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Abstract. Let k be a field of positive characteristic and K = k(V ) a
function field of a variety V over k and let AK be the ring of adéles of
K with respect to the places on K corresponding to the divisors on V .
Given a Drinfeld module Φ : F[t] → EndK(Ga) over K and a positive
integer g we regard both Kg and Ag

K as Φ(Fp[t])-modules under the
diagonal action induced by Φ. For Γ ⊆ Kg a finitely generated Φ(Fp[t])-
submodule and an affine subvariety X ⊆ Gg

a defined over K, we study
the intersection of X(AK), the adèlic points of X, with Γ, the closure of
Γ with respect to the adèlic topology, showing under various hypotheses
that this intersection is no more than X(K) ∩ Γ.

1. Introduction

Fix a field K with a set of places Ω so that each x ∈ K is v-integral at
all but finitely many v ∈ Ω. We say that the Hasse principle holds for a
given class C of algebraic varieties over K if for each X ∈ C the set X(K)
of K-rational points on X is nonempty just in case for each v ∈ Ω the set
X(Kv) of Kv-rational points is nonempty where Kv is the completion of K
with respect to v.

In some ways, the Hasse principle is both too strong and too weak. It
is too strong in the sense that the classes of varieties for which it is known
to hold are quite restrictive, for example, Brauer-Severi varieties when K is
a number field and Ω is the set of all places, while there are many classes
of varieties for which it is known to fail. It is too weak in the sense that it
merely says that one may test for existence of aK-rational point by checking
local conditions. It does not say that the set X(K) may be computed from
purely local data.

Let us suppose now that C is a class of pairs (X,Y ) where each of Y is
a variety over K and X is a subvariety of Y also defined over K. Suppose
moreover that for each such pair (X,Y ) ∈ C that we know Y (K). We wish
to describe X(K) as a subset of Y (K) via strictly local data. Consider the
ring of adèles of K:

AK :=

{
(xv)v∈Ω ∈

∏
v∈Ω

Kv | xv ∈ OKv for all but finitely many v ∈ Ω

}
.
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From the diagonal inclusion K ↩→ AK we obtain inclusions X(K) ⊆
Y (K) ⊆ Y (AK) and X(K) ⊆ X(AK). Indeed, we may express X(K) =
Y (K) ∩ X(AK). The set Y (K) itself is not described by local conditions,
but we may think of its closure with respect to the adèlic topology as a
locally defined set. Replacing Y (K) by its closure Y (K), in general we have

only the inclusion X(K) ⊆ Y (K) ∩ X(AK). When equality holds for all
pairs (X,Y ) ∈ C then we would say that the set of K-rational points on
X may be computed locally. In [9], Poonen and Voloch show that when
K is a function field field of a curve, then the local conditions determine
X(K) whenever Y is an abelian variety and X is a subvariety. Moreover,
in the case that the field of constants of K is finite, they relate the possible
inequality of X(K) with Y (K) ∩X(AK) to the Brauer-Manin obstruction.

With the above problem, we took the full set Y (K) of K-rational points
on Y as given. There is no good reason to do so, especially as in practice,
even when Y is an abelian variety it might be possible to determine some
points on Y and possibly thereby compute the group they generate, but
the full computation of Y (K) may be difficult. In other cases, some proper
subset of Y (K) might have more arithmetic significance. Let us say that
a class C of triples (X,Y,Γ) consisting of an algebraic variety Y over K, a
subvariety X ⊆ Y also over K and a set Γ ⊆ Y (K) is locally determined if
for each (X,Y,Γ) ∈ C we have X(K) ∩ Γ = X(AK) ∩ Γ in Y (AK).

In this paper we take K to be a function field in positive characteristic
and we address the question of when it happens that (X,Y,Γ) is locally
determined for Y = Am

K affine space over K, X ⊆ Y an arbitrary subvariety
and Γ ⊆ Y (K) a finitely generated submodule with respect to the action of
a Drinfeld module.

Let p be a prime number, R := Fp[t] and F := Fp(t). For the remain-
der of this introduction we shall assume that K is a field extension of F.
We denote by EndK(Ga) the ring of endomorphisms of the additive group
scheme over K. Concretely, EndK(Ga) may be identified with the ring of
additive polynomials over K under addition and composition. A Drinfeld
module of generic characteristic defined over K is a ring homomorphism
Φ : R→ EndK(Ga) for which Φt := Φ(t) has differential t, but is not scalar
multiplication. That is,

Φt(x) = tx+ c1x
p + · · ·+ cDx

pD ∈ K[x] where cD ̸= 0 (and D ≥ 1).

Let g be any positive integer, then we let Φ act diagonally on Gg
a. This

induces a natural structure of a Φ(R)-module on Kg where each element
a ∈ R acts via Φa := Φ(a); when we want to emphasize the Φ(R)-module
structure of Kg we will denote it by Kg

Φ. We say that Γ ⊆ Kg is a Φ(R)-
module if it is a submodule of Kg

Φ with respect to this action. Our main
theorems (Theorem 2.1 and Theorem 2.3) assert that under appropriate
hypotheses, for a subvariety X ⊆ Gg

a of a power of the additive group and a
finitely generated Φ(R)-submodule Γ ⊆ Kg, the local conditions determine
the intersection of Γ with X. That is, X(K) ∩ Γ = X(AK) ∩ Γ.
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We had embarked on this project hoping to thereby prove Denis’s Mordell-
Lang conjecture for Drinfeld modules [2].

Conjecture 1.1. Let Φ be a Drinfeld module of generic characteristic. If
X ⊆ Gg

a is any subvariety of a Cartesian power of the additive group and
Γ ⊆ Kg is a finitely generated Φ(R)-module, then X(K)∩Γ is a finite union
of translates of Φ(R)-submodules of Γ.

Instead, we have used the known partial results towards Conjecture 1.1
to reduce the problem of computing X(AK) ∩ Γ to the case that X is zero
dimensional. This is very much in the spirit of the proofs of the analogous
results about semiabelian varieties [9, 12].

While the overall structure of our proofs is similar to those for semiabelian
varieties, there are some essential differences; the most important of which
concerns the problem of showing that the topology induced on Γ from the
adèlic topology is at least as strong as the topology given by the subgroups
Φa(Γ) as a ranges through the nonzero elements of R. In the case of semi-
abelian varieties, the corresponding result is almost immediate, but here,
because the ambient geometry of the additive group does not determine the
Drinfeld module structure, our proof is substantially more complicated.

This paper is organized as follows. In Section 2 we establish our notation
and state our main results. In Section 3 we prove a simple case of our
theorem in which the adèlic topology on Γ is discrete. In Section 4 we
reduce the overall problem to that of zero dimensional X. We complete the
proof in Section 5 by proving a uniform version of a version of the Drinfeld
module Mordell-Lang conjecture.

Acknowledgments. The first author is grateful to Thomas Tucker for many
stimulating conversations and for his constant encouragement for writing
this paper.

2. Statement of our results

Let K be a finitely generated extension of F such that trdegFK ≥ 1. We
study the intersection of the adèlic points of V with the adèlic closure of
Γ for both cases: generic characteristic and special characteristic Drinfeld
modules Φ : R −→ EndK(Ga). First we need to set up our notaton.

We let K be a fixed algebraic closure of K, and we denote by Ksep the
separable closure of K inside K. We also let F be the algebraic closure of
F inside K. At the expense of replacing K by a finite extension and then
replacing F by a finite extension, we may assume (see [1, Remark 4.2]) there
exists a projective, smooth, geometrically irreducible variety V defined over
F such that its function field equals K (note that F is the algebraic closure of
Fp(t) inside K). We let Ω := ΩV be the set of all valuations of K associated
with the irreducible divisors of V. By abuse of language, we will also call
each v ∈ Ω a place of K; note that for each nonzero x ∈ F, we have |x|v = 1,
where | · |v is the corresponding norm for the place v. Also note that F
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embeds naturally into the residue field Fv of each place v ∈ Ω; furthermore,
each Fv is a finite extension of F and the reduction modulo v may be seen
as a specialization of K to F. Finally, we note that K admits a product
formula with respect to the set of places Ω (see [11]); i.e., there exists a set
of positive integers {Nv}v∈Ω such that for all x ∈ K∗ we have

(2.1)
∏
v∈Ω

|x|Nv
v = 1.

Now, for each v ∈ Ω, we let Kv be the completion of K at v. We let Ov be
the ring of v-adic integers contained in Kv, and we equip Kv with the v-adic
topology. We define the topological ring of adèlesAK as the restricted direct
product

∏
v∈Ω1

(Kv,Ov) where Ω1 is a cofinite subset of Ω. More precisely,
each element of AK is of the form {xv}v∈Ω1 , where xv ∈ Kv for all v, and
moreover, for all but finitely many v ∈ Ω1 we actually have that xv ∈ Ov.
In particular,

∏
v∈Ω1

Ov is an open subset of AK whose induced topology is
the usual product topology. We note that one could take instead the adèles
as the restricted product of (Kv,Ov) for all places v ∈ Ω; i.e.,

AK,all :=
∏
v∈Ω

(Kv,Ov).

The restriction on K of the topology from AK,all yields a stronger topology
than the topology induced from AK . Therefore, the results we are proving
regarding the closures in the adèlic topology of subsets of K are stronger
with our definition for the adèles; see also the next result which is a purely
topological statement.

Proposition 2.2. Let Γ ⊂ K be a set of points which are all integral at all
places in Ω1. Let y = (yv)v∈Ω ∈ AK,all be a point in the closure of Γ inside
AK,all. Assume we know that there exists y0 ∈ K such that yv = y0 for all
v ∈ Ω1. Then yv = y0 for all v ∈ Ω; i.e., y = y0.

Proof. Clearly, y0 is integral at each place v ∈ Ω1. At the expense of replac-
ing y by y−y0 we may assume y0 = 0. Therefore, we know that there exists
an infinite sequence {xn}n∈N ⊂ K satisfying the following conditions:

(a) |xn|v ≤ 1 for all v ∈ Ω1;
(b) |xn|v → 0 as n→ ∞, for all v ∈ Ω1; and
(c) |xn − yv|v → 0 as n→ ∞, for all v ∈ Ω \ Ω1.

Using condition (c) above, we conclude that there exists n0 ∈ N such that
for all n ≥ n0 we have |xn|v = |yv|v for all v ∈ Ω \ Ω1. In particular, there
exists a positive real number C0 such that for all n ≥ n0, we have

(2.3)
∏

v∈Ω\Ω1

|xn|Nv
v ≤ C0.

On the other hand, using conditions (a)-(b) above we conclude that

(2.4) lim
n→∞

∏
v∈Ω1

|xn|Nv
v = 0.
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Now, if the sequence {xn}n∈N contains infinitely many nonzero elements,
then equations (2.3) and (2.4) provide a contradiction to the product formula
(2.1). Therefore, we obtain that there exists n1 ∈ N such that xn = 0 for
all n ≥ n1. Hence for each v ∈ Ω \ Ω1 we have yv = 0, which concludes our
proof. �

Naturally, Gg
a(AK) = Ag

K , and we define the product topology on Ag
K .

Then for any subset S ⊆ Ag
K , we let S be the topological closure of S

in Ag
K . Clearly, AK (and Ag

K) have natural structures of Φ(R)-modules
denoted AK,Φ (and respectively Ag

K,Φ).
We will prove the following result.

Theorem 2.5. Let K be a function field over F of arbitrary finite tran-
scendence degree, and let Φ be a Drinfeld module of generic character-
istic defined over K. Then for each affine subvariety V ⊆ Gg

a defined
over K, and for each finitely generated Φ(R)-submodule Γ ⊆ Kg, we have
V (K) ∩ Γ = V (AK) ∩ Γ.

So, Theorem 2.5 shows that the intersection V (K) ∩ Γ can be recovered
from the local information (as given by the adèles). Theorem 2.5 is an imme-
diate consequence of the fact that for all but finitely many places v ∈ Ω, the
induced v-adic topology on Γ is the discrete topology (see Proposition 3.1).

Our Theorem 2.5 is the Drinfeld modules analogue of [9, Theorem A].
Similarly, we can prove an analogue of [9, Theorem B] for Drinfeld modules
of special characteristic.

A Drinfeld module of special characteristic is a ring homomorphism Φ :
R −→ EndK(Ga) such that Φt = Φ(t) is an inseparable endomorphism of
the additive group scheme; more precisely,

Φt(x) =

D∑
i=d

cix
pi for some ci ∈ K, where 1 ≤ d ≤ D.

In order to state our next result we also need the following definition.

Definition 2.6. For each Φ(R)-submodule Γ ⊆ Kg, we call its full divisible
hull inside K, the set of all x ∈ Gg

a(K) such that for some nonzero a ∈ R
we have Φa(x) ∈ Γ.

We say that the subgroup Γ ⊆ Kg
Φ is full in K, if it equals its full divisible

hull inside Kg
Φ. When the field K is understood from the context, we will

simply say that Γ is full.

As proved in [13] (see also [8] and [3, Theorem 5.12] for similar results),
the Φ(R)-module structure of Kg

Φ is that of a direct sum of a finite torsion
module with a free Φ(R)-module of rank ℵ0. So, replacing Γ with the Φ(R)-
submodule containing all x ∈ Kg such that Φa(x) ∈ Γ for some nonzero
a ∈ R, we may assume Γ is both full in K and finitely generated.

Let Φ : R −→ EndK(Ga) be any Drinfeld module, and let L be a field
containing K. For each nonzero a ∈ R we let Φ[a](L) be the set of all x ∈ L
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such that Φa(x) = 0. We also let

Φ[t∞](L) :=
∪
n∈N

Φ[tn](L),

and

Φtor(L) :=
∪

a∈R\{0}

Φ[a](L).

When L = K, we simply use Φ[a] and Φtor instead of Φ[a](K) and respec-
tively Φtor(K). In general, for any Φ(R)-submodule Γ we denote by Γtor the
torsion submodule of Γ.

We also recall the notion of modular transcendence degree, first intro-
duced by the second author in [10]. The modular transcendence degree of Φ
is the smallest nonnegative integer d such that there exists a subfield L ⊆ K
of transcendence degree d over Fp, and there exists γ ∈ K such that

(2.7) γ−1Φt(γ · x) ∈ L[x].

Theorem 2.8. Let K be a function field over F of arbitrary finite transcen-
dence degree, and let Φ be a Drinfeld module of special characteristic defined
over K. Assume Φ[t∞](Ksep) is finite, and also assume that Φ has positive
modular transcendence degree. Let V be an affine subvariety of Gg

a defined
over K which contains no translate of a positive dimensional algebraic sub-
group of Gg

a. Then for each finitely generated full Φ(R)-submodule Γ ⊆ Kg,
we have V (K) ∩ Γ = V (AK) ∩ Γ.

Since we assumed that V contains no translate of a positive dimensional
algebraic subgroup of Gg

a, the main result of [10] (see also our Theorem 5.3)
yields that V (K) ∩ Γ is finite. However, the novelty of our result is that
we can show that each of these finitely many points from the intersection
V (K) ∩ Γ can be recovered purely from the local information given by the
adèlic topology. The strategy for proving Theorem 2.8 is as follows:

(a) in Section 4 we show that Theorem 2.8 holds under the additional
hypothesis that V is zero-dimensional; and

(b) then in Section 5 we show that for each subvariety V , there exists a
zero-dimensional subvariety V0 of V also defined over K such that
V (AK) ∩ Γ = V0(AK) ∩ Γ. This reduces Theorem 2.8 to part (a)
above.

3. Proof of Theorem 2.5

We are working with the notation and the hypotheses of Theorem 2.5 (see
Section 2).

For each finitely generated Φ(R)-submodule Γ of Kg
Φ, we have Γ ⊆ Γg

0,
where Γ0 ⊆ KΦ is the Φ(R)-submodule generated by all projections of Γ
on each coordinate of Gg

a. Clearly, Γ0 is also a finitely generated Φ(R)-
submodule. We will show that each finitely generated Φ(R)-submodule of
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KΦ is discrete with respect to all but finitely many places v ∈ Ω. In par-
ticular this yields that Γ is discrete v-adically for almost all places v. Thus
Γ = Γ, and hence Theorem 2.5 follows immediately.

Proposition 3.1. Let Γ ⊆ KΦ be a finitely generated Φ(R)-submodule, and
let v be a place in Ω at which all coefficients of Φa (for each a ∈ R) and also
all elements of Γ are integral. Then Γ is discrete as a subset of Kv.

Proof. We have to show that there is no infinite sequence of points in Γ con-
verging to 0 with respect to the v-adic topology. We prove Proposition 3.1
by induction on the number r of generators for the Φ(R)-module Γ.

Assume r = 1, i.e. Γ is the cyclic Φ(R)-module generated by x1, and also
assume Γ is not discrete with respect to the v-adic topology. In particular,
this yields that x1 is not torsion since otherwise Γ would be finite (and thus
discrete v-adically).

Therefore, there exists a sequence of distinct nonzero elements an ∈ R
(for each n ∈ N) such that |Φan(x1)|v → 0 as n → ∞. Now, since each
coefficient of Φa, for each a ∈ R is integral at v, we obtain that the set

I1 := {a ∈ R : |Φa(x1)|v < 1}

is an ideal (see also [4, Lemma 3.11]). Since R is a PID, we conclude that
I1 is generated by some polynomial c1. Furthermore, since we assumed that
|Φan(x1)|v → 0, we obtain that I1 is nontrivial, and thus c1 ̸= 0. So, for
each n ∈ N such that |Φan(x1)|v < 1 we have that c1 | an, and thus there
exists a nonzero bn ∈ R such that an = bn · c1. On the other hand, |bn|v = 1
since each element of Fp(t)

∗ ⊆ F∗ is a v-adic unit. According to [4, Lemma
3.10], we obtain then that

|Φan(x1)|v = |Φbn(Φc1(x1))|v = |bn · Φc1(x1)|v = |Φc1(x1)|v,

which contradicts our assumption that Φan(x1) converges v-adically to 0.
Now, assume we proved that Proposition 3.1 holds for each finitely gen-

erated Φ(R)-module spanned by less than r elements; next we prove that
it holds when Γ is generated by r elements. Since Γ is a finitely gener-
ated Φ(R)-submodule, it is a finite union of cosets of free finitely generated
Φ(R)-submodules. Therefore, it suffices to prove Proposition 3.1 for free
submodules. Let x1, . . . , xr be a basis for the free Φ(R)-module Γ.

Assume there exists an infinite sequence {(an,1, · · · , an,r)}n∈N of nonzero
tuples of elements of R (i.e. for each n ∈ N not all an,i = 0) such that∣∣∣∣∣

r∑
i=1

Φan,i(xi)

∣∣∣∣∣
v

→ 0 as n→ ∞.

The set Ir of tuples (c1, . . . , cr) ∈ Rr such that |
∑r

i=1Φci(xi)|v < 1 is an
R-submodule of Rr (again using [4, Lemma 3.11] since all coefficients of each
Φa are v-adic integers). Since R is a PID and Rr is a free R-module, then
Ir is a free R-module of rank s ≤ r. Let {(cj,1, · · · , cj,r)}1≤j≤s be a basis for
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the free R-module Ir. For each j = 1, . . . , s, we let

yj :=
r∑

i=1

Φcj,i(xi).

Note that each |yj |v < 1 since (cj,1, · · · , cj,r) ∈ Ir. Also, each yj is nonzero
since the elements x1, . . . , xr form a basis for the free R-module Γ, and not
all cj,i are 0 (for i = 1, . . . , r).

We know that for n sufficiently large, (an,1, · · · , an,r) ∈ Ir, and thus each∑r
i=1Φan,i(xi) is in the Φ(R)-module generated by y1, · · · , ys. So, if s < r,

we are done by the induction hypothesis. Therefore, assume from now on
that s = r. So, for each n ∈ N such that |

∑r
i=1Φan,i(xi)|v < 1, there exist

bn,1, · · · , bn,r ∈ R such that

an,i =

r∑
j=1

bn,jcj,i for all i = 1, . . . , r.

Therefore
∑r

i=1Φan,i(xi) =
∑r

j=1Φbn,j
(yj). Since each |yj |v < 1, we get

that for each b ∈ R we have

(3.2) Φb(yj) = byj + L(b, yj) where |L(b, yj)|v < |yj |v,

since each coefficient of Φb is a v-adic integer. Without loss of generality
assume that

|y1|v = |y2|v = · · · = |yℓ|v = |u|mv > |yℓ+1|v ≥ · · · |yr|v for some 1 ≤ ℓ ≤ r,

where u is some fixed uniformizer of the maximal ideal of Ov, and m ∈ N.
Using (3.2) we conclude that

r∑
j=1

Φbn,j
(yj) =

ℓ∑
j=1

bn,jyj + L(n, y),

where |L(n, y)|v < |u|mv . For each j = 1, . . . , ℓ, we let dj be the first nonzero
coefficient when expanding yj with respect to u inside Kv. So,

yj = dj · um + larger powers of u,

with |dj |v = 1 for each j = 1, . . . , ℓ. Thus

r∑
j=1

Φbn,j
(yj) =

 ℓ∑
j=1

bn,jdj

 · um + L1(n, y),

where |L1(n, y)|v < |u|mv . Now, since

r∑
i=1

Φan,i(xi) =
r∑

j=1

Φbn,j
(yj) → 0 as n→ ∞,

we conclude that for all n ∈ N sufficiently large we have that |
∑ℓ

j=1 bn,jdj |v <
1. For each j = 1, . . . , ℓ, we let ej be the reduction of dj modulo v, and since
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Fp(t) ⊆ F embeds naturally into the residue field at the place v, we conclude
that

(3.3)
ℓ∑

j=1

ejbn,j = 0,

for n sufficiently large. Since each dj is a v-adic unit, we conclude that each

ej is nonzero. The set S of tuples (b1, . . . , br) for which
∑ℓ

j=1 ejbj = 0 is a

submodule of Rr of rank r − 1. Let {(fj,1, . . . , fj,r)}1≤j≤r−1 be generators
of S, and let ΓS ⊆ KΦ be the Φ(R)-module spanned by

r∑
i=1

Φfj,i(yi) for each j = 1, . . . , r − 1.

By the induction hypothesis on the rank of the R-module ΓS (which is less
than r), we know that ΓS is discrete v-adically. Since for n sufficiently large
we have that all

∑r
i=1Φan,i(xi) =

∑r
j=1Φbn,j

(yj) are in ΓS , we are done. �

Proof of Theorem 2.5. Let Γ0 be the Φ(R)-submodule of K spanned by the
projections of Γ on each coordinate ofKg

Φ. Since Γ is finitely generated, then
also Γ0 is finitely generated. We let v be a place in Ω at which all coefficients
of Φt and also each of the finitely many generators of Γ0 are integral. In
particular, this means that all elements of Γ are integral at the place v,
and also that each coefficient of each Φa is a v-adic integer. Note that all
but finitely many places v ∈ Ω satisfy these conditions. Proposition 3.1
yields that Γ0 (and thus Γg

0) is discrete v-adically. Therefore Γ = Γ and so,

V (K) ∩ Γ = V (A) ∩ Γ, as desired. �

4. Proof of Theorem 2.8 when dim(V ) = 0

In this Section, we work under the hypotheses from Theorem 2.8. So,
Φ is a Drinfeld module of special characteristic such that Φ[t∞](Ksep) is
finite. In addition, we assume Φ has positive modular transcendence degree.
First we will prove several preliminary results which describe the topology
induced on each finitely generated Φ(R)-module Γ by the adèlic topology.

We let Ω0 be the set of all places v ∈ Ω at which all coefficients of Φt

are integral, while the first and the last nonzero coefficients of Φt are v-adic
units. Clearly, Ω\Ω0 is finite. Note that by our assumption, we obtain that
for all nonzero a ∈ R, each coefficient of Φa is a v-adic integer, while the
first and the last coefficients of Φa are v-adic units.

Proposition 4.1. For each v ∈ Ω0 and for each nonzero a ∈ R, the quotient
Kg

v/Φa (K
g
v ) is Hausdorff.

Proof. Let v ∈ Ω0, and let a ∈ R be nonzero. It suffices to show that
Kv/Φa(Kv) is Hausdorff, which is equivalent with showing that Φa(Kv) is
closed in Kv. For this, we need to show that if Φa(xn) → y as n → ∞ for
some xn ∈ Kv and y ∈ Kv, then actually y ∈ Φa(Kv).
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Let zn := xn+1−xn. We have that Φa(zn) → 0 as n→ ∞. We claim that
the distance between zn and the nearest torsion point from Φ[a] tends to 0
with respect to the v-adic topology.

If t - a, this is an immediate consequence of Hensel’s Lemma. Indeed,
reducing modulo v, we obtain that the reduction zn modulo v of zn is a
root of the reduced polynomial Φa modulo v. Now, since Φ′

a(x) = a0 ̸= 0
(where a0 ∈ Fp such that t | a − a0), and |a0|v = 1, we conclude using
Hensel’s Lemma that there exists a torsion point un ∈ Φ[a](Kv) such that
|zn − un|v < 1. Note also that each torsion point is integral at each place
v in Ω1 due to our assumptions regarding the v-adic absolute values of the
coefficients of Φt. Then

|zn − un|v = |a0(zn − un)|v = |Φa(zn − un)|v = |Φa(zn)|v → 0, as desired.

Now, assume t | a. Let a = cmt
m + · · ·+ cnt

n (with 1 ≤ m ≤ n), where each

ci ∈ Fp, and cm, cn ̸= 0. Letting Φt(x) =
∑D

j=ℓ γjx
pj , where γℓ, γD ̸= 0, then

Φa(x) = cmγ
(pmℓ−1)/(pℓ−1)
ℓ xp

mℓ
+

nD∑
j=mℓ+1

δjx
pj .

We let f := Φ
1/pmℓ

a ∈ K1/pmℓ
[x]. It is immediate to see that f(zn) → 0 in the

v-adic topoogy (by abuse of language, we call also v the induced valuation

on K
1/pmℓ

v extending v). Also, f(x) is a separable additive polynomial in

K1/pmℓ
[x] whose derivative equals δ0 := cmγ

(pmℓ−1)/(p(m+1)ℓ−pmℓ)
ℓ . By our

definition of the set Ω0, we know that δ0 is a v-adic unit. Therefore, by
Hensel’s Lemma, just as before, we conclude that the distance from zn to

the nearest root un ∈ K
1/pmℓ

v of f(x) = 0 (which is also a torsion point in
Φ[a]) converges to 0 in the v-adic topology.

So, for each n ∈ N, there exists a suitable torsion point z′n ∈ Φ[a]
(
K

1/pmℓ

v

)
such that if yn = xn+z

′
n, then the sequence {yn}n∈N is convergent inK

1/pmℓ

v .
Because Φ[a] is a finite set, it means that we can extract an infinite sequence
{ni}i∈N of positive integers such that z′ni

= z′ni+1
for all i ∈ N. Hence the

subsequence {xni}i∈N is convergent in Kv; since Kv is a complete space,
then {xni}i∈N converges to a point x such that Φa(x) = y, as desired. �

Let Γ ⊆ Gg
a(K) be a finitely generated Φ(R)-submodule; we also assume

that Γ is full inK. Let Ω1 ⊆ Ω0 be the set of all places v at which the finitely
many generators of Γ ⊆ Gg

a(K) are integral. In particular, this means that
all points of Γ are v-adic integral for v ∈ Ω1; also note that Ω \ Ω1 is finite.
Without loss of generality (see also Proposition 2.2) we may assume AK is
the restricted product

∏
v∈Ω1

(Kv,Ov).

Proposition 4.2. Let Γ be a full, finitely generated Φ(R)-submodule of Kg,
and let v ∈ Ω1. Then the v-adic topology on Γ is at least as strong as the
topology induced by all subgroups Φtn(Γ) for n ∈ N.
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Proof. All we need to show is that for each n ∈ N, there exists an open
subset Un of Kg

v such that Un ∩ Γ ⊆ Φtn(Γ).
Let n ∈ N. We know that Φ[t∞](Ksep) is finite, which means that there

exists m ∈ N such that Φ[t∞](Ksep) ⊆ Φ[tm]. Let

π : Γ −→ Kg
v/Φtn+m(Kg

v )

be the composition of the natural injection of Γ into Kg
v followed by the

canonical projection map on the quotient Kg
v/Φtn+m(Kg

v ); clearly, π is a
continuous map. According to Proposition 4.1, the quotient Kg

v/Φtn+m(Kg
v )

has an induced Hausdorff topology, which means that there exists an open
subset Un of Kg

v such that Un ∩ Γ = ker(π) (we also use the fact that
Γ/Φtn+m(Γ) is finite, and hence the induced topology on Γ/Φtn+m(Γ) as a
subset of Kg

v/Φtn+m(Kg
v ) is the discrete topology).

Now, for any y ∈ Un∩Γ, there exists x ∈ Kg
v∩K

g
such that y = Φtn+m(x).

However, K ∩Kv ⊆ Ksep (see [9, Lemma 3.1]); so, x ∈ (Ksep)g. Now, for
any automorphism σ ∈ Gal(Ksep/K), we have that Φtn+m(xσ − x) = 0
(since y = Φtn+m(x) ∈ Kg), which means that xσ − x ∈ (Φ[tn+m](Ksep))g.
So, in particular xσ − x ∈ (Φ[tm](Ksep))g, which means that Φtm(x) ∈ Kg.
However, since Φtm(x) ∈ Kg and Φtn(Φtm(x)) = y ∈ Γ, while Γ is a full
Φ(R)-submodule in K, we conclude that also Φtm(x) ∈ Γ, and thus y =
Φtn(Φtm(x)) ∈ Φtn(Γ). Therefore Un ∩ Γ ⊆ Φtn(Γ), as desired. �

Proposition 4.3. Let Γ ⊆ Kg be a finitely generated Φ(R)-submodule which
is full in K. For each v ∈ Ω1 we let Γv be the closure of Γ in Kg

v . Then
Γv ∩Kg = Γ.

Proof. One inclusion is obvious. Now, let y ∈ Γv ∩ Kg. We let Γ1 be the
full divisible hull in K of the finitely generated Φ(R)-module Γ0 spanned by
Γ and y. There exists an infinite sequence of distinct elements xn ∈ Γ such
that xn → y in Kg

v . So, by Proposition 4.2, we have that for all j ∈ N, there
exists nj ∈ N such that

(4.4) xnj − y = Φtj (yj) for some yj ∈ Γ1.

Since Γ1 is finitely generated as a Φ(R)-module, and Γ1 is the full divisible
hull in K of Γ0, we conclude that there exists a nonzero b ∈ R such that
Φb(Γ1) ⊆ Γ0. We assume b = tj0 · b0, for some j0 ∈ N, and some b0 ∈ R
which is not divisible by t. Now, we use (4.4) for j = j0 + 1, and obtain

(4.5) Φb0(xnj )− Φb0(y) = Φb0 (Φtj0+1(yj)) .

Because Φb0tj0 (yj) ∈ Γ0, we conclude that there exist zj ∈ Γ and cj ∈ R
such that Φb0tj0 (yj) = zj +Φcj (y). Therefore, (4.5) reads

Φb0(xnj )− Φb0(y) = Φt(zj) + Φtcj (y).

Hence, Φtcj+b0(y) = Φb0(xnj )−Φt(zj) ∈ Γ. Since t - b0, we get that tcj+b0 ̸=
0, which yields that y ∈ Γ because Γ is full in K. �
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Proposition 4.6. The topology induced on Γ by the adèlic topology is at
least as strong as the one given by all subgroups Φa(Γ) for a ∈ R relative
prime to t.

Proof. Let a ∈ R relative prime to t. We have to show that there exists an
open subset Ua in the adèlic topology such that Ua∩Γ ⊆ Φa(Γ). Since Φa is
separable (more precisely, Φ′

a is a constant v-adic unit for all v ∈ Ω), using
Hensel’s Lemma, we obtain that Φa(Og

v) is an open subgroup of Kg
v for each

v ∈ Ω1. Therefore it suffices to show that there exist finitely many places
vi ∈ Ω1 (with 1 ≤ i ≤ na for some na ∈ N) such that for all y ∈ Γ satisfying
y ∈ Φa(Og

vi) for 1 ≤ i ≤ na, we have y ∈ Φa(Γ). Since Γ is full in K, we
only have to show that y ∈ Φa(K

g).
Now, assume there is no such finite set of places vi as above. This means

that for any finite subset S of places contained in Ω1, we may find y =
yS ∈ Γ \Φa(Γ) such that y ∈ Φa(Og

v) for each v ∈ S. Note that the quotient
Γ/Φa(Γ) is finite (since Γ is a finitely generated Φ(R)-module and a ̸= 0); let
y1, . . . , ys ∈ Γ be a set of representatives for the nonzero cosets of Γ/Φa(Γ).

For each coset yi + Φa(Γ) for i = 1, . . . , s, we let Syi be the set of places
v ∈ Ω1 such that yi /∈ Φa(Og

v); note that our definition does not depend
on the particular choice of the class representative for the particular coset
of Φa(Γ) in Γ. If each Syi is nonempty, then for each i = 1, . . . , s, choose
vi ∈ Syi and let S := {v1, . . . , vs}. By our assumption, if y ∈ Φa(Og

vi) for
each i = 1, . . . , s, then y ∈ Φa(Γ), as desired.

So, from now on assume there exists a coset y + Φa(Γ) of Γ (as above)
such that Sy is empty, i.e. for all places v ∈ Ω1, we have y ∈ Φa(Og

v). So,
even though y /∈ Φa(K

g) (note that Γ is full in K), for all but finitely many
places v ∈ Ω we still have that y ∈ Φa(Og

v). We will show next that this
is impossible. At the expense of passing to the coordinates in Gg

a of each
point, we may assume g = 1. In particular this means that the polynomial
Φa(X) − y ∈ K[X] has no linear irreducible factor over K. Since F is a
finite extension of Fp(t), then F is a Hilbertian field (see [6, Ch. 9]). This
yields that there exist infinitely many places v ∈ Ω1 such that the reduction
modulo v of the polynomial Φa(X)− y has no irreducible linear factor over
Fv. This contradicts our assumption that for all but finitely many places
v ∈ Ω1 we have y ∈ Φa(Ov) since that would mean that for all but finitely
many places v ∈ Ω1, the reduction modulo v of y belongs to Φa(Fv) (since
Fv is the residue field of K and also of Ov modulo v). This concludes the
proof of our Proposition 4.6. �

Combining Propositions 4.2 and 4.6 we obtain the following result.

Proposition 4.7. The induced adèlic topology on Γ is at least as strong as
the topology given by all subgroups Φa(Γ) for all a ∈ R.

Proposition 4.8. Let Γ ⊆ Kg
Φ be any finitely generated Φ(R)-submodule

which is full in K. Then Γtor = Γtor, i.e. all torsion points contained in Γ
are actually contained in Γ.
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Proof. The proof is similar to the proof of [9, Lemma 3.7]. Let Γ0 be the
subgroup of all y ∈ Γ such that for all v ∈ Ω1 the reduction of y modulo v
is in

(
Φtor(Fv)

)g
, where Φ is the reduction of Φ modulo v. It is immediate

to see that Γ0 is full in K, and thus it contains Γtor.
Now, since Γ is a finitely generated Φ(R)-submodule, there exist finitely

many places vi ∈ Ω1 for i = 1, . . . , ℓ such that Γ0 is the kernel of the natural
reduction map

Γ −→
ℓ∏

i=1

(
Fvi/Φtor(Fvi)

)g
.

Therefore Γ/Γ0 embeds into the free Φ(R)-submodule

ℓ∏
i=1

(
Fvi/Φtor(Fvi)

)g
.

We conclude that there exists a free submodule Γ1 ⊆ Γ such that Γ = Γ0⊕Γ1.
We claim that

(4.9) Γ = Γ0 ⊕ Γ1

Indeed, for each sequence {xn + yn}n∈N where xn ∈ Γ0 and yn ∈ Γ1 which
converges in Ag

K , we obtain that for m and n sufficiently large we have that
yn−ym and xm−xn have the same reduction modulo vi for each i = 1, . . . , ℓ.
Therefore, yn − ym ∈ Γ0, and thus yn = ym since Γ = Γ0 ⊕ Γ1.

So Γ = Γ0 ⊕ Γ1 and since Γ1 is a free Φ(R)-module, we obtain that
Γtor =

(
Γ0

)
tor

. We claim that the induced adèlic topology on Γ0 is the one
given by all subgroups Φa(Γ0) for all a ∈ R. By Proposition 4.7 we know
that the adèlic topology induces on Γ0 a topology at least as strong as the
one given by all subgroups Φa(Γ0). Now we check the converse statement.
Indeed, for each y ∈ Γ0 and for each v ∈ Ω1, there exists a nonzero av ∈ R
such that Φav(y) reduces to 0 modulo v. Then Φtnav(y) converges v-adically
to 0 as n→ ∞, because v is a place of integrality for all coefficients of Φtnav

and moreover Φt has no linear or constant term. Moreover, let {yi}1≤i≤s be a
finite set of generators for Γ0 as a Φ(R)-module, and let ai,v ∈ R be as above
for each corresponding yi and each place v ∈ Ω1. Letting bv :=

∏s
i=1 ai,v,

we obtain that

Φtnbv(y) coverges v-adically to 0, as n→ ∞, for all y ∈ Γ0.

This proves our claim about the induced adèlic topology on Γ0. Thus

(4.10) Γ0
∼→ Γ0 ⊗R R̂,

where R̂ is the restricted direct product of all completions ofR at its maximal
ideals. Since R/aR

∼→ R̂/aR̂ for each nonzero a ∈ R, we conclude that

Γtor =
(
Γ0

)
tor

∼→ (Γ0)tor = Γtor,

which concludes the proof of Proposition 4.8. �
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The following result is an immediate consequence of our proof of Propo-
sition 4.8.

Corollary 4.11. For each nonzero a ∈ R, we have Γ/Φa(Γ)
∼→ Γ/Φa(Γ).

Proof. The claimed result follows immediately from (4.9) and (4.10) using

that R̂/aR̂
∼→ R/aR. �

Now we are ready to prove Theorem 2.8 when dim(V ) = 0.

Proposition 4.12. Theorem 2.8 holds if V is a zero-dimensional subvariety
of Gg

a.

Proof. Clearly, it suffices to show that V (AK) ∩ Γ ⊆ V (K) ∩ Γ since the
reverse inclusion is obvious.

First we show that it suffices to prove our result when we replace K by
a finite extension L, and replace Γ by its full divisible hull ΓL inside Lg

Φ.
Indeed, we denote by AL the adèles for the function field L (with respect to
the places which extend the places contained in Ω1), and we assume that

V (AL) ∩ ΓL ⊆ V (L) ∩ ΓL.

Then
V (AK) ∩ Γ ⊆ V (AL) ∩ ΓL ⊆ V (L) ∩ ΓL ⊆ V (L).

Therefore V (AK) ∩ Γ ⊆ V (L) ∩ V (AK) = V (K) because L ∩AK = K by
[9, Lemma 3.2]. So, V (AK)∩Γ ⊆ Kg ∩Γ = Γ by Proposition 4.3. Therefore

V (AK) ∩ Γ ⊆ V (K) ∩ Γ, as desired.

Secondly, we show that for any finite extension L of K, the hypothesis
that Φ[t∞](Lsep) is finite holds. Indeed, this claim is obvious when L is
a separable extension of K; so it suffices to prove it when L is a purely
inseparable extension of K. Hence, assume L = K1/pr for some positive
integer r. Since Φt is inseparable, we obtain that Φtr(L

sep) ⊆ Ksep. Because
Φ[t∞](Ksep) is finite, we know that there exists a positive integer m such
that Φ[t∞](Ksep) ⊆ Φ[tm]. Therefore, Φ[t∞](Lsep) ⊆ Φ[tr+m], as desired.

Now, since we proved that we may replace K by a finite extension (and
replace Γ by its full divisible hull inside this extension), we may assume that
V (K) = V (K) (recall our hypothesis is that dim(V ) = 0). Let {xn}n∈N ⊆ Γ
be a sequence which converges adèlically to a point (yv)v∈Ω1 ∈ V (AK),
where yv ∈ V (Kv) for all places v. Actually, yv ∈ V (K) since V is a zero
dimensional variety whose algebraic points are all defined over K. So, we
know that for all places v ∈ Ω1, we have

xn → yv in the v-adic topology.

We claim that yv − yw ∈ Γtor for any given two places v and w from Ω1.
Since Γ is full in K, and since yv, yw ∈ Kg, all we need to show is that
yv − yw is a torsion point for Φ. By Proposition 4.2, we conclude that for
each j ∈ N, there exists nj ∈ N and there exist zv,j , zw,j ∈ Kg such that

xnj − yv = Φtj (zv,j) and xnj − yw = Φtj (zw,j).
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So, yv − yw = Φtj (zw,j − zv,j) ∈ Φtj (K
g). Since we can do this for all

j ∈ N, and Kg
Φ is a direct product of a finite torsion submodule with a

free submodule of rank ℵ0, we conclude that yv − yw ∈ Φtor(K)g = Γtor, as
claimed.

Because Γtor is a finite set, and because yv−yw ∈ Γtor for each pair (v, w) ∈
Ω1 × Ω1, we conclude that there exists y ∈ V (K) and there exist infinitely
many places v ∈ Ω1 such that y = yv. Then, as shown above, the sequence
{xn − y}n∈N converges to an adèlic torsion point for Φ. By Proposition 4.8
applied to the full divisible hull in K of the Φ(R)-submodule generated by
Γ and y, we conclude that {xn − y}n∈N converges adèlically to a torsion
point z0 ∈ Φtor(K)g = Γtor. However, since the reduction of z0 modulo v
equals 0 for infinitely many places v, we conclude that z0 = 0. Therefore,
the sequence {xn}n∈N converges adèlically to the point y ∈ V (K). Using
Proposition 4.3, we obtain that y ∈ Γ, which yields the desired conclusion:
V (AK) ∩ Γ = V (K) ∩ Γ. �

5. A uniform Mordell-Lang version for Drinfeld modules

In this Section we continue with the same notation as in Section 4. Our
main goal is to prove the following result, which follows from the unpublished
notes of the second author.

Proposition 5.1. Let K be a function field over F of arbitrary finite tran-
scendence degree, and let Φ be a Drinfeld module of special characteristic
defined over K. Assume Φ has positive modular transcendence degree, and
that Φ[t∞](Ksep) is finite. Let Γ be a full, finitely generated Φ(R)-submodule
of Kg

Φ. Let V ⊆ Gg
a be an affine subvariety defined over K, and assume that

V contains no translate of a positive dimensional algebraic subgroup of Gg
a.

Then there exists a zero-dimensional subvariety W ⊆ V defined over K
such that V (AK) ∩ Γ ⊆W (AK).

Proposition 5.1 allows us to reduce Theorem 2.8 to the case dim(V ) = 0,
which was already proven in Proposition 4.12.

In order to prove Proposition 5.1 we shall require a uniformity result
used by Hrushovski in his proof [5] of the positive characteristic function
field Mordell-Lang conjecture but adapted here for Drinfeld modules. Our
results are valid for any inseparable endomorphism ψ of Ga defined over K;
for our application, we have ψ = Φt. For each n ∈ N we denote by ψn the
n-th iterate of ψ when composed with itself, and we extend the action of ψ
on Gg

a for any g ∈ N.
First we let B be a p-basis for K, i.e. a basis for K as Kp-vector space.

We say that an extension of fields L/K is fully separable if B continues to
be a p-basis for L. With this definition, a subextension of a fully separable
extension need not be fully separable itself.

For L/K a fully separable, separably closed extension field of K, define
ψ∞(L) :=

∩
n≥0 ψ

n(Ga(L)) ⊆ Ga(L).
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Proposition 5.2. Given an algebraic subvariety X ⊆ Gg
a having the prop-

erty that X does not contain the translate of any positive dimensional al-
gebraic subgroup of Ga

g, there are numbers ℓ and m such that for any
fully separable field extension L/K and point a ∈ Gg

a(L) the cardinality
of (a+X(L)) ∩ ψm(Ga

g(L)) is at most ℓ.

The proof of this proposition relies on the main dichotomy theorem on
minimal groups type definable in separably closed fields, though in this par-
ticular case the Pillay-Ziegler [7] geometric argument using jet spaces may be
employed rather than the Zariski geometries argument needed in general. To
apply the Pillay-Ziegler argument following their proof of the positive char-
acteristic Mordell-Lang conjecture for ordinary abelian varieties, we need to
know that the generic type of ψ∞ is very thin in their language. That is, if
L/K is a fully separable extension of K and a ∈ ψ∞(L) then the smallest
fully separable subfield of L containing a and K is finitely generated as a
field over K. The argument of [7, Lemma 6.4] in which it is shown that if
A is ordinary then p∞A is very thin applies to ψ∞. That is, we may write

ψ = ψ̃ ◦ F where F is a Frobenius map corresponding to some power of

p and ψ̃ is separable. Following the proof of [7, Lemma 6.4] replacing the

Verschiebung by ψ̃, one sees that K(a) is already fully separable.
With this preamble, let us state precisely the required result and then

explain how to deduce Proposition 5.1 from the main theorem.

Theorem 5.3. With our hypotheses on ψ, the type definable group ψ∞

is modular. In particular, for any separably closed, fully separable exten-
sion field L/K, and any algebraic variety Y ⊆ Gg

a defined over L, the set
Y (L) ∩ ψ∞(L)g is a finite union of translates of subgroups (possibly trivial)
of ψ∞(L)g.

The proof of Theorem 5.3 follows identically as the proof of the main
theorem of [5] and is sketched by the second author in the Arizona Winter
School notes [10]. As noted above, in this case one could also give a geometric
proof using a variant of the Gauss map.

Given Theorem 5.3, let us show how to deduce Proposition 5.2. This
argument also appears in [5].

Proof of Proposition 5.2. If no such bounds ℓ and m existed, then the fol-
lowing set of sentences would be consistent:

• L is a separably closed, fully separable extension of K. (This is
expressible by a countable set of sentences in the language of rings
augmented by constant symbols for the elements of K.)

• a ∈ Gg
a(L)

• ci ∈ Gg
a(L) (for i ∈ N)

• ci ̸= cj for i ̸= j
• (∃y ∈ Gg

a(L))ψm(y) = ci for each i ∈ N and m ∈ N
• ci ∈ a+X(L)
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By the compactness theorem, we obtain a fully separable, separably closed
field extension L/K and a point a ∈ Gg

a(L) so that (a + X(L)) ∩ ψ∞(L)g

is infinite. By the modularity of ψ∞(L) it follows that there is an infinite
group H ≤ ψ∞(L)g and a point b ∈ ψ∞(L)g such that b +H ⊆ a +X(L).
But then X contains the translate of the Zariski closure of H by (b − a)
contrary to our hypothesis on X. �

Now we are ready to prove Proposition 5.1.

Proof of Proposition 5.1. Let m and ℓ be the numbers given by Proposi-
tion 5.2 for X = V and ψ = Φt. By Corollary 4.11, the group Γ/ΦtmΓ is
finite and each coset of ΦtmΓ contains an element of Γ. Let γ1, . . . , γs ∈ Γ so
that Γ =

∪s
i=1 γi+ΦtmΓ. By Proposition 5.2, for each i there is a zero dimen-

sional variety Wi defined over K for which V (L)∩ (γi+ΦtmGg
a(L)) ⊆Wi(L)

for any fully separable extension field L/K; clearly we may assume Wi ⊂ V .
Let

W :=

s∪
i=1

Wi.

Clearly each Kv is a fully separable extension of K. So, if b = (bv)v∈Ω1 ∈
V (AK) ∩ Γ, we have bv ∈ V (Kv) ∩ (

∪s
i=1 γi + (ΦtmGg

a(Kv))) ⊆ W (Kv).
Hence, b ∈W (AK) as desired. �

Now we are ready to prove Theorem 2.8 for any subvariety V which
contains no translate of a positive dimensional algebraic subgroup of Gg

a.

Proof of Theorem 2.8. By Proposition 5.1, there exists a zero-dimensional
affine subvarietyW of V also defined overK such that V (AK)∩Γ ⊆W (AK).
On the other hand, by Proposition 4.12, we have thatW (AK)∩Γ =W (K)∩
Γ. So, V (AK) ∩ Γ ⊆ W (AK) ∩ Γ = W (K) ∩ Γ. On the other hand,
since W ⊆ V , we conclude that V (AK) ∩ Γ ⊆ V (K) ∩ Γ. But always
V (K) ∩ Γ ⊆ V (AK) ∩ Γ, which concludes the proof of Theorem 2.8. �
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