Math 256B. Homework 8

Due Wednesday 20 March

- 1(NC). Let \mathscr{L} be a line sheaf on a scheme X. Suppose that there exist global sections $s \in \Gamma(X, \mathscr{L})$ and $t \in \Gamma(X, \mathscr{L}^{\vee})$ such that $s \otimes t$ maps to 1 under the canonical isomorphism $\mathscr{L} \otimes \mathscr{L}^{\vee} \xrightarrow{\sim} \mathscr{O}_X$. Show that there exist isomorphisms $\phi \colon \mathscr{L} \xrightarrow{\sim} \mathscr{O}_X$ and $\psi \colon \mathscr{L}^{\vee} \xrightarrow{\sim} \mathscr{O}_X$ such that $\phi(s) = \psi(t) = 1$.
 - 2. Let \mathscr{L} be an ample line sheaf on a projective variety X. Let V_1, \ldots, V_n be closed subvarieties, with $V_i \not\subseteq V_j$ for all $i \neq j$. Then there exists a positive integer m and $t_1, \ldots, t_n \in \Gamma(X, \mathscr{L}^{\otimes m})$ such that $t_i |_{V_i} \neq 0$ for all $i \neq j$, and $t_i |_{V_i} = 0$ for all i.

Here if X is a scheme, if \mathscr{M} is a quasi-coherent sheaf on X, if Y is a closed subscheme of X with corresponding closed immersion $i: Y \to X$, and if s is a global section of \mathscr{M} , then $s|_Y$ is the global section of $i^*\mathscr{M}$ defined locally by $s \otimes 1$ (via the isomorphism of (II, Prop. 5.2e)). Or, tensoring the natural map $\mathscr{O}_X \to \mathscr{O}_Y$ with \mathscr{M} gives a map $\mathscr{M} \to \mathscr{M} \otimes \mathscr{O}_Y$, and $s|_Y$ is the image of s under this map (note that $\mathscr{M} \otimes \mathscr{O}_Y \cong i^*\mathscr{M}$). It is also true (and you may use without proof) that if Y is integral, and if η is its generic point, then $s|_Y = 0$ if and only if $s_\eta \in \mathfrak{m}_\eta \mathscr{M}_\eta$, where \mathfrak{m} is the maximal ideal in the local ring $\mathscr{O}_{X,\eta}$.

[Hint: Think of the prime avoidance lemma in commutative algebra.]

- 3. Let A_0 be the subring of k[x, y] generated by the set of all homogeneous polynomials of degree $\neq 1$, let $A = (A_0)_{x^2-1}$, and let $X = \operatorname{Spec} A$.
 - (a). Show that X is separated, noetherian, integral, and regular in codimension one.
 - (b). Show that X is not normal.
 - (c). Show that the divisor (x-1) equals zero as a Weil divisor, but that x-1 is not a regular function on X. (Note that x-1 is an element of K(X) = k(x, y).)