1. (60 points, 6 points apiece) Find the following. If an expression is undefined, say so.
(a) The area of the region of the plane described in polar coordinates by the conditions $0 \leq \theta \leq 1,0 \leq r \leq 1+e^{\theta}$.
(b) A unit vector perpendicular to both $\langle 1,2,3\rangle$ and $\langle 4,5,6\rangle$.
(c) The length of the curve given by $x=t^{2}, y=\left(t^{3} / 3\right)-t$, wherc $-1 \leq t \leq 1$.
(d) $\frac{d}{d t} f\left(g\left(t^{2}\right), g\left(t^{3}\right)\right.$), where f is a differentiable function of two variables and g is a differentiable function of one variable. The answer should be expressed in terms of f, g, and their derivatives and/or partial derivatives.
(e) $\int_{0}^{1} \int_{1-x}^{1+x} x y d y d x$.
(f) An expression for $\iiint_{E} f(x, y, z) d V$, as an iterated integral, where $E=\{(x, y, z)\}$ $\left.x^{2}+y^{2}+z^{2} \leq 100\right\}$, and f is a continuous function. (Do not change coordinates.)
(g) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where \mathbf{F} is the vector field $\langle 1,2, y\rangle$ and C is the curve given by $\mathbf{r}(t)=$ $\left\langle t^{2}, t^{3}, t^{5}\right\rangle$ for $0 \leq t \leq 10$.
(h) An expression for $\iint_{D_{1}} f(x, y) d x d y$ as an integral over D_{2}, where D_{1} is a region of the $x-y$-plane, and D_{2} is a region of the u - v-plane which is mapped in a one-to-one fashion onto D_{1} by the transformation $x=u v, y=u^{2} / v$; and where f is a continuous function on D_{1}.
(i) $\int_{C} x y^{-1} d x$, where C is the segment of the curve $y=x^{3}$ between $x=-1$ and $x=1$.
(j) $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where \mathbf{F} is the constant vector field $\langle 2,1,-1\rangle$, and S is the parallelogram with vertices $(1,0,0),(0,2,0),(0,0,3)$ and $(1,-2,3)$, and upward orientation.
2. (12 points; 4 points each) In each part, give the definition asked for. Note that you are not asked to give examples or other related information.
(a) Define the partial derivative $f_{1}(a, b)$ of a function f at a point (a, b) of its domain. (There are many other symbols for this, e.g., $(\partial f / \partial x)(a, b)$, but we are asking for a definition, not alternative notation. A brief general statement of how one would find this partial derivative would be an acceptable answer.)
(b) What does it mean to say that a function f of two variables is differentiable?
(c) If f is a function of two variables, and \mathbf{u} a unit vector in the plane, what is meant by the directional derivative $D_{\mathbf{u}} f$?
3. (12 points) (a) (6 points) Find constants a and b such that the vector field $\left\langle 3 x^{2} y \sin y-2 x^{2} \cos y, a x^{3} y \cos y+b x^{3} \sin y\right\rangle$ is the gradient of a function $f(x, y)$. (You do not have to find the function f.)
(b) (6 points) Suppose a and b are as in part (a), so that \mathbf{F} is the gradient of a function. Prove that $\int_{C} \mathbf{F} \cdot d \mathbf{r}=0$ for every curve C beginning at $(0,0)$ and ending at $(0,1)$. (Suggestion: first show this fact for one particular curve. You do not have to have done part (a) to do part (b).)
4. (8 points) Let S_{1} be the hemisphere $z=\sqrt{ }\left(1-x^{2}-y^{2}\right)$ and S_{2} the hemisphere $z=-\sqrt{ }\left(1-x^{2}-y^{2}\right)$, both with upward orientation, and let E be the solid ball $\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$. If \mathbf{F} is any vector field whose component functions have continuous partial derivatives on an open set containing E, write an equation expressing the triple integral over E of the divergence of \mathbf{F} in terms of surface integrals over S_{1} and S_{2}.
5. (8 points) Let \mathbf{F} be the vector field $\left\langle x y, y z^{2}, z x^{3}\right\rangle+\nabla e^{x+\sin y}$, and let S be the part of the surface $z=x y^{2}(1-x-y)^{3}$ lying above the triangle with vertices $(0,0),(1,0)$, $(0,1)$, with upward orientation. Compute $\iint_{\mathcal{S}}$ curl $\mathbf{F} \cdot d \mathbf{S}$. (Suggestion: Treat the two summands of \mathbf{F} separately.)
