SINGULAR VALUE DECOMPOSITION

Notes for Math 54, UC Berkeley

Let A be an $m \times n$ matrix. We discuss in these notes how to transform the perhaps complicated A into a simpler form, by multiplying it on the left and right by appropriate orthogonal matrices. This is important for many interesting applications.

LEMMA 1. The matrix

$$
S=A^{T} A
$$

is a symmetric $n \times n$ matrix.
Proof. We recall the matrix formula $(B C)^{T}=C^{T} B^{T}$, which implies that

$$
S^{T}=\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A=S
$$

The transpose A^{T} is an $n \times m$ matrix and thus S is $n \times n$.

Since S is symmetric, it has real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and corresponding eigenvectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ so that

$$
\begin{equation*}
A^{T} A \mathbf{v}_{j}=S \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j} \quad(j=1, \ldots, n) \tag{1}
\end{equation*}
$$

and

$$
\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \text { is an orthonormal basis of } \mathbb{R}^{n} .
$$

LEMMA 2. (i) The following identities hold:

$$
\begin{equation*}
A \mathbf{v}_{i} \cdot A \mathbf{v}_{j}=\lambda_{j} \delta_{i j} \quad(i, j=1, \ldots, n) \tag{2}
\end{equation*}
$$

where

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(ii) Furthermore, the eigenvalues of $S=A^{T} A$ are nonnegative:

$$
\lambda_{j} \geq 0 \quad(j=1, \ldots, n)
$$

Proof. We use (1) to calculate that

$$
A \mathbf{v}_{i} \cdot A \mathbf{v}_{j}=\left(A \mathbf{v}_{i}\right)^{T} A \mathbf{v}_{j}=\mathbf{v}_{i}^{T} A^{T} A \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{i}^{T} \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{i} \cdot \mathbf{v}_{j}=\lambda_{j} \delta_{i j},
$$

since $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ is orthonormal. In particular, $\lambda_{j}=\left\|A \mathbf{v}_{j}\right\|^{2} \geq 0$.
Let us now reorder, if necessary, the eigenvalues so that

$$
\lambda_{1} \geq \cdots \geq \lambda_{r}>\lambda_{r+1}=\cdots=\lambda_{n}=0
$$

DEFINITION. The singular values of A are the numbers

$$
\sigma_{j}=\sqrt{\lambda_{j}} \quad(j=1, \ldots, n) .
$$

Then

$$
\begin{equation*}
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{n}=0 \tag{3}
\end{equation*}
$$

and formula (2) implies

$$
\begin{equation*}
\left\|A \mathbf{v}_{j}\right\|=\sigma_{j} \quad(j=1, \ldots, n) \tag{4}
\end{equation*}
$$

DEFINITION. We write

$$
\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i} \quad(i=1, \ldots, r) .
$$

It follows from (2) and (4) that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ is orthonormal in \mathbb{R}^{m}, and thus

$$
0 \leq r \leq \min \{n, m\}
$$

We can now use the Gram-Schmidt process to find further vectors $\left\{\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{m}\right\}$ so that

$$
\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\} \text { is an orthonormal basis of } \mathbb{R}^{m} .
$$

The key point is that we can use the orthonomal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of \mathbb{R}^{m} and the orthonormal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ of \mathbb{R}^{n} to convert our matrix A into a simpler form. Here is how to do it:

NOTATION. Introduce the $m \times m$ orthogonal matrix

$$
U=\left(\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \ldots \mid \mathbf{u}_{m}\right),
$$

whose $i^{\text {th }}$ column is $\mathbf{u}_{i}(i=1, \ldots, m)$. Likewise, introduce the $n \times n$ orthogonal matrix

$$
V=\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{n}\right) .
$$

Then

$$
\begin{equation*}
U U^{T}=U^{T} U=I, V V^{T}=V^{T} V=I \tag{5}
\end{equation*}
$$

THEOREM 1. We have

$$
U^{T} A V=\left(\begin{array}{cccc|c}
\sigma_{1} & 0 & \ldots & 0 & \tag{6}\\
0 & \sigma_{2} & \ldots & 0 & \\
\vdots & \vdots & \ddots & \vdots & O \\
0 & 0 & \ldots & \sigma_{r} & \\
\hline & & O & & O
\end{array}\right)
$$

REMARK. Thus if we write Σ for the $m \times n$ matrix on the right hand side of (6), we obtain using (5) the singular value decomposition (SVD)

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{7}
\end{equation*}
$$

of our matrix A.
This is similar to the familiar orthogonal diagonalization formula for a symmetric $n \times n$ matrix, but in (6) and (7) the matrix A need not be symmetric nor square.

Proof. Since

$$
A V=A\left(\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{n}\right)=\left(A \mathbf{v}_{1}\left|A \mathbf{v}_{2}\right| \ldots \mid A \mathbf{v}_{n}\right)
$$

it follows that

$$
U^{T} A V=\left(\begin{array}{cccc}
\mathbf{u}_{1} \cdot A \mathbf{v}_{1} & \mathbf{u}_{1} \cdot A \mathbf{v}_{2} & \ldots & \mathbf{u}_{1} \cdot A \mathbf{v}_{n} \tag{8}\\
\mathbf{u}_{2} \cdot A \mathbf{v}_{1} & \mathbf{u}_{2} \cdot A \mathbf{v}_{2} & \ldots & \mathbf{u}_{2} \cdot A \mathbf{v}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{u}_{m} \cdot A \mathbf{v}_{1} & \mathbf{u}_{m} \cdot A \mathbf{v}_{2} & \ldots & \mathbf{u}_{m} \cdot A \mathbf{v}_{n}
\end{array}\right)
$$

Now if $j \in\{r+1, \ldots, n\}$, then $A \mathbf{v}_{j}=0$. If $j \in\{1, \ldots, r\}$ and $i \in\{r+$ $1, \ldots, m\}$, then

$$
\mathbf{u}_{i} \cdot A \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{i} \cdot \mathbf{u}_{j}=0
$$

Finally, if $i, j \in\{1, \ldots, r\}$, then

$$
\mathbf{u}_{i} \cdot A \mathbf{v}_{j}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i} \cdot A \mathbf{v}_{j}=\frac{\lambda_{i}}{\sigma_{i}} \mathbf{v}_{i} \cdot \mathbf{v}_{j}=\sigma_{i} \delta_{i j}
$$

Using these formulas in (8) gives (6).

SUMMARY: HOW TO FIND THE SVD

1. Diagonalize $S=A^{T} A$, to find an orthonormal basis of \mathbb{R}^{n} of eigenvectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$.
2. Reorder the eigenvalues of S so that $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$.
3. Let

$$
\sigma_{j}=\lambda_{j}^{\frac{1}{2}} \quad(j=1, \ldots, n)
$$

then

$$
\sigma_{1} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\cdots=\sigma_{n}=0
$$

4. Define

$$
\mathbf{u}_{i}=\frac{1}{\sigma_{i}} A \mathbf{v}_{i} \quad(i=1, \ldots, r)
$$

5. Extend $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$ to an orthonormal basis $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}\right\}$ of \mathbb{R}^{m}.
6. Write U, V and Σ, as above; then $A=U \Sigma V^{T}$ is the corresponding singular value decomposition of the matrix A.

EXAMPLE. Find the SVD for the non-symmetric matrix

$$
A=\left(\begin{array}{cc}
-4 & 6 \\
3 & 8
\end{array}\right)
$$

We compute

$$
S=A^{T} A=25\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right)
$$

The eigenvalues of S are $\lambda_{1}=100, \lambda_{2}=25$, with corresponding orthonormal eigenvectors

$$
\mathbf{v}_{1}=\binom{0}{1}, \mathbf{v}_{2}=\binom{1}{0} .
$$

Therefore

$$
\sigma_{1}=10, \sigma_{2}=5
$$

and

$$
\mathbf{u}_{1}=\frac{1}{\sigma_{1}} A \mathbf{v}_{1}=\frac{1}{5}\binom{3}{4}, \mathbf{u}_{2}=\frac{1}{\sigma_{2}} A \mathbf{v}_{2}=\frac{1}{5}\binom{-4}{3} .
$$

So

$$
V=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), U=\frac{1}{5}\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right), \Sigma=\left(\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right) .
$$

We check that U, V are orthogonal matrices, and

$$
U \Sigma V^{T}=\frac{1}{5}\left(\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right)\left(\begin{array}{cc}
10 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-4 & 6 \\
3 & 8
\end{array}\right)=A .
$$

