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1 Quadratic forms and the Siegel mass formula

1.1 Quadratic forms, the counting problem, and the Siegel mass formula

Definition 1. A quadratic form is a homogeneous, degree-2 polynomial in n variables.

Example 2. The polynomials x2 + y2, x2 − y2, and −x2 − y2 are all quadratic forms. Note that these can be
defined over any ring: all we need is are the coefficients ±1.

Of course, quadratic forms are defined with respect to a set of coordinates, but we are more interested in the
underlying objects (namely, quadric varieties), which may be rendered equivalent by changes of coordinates. We
are therefore naturally led to ask the following question.
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Question 3. Are these quadratic forms related to each other by change of basis?

Answer 4. It depends on the base ring. Over C the answer is yes, but over R the answer is no. Notice that this
implies that over Z, the answer is no too.

Note that studying R here tells us things about Z. In fact, quadratic forms over R (in a given number of
variables) are completely classified by their signature: we can always change our coordinates so that the quadratic
form is given by

∑
ai · x2i , and then the signature is by definition the integer

|{i : ai > 0}| − |{i : ai < 0}|.

But over Z, things are much more subtle. For instance, as we just saw, x2 + y2 and x2 + 3y2 are equivalent
over R, but they can’t be equivalent over Z because they’re not even equivalent over Z/3. (In fact, these will be
equivalent over a given ring R iff

√
3 ∈ R.) In any case, these tests motivate the following conjecture.

Conjecture 5. Two quadratic forms over Z are equivalent iff they’re equivalent over R and over all Z/p.

For simplicity, let us restrict to the positive-definite quadratic forms (still in some fixed number of variables n).
It will be convenient to make the following definition.

Definition 6. We say that two (positive-definite) quadratic forms q and q′ are in the same genus if they are
equivalent over Z/N for all N > 0.

Now, it’s not true that equivalence classes of quadratic forms are totally classified by their genus, but it turns
out that each genus only contains finitely many equivalence classes, and moreover we can precisely enumerate these
equivalence classes, provided we count with multiplicity in the right way: this formula is called the Siegel mass
formula. To describe it, we’ll need a bit of notation.

Notation 7. Let R be a ring, and let q(x1, . . . , xn) be a quadratic form with coefficients in R. Then, we write

Oq(R) = {A ∈ GLn(R) : q = q ◦A}.

Example 8. When R = R and q(x1, . . . , xn) =
∑
x2i , then Oq(R) is the usual orthogonal group.

Observation 9. If q is positive-definite, then Oq(Z) will be finite. This is because its elements will have to preserve
a lattice. (There will be some norm for which the lattice is spanned (at least rationally) by all the elements whose
norm is bounded by some fixed constant C. So Oq(Z) must act faithfully on these elements, but by positive-
definiteness there are only finitely many of them.)

Definition 10. We define the mass of the quadratic form q to be

mass(q) =
∑

[q′]∈genus(q)

1

|Oq′(Z)|
,

where [q′] denotes the equivalence class of the quadratic form q′.

We won’t give a precise statement of the Siegel mass formula just yet, but suffice it to say that it gives us
another expression for this same quantity.

Definition 11. We say that a quadratic form (over Z) is unimodular if it’s nondegenerate mod p for all primes p.

Example 12. None of the quadratic forms from our original example are unimodular. For instance, mod 2 we have
that x2 + y2 ≡ (x + y)2, i.e. up to change of coordinates this has just a single variable appearing with a nonzero
coefficient.

It turns out that in order for a quadratic form to be unimodular, we must have at least 8 variables. In fact, a
positive-definite quadratic form can only be unimodular if its number of variables is a multiple of 8.

We can now formulate a special case (or rather a consequence) of the Siegel mass formula:∑
q unimodular

1

|Oq(Z)|
=

Γ(1/2) · Γ(2/2) · · ·Γ(n/2) · ζ(2) · ζ(4) · · · ζ(n− 2) · ζ(n/2)

2n−1π(n2+n)/4
.

This is totally crazy: a priori the right side isn’t even a rational number, let alone related to the left side! One
can at least see that it’s rational using Bernoulli numbers, but the connection is still mysterious.
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Example 13. Let’s look at the simplest example of this consequence of the Siegel mass formula. Let’s use n to
denote the number of variables. So the simplest case is n = 8, and then the right side of the equation becomes

1

214 · 35 · 52 · 7
.

This denominator is actually the order of a certain finite group: if we set q to be the quadratic form corresponding
to the E8-lattice, then Oq(Z) is the Weyl group of E8, and we have that |Oq(Z)| = 214 · 35 · 52 · 7. But then, since
on the left side we’re only adding positive quantities and we’ve already reached our asserted sum, this implies that
there are no other summands on the left side: in other words, the E8 quadratic form is the unique unimodular
quadratic form in 8 variables.

Remark 14. This example might be misleading, because it might lead one to expect that these numbers are often
very small. In fact, at n = 32 the right side is about 40,000,000. This tells us that there are tons of 32-variable
unimodular quadratic forms. (In fact, every quadratic form has at least one automorphism (given by negating
all coefficients), so there are at least 80 million unimodular quadratic forms!) As it happens, there are only 2
unimodular quadratic forms in 16 variables and only 24 unimodular quadratic forms in 24 variables (and these have
all been classified). But we’re never going to classify all the 32-variable unimodular quadratic forms by hand, in
which sense this result (the Siegel mass formula) is pretty spectacular.

1.2 A reformulation of the counting problem

Now, let’s try – and fail – to prove that “same genus” implies “equivalent”; by failing, we’ll learn something.

So, suppose that q and q′ are in the same genus, i.e. for all N > 0 they’re equivalent mod N . That is, for each
N we have some AN ∈ GLn(Z/NZ) such that q = q′ ◦AN (as quadratic forms over Z/N).

We claim that without loss of generality, we can assume that if N |N ′ then AN ′ reduces to AN mod N . (This
is a simple compactness argument, relying on the fact that there are only finitely many choices at each stage, since
GLn(Z/N) is finite.) So, we can think about all the AN together as some single matrix A ∈ GLn(Ẑ).

Now, recall that

Ẑ = limZ/N =
∏
p

Zp

(by the Chinese remainder theorem), so we can actually assume that q ∼ q′ over Zp for all primes p. This implies
that q ∼ q′ over Qp for all p (by the factorization

Z→ Zp → Qp = Zp[p−1]

of the unit). Moreover, we have q ∼ q′ over R, since quadratic forms over R are classified by their signature. Then,
in line with the Hasse principle (which in general says that two objects are equivalent over Q iff they’re equivalent
over all its completions, i.e. over R and over all the Qp), this turns out to imply that q ∼ q′ over Q, i.e. that there
is some B ∈ GLn(Q) such that q = q′ ◦B.

Now, we can use A and B to get an automorphism of q, as

q = q′ ◦A = (q ◦B−1) ◦A.

This is tantamount to saying that B−1A ∈ Oq(Afin), where Afin is the ring of finite adeles: this can be described

as Afin = Ẑ⊗Q, i.e.

Afin =
∏
p

res
Qp

(where the “res” stands for “restricted”: we only allow denominators at finitely many places).

Now, to come up with this matrix we made two choices: the choice of A, and the choice of B. hence, to obtain
a canonical value we consider

B−1 ◦A ∈ Oq(Q)\Oq(Afin)/Oq(Ẑ),

i.e. we take this as a double-coset. If this were the identity double-coset, then we’d have that B−1 ◦A is the identity
matrix (so that A = B), and moreover since Ẑ ∩Q = Z we get that in fact A and B are defined over Z.

In fact, this logic is all reversible, and we come to the following result.
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Proposition 15. The set
Oq(Q)\Oq(Afin)/Oq(Ẑ)

is in bijection with equivalence classes of quadratic forms in the genus of q.

Before going forward, let’s make two modifications to this setup.

1. Rather than work with O, we work with SO: define

SOq(R) = {A ∈ GLn(R) : q ◦A = q, det(A) = 1},

and use SO everywhere above where we wrote O. This actually corresponds to a different counting problem
(namely, modding out by equivalences via determinant-1 transformations), but this ends up only introducing
some determinable power of 2. So, this is no big deal.

2. We’d like to replace Afin with A = Afin × R. This modification makes our middle terms SOq(Afin) bigger,
by adding in a factor of the compact Lie group SOq(R). To couteract this, we just divide out by it too.

And so finally, we will want to understand the size of the set

SOq(Q)\SOq(A)/SOq(Ẑ× R).

(Note that SOq(Ẑ× R) = SOq(Ẑ)× SOq(R).)

1.3 Measures

Now, we would also like to take advantage of the topology on A, which is quite nice and makes it into a locally
compact topological ring. Hence, there is an induced subspace topology on SOq(A) ⊂ Mn×n(A), which then
becomes a locally compact group. Inside of this locally compact group sit the discrete subgroup

SOq(Q) ⊂ SOq(A)

and compact open subgroup
SOq(A) ⊃ SOq(Ẑ× R).

Now, it’s always fun to look for invariant measures. Recall that the Haar measure is the unique left-invariant
measure up to scaling. (In fact, this is a unimodular group, meaning left-invariant measures are also right-invariant
measure.) Let’s write µ for a Haar measure (which, again, is well-defined up to a scalar). This descends to a
measure on SOq(Q)\SOq(A), which we again denote by µ.

Now, the compact group SOq(Ẑ×R) acts on the set SOq(Q)\SOq(A) on the right; if this action were free, we’d
just divide things out to get the resulting measure of the two-sided quotient. But in fact, there’s a stabilizer: the
stabilizer of the identity left-coset is precisely SOq(Z). Hence, we obtain that

µ(SOq(Q)\SOq(A)) = µ(SOq(Ẑ× R)) ·
∑

q′∈genus(q)

1

|SOq′(Z)|
.

And this, finally, is where the mass formula comes from:

mass(q) =
µ(SOq(Q)\SOq(A))

µ(SOq(Ẑ× R))
.

Remark 16. This expression is independent of the choice of µ, since µ itself was well-defined up to scaling. But in
fact, Tamagawa and Weil saw that it’s actually fruitful to consider these numerator and denominator independently
(and make a canonical choice of measure). We’ll pick up this thread in the next lecture.

4



2 Weil’s conjecture

2.1 The Siegel mass formula and Weil’s conjecture

Let q be a positive-definite quadratic form over Z. Recall that the Siegel mass formula tells us that∑
q′∈genus(q)

1

|SOq′(Z)|
=
µ(SOq(Q)\SOq(A))

µ(SOq(Ẑ× R))
,

where A = R×
∏res

p Qp. Observe that this expression on the right is independent of the choice of measure µ, since
µ itself is well-defined up to scale. But in fact, there’s a canonical choice of measure, the Tamagawa measure, which
we will now define. Actually, we will define the measure on each factor of the canonical factorization

SOq(A) = SOq(R)×
∏
p

res
SOq(Qp).

individually.

• First of all, SOq(R) is a Lie group, and in particular is a manifold. Thus, top-degree differential forms give
rise to measures (by integration); if our chosen top-degree form is left-invariant, then so will the resulting
measure be left invariant. Left-invariant top-degree forms, in turn, are determined by what they do at the
origin. Let’s write VR for the 1-dimensional R-vector space that they span.

Next, note that SOq(R) isn’t just a compact group, but comes to us as an algebraic group: it’s a subgroup
SOq(R) ⊂ GLn(R) cut out by certain polynomial equations. In general, such an algebraic group is called a
linear algebraic group.

Now, this linear algebraic group is not just defined over R, but over Q. we can talk about algebraic differential
forms defined over Q, too. This gives us a canonical choice of subspace VQ ⊂ VR, which is a 1-dimensional
Q-vector space: VR = VQ ⊗Q R. This cuts down a huge amount of ambiguity, and we’ll leave this thread here
for the moment.

• Let’s consider the other factors, SOq(Qp) for p prime. This is a p-adic analytic Lie group, and so one can
say roughly the same words to obtain a function from a 1-dimensional Qp-vector space VQp

to the invariant
measures. But once again, this comes to us as a linear algebraic group (this time as a subgroup of GLn(Qp)),
so again we canonically get VQ ⊂ VQp

. We use the same notation VQ because this is the same vector space:
these conditions are defined by the same equations!

As a result of the previous two analyses, we see that any nonzero ω ∈ VQ determines a left-invariant measure µω,p

on SOq(Qp) as well as a left-invariant measure µω,∞ on SOq(R). Using this observation, we define the Tamagawa
measure on SOq(A) by taking the product:

µTam =
∏

places p

µω,p.

Now, this may look like it depended on the choice of ω ∈ VQ, but in fact it does not. If we multiply ω by some rational
number r, then the R-factor µω,∞ would get multiplied by |r|∞, while the Qp-factor µω,p would get multiplied by
|r|p. The magic, then, lies in the fact that the product of the absolute values at all the places of any nonzero
rational number is 1!

Now, let’s return to the Siegel mass formula, and use our new canonical measure, the Tamagawa measure. The
denominator on the right side is the measure of

SOq(Ẑ× R) = SOq(R)×
∏
p

SOq(Zp),

and by definition we have that

µTam(SOq(Ẑ× R)) = µω,∞(SOq(R))×
∏
p

µω,p(SOq(Qp)).
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The first factor is what’s contributing all the π’s an special values of Γ and whatnot, while the second factor involves
a counting problem: the number of Z/p-points of SOq(Zp).

In fact, it turns out that in the statement of the Siegel mass formula, at least in the unimodular case that we
saw in the last talk, all of the complication came from the denominator. There’s another reformulation of the Siegel
mass formula, only in terms of the numerator:

µTam(SOq(Q)\SOq(A)) = 2.

(Going back and forth between these formulations is substantially easier than proving either one by themselves;
that’s the sense in which this is a reformulation.) But this has another advantage: last time, we only talked about
the unimodular version. But this newer statement is good for any quadratic form; in fact, it works over Q and we
don’t need to restrict to the positive-definite case either.

But one still might not like this formula completely: why 2? In fact, this 2 is related to the fact that SOq is
not simply connected: it has an (algebraic) double cover by an algebraic group, Spinq → SOq. Then, we have the
further reformulation

µTam(SpinQ(Q)\Spinq(A)) = 1

of the Siegel mass formula (in the same sense as before).

Now, motivated by this and other examples, Weil conjectured that this mass formula is a general phenomenon,
not only have to do with quadratic forms but rather with all simply-connected algebraic groups. More precisely,
he formulated the following.

Conjecture 17 (Weil’s conjecture). Let G be a semisimple, simply-connected algebraic group over Q. Then the
Tamagawa measure on G(A) has that

µTam(G(Q)\G(A)) = 1.

Remark 18. In this case, we can take the semisimple and simply-connected assumptions to mean that over C it is
such. As for the Tamagawa measure, one can make all the definitions we’ve seen above to give a rigorous definition.

Remark 19. If G isn’t compact over R, one can reformulate the conjecture as a “density” statement. (The “mass”

comes from dividing off G(Ẑ) [this doesn’t make sense to me]).

Weil’s conjecture was first checked by Weil himself in a number of cases. Later, Langlands and Lai verified it in
a number of other cases. Finally, Kottwitz proved it in general by reducing to those cases.

2.2 Weil’s conjecture for function fields

Now, we would like to talk about the (positive-characteristic) function field analog of Weil’s conjecture. It’s a
general pattern in number theory that many questions one can ask over Q also make sense over function fields, and
typically these are much easier to answer: we have tools that aren’t available in number theory, namely the tools
of algebraic geometry. This statement seems to be an exception: the number field case was known far earlier than
the function field case.

We begin by fixing some notation.

Notation 20. We fix the following.

• Let Fq denote the finite field with q elements.

• Let X denote a smooth projective algebraic curve over Fq. (One should think of X as something like a
compact Riemann surface: this would be the case that we’re over C instead of over Fq.)

• Let KX be the fraction field of X, i.e. its field of rational functions.

Example 21. The simplest example to keep in mind is X = P1; in this case, KX = Fq(x) (the field obtained by
taking Fq and freely adjoining a transcendental element x – one may actually define a function field to be a field
which is obtained by this procedure).

Now, function fields are analogous to number fields in many ways, and these relationships organize themselves
into a dictionary (two out of three columns of what has been called the Rosetta stone for the Langlands program).
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number fields function fields

Q (or any number field) KX

places (i.e. prime numbers and ∞) closed points x ∈ X

Z/p residue field κ(x) (a finite extension of Fq)

Zp complete local ring OX,x; noncan. iso. to κ(x)[[t]]

Qp (or R) fraction field KX,x of OX,x; noncanon. iso. to κ(x)((t))

A = R×
∏

p
resQp A =

∏res
KX,x

Remark 22. The noncanonical isomorphisms on the right side are determined by a choice of local coordinate.

Remark 23. The last line on each side gives an exhaustive list of the completions of the appropriate object, whence
the adelic notation. In fact, it turns out that there are again natural topologies on the constituent factors of A and
hence on A itself, and (on the function field side) this contains KX as a discrete subring.

Now, let G0 be a (linear) algebraic group defined over KX (i.e. it’s cut out of GLn(KX) by polynomials),
assumed to be semisimple and simply-connected (although note that this means something more general than the
previous case, since we can’t just extend to C anymore). We can take G0(A); this inherits the structure of a locally
compact group, and then G0(KX) ⊂ G0(A) becomes a discrete subgroup. We can again discuss invariant measures,
and an analogous procedure to the one above determines a measure on each G0(KX,x); once again, as long as
one considers all the completions together, the measure will again be independent of the choice. Hence we get a
well-defined canonical choice of Haar measure on G0(A), which we once again call the Tamagawa measure.

Conjecture 24 (Weil’s conjecture for function fields).

µTam(G0(KX)\G0(A)) = 1.

2.3 Counting problems for the function field case

Now, this is a nice clean statement, but it’s not as clear what sort of counting problem this should relate to. So, in
the remaining time, we give a quick indication of how we can convert this clean statement into a counting problem.

The analogy begins with the fact that having a linear algebraic group G0 over KX is parallel to asking about
quadratic forms over Q. But to get a mass formula, we need something better, namely an integral structure. For
this, we observe that we have the inclusion Spec(KX)→ X of the generic point, and so we further assume is that
we have a pullback diagram

G0
- G

Spec(KX)
?

- X
?

for some smooth affine group scheme G over X.
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Now, with this additional structure, we can apply G0 to not just any ring containing KX (i.e. things with maps
to Spec(KX)), but we can also apply G to objects living over X. For instance, we have G(OX,x) ⊂ G0(KX,x) (a
compact open subgroup of a locally compact group), and then we have a map G(OX,x)→ G(κ(x)) to a finite group.

Now, we can ask not just about left cosets G0(Q)\G0(A), but about double-cosets

G0(KX)\G0(A)/
∏
x∈X

G(OX,x),

and it turns out that the mass formula counts these double-cosets. In the next lecture, we will describe how we
recover this counting problem from the above formulation.

Remark 25. This set of double-cosets can be identified with H1(X;G), in analogy with our previous discussion
of “forms of quadratic forms that locally look the same at all points of Spec(Z)”.

3 The geometry of Weil’s conjecture for function fields

3.1 More on counting problems

Recall that if X is an algebraic curve over Fq and x ∈ X, we set the following notation:

• KX is the function field of X,

• κ(x) is the residue field at x (which will be a finite extension of Fq),

• Ox = OX,x
∼= κ(x)[[t]] is the ring of germs of functions at x (where the isomorphism comes only after a choice

of coordinate),

• Kx = KX,x
∼= κ(x)((t)) is the fraction field of Ox, and

• A =
∏res

Kx is the restricted product of the fraction fields.

Then, Weil’s conjecture for function fields asserts that

µTam(G0(KX)\G0(A)) = 1.

As we indicated last time, the first step in the proof is to reduce this to something more concrete, namely to a
counting problem. In order to do this, we also ask for a deformation of G0: more precisely, we ask for a pullback
diagram

G0
- G

Spec(KX)
?

- X.
?

in which G is a smooth group scheme which is affine over X and has connected fibers. Then, whereas we previously
already had a left action of G(KX) = G0(KX) on G(A) = G0(A), but now we also get a right action on G(A) of∏

x∈XG(Ox).

Question 26. What do the double-cosets

G(KX)\G(A)/
∏
x∈X

G(Ox)

count?

Answer 27. These double-cosets count isomorphism classes of principal G-bundles on X.

In order to understand this better, we make two observations.
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1. Any principal G-bundle P over X can be trivialized at any (closed) point of X. (This is non-obvious, since
the residue fields aren’t generally algebraically closed and so a priori there should be obstructions to triviality
in its Galois cohomology. But this fact follows from a theorem of Lang, which says that there are no nontrivial
G-bundles over a finite field whenever the fibers are connected.) So, P is trivial over Ox for all x ∈ X.

2. In line with the Hasse principle, this implies that P is also trivial over KX . (This statement is due to Harder.)

So, we know that we can trivialize P away from a finite set of points. But we can also trivialize it in a formal
neighborhood of each of these points, and hence all that we need to keep track of to recover P itself is the gluing
data. If the formal disk is associated to the local ring Ox, then the punctured formal disk is associated to the field
Kx. Hence, if we consider

[P ] ∈
∏
x∈X

res
G(Kx) = G(A),

then the ambiguity in the choice of representative P of [P ] is precisely the left-action of G(Kx) and the right action
of
∏

x∈X G(Ox). And this recovers for us our answer to the counting problem.

3.2 Stacks

Now, Weil’s conjecture has to do with the value µTam(G0(Kx)\G0(A)), and this is associated with a weighted count:

µTam(G(Kx)\G(A))

µTam

(∏
x∈X G(Ox)

) =
∑
[P ]

1

|Aut(P )|

(where the sum on the right is taken over the double-cosets, i.e. the isomorphism classes of G-bundles P over X),
and this is the appropriate Siegel mass formula. Just to totally spell out the analogy, the left side is conjecturally

1

µTam

(∏
x∈X G(Ox)

) ,
and so the right side is counting the number of G-bundles and the left side factors as a product (since the Tamagawa
measure is a product measure) whose factors are computable.

Remark 28. Actually, it turns out that unless G is trivial, the sum on the right side is infinite: there are infinitely
many G-bundles. but luckily, their automorphism groups grow quite quickly, and this sum ends up converging (but
only because we were clever enough to count with multiplicity).

Number theory over function fields is supposed to be easier than over global fields, and we now take advantage of
this. Namely, G-bundles are defined in an algebro-geometric way, and admit an algebro-geometric parametrization:
they come in families. if Y is an algebraic variety over Fq, then we can think of G-bundles on X × Y as “families
of G-bundles on X which are parametrized by Y ”. It will be convenient to introduce a bit of notation for encoding
this.

Notation 29. Let us write BunG(X) for the (algebraic) stack of G-bundles of X: this is an object which is
characterized by the property that giving a map Y → BunG(X) is the same as giving a G-bundle on X × Y .

Remark 30. This object BunG(X) is not so unlike an algebraic variety, except that it’s a stack : the objects we’re
trying to classify (namely, G-bundles on X) form a groupoid instead of just a set. (One may alternatively set this
up by considering the projection map BG×X → X; then, BunG(X) parametrizes sections of this map.)

Now, in particular we can evaluate BunG(X) on Fq-algebras R, and we have that

BunG(X)(R) = {G-bundles on X × Spec(R)}.

Using |−| to denote the groupoid Euler characteristic (determined by |pt//G| = 1/|G|), in particular we have that

|BunG(X)(Fq)| = |{G-bundles on X}| =
∑
[P ]

1

|Aut(P )|
,

the quantity appearing in Weil’s conjecture.
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3.3 Trace formulas

Our identification of the quantity as a weighted count of isomorphism classes of G-bundles raises the following
related question.

Question 31. Given a variety Y over Fq, how many points does Y have over Fq?

Weil’s idea for attacking this question is the following. First of all, we observe that Y (Fq) ⊂ Y (Fq); moreover,
since Y itself is defined over Fq, then it admits a (geometric) Frobenius map Y → Y , given by raising all coordinates
to the qth power. (This is because if f(x1, . . . , xn) = 0 then f(xq1, . . . , x

q
n) = 0 as long as the coefficients of f are

all in the ground field Fq.) Using this, we get that this inclusion Y (Fq) ⊂ Y (Fq) is precisely the inclusion of the
fixedpoints of the Frobenius. Hence, we should have

|Y (Fq)| =
∑
i

(−1)iTr(Frob|Hi
c(Y )),

where Hi
c denotes some conjectural “compactly-supported cohomology theory for algebraic varieties” with good

properties – that is, a Weil cohomology theory. In fact, this was one of the great successes of the Grothendieck
school of algebraic geometry: they implemented this idea by introducing `-adic cohomology. Using this, they
obtained the Grothendieck–Lefschetz trace formula.

Now, we would like to apply this trace formula not to an algebraic variety Y , but to our algebraic stack BunG(X).
But first, we will need to give a reformulation of the trace formula. If Y is a smooth variety of dimension d, then
its cohomology satisfies Poincaré duality: Hi

c(Y,Q`) ∼= (H2d−i(Y,Q`))
∨. We can almost use this to directly rewrite

the trace formula, except that this isomorphism isn’t equivariant for the action of Frobenius (but rather we always
get an extra factor of q), and so the dual form of the trace formula is that

|Y (Fq)|
qd

=
∑
i

(−1)iTr(Frob−1|Hi(Y ;Q`)).

Remark 32. This trace formula reflects the heuristic count that a dimension-d variety over Fq “should” have
roughly qd points, since this is true of affine space, the simplest example. So we should expect this sum to be
roughly 1.

Now, we would like to apply this dual formulation of the trace formula to the case where Y = BunG(X): we
would like to say that

|BunG(X)(Fq)

qdimBunG(X)
=
∑
i

(−1)iTr(Frob−1|Hi(BunG(X),Q`)).

But the important difference here is that a priori, we expect neither the left side nor the right side to be well-defined.
For instance, |BunG(X)| might be given by an infinite sum, and similarly Hi(BunG(X),Q`) might be nonzero for
infinitely many i. So in fact, what we mean to assert is first of all that both of these quantities are well-defined, and
then moreover that they agree. Luckily, this is a theorem of Behrend, at least if G has good reduction everywhere
(and the proof can be generalized with some effort to our case too).

And here we see the entrance of topology. We want to understand the cohomology of BunG(X), including its
action of Frobenius. thus, we reformulate Weil’s conjecture (after some computations, including computing the
“computable” value µTam

(∏
x∈X G(Ox)

)
of the mass formula) as saying that

∑
i

(−1)iTr(Frob−1|Hi(BunG(X),Q`)) =
∏
x∈X

|K(x)|dim(G)

|G(K(x))|
,

where this fraction should be thought of as having numerator “the expected number of points of G over K(x)” and
as having denominator “the actual number of points of G over K(x)”, and hence we expect that this fraction should
be close to 1. To prove this result, we’ll first show that this sum on the left side ought to factor as a product over
the points x ∈ X, and then we’ll show that each factor should take the form indicated on the right.
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4 Nonabelian Poincaré duality

4.1 An overview of the proof

Recall that we have the quantity ∑
[P ]

1
|Aut(P )|

qdimBunG(X)
=
|BunG(X)(Fq)|
qdimBunG(X)

and the quantity ∏
x∈X

|κ(x)|dimG

|G(κ(x))|
,

and we’ve restated Weil’s conjecture for function fields to be the assertion that these quantities are equal. Recall
also Lang’s theorem, which says that there’s only one G-bundle over κ(x) – the trivial bundle – which therefore
has automorphism group G(κ(x)). So, a weighted count of G-bundles on Spec(κ(x)) yields 1/|G(κ(x))|. Now, the
dimension of BG is the negative of the dimension of G, and hence we get the equality

|{G-bundles over κ(x)}|
|κ(x)|dimBG

=
|κ(x)|dimG

|G(κ(x))|
.

So, we can now describe our method of attack. On the one hand, we will have a trace formula telling us that the
first quantity equals ∑

i

(−1)iTr(Frob−1|H∗(BunG(X),Q`)),

and then on the other hand a local-to-global principle will give us that this expression agrees with the second
quantity as well. Thus, our general goal is to understand the (`-adic) cohomology of BunG(X) over Fq (or over Fq).

4.2 A warm-up case and nonabelian Poincaré duality in topology

As a warm-up, let’s first explore these ideas over the field C and taking G to be a constant group scheme, i.e. it’s
just a semisimple complex connected Lie group (e.g. G = SLn). This lands us in the world of ordinary topology. So,
we now think of X as a Riemann surface, and we will think of BG as simply a topological space (rather than as an
algebraic stack). Then, BunG(X) is an algebraic stack but has an associated homotopy type, namely map(X,BG).
(Because X is 1-dimensional, there ends up being not much difference between algebraic vector bundles and smooth
vector bundles.)

More generally, if X is a d-dimensional manifold and Y is any pointed space (e.g. BG), we might try to describe
map(X,Y ) in terms of local data – or we’ll actually care instead about mapc(X,Y ) in the case that X is noncompact.
So, the first fact to realize is that this functor is covariant in X with respect to proper maps: if U ⊂ X is an open
embedding, we even get an embedding of mapping spaces mapc(U, Y ) ↪→ mapc(X,Y ). As a consequence, we have
an abundance of spaces mapping to mapc(X,Y ), namely the spaces mapc(U, Y ) for any U ⊂ X. This naturally
leads us to consider the map

hocolimU⊂Xmapc(U, Y )→ mapc(X,Y ).

Of course, there’s a terminal object of the category of open subsets of X, namely X itself, so this homotopy colimit
isn’t going to be so interesting – it’ll just be constant at mapc(X,Y ), and our map will be an equivalence trivially.
But we can still try to get some mileage out of this idea, by restricting to certain subspaces U : if U is an open disk
(i.e. an open subset of X that’s homeomorphic to Rd), then we will have that

mapc(U, Y ) ∼= map((Dn, Sn−1), (Y, y)) ' ΩdY ;

more generally, if U ' Rd q . . .q Rd, then

mapc(U, Y ) ' ΩdY × · · · × ΩdY.

So, on such open subsets we have a very good understanding of the compactly-supported maps into Y .

The miracle, then, is it turns out that this is all we need, at least when Y is sufficiently connected (otherwise
taking its d-fold loopspace will entail a loss of information). More precisely we have the following result.
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Theorem 33 (Topological nonabelian Poincaré duality). If Y is (d− 1)-connected, then

hocolimU⊂X a disjoint union of d-disks mapc(U, Y )
∼−→ mapc(X,Y ).

Remark 34. This theorem is so named for the following reason. If Y = K(A,n) for n ≥ d and X is oriented,
then the source and target of the duality map are both describable in terms of singular co/chains: the target has
homotopy groups

π∗mapc(X,K(A,n)) ∼= Hn−∗
c (X;A),

while the source has homotopy groups

π∗hocolim mapc(U,K(A,n)) ∼= H∗+d−n(X;A),

and indeed the natural map from the latter to the former is the Poincar’e duality map, i.e. the inverse of the map

Hn−∗
c (X;A)

−∩[X]−−−−→ H∗+d−n(X;A)

(the cap-product).

This statement is good for our purposes, because it gives us a local-to-global principle: we can write mapc(X,Y )
as a (homotopy) colimit, in which

• on the one hand, the category over which we’re taking a colimit depends only on X (namely, the category of
disjoint unions of d-disks in X), while

• on the other hand, the value of our functor at each object depends only on Y .

Remark 35. In the special case when Y = BG, we should think of a map in mapc(U,BG) as giving a G-bundle
on X which is trivialized outside of U (or more precisely, such a datum is given by the image of that map in
mapc(X,BG)). Moreover, nonabelian Poincaré duality is telling us that ranging over all open subsets U ⊂ X which
are homeomorphic to a finite disjoint union of disks allows us to describe all G-bundles over X in this way, in an
essentially unique fashion (up to inclusions U ⊂ U ′).

Remark 36. In the further special case that X is a Riemann surface, i.e. a 2-dimensional manifold, our hypotheses
dictate that we need BG to be 1-connected; this is why we assume that G itself is connected.

4.3 The Ran space and nonabelian Poincaré duality in algebraic geometry

Let’s now return to our actual situation of interest. Recall that we have G→ X → Spec(k), and we are interested
in the cohomology of the algebraic stack BunG(X) of G-bundles on X.

To mimic the topological side, we define the Ran space of X, denoted RanG(X), to be the stack of G-bundles
on X which are trivialized away from finitely many points (which is the appropriate analog of our previous notions
when we’re working in the Zariski topology). Let’s be a little more precise: maps Y → RanG(X) are the same
thing as G-bundles P → X × Y together with a nonempty finite set of maps f1, . . . , fn : Y → X together with a
trivialization of P on (X × Y )\(Γf1 ∪ · · ·Γfn). (In the special case that Y is a point, we get the previous informal
description.)

Now, there’s a forgetful map RanG(X)→ BunG(X) (which just remembers the G-bundle but forgets the maps
fi : Y → X and the trivialization), and this leads us to the following result.

Theorem 37 (Algebro-geometric nonabelian Poincaré duality). If X is an algebraic curve over k, `−1 ∈ k, and
G → X is a semisimple, generically simply-connected, smooth group scheme which has connected fibers, then the
map

RanG(X)→ BunG(X)

induces an isomorphism in `-adic cohomology.

Remark 38. In fact, this statement holds under weaker conditions, too – for example, when G = GLn.

Let’s first sketch a proof of this for G = GL1. In this case, BunG(X) classifies line bundles on X, while RanG(X)
classifies line bundles that are generically trivialized. we’re claiming that this induces some sort of equivalence, and
this map sort of behaves like a fibration, so that we can simply check that the fibers themselves are contractible in
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the appropriate sense. Now, we have a map pt → BunG(X) selecting the trivial G-bundle, and then the pullback
of

RanG(X) - BunG(X)

pt

6

yields the “generic trivializations” of the trivial G-bundle. These correspond to nonzero meromorphic functions,
i.e. rational maps X 99K A1\{0}. This set of rational maps is precisely KX\{0}, which we should think of as
contractible: we think of KX as an infinite-dimensional vector space (or perhaps slightly better, as a colimit of
finite-dimensional vector spaces), and we recall that S∞ is contractible.

Now, the generalization to G = GLn goes as follows. now we get X 99K GLn ⊂ An2

, and now instead of
removing {0} ⊂ KX we remove some subset U ⊂ (KX)n

2

, whose complement is described informally by

maprat’l(X, {A : det(A) = 0}).

Once again, we’re removing something from an infinite-dimensional vector space which has infinite codimension,
and so the result should again be thought of as contractible.

Remark 39. One might ask whether this map is an equivalence in some motivic sense. Lurie suspects that this is
not true; at the very least, the proof of the statement certainly does not imply that this is so.

5 The computation

5.1 Pushforward along RanG(X)→ Ran{e}(X) and the affine Grassmannian

Let us recall our setup: we’re working over a field K, we have a smooth algebraic curve X defined over K, and we
have a family of groups G → X parametrized by X; our goal is to understand H∗(BunG(X),Q`). In the previous
lecture we discussed a tool for studying this, namely the map

RanG(X)→ BunG(X);

in passing to RanG(X), we’re adding the data of a finite set of points of X together with a trivialization of our
G-bundle away from those points. Recall that nonabelian Poincaré duality guarantees that under mild hypotheses
on G, this map induces an isomorphism on `-adic cohomology. In addition to the map above, we also have a map

RanG(X)
ϕ−→ Ran(X) = Ran{e}(X);

now, the target simply parametrizes nonempty finite subsets of X. We will see that we can understand the fibers
of this map purely in terms of G.

For simplicity, let’s assume that G is constant. (One might keep in mind the example G = SLn; then G-bundles
are just vector bundles with trivialized determinant.) Then, using a sort of Leray–Serre spectral sequence, we have
isomorphisms

H∗(BunG(X),Q`) ∼= H∗(RanG(X),Q`) ∼= H∗(Ran(X), ϕ∗Q`
)

(where of course ϕ∗ really denotes a derived pushforward along ϕ). Let’s write A = ϕ∗Q`
for this complex of

sheaves.

Now, let’s consider the fibers of ϕ. A point of Ran(X) is a finite subset of X, so the simplest case is a singleton
subset {x} ∈ X ⊂ Ran(X) (where we consider X ⊂ Ran(X) via singletons). In this case, ϕ−1({x}) looks like the
space of G-bundles on X equipped with a trivialization on X\{x}. Now, we can fix a trivialization of our G-bundle
on a formal neighborhood of the point x, and then all the data is given by the clutching function along the punctured
disc: in other words, such G-bundles are parametrized by G(Kx). (Recall that after choosing a coordinate, we have
Kx
∼= κ(x)((t)).) But then, given that we actually want to parametrize G-bundles instead of G-bundles equipped

with a trivialization, we see that we want to take a quotient to remove the ambiguity introduced when we chose the
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trivialization at x in the first place: thus, we are actually interested in G(Kx)/G(Ox). (Recall that after choosing
a coordinate, the inclusion Ox ⊂ Kx corresponds to the inclusion κ(x)[[t]] ⊂ κ(x)((t)).)

Now, G(Kx)/G(Ox) is an algebro-geometric object, a sort of infinite-dimensional algebraic variety (compare
with e.g. P∞ = colimPn). It is called the affine Grassmannian, and is denoted GrG = G(Kx)/G(Ox).

Remark 40. Since “up to homotopy” we’re supposed to think of G(Kx) as “maps into G from a circle” and of
G(Ox) as “maps into G from a disc”, we should therefore think of GrG as being an incarnation of ΩG ' Ω2BG.
(Perhaps better, we might think of the affine Grassmannian as an algebraic incarnation of this two-fold loopspace.)

Now, GrG is a colimit of projective varieties, and hence behaves as a sort-of “compact” object. Hence, our

map RanG(X)
ϕ−→ Ran(X) behaves like a proper map (i.e. it has “compact” fibers). Hence, the proper base change

theorem tells us that we have a quasi-isomorphism of the stalk Ax ' C∗(GrG,Q`) of A at x with the `-adic cochains
on the affine Grassmannian.

More generally, let S = {x1, . . . , xn} ∈ Ran(X). We can carry out the same analysis, but now we have n disks
instead of a single disk, and so we get ϕ−1(S) = GrG × · · · × GrG, and thence we obtain an identification of the
stalk of A at S ∈ Ran(X) as

AS ' C∗
(∏

n

GrG,Q`

)
'
⊗
n

C∗(GrG,Q`) ' Ax.

5.2 Factorizable sheaves

From this computation, we see that A provides us with the data of a factorizable sheaf onX. Namely, if S = S1

∐
S2,

then we have the “factorization” condition AS ' AS1
⊗ AS2

. So, suppose we have two points x, y ∈ X. in the
Ran space, what happens if we “move these points together”? More precisely, if we have “paths” from x to z and
from y to z, these give us a path [0, 1] → Ran(X) which changes strata at the endpoint 1 ∈ [0, 1]. If we pull the
sheaf A back to the interval [0, 1], we will therefore obtain a sheaf which is the constant sheaf C∗(Gr)⊗ C∗(Gr)
over [0, 1) but has value C∗(Gr) at 1. To specify such a sheaf, it therefore suffices to define a cospecialization map:
any stalk at 1 is supposed to extend to a section on some small neighborhood of 1, and so this is asking for a map
C∗(Gr)→ C∗(Gr)⊗ C∗(Gr).

But this map is actually coming from topology! Recalling the identification Gr ≈ Ω2BG, there is a loop
multiplication Ω2BG × Ω2BG → Ω2BG, which is exactly what’s inducing the map in the other direction on
cochains.

This story is part of a dictionary, at least if we’re working in topology instead of algebraic geometry. First of
all, we have a containment

{non-unital En-coalgebras} ⊂ {factorizable sheaves on Ran(Rn)}.

(The non-unitality reflects the fact that we’re not considering the empty set as part of the Ran space.) More
precisely, Gr ≈ Ω2BG is a 2-fold loopspace, and hence C∗(Gr,Q`) is an E2-coalgebra.

Now, given any (“nicely symmetric”) E2-coalgebra, for any surface Σ we can construct a factorizable sheaf on
Ran(Σ); this construction takes C∗(Gr) to A. We can also consider reduced cochains, which will kill off our co-unit,
and so we get that C∗red(Gr) gives Ared. Now, on both sides these objects are pretty similar, and finally we end up
with

H∗(Ran(X), A) ∼= H∗(Ran(X), Ared)⊕Q`.

5.3 Verdier duality and Koszul duality

Now, let’s return from working topology to the setting of algebraic geometry over a finite field. Recall that we
wanted to compute the number

Tr(Frob−1|H∗(Ran(X), A)).

This is almost exactly the setting of the Grothendieck–Lefschetz trace formula. Let us take a moment to describe
this. Let Y be an algebraic variety over Fq, and let F be an `-adic sheaf on Y . Then H∗c (Y,F) carries a Frobenius
action, and the trace formula says that

Tr(Frob|H∗c (Y,F)) =
∑

y∈Y (Fq)

Tr(Frob|Fy).
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In the case that F is constant, the summands on the right all equal 1, so this is just counting the set Y (Fq). So, this
looks kind of like what we’re trying to do, except for two differences: we’re asking about the trace of the inverse
of Frobenius, and we’re also looking at cohomology as opposed to compactly-supported cohomology. So, we’ll use
Verdier duality in our situation in order to apply the trace formula.

First of all, we’d like to say

Tr(Frob−1|H∗(Ran(X), A)) = Tr(Frob|H∗(Ran(X), A)∨) = Tr(Frob|H∗c (Ran(X),DA)),

where D denotes “Verdier duality”. Now, this would roughly be true, except that the Ran space is a big, infinite-
dimensional object, and it turns out (for this reason) that in fact, the dual DA is zero, and this equality of traces
is just totally false. On the other hand, we can fix this by taking a weighted count: in essence, throwing away the
basepoint gives us that

Tr(Frob−1|H∗(Ran(X), Ared)) = Tr(Frob|H∗(Ran(X), Ared)∨) = Tr(Frob|H∗c (Ran(X),DAred))

is true.

Now, Verdier duality takes factorizable sheaves to factorizable sheaves. Moreover, under our dictionary which
takes E2-coalgebras to factorizable sheaves, the Verdier dual of a factorizable sheaf corresponds to the Koszul
dual of the corresponding E2-coalgebra. we won’t really go into detail here, but we’re after the Koszul dual
of C∗red(Ω2BG), and this is precisely Cred

∗ (BG). so, we’re saying that at a point x ∈ X, the stalk is given by
(DAred)x ' Cred

∗ (BG,Q`), the chain complex computing the reduced homology of BG with Q`-coefficients.

5.4 The computation

Now, let’s take a leap of faith and accept that this all works out as it should. Then, we have that

1 + Tr(Frob|H∗c (Ran(X),DAred)) = 1 +
∑

S∈Ran(X)(Fq)

Tr(Frob|
⊗
s∈S

Cred
∗ (BG)).

What this is saying is that S is a union of orbits for Gal(Fq/Fq) on X(Fq), which are exactly the closed points of
X, considered as a scheme. So we can rewrite this as

1 +
∑

∅6=T⊂closed points of X

(∏
x∈T

Tr(Frobx|Cred
∗ (BG))

)
.

So, this is a sum over all nonempty subsets – plus 1, which corresponds to the empty set – so we can rewrite it as

∑
T⊂closed points of X

(∏
x∈T

Tr(Frobx|Cred
∗ (BG))

)
.

Modulo convergence issues, we can rewrite this using the distributive law as∏
x∈X

1 + Tr(Frobx|Cred
∗ (BG)).

Once again, the difference between Cred
∗ (BG) and C∗(BG) is just a copy of Q` on which the Frobenius acts as the

identity, so this is ∏
x∈X

Tr(Frobx|C∗(BG)).

Using duality we can rewrite this as ∏
x∈X

Tr(Frob−1|C∗(BG,Q`)).

Finally, applying the trace formula to BG, we see that this equals∏
x∈X

|BG(κ(x))|
|κ(x)|dimBG

=
∏
x∈X

|κ(x)|dimG

|G(κ(x))|
.

And this is exactly the mass formula that shows up in Weil’s conjecture.
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