFib: 3.1.1
coCFibRel: 5.2.1
(−)-cof: 1.3.2

colim: A(11)
const: A(8), 4.1.16
(−)cf : 1.1.3
CSS: 2.2.1
CSSX⊂Y: 4.1.21
cyl: 6.1.1, 6.3.1

σcyl: 6.1.1

∆: §T.A.2.7, A(4)(c)
∆{i0,...,ij}: A(42)
∆n: T.A.2.7.2
δin: A(42)
δni : A(42)
∂: 5.1.13
∂∆n: §T.A.2.7
diag: A(9)
disc: A(1)(c), 1.4.3
(−)DK: 4.1.10, 4.1.12, §4.0.1

E∞: 1.0.3
En: 1.2.39
E2: §1.0.3
ev: A(7)
Ex: 1.6.17
Ex∞: 1.6.20
Exn: 1.6.18

F: 1.1.1
(−)f : 1.1.3
Fun: A(1)(d)
Fun>: 6.4.20
Fun(−,−)Model: 6.4.11
Fun(−,−)Rel: 2.1.6
Fun(−,−)W: 2.1.6, 6.4.11
Funcolim: A(23)
FunΣ: §1.0.3
Funsurj: 4.1.3
Funsurj mono: 2.1.1
Fun: A(4)(c)
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Gpd: A(4)(c)
(−)gpd: A(1)(d)
Gr: 3.1.6, 3.3.3
GrRel: 5.2.1
Gr−: 3.1.6
Gr−Rel: 5.2.1
Grp: 1.6.13

hin: 6.4.29
ho: A(1)(d)
hom: A(21)
hom>: 6.4.20
hom: A(21), A(28), 4.1.8
homl: A(26)
homr: A(26)
hom�l : 5.4.1
hom�r : 5.4.1

hom
l∼: 6.1.7

hom
r∼: 6.1.7

II: 4.2.5
(−)-inj: 1.3.1
(−)inj: 5.1.8, A(36)

(−)Joyal: A(2)(a), 1.2.38

(−)KQ: 1.4.1, 1.4.5
(−)KQmedium

: 1.2.33
(−)KQstrong

: 1.2.33
(−)KQweak

: 1.2.33

L: 5.1.2, 5.4.6
L : 2.1.8
L: A(20)
L(−)(−): A(29), 5.1.14
(−)L: 1.2.12
LCat: A(4)(c)
LCFib(C): 3.1.1
LcoCFib(C): 3.1.1
LCSS: 2.2.1

LL(C): 3.1.1

LLFib(C): 3.1.1

LR(C): 3.1.1

LRFib(C): 3.1.1

LSS: 4.1.1

LAdjt: A(25)

Λn
i : T.A.2.7.3

Lax: 3.2.3

Lax(−)colim: 3.2.11

LFib: 3.1.1

L H : 4.4.4

L H
δ : A(2)(d)

L H
pre: 4.4.4

lim: A(11)

llp: A(41)

LMod: A.4.2.1.13

LQAdjt: 5.4.4

(−)lw: A(44)

M(−)(−): A(29), 5.1.14

m×m: 2.3.4

m(x,−): 4.2.23

m(x, y): 4.2.9, 6.4.15

m(−, y): 4.2.23

max: 2.1.7

min: 2.1.7

Model: 6.4.1

Model∞: 6.4.1

(−)Moer: 1.7.3

N: A(4)(c)

N∞: 2.2.1

N+: 2.4.3

Nhc: A(2)(b)

NR: 2.3.2

NR
∞: 2.3.1

[n]: §T.A.2.7

[n]W: 2.1.7
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Ω∞: 1.2.35
(−)op: A(1)(d)
opLax: 3.2.3

P: A(23)
path: 6.1.1, 6.3.1

σpath: 6.1.1
Π1: 1.6.13
Π≥1: 1.6.13
π0: A(1)(c), 1.4.3
(−)π0 : 1.2.13
π≥1: A(1)(c)
π≥n: 1.2.20
prGr(F ): 3.1.6
prGr−(G): 3.1.6

preNR
∞: 2.3.1

(−)proj: 5.1.8, A(36)
PΣ: §1.0.3
pt: A(1)(d)

Q1V: 5.5.1
QAdjn: 5.4.1

R: 5.1.2, 5.4.6
R: A(20)
(−)R: 1.2.17
RAdjt: A(25)
(−)Reedy: 5.1.17, A(36)
RelCat: 2.1.1
RelCat∞: 2.1.1
RelCat: 2.1.2, A(4)(c), A(2)(d)
(−)res: §1.0.3
(−)Rezk: A(2)(c), 2.3.12
RFib: 3.1.1
rlp: A(41)
rlp′: 1.3.10
RMod: A.4.2.1.36
RQAdjt: 5.4.4

S: A(1)(c)

S≥n: A(1)(c)
S≤n: A(1)(c)
Sfin: A(1)(c)
SS: 4.1.1
SSX⊂Y: 4.1.21
SsS: 4.1.6
s: A(6), 3.4.15, 4.2.1, 6.4.6
sLax(C): 3.2.3
sopLax(C): 3.2.3
s(−): A(43)
sd: 1.6.16
sdn: 1.6.18
Set: A(1)(c)
σin: A(42)
σni : A(42)
Sp: 1.2.19
Sp≥n: 1.2.19
Sp≤n: 1.2.19
Sp[m,n]: 1.2.19
sp: 4.1.18
srep: 3.5.6
sSet+: T.3.1.0.1

t: A(6), 3.4.15, 4.2.1, 6.4.6
τ≥n: A(1)(c), 1.2.19
τ≤n: A(1)(c), 1.2.19
(−)τ≥n : 1.2.20
(−)τ≤n : 1.2.14
(−)Th: 3.6.2, 3.6.6
Top: A(1)(c)
(−)triv: 1.2.2
TwAr: A.5.2.1.1

U: A(20)
U≥n: A(1)(c)
U≤n: A(1)(c)
UC: 3.2.9
U†C: 3.2.9
UCat: A(1)(d)
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UCatsS : 4.1.12

UCat: A(4)(c)

UCFib(C): 3.1.1

UcoCFib(C): 3.1.1

UCSS: 2.2.1

UL(C): 3.1.1

ULFib(C): 3.1.1

UR(C): 3.1.1

URel: 2.1.7

URFib(C): 3.1.1

US: A(1)(d)

USS: 4.1.1

W: 1.1.1, 2.1.1

W|−| : §1.0.1
W �

y: 6.4.23
Wh.e.: 1.2.36
Wq.i.: §6.0.1
Ww.h.e.: A(1)(c)
Wx

� : 6.4.23
Wx

� �

y: 6.4.23

W : 1.7.4

χC•
x0,...,xn

: 4.1.8

ょ: A(23)

Z: 4.2.5
zn: 3.4.14
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Birkhäuser Verlag, Basel, 2009, Reprint of the 1999 edition [MR1711612].
↑416, ↑419, ↑420, ↑421, ↑424, ↑436

[GK] D. Gepner and J Kock, Univalence in locally cartesian closed ∞-
categories, available at arXiv:1208.1749, v2. ↑92

[Gla] Saul Glasman, A spectrum-level Hodge filtration on topological Hochschild
homology, available at arXiv:1408.3065, v3. ↑292, ↑505

[GR17] Dennis Gaitsgory and Nick Rozenblyum, A study in derived algebraic
geometry. Vol. I. Correspondences and duality, Mathematical Surveys
and Monographs, vol. 221, American Mathematical Society, Providence,
RI, 2017. ↑197

[Gro57] Alexander Grothendieck, Sur quelques points d’algèbre homologique,
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Études Sci. Publ. Math. (1968), no. 34, 105–112. ↑79

[Seg73] , Configuration-spaces and iterated loop-spaces, Invent. Math. 21
(1973), 213–221. MR 0331377 (48 #9710) ↑79

[Seg74] , Categories and cohomology theories, Topology 13 (1974), 293–
312. ↑79
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