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Abstract. We show that for each finite sequence of algebraic integers α1, . . . , αn

and polynomials P1(x1, . . . , xn; y1, . . . , yn), . . . , Pr(x1, . . . , xn; y1, . . . , yn) with

algebraic integer coefficients, there are a natural number N , n commuting en-

domorphisms Φi : GN
m → GN

m of the Nth Cartesian power of the multiplicative
group, a point P ∈ GN

m(Q), and an algebraic subgroup G ≤ GN
m so that the

return set {(`1, . . . , `n) ∈ Nn : Φ◦`1
1 ◦· · ·◦Φ◦`n

n (P ) ∈ G(Q)} is identical to the
set of solutions to the given exponential-polynomial equation: {(`1, . . . , `n) ∈
Nn : P1(`1, . . . , `n;α`1

1 , . . . , α
`n
n ) = · · · = Pr(`1, . . . , `n;α`1

1 , . . . , α
`n
n ) = 0}.

1. Introduction

Motivated by the conclusion of Faltings’ Theorem on rational points on subva-
rieties of abelian varieties, Ghioca, Tucker and Zieve posed the following question
(Question 1.6 of [2]) about return sets for finite rank algebraic dynamical systems.

Question 1.1. Let X be a variety defined over C, let V be a closed subvariety
of X, let S be a finitely generated commutative subsemigroup of EndX, and let
α ∈ X(C). Do the following hold?

(a) The intersection V (C) ∩ OS(α) can be written as OT (α) where T is the
union of finitely many cosets of subsemigroups of S.

(b) For any choice of generators Φ1, . . . ,Φr of S, let Z be the set of tuples
(n1, . . . , nr) ∈ Nr for which Φ◦n1

1 ◦ · · · ◦Φ◦nr
r (α) ∈ V (C), where Φ◦ni

i is the
ni-fold composition of Φi; then Z is the union of finitely many sets of the
form zi + (Gi ∩ Nr), where each Gi is a subgroup of Zr and each zi ∈ Nr.

There are some obvious cases in which Question 1.1 has a negative answer. For
example, if X = Am is the affine m-space, Φi : Am → Am is given by (x1, . . . , xn) 7→
(x1, . . . , xi−1, xi + 1, xi+1, . . . , xn), α = (0, . . . , 0) is the origin, and V ⊆ An is any
variety, then Z = V (C) ∩ Nn. As is well-known, the set of natural number points
on a variety may be very complicated. For another example, consider the case of
X = A2, Ψ1(x, y) = (2x, y), Ψ2(x, y) = (x, y + 1), α = (1, 0), and Y = ∆A1 =
{(x, y) : x = y}. Then Z = {(m, 2m) : m ∈ N}.

With these examples in mind, one might seek geometric conditions on the alge-
braic dynamical system (X,S) for which a positive answer to Question 1.1 may be
expected. In a companion paper [3], the same authors specialized Question 1.1 to
the case that X = Gg

m is a power of the multiplicative group and S is a semigroup of
algebraic group endomorphisms. Under various hypotheses, for example when the
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differential of each Φi at the origin is diagonalizable, they showed that Question 1.1
has a positive answer, but they constructed two examples for which the return sets
are infinite but may be represented as the natural number points on a quadratic
curve.

In this note we show that such examples are far from anomalous and that, in fact,
every set which may be expressed as the natural number solutions of an exponential-
polynomial equation may be realized as the return set for an algebraic dynamical
system on some power of the multiplicative group. We proceed by running the
by-now-standard Skolem-Mahler-Lech-Chabauty argument in reverse. That is, we
start with some easy linear algebraic calculations showing that if R is any com-
mutative ring with no Z-torsion, then every set of natural numbers solutions to a
system of exponential-polynomial equations over R may be realized as the return
set for a linear dynamical system over R. We pull this result down from rings of
integers in number fields to Z to show that every set of solutions to a system of
exponential-polynomial equations over R may be realized as the return set of a
linear dynamical system over Z. Exponentiating this last linear dynamical system
we obtain the desired algebraic dynamical system on an algebraic torus.

2. Conventions and statement of main theorem

We include 0 in the set N of natural numbers. Our fundamental object of study
is the return set for an algebraic dynamical system.

Definition 2.1. Given a set X, a finite sequence Φ1, . . . ,Φn of self-maps Φi : X →
X, a point a ∈ X, and a subset Y ⊆ X, we define the return set to be

E(a,Φ1, . . . ,Φn, Y ) := {(`1, . . . , `n) ∈ Nn : Φ◦`11 ◦ · · · ◦ Φ◦`nn (a) ∈ Y }

Remark 2.2. We shall abuse notation somewhat in the case of algebraic dynamical
systems. That is, if X is a scheme over the ring R, Φ1, . . . ,Φn is a sequence of com-
muting regular self-maps Φi : X → X, Y ⊆ X is a subscheme and a ∈ X(R) is an
R-valued point of X, then we write E(a,Φ1, . . . ,Φn, Y ) for E(a,ΦR

1 , . . . ,Φ
R
n , Y (R)).

Our main theorem is that the class of return sets for finitely generated commuta-
tive semigroups of algebraic group endomorphisms of algebraic tori coincides with
the class of exponential-polynomial sets.

Definition 2.3. Let R be a commutative ring and n a natural number. An R-
exponential-polynomial function of n-variables is a function f : Nn → R of the form
(`1, . . . , `n) 7→ P (`1, . . . , `n;α`1

1 , . . . , α
`1
m, . . . , α

`n
1 , . . . , α

`n
m ) for some polynomial P

in n(m + 1) variables over R and elements α1, . . . , αm ∈ R. By an R-exponential-
polynomial set we mean a finite intersection of subsets of Nn defined by the vanishing
of an R-exponential-polynomial function.

With these definitions in place we may express our main theorem.

Theorem 2.4. Let O be the ring of all algebraic integers and let Z ⊆ Nn be an O-
exponential-polynomial set. Then there are an algebraic torus X over Q, an n-tuple
of commuting endomorphisms Φi : X → X, a point P ∈ X(Q), and an algebraic
subgroup Y ≤ X for which Z = E(P,Φ1, . . . ,Φn, Y ).
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3. Some basic lemmata on exponential-polynomials

For the remainder of this note, R denotes a commutative ring with no Z-torsion.
We write RQ := R⊗Q and regard R as a subring of RQ.

We shall encode general exponential-polynomial sets by representing their defin-
ing equations as linear relations amongst basic generalized monomials, but for the
sake of concreteness, we regard exponential polynomials as functions.

Definition 3.1. For k ∈ N and a ∈ R we define
(
a
k

)
:= 1

k!

∏k−1
i=0 (a − i) ∈ RQ,

where
(
a
0

)
:= 1 as usual. If a := (a1, . . . , an) ∈ Rn is an n-tuple of elements of R

and k = (k1, . . . , kn) ∈ Nn is an n-tuple of natural numbers, then
(
a
k

)
:=
∏n

i=1

(
ai

ki

)
and ak :=

∏n
i=1 a

ki
i . By a basic exponential multinomial over R we mean an RQ-

exponential polynomial of the form
(
x
k

)
λx for some k ∈ Nn and λ ∈ Rn where

x = (x1, . . . , xn) is the n-tuple of standard indeterminates in the polynomial ring
R[x1, . . . , xn].

Lemma 3.2. Every element of R[x1, . . . , xn] can be expressed as an R-linear com-
bination of the set {

(
x
k

)
: k ∈ Nn}.

Proof. For each i, we prove by induction that xki for any k is an Z-linear combination
of the set {

(
xi

j

)
: j ∈ N}. Indeed x0i = 1 =

(
xi

0

)
. More generally, xki − k!

(
xi

k

)
is a polynomial with Z-coefficients of degree less than k. So this completes the
induction. By expansion, we see that any monomial xj is a Z-linear combination
of the set {

(
x
k

)
: k ∈ Nn}. By tensoring with R, the result follows. �

Lemma 3.3. Every R-exponential-polynomial function may be expressed as a finite
R-linear combination of basic exponential multinomials.

Proof. Using the laws of exponents, it is easy to see that every R-exponential-
polynomial function may be expressed as a finite R-linear combination of expo-
nential polynomial functions of the form λxxk. By Lemma 3.2, the monomials xk

may be expressed as Z-linear combinations of basic multinomials. Distributing the
product of the exponential term over the sum, we conclude. �

4. Some linear algebra

In this section we carry out some basic linear algebraic computations in the
service of our main theorem.

Some notation is in order.

Definition 4.1. For any natural number n and i ≤ n, we denote by ei,n (written
as ei if n is understood) the column vector whose ith entry is 1 and all of whose
other entries are 0. That is, e1,n, . . . , en,n is the standard basis of Zn. The linear
map Jn is defined by Jnei,n = ei+1,n for i < n and Jnen,n = 0. That is, considered
as an n × n matrix Jn is the element of Mn×n(Z) with 1s along the subdiagonal
and 0s in every other entry. If n is understood or otherwise immaterial, we write
J for Jn. We write In for the identity matrix in Mn×n and again write I if n is
understood. For any ring R as there is a unique map Z→ R, we regard Jn and In
as elements of Mn×n(R) and ei,n as an element of Rn.

Lemma 4.2. For any n-tuple j = (j1, . . . , jn) of natural numbers, there is another
n-tuple M = (M1, . . . ,Mn) of natural numbers having the property that the only
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n-tuple k = (k1, . . . , kn) of natural numbers satisfying k ·M :=
∑n

i=1 kiMi = j ·M
is k = j.

Proof. Let p1, . . . , pn be a sequence of distinct primes for which ji < pi for each
i ≤ n. Set Mi :=

∏
6̀=i p`. If k ·M = j ·M, then kiMi ≡ jiMi (mod pi) for

each i ≤ n. As Mi is a product of primes distinct from the prime pi we conclude
that Mi is invertible modulo pi so that ki ≡ ji (mod pi). Thus, we may write
ki = ji + εipi for some integer εi. As ji < pi and ki ≥ 0, we conclude that
0 ≤ ki = ji + εipi < (1 + εi)pi so that εi ≥ 0. We then have

j ·M = k ·M =

n∑
i=1

(ji + εipi)Mi = j ·M +

(
n∑

i=1

εi

)(
n∏

`=1

p`

)
.

Thus, 0 =
∑n

i=1 εi. As each εi is nonnegative, we conclude that they are all equal
to zero. That is, j = k. �

Proposition 4.3. For any natural number n, n-tuple λ ∈ Rn of elements of R and
n-tuple j ∈ Nn of natural numbers, there are some finite rank free R-module F , an
R-linear map π : F → R, an element v, and an n-tuple ψ1, . . . , ψn of commuting
endomorphisms of F so that for all n-tuples ` ∈ Nn of natural numbers one has

π ◦ ψ◦`11 ◦ · · · ◦ ψ◦`nn (v) = λ`
(
`

j

)
Proof. Let M = (M1, . . . ,Mn) ∈ Nn be the sequence of natural numbers provided
by Lemma 4.2. Let N := M · j + 1 and F := RN , and set ψi := λi(I + JMi).
As {ψ1, . . . , ψn} ⊆ R[J ], the subring of MN×N (R) they generate is commuta-
tive. Using the usual binomial expansions, one computes immediately that for
any (`1, . . . , `n) ∈ Nn, one has

(
ψ◦`11 ◦ · · · ◦ ψ◦`nn

)
(e1,N ) =

(
n∏

i=1

(λi(I + JMi))`i

)
(e1,N )

=
∑
k∈Nn

λ`
(
`

k

)
Jk·M(e1,N )

=

N∑
m=0

( ∑
k·M=m

λ`
(
`

k

))
em+1,N

As the only solution to k ·M = N − 1 is given by k = j, we conclude that the
coefficient of eN,N in ψ◦`11 ◦ · · · ◦ ψ◦`nn (v) is λ`

(
`
j

)
, where v := e1,N . Let π : F → R

be the projection onto the N th co-ordinate. �

Definition 4.4. For j = (j1, . . . , jn) and λ = (λ1, . . . , λn) ∈ Rn as in Proposi-
tion 4.3, we let (Fj,λ, ψ1;j,λ, . . . , ψn;j,λ, vj,λ, πj,λ) be the module, commuting linear
maps, vector and projection map obtained in Proposition 4.3.

Theorem 4.5. For any commutative ring R with no Z-torsion and R-exponential-
polynomial set Z ⊆ Nn there are a finite-rank free R-module F , n-tuple ψ1, . . . , ψn

of commuting R-module endomorphisms on F , point a ∈ F , and submodule S ≤ F
for which Z = E(a, ψ1, . . . , ψn, S). Moreover, S may be taken to be the kernel of
an R-linear map θ : F → Q, where Q is also a finite-rank free R-module.
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Proof. It suffices to show that the zero set of a single R-exponential-polynomial
may be encoded as a return set. Indeed, if (Fi, ψi,1, . . . , ψi,n, ai, Si) has return set
Zi for 1 ≤ i ≤ m, then(

m⊕
i=1

Fi,

m⊕
i=1

ψi,1, . . . ,

m⊕
i=1

ψi,n, (a1, . . . , am),

m⊕
i=1

Si

)

has return set
⋂m

i=1 Zi.
Let Z be the zero set of anR-exponential-polynomial function f(x). By Lemma 3.3

we may write f =
∑
rj,λλ

x
(
x
j

)
where rj,λ ∈ R and the sum is taken over a finite

set A of pairs (j,λ) where j ∈ Nn and λ ∈ Rn.
Let F :=

⊕
Fj,λ, ψi :=

⊕
ψi;j,λ for i ≤ n, a = ⊕vj,λ, Q = R, and S to be the

kernel of the composite θ of
⊕
rj,λπj,λ and the sum map, where the direct sum and

the sum are over (j,λ) ∈ A.

From Proposition 4.3 for any ` ∈ Nn we have θ ◦ ψ◦`11 ◦ · · · ◦ ψ◦`nn (a) = f(`).
Thus, Z = E(a, ψ1, . . . , ψn, S) as claimed. �

5. Return sets on tori

In this section we deduce Theorem 2.4 from the linear algebraic Theorem 4.5.
Throughout this section we denote by O the ring of all algebraic integers.
Let us note first that every exponential-polynomial set over the algebraic integers

may be realized by a linear dynamical system over Z.

Proposition 5.1. If Z ⊆ Nn is a O-exponential-polynomial set, then there are
natural numbers r and s, a sequence φ1, . . . , φn of commuting r × r-matrices over
Z, a vector a ∈ Zr, and a Z-module map L : Zr → Zs so that if T := kerL, then

Z =
{
` ∈ Nn : φ◦`11 · · ·φ◦`nn (a) ∈ T

}
.

Proof. Let R be the subring of O generated by the bases of the exponents appearing
in the expressions of some finite list of O-exponential-polynomial functions whose
zero set is equal to Z. As each such number is integral over Z, R is free of finite-
rank as a Z-module. Let (F,ψ1, . . . , ψn, a, S) be given by Theorem 4.5 for R and
Z and let θ : F → Q be an R-linear map with ker θ = S. Then F is also a finite
rank free Z-module and all of the listed maps are Z-linear. Choosing a basis, we
may identify F with Zr and each ψi with some r × r matrix φi. Likewise, fixing
a Z-basis for Q, we may regard θ as an s × r matrix. As the dynamical systems
(F,ψ1, . . . , ψn) and (Zr, φ1, . . . , φn) (after a choice of basis) are identical as are the
initial points and target sets, their return sets are identical. �

Finally, let us finish the proof of the main theorem.

Proof of Theorem 2.4. Let Z ⊆ Nn be any O-exponential-polynomial set. Let r, s,
L, T , a, and φ1, . . . , φn be given by Proposition 5.1. Since End(Gm) = Z, we may
identify Hom(Gr

m,Gs
m) with Ms×r(Z) and End(Gr

m) with Mr×r(Z). Let Φi : X →
X be the endomorphism of Gr

m corresponding to φi under this identification and
let Y be the kernel of the map corresponding to L. Let P := (2a1 , . . . , 2ar ) where
the ais are the components of a. Since 2 has infinite order, E(P,Φ1, . . . ,Φn, Y ) =
E(a, φ1, . . . , φn, T ) = Z. �
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6. Concluding remarks

We end this note with a few observations, an explicit example, and some open
questions.

Remark 6.1. If X is a semiabelian variety over a field K of characteristic zero,
Φ1, . . . ,Φn is a finite sequence of commuting endomorphisms of X, Y ⊆ X is a
subvariety, and a ∈ X(K) is any point, then the return set E(a,Φ1, . . . ,Φn, Y )
is necessarily an O-exponential-polynomial set. Indeed, this result follows from
the Mordell-Lang conjecture (or theorem of Faltings and Vojta) and the Skolem-
Mahler-Lech-Chabauty method and is implicit in [3]. Our Theorem 2.4 generalizes
immediately to the case that X is taken to be a power of a semiabelian variety
instead of Gm. Thus, Theorem 2.4 may be read as saying that the class of return
sets for actions of finitely generated commutative monoids on semiabelian varieties
over fields of characteristic zero is precisely the class of O-exponential-polynomial
sets.

Remark 6.2. We have stated Theorem 2.4 as an identity of point sets, but as
the reader will see from from the proof, we actually convert a system of defining
equations for an O-exponential-polynomial system into an algebraic dynamical sys-
tem with a fixed starting point and target set so that the problem of membership
in the return set is reducible to the corresponding problem of solving the given
exponential-polynomial equations. That is, these problems are computationally
equivalent.

Example 6.3. Our method of construction is effective. For example, let f(`1, `2) =

(1 +
√

2)`1`1`2 − 21`22 − 5
√

2`1, whose zeroes include (3, 1). Using binomials,

f(`1, `2) = (1 +
√

2)`1`1`2 − 42
(
`2
2

)
− 21`2 − 5

√
2`1. Let R = Z[

√
2]. We can

actually use M = (3, 2) for each of the four terms, so ψ2 is I + J2 for each of the

four blocks and ψ1 is (1 +
√

2)(I + J3) for the first block and (I + J3) for the last
three blocks. The sizes of the blocks are j ·M+1, so they are 6, 5, 3, and 4 in order.
Letting a be the vector which is 1 in x1, x7, x12, and x15 and 0 everywhere else, the
condition that ψ◦`11 ◦ψ

◦`2
2 (a) is in the set defined by x6−42x11−21x14−5

√
2x18 = 0

is precisely f(`1, `2). Finally, let xi = yi + zi
√

2 and exponentiate: the first coordi-

nate of ψ1(x1, . . . , x18) is (1 +
√

2)x1 = (y1 + 2z1) + (y1 + z1)
√

2, so the first two
coordinates of Φ1(Y1, Z1, . . . , Y18, Z18) are Y1Z

2
1 and Y1Z1 and we continue in the

same manner to construct Φ1 and Φ2. Here, P is the point which is 2 at Y1, Y7, Y12,
and Y15 and 1 everywhere else, and the subgroup Y is defined by Y6 = Y 42

11 Y
21
14 Z

10
18

and Z6 = Y 5
18.

Remark 6.4. As is clear from Example 6.3, our construction in proving Theorem 2.4
does not optimize the dimension of the algebraic torus on which our dynamical sys-
tem acts. In fact, any Z-linear function r1`1 +r2`2 can be achieved by a 2×2 block:
ψ1 = I + r1J , ψ2 = I + r2J . It remains an open question to determine the mini-
mum dimension of GN

m on which we can generate all of the exponential-polynomial
functions of a fixed degree, where the degree of an exponential-polynomial function
P (`1, . . . , `n;α`1

1 , . . . , α
`1
m, . . . , α

`n
1 , . . . , α

`n
m ) is defined to be the degree in the first n

variables.

Remark 6.5. It follows from our Theorem 2.4 and the work of Davis, Putnam
and Robinson [1] on the representability of recursively enumerable sets as expo-
nential diophantine sets, that many natural questions about algebraic dynamics
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are undecidable. For example, there is no algorithm which takes as input a tu-
ple of the form (N,Φ1, . . . ,Φn+1,m, a, T ) where n, m, and N are natural num-
bers, Φi : GN

m → GN
m are commuting endomorphisms, T ≤ GN

m, a ∈ GN
m(Q)

and answers correctly whether or not there is an n-tuple (`1, . . . , `n) ∈ Nn with

Φ◦`11 ◦ · · · ◦ Φ◦`nn ◦ Φ◦mn+1(a) ∈ T (Q).
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