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ABSTRACT. We show that for the Lindblad evolution defined using (at most) quadrat-
ically growing classical Hamiltonians and (at most) linearly growing classical jump
functions (quantized into jump operators assumed to satisfy certain ellipticity con-
ditions and modeling interaction with a larger system), the evolution of a quantum
observable remains close to the classical Fokker—Planck evolution in the Hilbert—
Schmidt norm for times vastly exceeding the Ehrenfest time (the limit of such agree-
ment with no jump operators). The time scale is the same as in the recent papers
[HRR23a, HRR23Db] by Herndndez—Ranard-Riedel but the statement and methods
are different.

1. INTRODUCTION

In quantum mechanics a system is often described using a density matriz, that is a
positive operator of trace one on a Hilbert space. In this paper the Hilbert space will
be given by L?*(R™) so that the density operator is then

©) =Y pilwudu(@),  p;=0, Y pi=1, (wjuw) =3,
j j

If the system evolves according to the Schrédinger equation (ihd; + P)v(t) = 0, where
P is a self-adjoint unbounded operator on L*(R™) then (note the sign convention) the
density matrix evolves by the Schrodinger propagation of u;’s. That gives the following
equation:

LIPAL A(E) = eFOA(0) = PR A0) P (1.1)

BA(t) = LoA(t), LoA:=

This evolution clearly preserves density matrices. Gorini-Kossakowski-Sudarshan
[GKS76] and Lindblad [Li76] generalized this by showing (in the setting of matri-
ces and of bounded operators, respectively) that semigroups preserving the trace and
complete positivity are generated by operators of the form

LA :=—

mm

J
Z (LAL; — X(LiL;A+ ALIL;)), v >0. (1.2)
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The corresponding evolution equation is called the Lindblad master equation or the
GKLS equation and, following the long tradition which favours short northern Eu-
ropean names, we refer to £ as the Lindbladian — see [ChPal7] for a history of this
discovery and pointers to the literature. The operators L; are called jump operators
and they describe a dissipative (see (1.4) below) interaction of a system evolving ac-
cording to (1.1) with a larger “open” system. (Hence the term “jump” as L; describe
the effect of moving to that larger system.)

1.1. Assumptions on P and L; and Fokker—Planck evolution. In this paper
we will consider (1.2) with P and L;’s given by pseudodifferential operators (see (2.1)
for the notation a%(z, hD)), that is semiclassical quantizations of classical observables,
satisfying the following assumptions:

P =p"(z,hD), [0°p(z,8)| < Cq, |af>2, p=p,

1.3
Lj = (x,hD), [0°(2,8)| < Cay la| >1, 1< < (1.3)

If in (1.2), A = a“(x,hD), then the leading part of the semiclassical expansion of
LA (see the derivation in §5) is given by the action, Qa, of the following Fokker—Planck
operator

J J
_ _ hy

Q:=H,+ % Do, G) = GHy, + GH,) + = Y (Hy Hey + HyHy). (L4)

j=1 j=1
Here, Hy := Z?Zl Oc; fOy; — Oy, f O, is the Hamiltonian vector field of f = f(x,§), and
,g} := H¢g is the Poisson bracket. We note that H, is anti-selfadjoint with respect

f p
to the standard measure on R™ x R"™. Since

2 (206,05} — GHp, + (Hy, ) = {4, 0} + B, B = —B;, (1.5)

J

the self-adjoint contribution to the second term is given by the real valued function
1N, -
pe= g > {44} (1.6)
j=1

It is interpreted as friction. Finally, the last term in (1.4) is self-adjoint and non-
negative. Assumptions (1.3) show that p is bounded (p € S(1) in the notation of
§2).

Example. Suppose J = 2n and ¢; =z, {;1, = &; for 7 <n. Then

Q = Hy+ 19h(A, + A). (L.7)

When v = 0 (that is, when we consider (1.1)) classical quantum correspondence in
the evolution is described using Egorov’s theorem — see [Zw12, Theorem 11.12; §11.5]
and references given there. Here we present it slightly differently, using the Hilbert—
Schmidt norm of the operator — see Theorem 3 for a general version. For the evolution
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(1.1) with A(0) = (2wh)"2ay(x, hD) where ag € C°(R*") is h-independent (so that
|A(0)||l.2, = |lao|z2) we have

|A(t) — Op((exp tH,)*ap) ||, < Ce*'h?, (1.8)
where || ® || &, denotes the Hilbert—Schmidt norm and

= sup sup 0%p(, €)I. (1.9)
a|=2 R2n

For a more precise version of I', under additional assumptions on p, in terms of Lya-
punov exponents of the flow of H, see [OlB023, Appendix C] and references given
there. For a relation between (1.9) and the flow see Lemma 3.1.

The estimate (1.18) is not optimal, but as ||a"(z, hD)| g = (27h)~"?||a||L2gz2n),
(1.18) indicates the basic principle that the agreement with classical evolution breaks
down at times proportional to log(1/h), the Ehrenfest time.

Motivated by recent papers [HRR23a, HRR23b] by Herndndez—Ranard—Riedel we
consider the question of an agreement with classical evolution for much longer times:
the quantum evolution is given by e’ where £ is the Lindblad operator (1.2) and the
classical evolution by e!?, where @ is the Fokker-Planck operator (1.4). The results
are shown in Theorem 1 for the special case of h-independent symbols, and in Theorem
4 for the more general situation of initial condition in exotic symbol classes. We show
that agreement holds in Hilbert—Schmidt norms. The main advantage lies in an easy
characterization of Hilbert—Schmidt pseudodifferential operators and in the simplicity
of L? estimates for the Fokker—Planck evolution defined using (1.4).

Remark. As was shown by Davies [Da77], the operator of the form (1.2) generates a
positivity preserving contraction on the Banach space of self-adjoint trace class oper-
ators provided that

J
Y :=iP - 1) LL;
j=1

is the infinitesimal generator of a strongly continuous one parameter contraction semi-
group on L*(R™). In our case, this follows from the Hille-Yosida theorem and Propo-
sition A.2 (see the proof of Proposition 4.6 for a similar argument with %, playing the
role of L?).

As in [HRR23a, HRR23b] we make a strong non-degeneracy assumption:
HH" > clcn, H:=[Hy, -, Hyy, Hy -+, Hp,] € Mapyxas(C). (1.10)

This cumbersome looking condition corresponds to ellipticity of the second order op-
erator appearing in the classical Fokker—Planck equation (1.4) corresponding to (1.2)
— see example (1.7) and Remark 5 after Theorem 1. We also need a more technical
condition

|0% Im €| [4;| + | Im £;||0%¢;] < C4, |a] > 2. (1.11)
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1.2. Lindblad propagation for h-independent observables. With this notation
in place we have a special case of Theorem 4 in §6:

Theorem 1. Suppose that L is given by (1.2), assumptions (1.3), (1.10), and (1.11)
hold and h3 <~ < h™'. Ifag € C°(R?") is h-independent and A(t) satisfies

BA() = LA(), A(0) = (2mh)"2a3 (2, hD), [[AO)]z = laoll zeen
then for some constant C,
|A(t) = Op(a(®)llg, < CeMF MM R332 (1 +7)(1 + ty2h2), (1.12)

where
(@ — Q)&(t) = O, CL(O) = (271'}],)”/20,07 MO 1= sup u.
When 1 =0 (see (1.6)) then (1.12) improves to

IA(®) — a(t)" (z, hD)| 2, < Ce“ 'thiy ™5 (14 7). (1.13)

Remarks. 1. When in (1.3) p is quadratic and ¢,’s are linear than the agreement of
the two evolutions is exact. This corresponds to the same phenomenon in the case of
Egorov’s theorem — see [Zw12, Theorem 11.9].

2. When p(z, §) is confining (for instance p(z, &) > |z|? + |£]? and subharmonic outside
of a compact set) then Proposition 7.4 shows that in Example (1.7) (and most likely
in greater generality), ||a™(t)|.z > [|a¥(0)||.%/C for t < h™", v > 0. That means that
the estimates (1.12) and (1.13) are meaningful for long times.
3. To see the reason for the powers of h, v, and ¢ in (1.12) consider the simplest case
given in (1.7). The classical (Fokker—Planck) evolution is then

(0 — Hy — *A,e)a(t) =0, e:=+/vh/2, a(t)=al(t,x,§).

The solutions satisfy the following estimate (immediate if H, = 0), see Proposition 5.1
(see (5.6)):
> (etee)ad)liz, < C Y leue) a0z, (114)
o] <k la| <k
The key fact is that there is no dependence on ¢ — that is not the case for the evolution
by H, alone, see (3.7). The composition formula for pseudodifferential operators in
Lemma 2.2 shows that £ [a(t)V(z,hD)] = (Qa(t))"(x,hD) modulo terms quantizing
functions bounded by the size of (1 +7)h?d3a(t). These can be estimated using (1.14)
where in the case of (1.16) and for |a| = 3,

L+ Nh05ca)]lrz, < C(L+)h e (e0ne)’a 0)lz2,
|a|<3 (115)
< (27h)2C(1 +~)y 2h2.
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To get (1.21) we write
A(#) = a(t)" (2, hD) /0 =92 (La(#)" (2, hD) — (Qa())" (z, hD))ds,

which together with (1.15) and the fact that ||A(0)|.% = |laol| L2, gives (1.21). The
extra growth in (1.12) results from friction which is absent in this example. We used
here the fact that in the example e** is a contraction — in general there could be
exponential growth produced by the friction term; this is reflected by the exponential
prefactor in (1.12).

4. The class of operators P satisfying (1.3) includes Schrodinger operator whose clas-
sical dynamics exhibits chaotic behaviour. In that case one expects optimality of
t ~ log(1/h) limit for classical-quantum correspondence for (1.1). For instance we
could take

p@,€) = &+ & + a7 + a5 + Na)(wiws — 323),
where A € C>(R?%;[0,1]) and A = 1 near 0.

5. Compared to the models used in the physics literature — see Unruh—Zurek [UnZu89]
for the pioneering discussion of the classical/quantum correspondence for open systems
— the ellipticity hypothesis (1.10) made in [HRR23a] and here is too strong. Rather
than (1.7), one should consider ¢; = z;, 0 < j < J = n so that the Fokker-Planck
operators is given by Q) = H, + %thg. This would require more subtle subelliptic
estimates (see Smith [Sm20] for a recent treatment with an asymptotic parameter)
than (1.14). Gong—Brumer [GoBr99] showed numerically that for such operators with
chaotic classical dynamics for p, the classical /quantum correspondence persists for long
times.

1.3. Lindblad propagation for mixtures of Gaussian states. We now state a
special case of our theorem where we consider mixtures of Gaussian states in the sense
similar to that in [HRR23a]. For that we define the standard coherent states:

-1 (z—m0)? i(x—x
¢(zo,£o) = (27Th) 1gm (o) /2l O)&)/ha ||¢(zo,§o)||L2(R") =1
The corresponding density operator is
A(»’Co,&o)u = ¢(I07§0)<u7 ¢(I07§0)>7 A(»’Co,&o) = ay (z, hD),

1.16
a(l“oyéo)(-%a f) = 2"exp (—% ((IB — $0)2 + (5 _ 50)2)) _ ( )

We note that in our result the Gaussian (27rh)’%e_(m_x0)2/ 2h could be replaced by
ah~™4)((x — x0)/vV/h) where ¢ € .7(R?*") and a = 1/ 12
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For a probability measure A\, on R™ x R™ we define the mixture of Gaussian states:

A>\hu = /¢($0,§0)<u7 ¢(x0,§0)>d)‘h(x07 50)’ A>\h = a\;\/h (ZL’, hD)v
(1.17)

1
ax, (z,§) = Qn/eXP (—E ((95 - xo)z + (€ — 50)2)) dAn (0, &o)-
We note that || Ay, |« = 1. For the Hilbert Schmidt norm we calculate

(27Th)n22n/e;IL((CL“10)2+(90y0)2+(€§0)2+(§770)2)dxd£ — e*%(($0*90)2+(50*n0)2),
so that

sl = [ o (= (= + (6= m)”) draCoo, e o)

If A\, = p(x,&)dzdE, where p is smooth and h independent we are close to the case
considered in Theorem 1 and ||Ay, ||.z ~ h™/2.

As in (1.18) when v = 0, we obtain a version of Egorov’s Theorem: for the solution
of (1.1) with A(0) = ay, (v, hD),

IA(t) = Op((exp tH,)"ax, )|| 2 < Ce™*h2[|A(0)]| . (1.18)

On the other hand, for the Lindblad evolution, the quantum— classical agreement
lasts substantially longer as can be seen from the following special case of Theorem 4

Theorem 2. Suppose that L is given by (1.2), assumptions (1.3), (1.10), and (1.11)
hold and v < h™'. If, in the notation of (1.17), A(t) satisfies

then for some constant C,
IA() — a(t)" (2, hD)|| g, < CeMFCMTY(y 4 4= 3YR3 (1 + ty2h2)|| Ay, 2, (1.20)

where
(O —Q)a(t) =0, a(0) =ay,, My = sup p.
When 1 =0 (see (1.6)) then (1.20) improves to

IA(t) = a(t)" (@, hD)| 2, < Ce“" ™ t(y +772)h2 || Ay, || %, (1.21)

Remark. The time scales appearing in Theorems 1, 2 and 4 agree with the time scales
in [HRR23a|, as long as v < 1: Theorem 3.1 there gives the bound C max(1, ’y‘g)h%t
for a two tier comparison of evolution of specially constructed Gaussian states. Under
the assumptions in Theorem 1 it reads as

[A(t) — a()”(z, hD)|| .z < Cmax(1,

-
Y (1.22)
h"a(t) — a(t)| 1 @eny < C'max(1,v™2)h2t,
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where ||| , is the trace class norm. Remarkably, since the semigroup e'* is contracting
on trace class operators, there is no exponential growth even when friction is positive.
The estimate does not provide a bound on A(t) — a(t)*(x, hD) in any norm, but has
the following natural consequence [HRR23a, (1.7)]:

tr (A(t)b" (z, hD)) — (27rh)_"/ a(t,z,&)b(z, &)dxd

R2n
= O(tmax(1,7~2)h2) (||b™ (z, hD)|| 212 + [|b]| ).
This is (typically) stronger than the corresponding consequence of (1.20):

tr (A()B" (z, hD)) — (27h)~" / olt, 2, )b, E)dwde

RQn
= ORIy (o 4 =2 )h3 (1 4 ty2h3)) (2h) 2 ||b]) 12

We stress, however, that Theorem 4 below applies to very general initial states A(0)
of which Gaussian states or their mixtures are an example. In addition, at the cost
of further terms in the expansion, it gives approximation of the Lindblad evolution
modulo O(eMo+CMt(tp1/2=3)N (1 4 4)N(1 4 ty2h2) 2 for any N. For instance,
when

v=h, §< %, t<h™ v< %min(%, 1 —39),
this gives an expansion modulo O(h>).

This paper is self-contained except for some basic facts about semiclassical quantiza-
tion from [Zw12, Chapter 4]. It is organized as follows. In §2 we review the definition
of pseudodifferential operators and symbol classes. We introduce a new L2-based sym-
bol class which is natural for the study of Hilbert—Schmidt operators, and show the
properties of the corresponding pseudodifferential calculus. In §3 we present a variant
of Egorov’s theorem with Hilbert—Schmidt norm and in §4 we prove mapping proper-
ties of e**. §5 is then devoted to estimates on the Fokker-Planck evolution. A general
result about agreement of classical and quantum dynamics in Hilbert—Schmidt norm
is proved in §6. In §7, we consider situations where we can effectively control the
Hilbert—Schmidt norm of the Lindblad evolution from below. Finally, in the appen-
dix, we review some properties of pseudodifferential operators with quadratic symbol
growth.
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2. SYMBOL SPACES AND QUANTIZATION

The operators introduced in §1 are defined using pseudodifferential operators which
are obtained by a Weyl quantization process: at first for a € .Z(R? x RQ) (here .
denotes Schwartz functions, that is functions u for which 2*9%u are bounded for all
multiindices « and 3; .’ denotes its dual, the space of tempered distributions — see
[Zw12, Chapter 3]) we define

Op(a)u = a"(z,hD, h)u := (27T1h)” /a <x ;— y,f) e%<x’y’5>u(y)dyd§. (2.1)

The Hilbert—Schmidt norm has a clean expression in terms of the symbol a (PDE

parlance for classical observables):

00(e) [, = trOp(a) Opa)” = s | Pt

This is in contrast with the trace class norm which does not have an easy characteri-
zation in terms of a and its estimates require L' norm of derivatives of a — see [DiSj99,
Chapter 9].

In this paper we consider different classes of symbols for which (2.1) remains valid
and has interesting composition properties (as an operator Op(a) : & — %’ the
operator (2.1) is well defined for a € #'(R*") — see [Zw12, Theorem 4.2]). We first
recall the standard symbol class: for m : R*" — [0,00) satisfying m(z)/m(w) <
C(1+ |z —w|)",

a € Ss(m) = 0%z, h)| < Coh™m(z), 2= (z,&) € R™ (2.2)

When ¢ = 0 we write S(m) and when m = 1, S;.
The next class corresponds to the conditions in (1.3): for smooth function on R?",
u(z,h) € Sy <= |0%u(z,h)] < Ca, |af >k, (2.3)

with constants C, independent of h. The seminorms are given by the best constants

Cl.

In dealings with Hilbert—Schmidt operators it is natural to consider symbols whose
bounds are defined using L? norms. For smooth functions on C*°(R?") depending on
parameters h we define, for 0 < p < 1,

a€ S = h73]0%] p2meny < CuhPl. (2.4)
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with the obvious seminorms. We note that the Sobolev embedding theorem and an
interpolation argument show that |0%a| < €/ AU +0)+3 for any § > 0. Hence for
p = 0 the L? based spaces are contained in h2 S(1) defined above, and in general

SE C hrrhTEg (1), (2.5)
It will also be useful to consider mixed spaces obtained by taking tensor products:

c(z,w) € S® SpL2 — h72||sup0°0Pc(z, 8)||p2 < Cush™l, 2w e R*™.  (2.6)

We stress that we always demand that 0 < p < 1.

Remark Another choice of the norm could be given by sup, ||[0202¢(z, e)||2 and
both agree on products. The choice in definition (2.6) is motivated by the fact that
|f(w,w)| 2, < ||sup, |f(z,w)|||r2 which does not work for the other choice.

For the properties of operators which are quantizations of a € Ss(m) see [Zw12,
Chapter 4]. The same methods apply to operators obtained from a € S and are
reviewed in the appendix. In particular we obtain spectral properties of operators
quantizing S»). Since the properties of Sf and 0 < p < 1 are more unusual we
present them in this section. We start with

Lemma 2.1. Suppose that @) : R?*™ x R?™ — R is a non-degenerate bilinear quadratic
form. Then, using definition (2.6),
hQ(D=.Dw) . g & SPLQ S S® SpLQ, (2.7)

s continuous and for every N
ihQ(Dy,Dyy) T sen Q N(1-p) L2
e a—e®® Z<z) Q(D., Dy)*a(z,w) € h PS®S,, (2.8)

where sgn Q) is the signature of QQ considered as a quadratic form on R®™ x R?".

Proof. We denote by B the symmetric matrix corresponding to our quadratic form:
Q¢ w) = $(B(¢w), (¢, w)). Fora € S(1) ® SPL2 C h=P"H+535(1) ® S,(1), hence the
expression

thQ(Dz,Dy)

c(z,w) =e a(z,w)

makes sense as an element in .’ (to see this, we apply e.g. [Zw12, Theorem 4.17] with
for each fixed value of h) and by [Zw12, Theorem 4.8], for a € .7,

1
|detB| 2 21,22)
—W R2n Rzneh@ "a(z + 21, w + wi)dzdwy,

c(z,w)

where

(B~ (21, w1), (21, w1)).

N[

@(zh wl) = -
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Since a € h7P"+35(1) ® S,(1), this integral can be understood in the sense of
oscillatory integrals and defines an element of .’ — see [Zw12, §3.6]. Recall also that
oscillatory integrals allow for integrations by parts.

Set v; = h™Pwy, and y € C*(R* x R?*") with y = 1 near 0 and supp x C B(0,1).
Then using the fact that w; — (21, w;) is linear, we obtain

|d€tB| 2 (z1,v1)
c(z,w) = W o R2n€h1 RI=p P g (2 + 2, w + hPop)dzduy,
_|det B|~ 3

bl el (z1.01)
(2l /R% /R%ehl PEEIX (21, vn)a(z + 21w + By )dzdoy

|det B|~ 3 (z1.00)
+ (27Th1 p 2n R2n JR2n €h1 e (1 - (Zl7 Ul)) (Z + Z17 w + h'pvl)d21d’U1
=:c1(z,w) + 02(2, w)

We start by considering ¢;. In this case, the integrand is compactly supported and we
may apply the method of stationary phase [Zw12, Theorem 3.16 and Theorem 3.17].
That gives

N-1

o e ) £ 5 () QU0 Dt 4 )

< Cyhi=IN Z pPlaz| sup |a§11+a18512+a2a(2 +oo w4 )|
|81]+|82| <2N+4n+1 [(21,01)|<1

= CNh(lip)N Z Raﬁ(z7 U)),
|B1|+]B2| 2N +4n+1
with the estimates on the remainder provided by Sobolev’s embedding;:
|Rog(z,w)? < j 20l Z ”8511+oz1+’718512+a2+’72a(2 + w4+ hp.)‘|%2(BR2n(071)).
v<2n+1

Hence, with B := Bga.(0,1),

/ sup |Rag(z, w)[’dw < h=2A1%2l 3y~ / / sup|002r?:7 (2 + 21, w 4 hPvy) Pdzydvydw
RQn 2n

z y<2n+1

< [ B s 9 0 e oy
B

< C Z hQP |'Y2|‘H62‘)|Isup|6O€+6+,7 ( 7)|||%2

(z,w)
<2n+1

In particular, this implies that

c1(z,w) —ed senB Z (hl p) ( (D.,, D) fa(z + 21, w + hpv1)>|1,1:21:0
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is in h1-PNS ® 352.

We now consider the remaining term in ¢, c¢p, and note that on supp(l — x),
1002100 (21, v1)| > ¢((21,v1)). Hence, integration by parts (justified by the definition
of the oscillatory integral) yields, for N > 2n + 1,

plp—=1)(2N—4n) || sup 8(0;7“})02(27 ) “%2

<cy [sw([[ X (™

|B1]+]B2|<N

<oy [[[ 3 taey i

1B1]+|B2| <N

<Cy / / ST (e, v)) VY sup O, 02 (20,) a2, || dzaduy

|B1]+|B2|<N

<Cv > |supd )02 (h0,)?a(z, ).

B1|+|B2|<N  ©

Hence, we have ¢, € hV-2001-0) G & SpLz for arbitrary N and ¢ € S ® 552. The
argument also shows that that the map from a to c¢ is continuous, and (2.8) holds. O

0 (8fl(h”8w)52a(z Foowt hpv1)> ‘dzldm)zdw

2
azxz,w)afl(hpaw)ﬁQG(z + z,w+ hp'Ul)‘ dzldvldw

We can write the composition law for operators in S/fQ with Si.
Lemma 2.2. Let0<p <1, k>0,a¢c Sy),bc 552. Then,
Op(a) Op(b) = Op(c),
where ¢ has the following expansion: for N >k,

N-1

1L (h ; ) Ql?

(0.0 =2 5 (gowx,Dg?Dy? Dnya(x,g)b(y,n)) ly= € ANETPSS(29)
j=0

Proof. Writing z = (z,&), w = (y,n), we have
Op(a) Op(b) = Op(c),  e(2) i= "4 P=)a(2)b(w) .=,
where A(D., ) :== —10(D,, D¢, Dy, D,)). By Taylor’s formula

c(z,h) = 2_: %(ihA(D))e(a(Z)b(w)NZw + Ry(z, h)
=0
where
Rn(z,h) : 1 /1(1 — t)NfleithA(D)(z'hA(D))N((a(z)b(w))| dt
M (N =), s
For N >k,

A(D. )Na(2)b(w) € NS @ SE°.
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Hence, Lemma 2.1 applies and ¢4 : § 552 - 5S® SpL2 has uniform bounds in
t € [0,1]. Now, for e € S® SPLQ, we have

loge(w, W)l < C Y N10] ez w)lu=zllg, <C Y lIsupld] ez )]z
1BI<|al 1BI<la

We conclude that Ry € fL(I*p)NSﬁg2 which is (2.9). O

3. EGOROV’S THEOREM REVISITED

We give a variant of Egorov’s theorem which is analogous to Theorems 1 and 4 and
uses propagation of quantum observables in symbol classes SPL2 introduced in §2. In
fact, the proof of Theorem 4 follows the same strategy with improved estimates coming
from diffusion estimates: Lemma 3.1 below (see also (3.7)) is replaced by Proposition
5.1.

We start with a lemma relating the constant I' in (1.9) to the properties of the flow
(see [Zw12, Lemma 11.11] for a slightly different version)

Lemma 3.1. Let ¢, := exptH, where p satisfies (1.3). Then
0% (2, &) |pmomany < Coe™ ™, a € N*", |a] > 0. (3.1)
In the proof of Lemma 3.1 we use the following version of Gronwall’s inequality:

Lemma 3.2. Let I' € R and suppose that u : R — R is continuous and satisfies

u(t) <wv(t) + F/o u(s)ds. (3.2)
Then,
u(t) < o(t) + F/ "=y (s)ds, t>0.

Proof. Define w(t) := ft

o u(s)ds. Then, w is continuously differentiable and satisfies

w'(t) <wv(t) +Tw(t), w(0)=0.
Hence, conjugating by e~'* and integrating gives
t
w(t) < / e" =)y (s)ds,
0
which, after substitution in (3.2), finishes the proof. O

Proof of Lemma 3.1. The proof of (3.1) is an induction on |«a|. The first step is the
case of |a| = 1. Since (d/dt)p; = H,(¢1),

d
7 (0%py) = OHL(1)0%0y,  0%p(0) = a. (3.3)
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Since the entries of the matrix 0H), are bounded by I', integration gives

t
sup |0%p|ee <1 —i—I‘/ sup |0%ps o ds.
R2n 0 R2n

Lemma 3.2 then gives (3.1) for |o| = 1.

Now assume |a| = ¢ and suppose the estimate (3.1) is valid for all multiindices /3
with 1 < |B| < ¢. We differentiate (3.3), to find

(000 = OH, (90" 0+ ol0), (3.4)

where ¢(t) is a sum of terms having the form

Gap © 010710 0% pp,  gas € S(1),

for 1+ fr =aand 0 < |B;| < |a] = ¢ (j = 1,...,k). The induction hypothesis
implies supgzn |g()]s= < Cellolltl Integrating as above, we obtain

t
Sup |0%py|pe < Cellolt 4 F/ sup |0%pg e ds.
R2n 0

R2n

and we can use Lemma 3.2 to obtain (3.1). O

Theorem 3. Suppose that Ly is given by (1.1) with P satisfying (1.3) and 0 < p < 2.
If A(t) satisfies (in the notation of §2)

Q. A(t) = LoA(t), A(0) = Op(ag), ao€ S,

Then, for every N there exist Cxy > 0 and a(t) € S/)Lé) such that for T' given by (1.9)
and

I't 2
) = <= 3.5
a(t) — (exptH,)*ag € h2_3pe3rt5lfé) and
1A() — Op(a(t))|| 2 < Cne®¥RNE50), (3.6)
Proof. We define
Uo(t)b:= (exptH,)*b, 0:Uy(t) = HpyUp(t), Uy(0) =1,
and note that using the definition (3.5) and Lemma 3.1 we have
2 2
U(t — S) . SpL(s) — SpL(t), (37)
To construct a(t) we start with ag(t) := Up(t)ag so that ag(t) € S%). Set Ay(t) =

Op(ap(t)). Then, using Lemma 2.2 we obtain
Ao(t) = Op(ao(t)) = Op(Hyao(t)) = LoAo(t) + Op(eo(t)), eolt) € h(2*3p)e3FtSpL(i).
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Suppose now that we found
a;(t) € h(2’3p)j63’“5%) j=0,...,N—1
such that, with Ay_; = Z;.V:_Ol Op(a,(t)), we have
. _ 2
An_1 = LoAn_1(t) + Op(en(t)), en(t) € A 3”)N63NrtS£(t).

Using ey we define
t
an(t) := —/ Up(t — s)en(s)ds, Owany = Hpay —en, an(0) =0.
0

Then, using (3.7),
aN(t) c h(273p)Ne3NFtS£(2t)7

and hence, with Ay(t) = An_1(t) + Op(an(t)), we have

)
An(t) = LoAn_1(t) + Op(en(t)) + Op(an(t))
= LoAn-1(t) + Op(Hyan(1))
= EOAN(t) + Op(€N+1 (t)), €N+1(t) € h(273p)(N+1)63(N+1)Ft5ﬁ[;(2t).
Note that in the last line we used Lemma 2.2 to obtain the estimates on ey;. This
gives a = iy aj;.
To compare Ay(t) := Op(a(t)) to A(t), we use the fact that e'“0 preserves the
Hilbert—Schmidt norm (see (1.1)):

40 = Av@)], < [ o5 Oplenints))

This completes the proof 0

ds < h(273p)(N+1)63(N+1)Ft.
Lo

4. THE SEMIGROUP GENERATED BY THE LINDBLADIAN.

We prove here that the Lindblad evolution is well defined in the space of Hilbert—
Schmidt operators. This is done under the assumption (1.3) alone.

To describe the action of £ on operators . — ., we identify such operators with
their Schwartz kernels in R™ x R™ and consider

Ly 7' (R* xR") .7 (R* xR"), Ly: Z(R* x R") > .Z(R" x R").  (4.1)

More precisely, for K € #(R® x R"), and y € Z(R™ x R") we denote by K(x)
the distributional pairing, formally equal to [ K(z,y)x(x,y)dzdy. Then for A, B :
L (R") —» L (R") we define, (A® B)K € .'(R" x R") by

(A® B)K(p® 1) == K(A'¢ @ BY), ¢,0 € L R"), (p@9)(z,y) = p(x)d(y),
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where A is the transpose of A: for f,g € . (R"), (Af)(g) = f(A'g) (this also defines
the action of A on .#”). We note that if we identify the Schwartz kernels with operators
then (A x B)K = AKB.

In this notation

L= %(op@) ®1-180p(p) +7 > ((Op(t;) ® (I © Op(7;))
i (4.2)

— 137 (0p(£;) Op(t;) @ I + I ® Op(f;) Op(¢))),

J
and ,Cg = ‘Cl‘jﬁ(RQ"-

The following lemma describes £ in a way that allows an application of Proposition
A.2, which in turn provides the definition of £ as an unbounded operator on .%5.

Lemma 4.1. The operator £, : /' (R*") — ' (R*") defined by (4.2) is given by
Ly, = Op(L), where where L = L(x,&,y,m) € C°(R*™) satisfies
0°L] < Ca(L+ [a| + el + [yl + D), laf = 1. (4.3)

Moreover, identifying the Hilbert-Schmidt class Zo(L*(R™)) with L*(R™ x R™) using
Schwartz kernels, the Lindbladian £ with the domain

D(L) :={A € L(L*(R")) : L1 A € L(L*(RM)}, (4.4)
satisfies
L= ‘C_Oa L= ‘C_Ek)a
where L 1 L (R" x R") — . (R™ x R™) is the formal adjoint of Ly.

Proof. Using coordinates ((z,£), (y,n)) € R* x R?*" and denoting Opgz. the Weyl
quantization on R?”, the definitions above show that

Op(a) ® I = Opgea(alz,€)), I ®Op(a) = Opgan(a(y,n)), @:=e"PrPra.

(See [Zw12, Theorem 4.13]: if Op(a) = Op,(a1), then Op(a) = Op(a)’ = Opy(a1).)
Consequently a € C(R?") satisfies, 00, ya(x,§)| < Co(l+[z| +[¢]) for |a] > 1, and,
by [Zw12, Theorem 4.17], so does a.

Since ¢; € Sy, by Proposition A.1 we have Op(¢;) Op(¢;) = Op(c;), for ¢; satisfying
|06, 6¢i (@, &) < Ca(l + [z| + [¢]) for |a| > 1. Together with the facts that £; € S
and p € S(g), this implies £; = Opg2n (L), where L satisfies (4.3). Thus we can apply
Proposition A.2 and the lemma follows. O

The next lemma describe the adjoint of L:
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Lemma 4.2. The adjoint of the Lindblad operator L, L*, is given by

LB =— 4+ Z L:BL; — L*L B+ BLL;), (4.5)

with domain
D(L)Y={Ae % : LA L}

where for any A € %, L*A is defined as an operator . — .

Proof. By Proposition A.2 it is sufficient to compute the formal adjoint in the action
on operators .’ — .. Observe that, using cyclicity of the trace, for A, B : ./ — &,

(iIP, A],B>$2 —tr (1P A)B") = ftr (PA= AP)B") = $ tx (AP, B]")
— tr (A(—%L[P B) ) (A, —[P,B)) g,
(L;AL, B) g, = tr (LjAL;B*> (AL*B L ) — (A, L'BL}) 4,
(LIL;A, B) g, = tr (L;LjAB*) (AB LL ) — (A, LSL;B) 4,
and similarly for (ALL;, B) z,. O

We next record some properties of £ and its adjoint.

Lemma 4.3. For A: . — .7,

2Re(LA, A)z, = ZH A+ 5 (1L LA ), (46)

J

and

PRl M)y = =5 DML Al + (I LA D (40

J

Proof. First, observe that (1.2) and (4.5) show

(CA)* = LA*,  (LrA)" = L*A".
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Thus, we compute
2Re(LA, A) g, =tr((LA)A™ + A(LAY))

~ (%[P, AA" + A%[P, A7+ 25 (LALA + AL AL

J

’}/ * * * * * * * T %
— g L LAA + AL A" + AL A" + AA L;L,))
J

— tr (%[P, AJA* + A%[P, A*]>

i * Ak * T % * * * *
bt (LALA + ALA'L; = LLAA — AL LA").
J

Now,
tr ([P, AJA* + A[P, A*]) = tr (PAA* - AA*P> —0,
and
tr (L AL A + AL AL = L L;AA" = AL L;A")
— tr (= [Ly, A([L5, A])* + LAA Ly + AL; ;A" — L AA" — AL L;A")
= tr (= L3, ALy, A" + L5, L}]A" A).

Hence, (4.6) follows.

The computation for (4.7) is similar. Since the commutator part of £* has the same
form as that of £, we only need to compute

tr (LJALA" + ALA'L; — LL;AA" — AL LA
— tr ( — (L%, A)([LE, A + L AAL; — L;LjAA*)
_ ( (L, AL, A+ (L, L;]AA*),
and (4.7) follows. O

The next lemma will be used to control the second terms on the right hand sides of
(4.6) and (4.7).

Lemma 4.4. Let Cy € R and suppose that E : . — L? is a self-adjoint operator on
L*(R") satisfying E < Cy. Then, for B: . — .,

(EB.B) < CollBI% (4.8)
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Proof. To see this, observe that exists an L2-orthonormal basis uj and \; > 0,

BB* = ZAjuj ®uj, (f@9)(p) = flp,9)

We also note that if A; > 0 then u; € ¥/ C D(E). Then,

<EB, B>$2 = tI‘(EBB*> = ;<EBB*UJ, uj>L2 = ; )\j<EU,j, uj>L2
< Co Y A =ColBl%,
J
which is (4.8). O

Next, we provide an estimate

Lemma 4.5. Suppose that, as a bounded self-adjoint operator on L*(R™) (see (1.6))

Sz < 2 (4.9

Then, for A:.% — " and \ > 0,
MAlz < (L= M= NAlz, AMAllz <|(£°—M-NA| 2, (4.10)

Proof. Observe that by Lemma 4.3, and Lemma 4.4
2Re((L — M = NA, )z, < =2\ AL, = 24| All s + 3 Y [L;, L51A", A7)

- 2
J

< —2)M|A] .
Hence,
2M|Allz, < [2Re{(L =M = XA, A) 5| < 2[|(£ = M = N)A| 2[[Al 2

from which the first estimate in (4.10) follows. The argument for the second estimate
is identical. 0

Proposition 4.6. Suppose that (4.9) holds. Then the operator L with domain D(L) :=
{Ae % : LA L) generates a strongly continuous semigroup

et L L and € gz <M >0
Proof. By Proposition A.2, or rather its proof (see (A.4)), and Lemma 4.1, for A €

D(L) there exists a sequence of operators A4, : . — . such that A, 2, A and
LA, 2 LA. Hence, for A € D(L) and A > 0, Lemma 4.5 gives

NAllz, = A Jim [ 4,
< lim [|(£ — M~ M)Az = (£~ M~ XAl

T n—oo
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Similarly, for A € D(L*), we have A, : " — % such that A, 0 A and LA, EZN
L*A. This implies that for A € D(L*), and A > 0
A[Allz, < I(£F =M = NA| &.
In particular, (L — M — \)™': % — D(L) exists and satisfies,
H(‘C - M- )‘)_1||$2—>$2 < >‘_17 A > 0.

The Hille-Yosida theorem then implies that £ — M generates a strongly continuous

HL=M) gatisfying

semigroup e
e gz <1,
from which the proposition follows. 0

We conclude this section by showing how condition (4.9) is related to a lower bound
on the friction (1.6)

Lemma 4.7. Let

J
Mo :=supp, = %;%,@}- (4.11)
Then there is Cy > 0 such that (4.9) holds with
M = ~vMy + Cyh, (4.12)
for 0 < h < 1. Furthermore, if p =0, then (4.9) holds with
M = Coh*y (4.13)

for0 < h < 1.

Proof. Since (1.3) shows that p € S(1), the first estimate is a straightforward appli-

cation of sharp Garding inequality for the class S(1) — see [DiSj99, Theorem 7.1] or
[Zw12, §4.7.2]. When p = 0, we use that [L;, L}] = Op(4:{¢;,{;} + h’e) for some
e € S(1) and hence the second estimate follows. O

5. THE CLASSICAL DYNAMICS

It will be convenient to rewrite the Lindbladian as

LA= %[P, Al + % (154, L3] + [Lg, AL]])
J

Our first goal is to motivate the classical Fokker—Planck equation (1.4) from the evo-
lution equation for L.

Observe that for 0 < p < 1, and a € SPLQ,

h _  h_ -
LjA = Op(ﬁja + Z{gj, a} + h2_2p61>, 141‘/;< = Op(aéj + Z{a, g]} + h2_2p62),
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with e; € SpLQ. Hence for a € 552

LA =Op(H,a) + % S Op((244),4;}a — €;Hy a + [Hya)
J

5.1)

L (

+ % S~ Op(H;, Hyya + Hy Hy,a) + h**(1 + ) Op(e),
J

with e € SPLQ. Heuristic arguments in the physics literature — see [HRR23a] and the
discussion and references given there — suggest that the natural classical evolution
should be given by the equation up to the diffusion term 3 ; Hg He; + Hy  Hy, which is
a non-positive differential operator acting on the classical observable a (see (1.7) for a
striking example). Hence as the generator of the classical flow (a form of Fokker—Planck
operator) we take @ € Diff*(R?") given by

_ _ h
Q= H,+ %2(2{@,@} — {;Hy, + (;Hy,) + % > (Hy He, + Hi Hy,).
- j

The key estimate for evolution by @ is given as follows. We need here the additional
technical assumption (1.11). To state the next estimate we recall the definition of
semiclassical Sobolev norms:

e [+ PP ROPAC a(0) = [u(eas, (5.2)

[l

Proposition 5.1. Suppose that (1.11) holds, and v < h™'. Let U(t) : L*(R*") —
L3(R*") be defined by

(0, —Q)U(t) =0, U(0) =1d. (5.3)
Then, for all s > 0, there is C' > 0 such that for all t > 0,
Heom < O™ /T4 tye, U@ || p2re < CeMor, (5.4)
where My is given in (4.11), the norms are defined in (5.2), and
£ := +/7h. (5.5)

If, Zj{éj,@} = 0, that is there is no friction (1.6), then

IU@)|

U@ rz—ms < C. (5.6)

Remark. The estimates (5.4) and (5.6) do not address the smoothing effect of the
evolution by (5.3). Obtaining quantitative estimates seems to require stronger assump-
tions than (1.3) and we restrict ourselves to that case.
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Proof. Recall from (1.4) and (1.5) that @ is given by H, +~>_; B; + p plus a second
order divergence form operator and the first two terms are anti-selfadjoint. Hence, for
u € H?,

_0 hy
Re(Qu, u) Z {4, 4}, u) Z [ H e ullZ> + [ Heullz) -

We start with an estimate on the solution, v, to
M9, — Q) (e (1)) = (9 — Q + Moy)v(t)
We have
(f,v) = Re((0: — Q@ + Mov)v, v)

1 - hry
= S0lvllZ: + /(Mo = 3 546, G Hv.v) + 7 D (1Hyvllze + | HevllZ).

J J

i v(0) = (5.7)

Hence,

Oullv]lZ: il Z | Heyull7e + [[Hgullf2) < 21(f,0)].
For T' > 0 the ellipticity hypothesis (1.10) then gives

T T
hry
Jo(T) e+ vhe [ 190lEs < WD + 5 [ 3 (1ol + |1 Heolfe)
0 0 -
J

., (5.8)
2 [ 1A Ol 0Ol + ool
Now let u solve
(0 — Q+ Myy)u =0, u(0) = wup.
Then, applying (5.8), we obtain
T
lu(T) |72 +C/O leVu(®)|[F2ds < [luoll7z, &= /b, (5.9)

To proceed by induction let us assume that for £ > 0

> o HL2+/ > ) u®li:

0<|a|<k 1<]a|<k+1 (51())

<O Y (=) uollzz + CTyelluol 7.
1BI<k
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We set
(7 1 =
Ql = ;Z{gj,gj}, Qg = 2—7/ ;(—ngZj + nggj),
1
Qsi= 7 Z(H,;J,ng + Hy H,).
J
so that
(O — Q + Mo)0%u = [Hp, 0%Ju+7[Q1, 0"Ju + 7[Q2, 0%Ju + Yh[@s, 0°u, (5.11)
@Q(O) = 8o‘u0. '
We have the following estimates on the commutators appearing on the right hand side:
I[Hp Tulle <C Y N0%ullie, Q1 0%ulle <C Y 0%ulpa,
1<]B|<]af 0<[B|< e -1 (5.12)
Qe 0ulle <C Y7 NP ullz,  ([Qs,0°Tullz <C Y 0% pe,
1<[B]<]al 1<|B< al+1

It is important here that in the estimates not involving @)1, we have |$| > 1 on the right
hand sides. To obtain the estimate on commutators with @2, we use assumption (1.11).

Applying (5.8) to (5.11) and using (5.12) we obtain

T
3 ||aau(T)||§2+mh/o S IVoruladt

lo|=k+1 lor|=k+1
T
<c[ 3 (X 1l taluli b S 0% ule) 07l e
O laj=k+1 1<|8|<k+1 1<|8/|<k+2
+ > 0wl
|o|=k+1
T
<o X (X W0tletah Y 107l [0 uledt
O jaj=k+1  1<|B|<k+1 |8 |=h-+2
+ > 10%uollz: + CT|uol7-.
|o|=k+1

Young’s inequality (2ab < §~a®+ 6b*) allows us to move the highest order terms from
the right hand side to the left hand side and that gives

T
3 ||8°‘u(T)||%g—|—cvh/O S Vol

lor|=k+1 |a|=k+1

T
<c[ X WPuBsdt+ Y [0l + CTuo]
0

1<|B|<k+1 la|=k+1
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We now use the inductive hypothesis (5.10) (with £ = /vh < 1) to obtain

S o ||L2+c/ S 11(0) ulZadt

|a|=k+1 |8|=k+2

<C Z Sh1— I,BI/ (€0)Pul|2.dt + Z 1(£0)*uol|7 2
0

1<|B[<k+1 lo|=k+1
+ OT’Y%Ek—H ||UJ0H%2

<o > EHCY (1(0) w2 + CTA() o)

1<|B8|<k+1 lal<|B
+ ) I(e0)uol3a + CTYe " Juo |3
la|=k-+1
<0 N I(ed) uol2e + CTvellug) 2.
o <k+1

Combined with the inductive hypothesis this shows that (5.10) holds with % replaced
by k£ + 1.

Returning to (5.7) we see that (5.10) gives (5.4). When Zj{lz-,éj} = 0 then we
can take My and ()3 = 0 in the proof and that gives (5.6) (note that in this case @,
vanishes and hence the last term on the right hand side of (5.10) does not appear). [

6. AGREEMENT OF QUANTUM AND CLASSICAL DYNAMICS

In this section we obtain an accurate approximation to the solution of the Lindblad
master equation which is a far reaching strengthening of Theorem 1 in §1.

Theorem 4. Suppose that L is given by (1.2), assumptions (1.3), (1.10), and (1.11)
hold, h?*=1 <~ < h™! for some 0 < p < % There is Cy > 0 such that if A(t) satisfies
(in the notation of §2)

Q. A(t) = LA(t), A(0) = Op(ag), ao€ S,
then, for every N there exist Cy > 0 and a(t) € SPL2 such that
| A(t) — Op(a(t) ||z, < Cue™ TN L 4 )NFUL 4 42 hae) 27N FRETIONED,
a(t) — U(t)ap € M7 th=30) (1 4 ~) (1 + ty2h7)SL,

6.1)
where U(t) was defined by (5.3).
If Zj{fj,gj} = 0, that is there is no friction (1.6), then
45 = Op(a(t) s < One ™ (1-+) V¥ eI,

a(t) — U(t)ag € h*3(1 + 7) S5,
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Proof of Theorem 2 assuming Theorem /. Let ag € SIL/QQ. Then observe that by Propo-
sition 4.6 and Lemma 4.7, together with the fact that for aq € SIL/QQ, || Op(ap)|le < C,

1A)]| 2, < CeMorConnr,
Next, using Proposition 5.1
1Op(U(t)ao) |z < Ce™™.

Therefore, since our estimates are trivially valid when (v + ’y’%)h%, we may assume
without loss of generality that ¢(vy + 7_%)hé <1

We now consider two cases: y = h*~! for some p > 1 and p = 3 with y > 1. Observe
that when = h?~! for some p > 1, then, using that v < 1, the estimate (6.1) reads

|A(t) — Op(a(t))|lz, < CrneMotCmI(thay=2)N+ (1 4 tyzh2) 2"

(6.3)
a(t) — U(t)ay, € eMo+Comnt(gpa=3)(1 + m%h%)sf,

Hence, since m_%h% < 1, the estimate (1.20) follows in this case. On the other hand,
when 7 > 1 and we set p = 1, the estimate (6.1) reads

+2

IA(t) — Op(a(t))|lg, < CyeMotComrtypa N+ LN+ s (NH) (] 4 prapz) 2

) (6.4)
a(t) — U(t)ay, € eMFOMhay(1+19202) ST,
Taking N = 0 and using tvh% < 1, we obtain
IA(t) = Op(U(t)ax,) ||z, < CeMt M3 (1 4 12 h3),
O

Proof of Theorem . Define ag(t) := U(t)ag, with U given in (5.3). Then, recalling
that e = \/vh/2, h* < e <1, (5.4) gives

ag(t) € M (1 4 ty2h2)z S

, » uniformly in ¢ > 0.

Set Ao(t) := Op(ap(t)). Then, using Lemma 2.2 as in the derivation of (5.1), we obtain
Ao(t) = Op(ao(t)) = Op(Qao(t)) = LA(t) + Op(er(t)),
where
ex(t) € B33 (1 +~)eMt(1 4 ty2h2)3 55,
Suppose, by induction that we have found
a;(t) € MO RETII(L p AV (1 4 y2h3) T SY j=0,..., N1
such that, with Ay_; = Z;.V:_Ol Op(a,(t)), we have

An_i = LAy_1(t) + Op(en(t)),
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with

1N
2

en(t) € eMrNTH( 4 tfy%hi) (1+ fy)NSpLQ.

Using ey we define
t
an(t) = —/ U(t — s)en(s)ds.
0
Since,

N+1

(t—s))ids < (1+~y2hzt) 2 /(N +1),

Njw
ST

t
/ sNN 14+ 42h2s)2 (1+y2h
0

N+1

an(t) € MV RETION (1 4 yEpze) T 5L

and hence, with Ax(t) = Ay_1(t) + Op(an(t)), we have

An(t) = LAN_1(t) + Op(en(t)) + Op(an(t))
= LAn_1(t) + Op(Qan(t))
= L:AN(t> + Op(€N+1<t))7

with
enir € M (1 4 4 )NH R3] | V%h%t)%sﬁ?
Note that in the last line we used Lemma 2.2 to obtain the estimates on ey;. This
gives a = ).y aj;.
We next use Proposition 4.6 and Lemma 4.7 to compare A(t) and Ay(t):
t
40 = Av(DL, < [ 12 Optena ()] s
N;»Z

< C«Ne(Mo-i-C'oh)’yt(l + ,y)N—l—ltN-l-lh(Z—Sp)(N—i-l)(l + V%h%t)i-

The stronger version under the assumption that Zj{€j7éj} = 0 follows from the
stronger estimates in (4.13) and (5.6). O

7. BOUNDS ON THE HILBERT-SCHMIDT NORM OF LINDBLAD EVOLUTION

In this section we use Theorem 4 to give lower bounds on the Hilbert—Schmidt norm
of the Lindblad evolution in the case of Example (1.7). We will consider two special
cases: quadratic hamiltonians and confining Hamiltonians.
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7.1. Quadratic Hamiltonians. We first show that when p is quadratic and the initial
condition is Gaussian, it is possible to solve (1.4) exactly. For the purposes of this
section, we let B be a real, symmetric, matrix and suppose that

1 T
p(z.€) = 5(Bp,p),  p:= (£> : (7.1)
. 0 I .
We also use the notation 2 := <_ I O) for the standard symplectic form.

Lemma 7.1. Let p as in (7.1), Ay be a real, symmteric, positivie definite matriz.
po € R*™, and u solve

1

(0= Hy = Syhdeu =0, u(0) =exp (= 5-(Aolp—pop—p0))). (72

Then,
u(t) = O exp (= (AW~ polt). o~ po(t))).
where A(0) = Ay, po(0) = po, f(0) =0, and
po(t) = —QBpy
Aty = (A+AHQB — 2(A+ AN?  f(t) = =T tr(A(t) + AL(t)).
Proof. We compute

ou = U(f — %Vl(f? — po), P — po) + i(Ap(bp — po) + i<A(P - Po),Po>>>

2h 2h
. 1 . 1 i
= u(f = 55 (AP = po), p = po) + 5 (A + AT)po, p — po>>,
1 1
Hyu = U< = 5 (AQBp, (p = po)) — 5 {Alp = po), QB/)>)

(L ‘ o) — & ‘ o) o —

= u( = 3 (A + A9Bpo, p = po) = 5-((A+ ANQB(p = o). p = )

— L 3 _ t _ o i t

hu = uyh( o (A + A = po), (A+ AY(p = po)) = 5-200(A + A))
1 1

— urh( 5 (A A2 (0 = po), p — po) — 5 tr(A+ AY)).
Then, using that u satisfies (7.2), and equating terms by homogeneity in p — pg, we
obtain (7.3). O

Remark. As an easy corollary of Lemma 7.1, we see that if Ay =21, B =0, then

1 1 7h 3

- (p—po,0—p0) < ) 2

t h(1+271) t .
U( ) (1 - 2%)”6 ' ’ Hu( )HL2 2(1 + 2’775)
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When p = 0, the Lindblad evolution is exactly given by the Fokker—Planck evolution,
and thus the solution A(t) to (1.19), satisfies

1AW s = (=)

1+ 2+t

7.2. Confining Hamiltonians. We next consider the case where the Hamiltonian p
is confining. We assume in this subsection that there are ¢,m > 0 and M € R such

that
Ap>0,  p>cVp? on [p| > M,

pl > e{(z, )" = 1/e,  (2,§) € R™
We show in Proposition 7.4 that under this assumption, for sufficiently dispersed initial

data, the Hilbert—Schmidt norm of the Lindblad evolution is bounded from below in
the Hilbert—Schmidt norm.

(7.4)

We will use a maximum principle type argument that, in the presence of a con-
fining hamiltonian, the Fokker-Planck evolution remains well confined in L! for long
times. We start by constructing an effective barrier with which to apply the maximum
principle.

Lemma 7.2. Suppose that (7.4) holds. Then for any f € C*(R), such that supp f' C
(M,00), f, f" >0, f" € C, there is C > 0 such that, defining

g(t) == o)

W{O)—l—l’ U(t,l‘,f) = eXp(—g(t)f(p(x,f))), (75)

we have
(0y — H, — $37hA)v >0, ¢ > 0. (7.6)

Proof. We calculate
—vhAv = [~ () f(p) + YR((=g*[f (0)* + 9" () [VDI* + 9f' (p)Ap)Jv
> [=g'(t)f(p) + vh(—g*[f' )]V (7.7)
> [~4' (1) f(p) + Cvh(=g*[f' (0))*P)]v-
Since f >0 and |f"(p)| < C,

()] < CVf(p).
Hence, using that f” € C°

>, we have that there is py such that f’(p) = L for p > po
large enough and f’(p) = 0 for p < M,

f(p) = max(e[f'(p)*, L(p — po) + f(po)) = c[f'(p))*p-
5)

Thus, for C > 0 large enough, and g given in (7.5) (so that —g'(t) — Cyhg® = 0) the
last inequality in (7.7) gives (7.6). O
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FIGURE 1. The ||u(t)]/z2/]|w(0)] 2 for the solution to (7.2) with A = 21

for various choices of B in (7.1).
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In the next lemma, we show that, given some apriori assumptions on the Fokker—
Planck solution, we are able to confine the majority of its L' mass to a bounded set.
As a consequence, we obtain that the L? norm cannot decay for long times.

Lemma 7.3. Suppose that (7.4) holds. Then, ¥V Ry,c; > 03 Ry >0V, N > 03Cys
such that if

0 < ap(z,€) < e @DV (e,€)] > Ry, 0<ag<1 (7:8)
then for any solution a(t) € L>®({t > 0} x ]R%zg)) to
(8, — H, — 37hA)a = 0, a(0) = ay,

we have
la(®)]|zr @\ Bo.Ry) = Cnsh™  0<t < R0y (7.9)

In particular,

HGO”Ll — CN,ghN S CHa(t)HLz, (710)

Proof. Let M; > 0 such that
p>M = ((z,6))"/2<p<Ci(x,€)? and |(z,€)] > Ry.

Then, set My = max(M, M), letyp € C°((My, My+1);[0,00) with [ =1 and define

f(x) == [ [§ ¥(t)dtds so that f"(z) = ¢ (x), supp f C (Mo, 00) with f, f” > 0. Let
Ry > 0 such that p > My + 1 on |(z,£)| > R;.

Since f(p(z,€)) = 0 on |(z,€)| < Ry, f(p) < Cp < C{(x,€))? there exists ¢g > 0
such that

exp(—cof (p(,8))/h) = ao.
We now apply Lemma 7.2 with g(0) = ¢o/h: for v in (7.5)

(8, — Hy — 37hA)(v —a) >0, ¢ >0.

The maximum principle [Co80, Theorem 1] then shows that 0 < a < v and conse-
quently, using that f(p) > cp > c{(z,£))™ on R*™ \ B(0, Ry),

la(®) || @em\ B0,R)) < V() ||t @2\ B(0,RY)

< / el @ON™ [(CIHM) 4o e < Ceco/(Crthth)
R27\ B(0,R1)

from which (7.9) follows.
To obtain (7.10), observe that

at/adxaE = /(Hp + %th)adxdf =0.
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Hence,

laollzr = lla(®)|lr < la(®)|l L5081y + Cnsh™
< OR}|la(®)| 12(B(0.ry)) + Cnsh™
< CRY|a(t)||z2 + Cn.sh™.

O

Finally, we show that the Hilbert—-Schmidt norm of the Lindblad evolution with a
confining Hamiltonian can, in many cases, be effectively controlled from below. We

Proposition 7.4. Suppose that L is given by (1.2), assumptions (1.3), and (7.4) hold,
that £;’s are as in (1.7). If b~ <~ < h™! for some 0 < p < % then

3Cy >0V >0,Ry>0,0a9 € Sf with ag/||ag||L~ satisfying (7.8), N,6 >03C >0
such that if A(t) satisfies (in the notation of §2)

O A(t) = LA(t), A(0) = Op(ao),
then, for 0 <t < h™1H0y~1

(27R) % tr A(0) — ChN ||ao|| e — CeP* 1 (1 + 4)th=30) < C||A(t)| .

Proof. By Theorem 4,
1A(t) = Op(a(t))|| 2, < Ce™" (1 +7)th*~*) (7.11)
where a(t) = U(t)ag. In particular, a(t) satisfies
(0, — H, — 37hA)a = 0, a(0) =0,

and a(t) € SPLQ. Since a(t) € S}2, uniformly in ¢ > 0, by the Sobolev embedding,

a(t) € L>*({t > 0} x R?&)) and hence applying Lemma 7.3 then yields

(2mh)"™ tr A(0) — ChN||a0||Loo = llao||zr — C’hN||ao||Loo

. (7.12)
< Clla(t)||z2 = C(27h)2 || Op(a(t))]] -

The Proposition now follows from combining (7.11) and (7.12). O

APPENDIX: OPERATORS WITH QUADRATIC SYMBOL GROWTH

We start with the composition formula of operators quantizing symbols in Sy where
that space was defined in (2.3).
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Proposition A.1. Suppose that a; € Sy, j = 1,2. Then Op(a1) Op(az) = Op(b),
where for any N > max(ky, k2),

N-1

1 /h ¢
b(l’,g, h) - Z E <ZU(D£7 DSJ Dy7 Dn)) al(x,ﬁ)@(y, 77)|r=y,£:n € h’NSOJ (A1>
=0

where o is the standard symplectic form on R?".

Remark. Note that b in the statement of the proposition is not necessarily in an S
class since they are not closed under multiplication.

Proof. We observe that Sy C S(my), my(z,&) = (1 + |z| + [£])*. Hence [Zw12,
Theorem 4.18| applies and, writing z = (z,&), w = (y,n),

b(z,h) = exp(ithA(D))(ai(z)az(w))|mw, A(Dsw) = —%U(Dx, D¢, Dy, D,).

By Taylor’s formula,

=

bz, h) = ) Z(ERA(D)) (@1(2)az(w)) emw + B (2, 1)

~
Il

where

Rn(z,h) : ! !(1 — t)YNLAD) G A(D))N ((a1(2)ag(w))] 2 0-

(N—-1)

For N > max(ki, k), A(D)Nay(2)az(w) € So(R%%,) and since ¢ A@P) . Sy(R*") —
S(R*) (with uniform bounds for 0 < ¢ < 1 — see [Zw12, Theorem 4.17]) we conclude
that Ry € h" Sy(R?") which is (A.1). O

We now present a general spectral result following the proof of a special case in
[H695] (see the example in [Zw12, §C.2.2]):
Proposition A.2. Suppose that p(x,&) € C°(R? x RY) satisfies
0°p(z, §)| < Ca(l + 2|+ ), [af = 1, (A.2)
and define
Nyu = p"(z,D)u, D(N,) :=.7(RY),
Myu = p* (2, D)u, D(M,) := {u € L*(RY) : p"(x, Dju € L2(R%)},

where in the case of u € L*(RY) C &'(R?) we consider p(x, D)u € .#'(RY). Then
M, s closed and

M,=N,, M= M,. (A.3)

p
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Proof. We recall that p“(z,D) : %" — %" is continuous and hence, if u; — u and
pY(x,D)u; — v in L? then u; — w in %’. Consequently, v = p“(z,D)u € L?
u € D(M,) and M,u = v. This shows that M, is closed.
To show that M, is the closure of N, we have to show that for any u € D(M,) there

exists a family u. € .¥ such that u. — u and

p¥(z, D)u. — p“(x,D)u in L* as ¢ — 0. (A.4)
To construct u. we take y € C>°(R??) equal to one in Bgz.(0, 1), and put

ue = XY (x, D)u € .7, Xe(w,€&) = x(ex, ), u. —u in L*

Then pYu. = x¥p“u. + [p%, x¥]u. and as x¥p“u — p% in L? we need to show that

[p¥(z, D), x¥(x,D)Ju — 0 in L* , &— 0. (A.5)
To see this we note that [Zw12, Theorem 4.18] and the two term Taylor expansion of
e AD) give
0"(2, D), xe(, D)) = 0¥ (2, D), ae(2,€) = i{xe, p}@,€) + be(w,6), (A6

where

be(x, €) ::/0 (1—1) (P A(D))? (p(x, ) xe (v, 1) = Py, M X, €))) lamye=ndt,

and A(D) := o(D,, D¢; Dy, D). In view of (A.2),
{xe:p}(2,6) = € Z (02,1, ) (0, X) (e, £6) — O, p(, £)(0n; X) (€7, €6))

is bounded in S(1), uniformly as ¢ — 0.

To obtain estimates on b, we observe that, for some c,3 € C,
(LA(D))(p(x, )x=(y, 1) — p(y, n)xe(, €))

= D cape(0°p(2,9)0 x(ey, en) — 0°X(ex,2€)0"ply,m)) € £(S(m) + S(1/m)),
|lal=|B]=2

where the order function is given by m(x, £, y,n) := (z,€)(y,n)~*. The inclusion follows
from the fact ¢ < C(e(z,€))! for (z,€) € suppy and from the assumption (A.2).
By [Zw12, Theorem 4.17], the operators e"4(?) : S(m*!) — S(m*!) are bounded
uniformly in ¢. Since m|,—ye—y = 1, b € €5(1), and [Zw12, Theorem 4.23] gives,
uniformly as ¢ — 0,

167 (2, D)llgais < Cs. (A7)

We now choose ¢ € C°(R"™) supported in Bgz.(0, 1), equal to one near 0, and put
Ve(x, &) = Y(ex,ef). Then {x.,pHz,&)Y(x,&) = 0, and [Zw12, Theorems 4.18 and
4.23] imply

H{Xaap}w(gj’ DWZV(% D)HL2—>L2 < Ce.
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This and (A.7) give
™ (2, D), xZ (2, D)] = {xe, p}" (2, D)(1 = ¥ (x, D)) + {xz, p}" (z, D)9 (x, D) + b2 (2, D)
= {Xe, 0} (2, D)1 = ¥ (x, D)) + O(e) 212

Since ¥ (z, D)u — w in L* and {x.,p} € S(1) (hence by [Zw12, Theorem 4.23]
I{xze, p}" (x, D)|| 12— 12 is uniformly bounded), this and (A.7) give (A.5).

It remains to show the last assertion in (A.3). For that we recall that v € D(M}) if
and only if there exists C' = C(v) such that for all u € D(M,)

(Myu,v) < Cllu 2. (A8)

For w € ¥ C D(M,) we have (Myu,v) = (u,p"(x, D)v), where p¥(z, D)v € ." and
(A.8) implies that p“(x, D)v € L?. Hence M} C Mj. Since M is closed, N5 C N =
N» = M. Tt follows that M = Ny C M* and that M* = M;. O
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