Math 256B. Spectral Sequences

For concreteness, we work over the category $\mathfrak{A b}$ of abelian groups; however, everything will still work over an arbitrary abelian category.

Mostly this follows Lang's Algebra, and also Vakil's FOAG. (Note that Vakil interchanges the roles of p and q.)

First, we give the definition of spectral sequence that is likely the most familiar to mathematicians in algebraic geometry.
Definition. A spectral sequence is a sequence $\left\{E_{r}, d_{r}\right\}_{r \geq 0}$ of bigraded objects

$$
E_{r}=\bigoplus_{p, q \in \mathbb{N}} E_{r}^{p, q}
$$

together with homomorphisms (called differentials) $d_{r}=d_{r}^{p, q}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}$ (hence of bidegree $(r, 1-r)$) for all r, p, q, such that

$$
\begin{aligned}
& \text { (i). } d_{r}^{2}=0 \text {, and } \\
& \text { (ii). } H\left(E_{r}\right)=E_{r+1} \text { (i.e., } \\
& E_{r+1}^{p, q}=\operatorname{ker}\left(d_{r}^{p, q}: E_{r}^{p, q} \rightarrow E_{r}^{p+r, q-r+1}\right) / \operatorname{im}\left(d_{r}^{p-r, q+r-1}: E_{r}^{p-r, q-r+1} \rightarrow E_{r}^{p, q}\right)
\end{aligned}
$$

$$
\text { for all } r, p, q) \text {. }
$$

In the above, we also let $E_{r}^{(p, q)}=0$ for all $r \in \mathbb{N}$ and all $(p, q) \in \mathbb{Z}^{2} \backslash \mathbb{N}^{2}$.
Remark. Let $p, q \in \mathbb{N}$ and $n=p+q$. Then, for all $r>n+1$, we have $q-r+1<0$ and $p-r<0$ (since $p, q \leq n$); hence $d_{r}^{p, q}=d_{r}^{p-r, q+r-1}=0$, and consequently

$$
E_{r}^{p, q}=E_{r+1}^{p, q}=E_{r+2}^{p, q}=\ldots
$$

We let $E_{\infty}^{p, q}$ denote this limiting value.
Definition. Let $\left(K^{\cdot}, D\right)$ be a (co)complex of abelian groups. Then a filtration of $\left(K^{\cdot}, D\right)$ is an \mathbb{N}-graded filtration $K^{n}=F^{0} K^{n} \supseteq F^{1} K^{n} \supseteq \ldots$ of K^{n} for all $n \in \mathbb{N}$ such that $D\left(F^{p} K^{n}\right) \subseteq F^{p} K^{n+1}$ for all n, p. We also assume that $F^{p} K^{n}=0$ for all sufficiently large p, depending on n.
Definition. A filtered complex is a complex $\left(K^{*}, D\right)$ with a filtration.
Definition. Let $\left(K^{\cdot}, D\right)$ be a filtered complex. Then, for all $n \in \mathbb{N}$, we define a filtration $\left\{F^{p} H^{n}\left(K^{*}\right)\right\}_{p \in \mathbb{N}}$ of $H^{n}\left(K^{*}\right)$ as follows. By definition of filtration, the inclusions $F^{p} K^{n} \rightarrow K^{n}$ for all n induce a map of $F^{p} K^{*} \rightarrow K^{*}$ of complexes, hence a map $H^{n}\left(F^{p} K^{*}\right) \rightarrow H^{n}\left(K^{*}\right)$ for all n. We define $F^{p} H^{n}\left(K^{*}\right)$ to be the image of this map. Since $F^{p+1} K^{*} \rightarrow F^{p} K^{*}$ is a map of complexes, and since $F^{0} K^{*}=K^{*}$, we have

$$
H^{n}\left(K^{*}\right)=F^{0} H^{n}\left(K^{*}\right) \supseteq F^{1} H^{n}\left(K^{*}\right) \supseteq \ldots
$$

for all n. Moreover, for all n there is a p such that $F^{p} K^{n}=0$, which gives $F^{p} H^{n}\left(K^{*}\right)=0$ (for the same p).
The main theorem of this handout is the following.

Theorem. Let $\left(K^{*}, D\right)$ be a filtered complex. Assume that $F^{p} K^{n}=0$ for all $n \in \mathbb{N}$ and all $p>n$. For all $r, n, p \in \mathbb{N}$, define:

$$
\begin{aligned}
& X_{-1}^{n ; p}=F^{p} K^{n}, \\
& X_{r}^{n ; p}=F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right), \\
& Y_{r}^{n ; p}=D\left(X_{r-1}^{n-1 ; p-(r-1)}\right)+X_{r-1}^{n ; p+1}, \quad \text { and } \\
& E_{r}^{n ; p}=X_{r}^{n ; p} / Y_{r}^{n ; p} .
\end{aligned}
$$

Then:
(a). $Y_{r}^{n ; p} \subseteq X_{r}^{n ; p}$ (and therefore $E_{r}^{n ; p}$ is well defined) for all r, n, p;
(b). D induces well-defined maps

$$
d_{r}=d_{r}^{n ; p}: E_{r}^{n ; p} \rightarrow E_{r}^{n+1 ; p+r}
$$

for all r, n, p;
(c). with the above differentials, and letting $E_{r}^{p, q}=E_{r}^{n ; p}$ and $d_{r}^{p, q}=d_{r}^{n ; p}$ for all r, n, p, q with $p+q=n,\left\{E_{r}, d_{r}\right\}_{r \geq 0}$ is a spectral sequence; and
(d). we have $F^{n+1} H^{n}\left(K^{*}\right)=0$ for all n, and

$$
F^{p} H^{n}\left(K^{*}\right) / F^{p+1} H^{n}\left(K^{\cdot}\right) \cong E_{\infty}^{n ; p}
$$

for all $n \in \mathbb{N}$ and all $p=0, \ldots, n$.
Proof. (a). When $r=0$,

$$
\begin{align*}
X_{0}^{n ; p}=F^{p} K^{n} \cap D^{-1}\left(F^{p} K^{n+1}\right) & =F^{p} K^{n} \quad \text { and } \\
Y_{0}^{n ; p}=D\left(F^{p+1} K^{n-1}\right)+F^{p+1} K^{n} & =F^{p+1} K^{n}, \tag{1}
\end{align*}
$$

so clearly $Y_{0}^{n ; p} \subseteq X_{0}^{n ; p}$.
Now assume $r>0$. Since $X_{r-1}^{n-1 ; p-r+1}=F^{p-r+1} K^{n-1} \cap D^{-1}\left(F^{p} K^{n}\right)$, we have

$$
D\left(X_{r-1}^{n-1 ; p-r+1}\right) \subseteq D\left(D^{-1}\left(F^{p} K^{n}\right)\right) \subseteq F^{p} K^{n}
$$

combining this with $D\left(X_{r-1}^{n-1 ; p-r+1}\right) \subseteq D^{-1}\left(F^{p+r} K^{n+1}\right)$ (since $D \circ D=0$) gives

$$
\begin{equation*}
D\left(X_{r-1}^{n-1 ; p-r+1}\right) \subseteq F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right)=X_{r}^{n ; p} \tag{2}
\end{equation*}
$$

Also,

$$
\begin{equation*}
X_{r-1}^{n ; p+1}=F^{p+1} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right) \subseteq F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right)=X_{r}^{n ; p} . \tag{3}
\end{equation*}
$$

Combining (2) and (3) then gives

$$
Y_{r}^{n ; p}=D\left(X_{r-1}^{n-1 ; p-(r-1)}\right)+X_{r-1}^{n ; p+1} \subseteq X_{r}^{n ; p}
$$

(b). This amounts to checking that $D\left(X_{r}^{n ; p}\right) \subseteq X_{r}^{n+1 ; p+r}$ and $D\left(Y_{r}^{n ; p}\right) \subseteq Y_{r}^{n+1 ; p+r}$. For the first of these,

$$
D\left(X_{r}^{n ; p}\right) \subseteq D\left(D^{-1}\left(F^{p+r} K^{n+1}\right)\right) \subseteq F^{p+r} K^{n+1}
$$

because $X_{r}^{n ; p} \subseteq D^{-1}\left(F^{p+r} K^{n+1}\right)$ by definition, and

$$
D\left(X_{r}^{n ; p}\right) \subseteq D^{-1}\left(F^{p+2 r} K^{n+2}\right)
$$

because $D \circ D=0$, so

$$
D\left(X_{r}^{n ; p}\right) \subseteq F^{p+r} K^{n+1} \cap D^{-1}\left(F^{p+2 r} K^{n+2}\right)=X_{r}^{n+1 ; p+r} .
$$

As for $D\left(Y_{r}^{n ; p}\right)$,

$$
\begin{aligned}
D\left(Y_{r}^{n ; p}\right) & =D\left(D\left(X_{r-1}^{n-1 ; p-(r-1)}\right)+X_{r-1}^{n ; p+1}\right) \\
& =D\left(X_{r-1}^{n ; p+1}\right) \\
& \subseteq D\left(X_{r-1}^{n ; p+1}\right)+X_{r-1}^{n+1 ; p+r+1} \\
& =Y_{r}^{n+1 ; p+r} .
\end{aligned}
$$

Note that this holds also for $r=0$, because the value of $X_{r-1}^{n+1 ; p+r+1}$ did not play a role here.
(c). This is a matter of checking that $d_{r}^{2}=0$ and that $H\left(E_{r}\right)=E_{r+1}$.

The fact that $d_{r}^{2}=0$ is immediate from the fact that $D^{2}=0$.
To check that $H\left(E_{r}\right)=E_{r+1}$, we follow Vakil 1.7.13.
Claim. $\operatorname{ker} d_{r}^{n ; p}=\frac{X_{r-1}^{n ; p+1}+X_{r+1}^{n ; p}}{Y_{r}^{n ; p}}$.
Proof. It is easy to check that $\operatorname{ker} d_{r}^{n ; p}=\left(X_{r}^{n ; p} \cap D^{-1}\left(Y_{r}^{n+1 ; p+r}\right)\right) / Y_{r}^{n ; p}$, so it suffices to show that

$$
\begin{equation*}
X_{r}^{n ; p} \cap D^{-1}\left(Y_{r}^{n+1 ; p+r}\right)=X_{r-1}^{n ; p+1}+X_{r+1}^{n ; p} . \tag{4}
\end{equation*}
$$

Indeed, we have

$$
\begin{equation*}
X_{r-1}^{n ; p+1}=F^{p+1} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right) \subseteq F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right)=X_{r}^{n ; p} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
X_{r}^{n ; p} & \cap D^{-1}\left(X_{r-1}^{n+1 ; p+r+1}\right) \\
& =F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right) \cap D^{-1}\left(F^{p+r+1} K^{n+1} \cap D^{-1}\left(F^{p+2 r} K^{n+2}\right)\right) \\
& =F^{p} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right) \cap D^{-1}\left(F^{p+r+1} K^{n+1}\right) \\
& =F^{p} K^{n} \cap D^{-1}\left(F^{p+r+1} K^{n+1}\right) \\
& =X_{r+1}^{n ; p} . \tag{6}
\end{align*}
$$

Therefore, by definition of $Y_{r}^{n+1 ; p+r}$, general properties of homomorphisms, (5), and (6), we have

$$
\begin{aligned}
X_{r}^{n ; p} \cap D^{-1}\left(Y_{r}^{n+1 ; p+r}\right) & =X_{r}^{n ; p} \cap D^{-1}\left(D\left(X_{r-1}^{n ; p+1}\right)+X_{r-1}^{n+1 ; p+r+1}\right) \\
& =X_{r}^{n ; p} \cap\left(X_{r-1}^{n ; p+1}+D^{-1}\left(X_{r-1}^{n+1 ; p+r+1}\right)\right) \\
& =X_{r-1}^{n ; p+1}+\left(X_{r}^{n ; p} \cap D^{-1}\left(X_{r-1}^{n+1 ; p+r+1}\right)\right) \\
& =X_{r-1}^{n ; p+1}+X_{r+1}^{n ; p} .
\end{aligned}
$$

This is (4), so the claim is proved.
Now consider the image of $d_{r}^{n ; p-r}: E_{r}^{n ; p-r} \rightarrow E_{r}^{n ; p}$. Since $X_{r-1}^{n-1 ; p-r+1} \subseteq X_{r}^{n-1 ; p-r}$,

$$
\begin{aligned}
\operatorname{im} d_{r}^{n ; p-r} & =\frac{D\left(X_{r}^{n-1 ; p-r}\right)+Y_{r}^{n ; p}}{Y_{r}^{n ; p}} \\
& =\frac{D\left(X_{r}^{n-1 ; p-r}\right)+D\left(X_{r-1}^{n-1 ; p-r+1}\right)+X_{r-1}^{n ; p+1}}{Y_{n}^{n ; p}} \\
& =\frac{D\left(X_{r}^{n-1 ; p-r}\right)+X_{r-1}^{n ; p+1}}{Y_{r}^{n ; p}} .
\end{aligned}
$$

It will suffice to show that there is a well-defined isomorphism

$$
E_{r+1}^{n ; p}=\frac{X_{r+1}^{n ; p}}{Y_{r+1}^{n ; p}}=\frac{X_{r+1}^{n ; p}}{D\left(X_{r}^{n-1 ; p-r}\right)+X_{r}^{n ; p+1}} \stackrel{\phi}{\rightarrow} \frac{X_{r+1}^{n ; p}+X_{r-1}^{n ; p+1}}{D\left(X_{r}^{n-1 ; p-r}\right)+X_{r-1}^{n ; p+1}} \cong \frac{\operatorname{ker} d_{r}^{n ; p}}{\operatorname{im} d_{r}^{n ; p-r}} .
$$

We first claim that

$$
\begin{equation*}
X_{r+1}^{n ; p} \cap\left(D\left(X_{r}^{n-1 ; p-r}\right)+X_{r-1}^{n ; p+1}\right)=D\left(X_{r}^{n-1 ; p-r}\right)+X_{r}^{n ; p+1} . \tag{7}
\end{equation*}
$$

Since $D\left(X_{r}^{n-1 ; p-r}\right) \subseteq D\left(D^{-1}\left(F^{p} K^{n}\right)\right)$ and $D \circ D=0$, we have

$$
D\left(X_{r}^{n-1 ; p-r}\right) \subseteq F^{p} K^{n} \cap D^{-1}(0) \subseteq F^{p} K^{n} \cap D^{-1}\left(F^{p+r+1} K^{n+1}\right)=X_{r+1}^{n ; p} .
$$

Also

$$
\begin{aligned}
X_{r+1}^{n ; p} \cap X_{r-1}^{n ; p+1} & =F^{p} K^{n} \cap D^{-1}\left(F^{p+r+1} K^{n+1}\right) \cap F^{p+1} K^{n} \cap D^{-1}\left(F^{p+r} K^{n+1}\right) \\
& =F^{p+1} K^{n} \cap D^{-1}\left(F^{p+r+1} K^{n+1}\right) \\
& =X_{r}^{n ; p+1} .
\end{aligned}
$$

Combining these two facts gives (7), because

$$
\begin{aligned}
X_{r+1}^{n ; p} \cap\left(D\left(X_{r}^{n-1 ; p-r}\right)+X_{r-1}^{n ; p+1}\right) & =D\left(X_{r}^{n-1 ; p-r}\right)+\left(X_{r+1}^{n ; p} \cap X_{r-1}^{n ; p+1}\right) \\
& =D\left(X_{r}^{n-1 ; p-r}\right)+X_{r}^{n ; p+1} .
\end{aligned}
$$

Therefore ϕ is well-defined and injective. Surjectivity of ϕ is clear, so ϕ is an isomorphism and (c) is proved.
(d). First of all, the fact that $F^{n+1} H^{n}\left(K^{*}\right)=0$ follows immediately from the assumption that $F^{n+1} K^{n}=0$.

By definition of $F^{p} H^{n}\left(K^{*}\right)$,

$$
F^{p} H^{n}\left(K^{\cdot}\right)=\operatorname{im}\left(H^{n}\left(F^{p} K^{\cdot}\right) \rightarrow \frac{\operatorname{ker} D^{n}}{\operatorname{im} D^{n-1}}\right)=\frac{\left(F^{p} K^{n} \cap \operatorname{ker} D\right)+\operatorname{im} D}{\operatorname{im} D} .
$$

First consider $E_{\infty}^{n ; p}$. Since $d_{r}^{n ; p}=0$ for all $r>n+1$ (since $E_{r}^{n ; p+r}=0$), we have $X_{r}^{n ; p}=X_{r+1}^{n ; p}$ and $Y_{r}^{n ; p}=Y_{r+1}^{n ; p}$ for all $r>n+1$; call these groups $X_{\infty}^{n ; p}$ and $Y_{\infty}^{n ; p}$, respectively. We have

$$
X_{\infty}^{n ; p}=F^{p} K^{n} \cap \operatorname{ker} D
$$

and

$$
Y_{r}^{n ; p}=D\left(F^{p-r+1} K^{n-1} \cap D^{-1}\left(F^{p} K^{n}\right)\right)+X_{r-1}^{n ; p+1}
$$

for all n, r, and p, so

$$
\begin{aligned}
Y_{\infty}^{n ; p} & =D\left(K^{n-1} \cap D^{-1}\left(F^{p} K^{n}\right)\right)+X_{\infty}^{n ; p+1} \\
& =D\left(D^{-1}\left(F^{p} K^{n}\right)\right)+X_{\infty}^{n ; p+1} \\
& =\left(F^{p} K^{n} \cap \operatorname{im} D\right)+\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right) .
\end{aligned}
$$

And, naturally, $E_{\infty}^{n ; p}=X_{\infty}^{n ; p} / Y_{\infty}^{n ; p}$.
We then claim that there is a well-defined isomorphism

$$
\begin{aligned}
E_{\infty}^{n ; p} & =\frac{F^{p} K^{n} \cap \operatorname{ker} D}{\left(F^{p} K^{n} \cap \operatorname{im} D\right)+\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right)} \\
& \xrightarrow{\phi} \frac{\left(F^{p} K^{n} \cap \operatorname{ker} D\right)+\operatorname{im} D}{\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right)+\operatorname{im} D}=\frac{F^{p} H^{n}(K)}{F^{p+1} H^{n}(K)} .
\end{aligned}
$$

To see this, we first note that

$$
\begin{aligned}
F^{p} K^{n} \cap \operatorname{ker} D \cap\left(\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right)+\operatorname{im} D\right) & =F^{p} K^{n} \cap\left(\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right)+\operatorname{im} D\right) \\
& =\left(F^{p+1} K^{n} \cap \operatorname{ker} D\right)+\left(F^{p} K^{n} \cap \operatorname{im} D\right) .
\end{aligned}
$$

Indeed, the first step holds because $\operatorname{im} D \subseteq \operatorname{ker} D$, and so $\operatorname{ker} D$ contains the quantity in parentheses. The second step is true because $F^{p+1} K^{n} \cap \operatorname{ker} D$ is contained in $F^{p} K^{n}$.

Therefore ϕ is well-defined and injective. It is clearly surjective, so it is the desired isomorphism.

