1. (25 points) Let C be the plane curve defined by the parametric equations $x=\sin t$, $y=\tan t(t \in(-\pi / 2, \pi / 2))$.
(a) (7 points) Sketch the curve C, showing any maxima, minima, intercepts or asymptotes it may have.
(b) (7+11 points) Obtain formulas for $d y / d x$ and $d^{2} y / d x^{2}$ on this curve C as functions of t.
2. (15 points) Compute the arc length of the space curve $\mathbf{r}(t)=\left(t^{2} / 2-\ln t\right) \mathbf{i}+$ $(2 \sin t) \mathbf{j}-(2 \cos t) \mathbf{k}$ from $\mathbf{r}(1)$ to $\mathbf{r}(3)$.
3. (20 points) Suppose F is a differentiable function of two variables, whose domain includes $(1,1)$, and we write $F(1,1)=a, F_{x}(1,1)=b, F_{y}(1,1)=c$.
(a) (12 points) Express in terms of a, b and c the partial derivatives of $(x+y) F(x, y)$ at the point $(1,1)$.
(b) (8 points) Find the directional derivative of $(x+y) F(x, y)$ at the point (1,1) in the direction of the vector $<3,4>$.
4. (25 points) Suppose F is a differentiable function of three variables, and we define a function G of two variables by $G(x, y)=F(x+y, x y, x)$.
(a) (13 points) Express the partial derivatives of $G(x, y)$ with respect to x and y in terms of F and its partial derivatives F_{1}, F_{2}, F_{3}.
(b) (12 points) Let (a, b) be a point of the plane, and C the level curve to the function $G(x, y)$ (defined above) which passes through (a, b). Find the equation of the tangent line to C at (a, b) in terms of the value and partial derivatives of F.
5. (15 points) Suppose u and v are differentiable functions of two variables. Derive the formula $\nabla(u / v)=(v \nabla u-u \nabla v) / v^{2}$.
