Math 256B. Spectral Sequences

For concreteness, we work over the category \mathfrak{Ab} of abelian groups; however, everything will still work over an arbitrary abelian category.

Mostly this follows Lang's Algebra, and also Vakil's FOAG. (Note that Vakil interchanges the roles of p and q.)

First, we give the definition of spectral sequence that is likely the most familiar to mathematicians in algebraic geometry.

Definition. A spectral sequence is a sequence $\{E_r, d_r\}_{r>0}$ of bigraded objects

$$E_r = \bigoplus_{p,q \in \mathbb{N}} E_r^{p,q} ,$$

together with homomorphisms (called **differentials**) $d_r = d_r^{p,q} \colon E_r^{p,q} \to E_r^{p+r,q-r+1}$ (hence of bidegree (r, 1-r)) for all r, p, q, such that

(i).
$$d_r^2 = 0$$
, and
(ii). $H(E_r) = E_{r+1}$ (i.e.,
 $E_{r+1}^{p,q} = \ker(d_r^{p,q} \colon E_r^{p,q} \to E_r^{p+r,q-r+1}) / \operatorname{im}(d_r^{p-r,q+r-1} \colon E_r^{p-r,q-r+1} \to E_r^{p,q})$
for all r, p, q).

In the above, we also let $E_r^{(p,q)} = 0$ for all $r \in \mathbb{N}$ and all $(p,q) \in \mathbb{Z}^2 \setminus \mathbb{N}^2$.

Remark. Let $p, q \in \mathbb{N}$ and n = p + q. Then, for all r > n + 1, we have q - r + 1 < 0 and p - r < 0 (since $p, q \le n$); hence $d_r^{p,q} = d_r^{p-r,q+r-1} = 0$, and consequently

$$E_r^{p,q} = E_{r+1}^{p,q} = E_{r+2}^{p,q} = \dots$$

We let $E_{\infty}^{p,q}$ denote this limiting value.

Definition. Let (K, D) be a (co)complex of abelian groups. Then a **filtration** of (K, D) is an \mathbb{N} -graded filtration $K^n = F^0 K^n \supseteq F^1 K^n \supseteq \ldots$ of K^n for all $n \in \mathbb{N}$ such that $D(F^p K^n) \subseteq F^p K^{n+1}$ for all n, p. We also assume that $F^p K^n = 0$ for all sufficiently large p, depending on n.

Definition. A filtered complex is a complex (K, D) with a filtration.

Definition. Let (K, D) be a filtered complex. Then, for all $n \in \mathbb{N}$, we define a filtration $\{F^pH^n(K)\}_{p\in\mathbb{N}}$ of $H^n(K)$ as follows. By definition of filtration, the inclusions $F^pK^n \to K^n$ for all n induce a map of $F^pK \to K$ of complexes, hence a map $H^n(F^pK) \to H^n(K)$ for all n. We define $F^pH^n(K)$ to be the image of this map. Since $F^{p+1}K \to F^pK$ is a map of complexes, and since $F^0K \to K$, we have

$$H^{n}(K^{\cdot}) = F^{0}H^{n}(K^{\cdot}) \supseteq F^{1}H^{n}(K^{\cdot}) \supseteq \dots$$

for all n. Moreover, for all n there is a p such that $F^p K^n = 0$, which gives $F^p H^n(K^{\cdot}) = 0$ (for the same p).

The main theorem of this handout is the following.

Theorem. Let (K, D) be a filtered complex. Assume that $F^pK^n = 0$ for all $n \in \mathbb{N}$ and all p > n. For all $r, n, p \in \mathbb{N}$, define:

$$\begin{split} X^{n;p}_{-1} &= F^p K^n \ , \\ X^{n;p}_r &= F^p K^n \cap D^{-1}(F^{p+r}K^{n+1}) \ , \\ Y^{n;p}_r &= D(X^{n-1;p-(r-1)}_{r-1}) + X^{n;p+1}_{r-1} \ , \qquad \text{and} \\ E^{n;p}_r &= X^{n;p}_r / Y^{n;p}_r \ . \end{split}$$

Then:

- (a). $Y_r^{n;p} \subseteq X_r^{n;p}$ (and therefore $E_r^{n;p}$ is well defined) for all r, n, p;
- (b). D induces well-defined maps

$$d_r = d_r^{n;p} \colon E_r^{n;p} \to E_r^{n+1;p+r}$$

for all r, n, p;

- (c). with the above differentials, and letting $E_r^{p,q} = E_r^{n;p}$ and $d_r^{p,q} = d_r^{n;p}$ for all r, n, p, q with p + q = n, $\{E_r, d_r\}_{r \ge 0}$ is a spectral sequence; and
- (d). we have $F^{n+1}H^n(K^{\cdot}) = 0$ for all n, and

$$F^p H^n(K)/F^{p+1} H^n(K) \cong E^{n;p}_{\infty}$$

for all $n \in \mathbb{N}$ and all $p = 0, \ldots, n$.

Proof. (a). When r = 0,

$$X_0^{n;p} = F^p K^n \cap D^{-1}(F^p K^{n+1}) = F^p K^n \quad \text{and} \\ Y_0^{n;p} = D(F^{p+1} K^{n-1}) + F^{p+1} K^n = F^{p+1} K^n ,$$
(1)

so clearly $Y_0^{n;p} \subseteq X_0^{n;p}$. Now assume r > 0. Since $X_{r-1}^{n-1;p-r+1} = F^{p-r+1}K^{n-1} \cap D^{-1}(F^pK^n)$, we have

$$D(X_{r-1}^{n-1;p-r+1}) \subseteq D(D^{-1}(F^pK^n)) \subseteq F^pK^n;$$

combining this with $D(X_{r-1}^{n-1;p-r+1}) \subseteq D^{-1}(F^{p+r}K^{n+1})$ (since $D \circ D = 0$) gives

$$D(X_{r-1}^{n-1;p-r+1}) \subseteq F^p K^n \cap D^{-1}(F^{p+r} K^{n+1}) = X_r^{n;p} .$$
(2)

Also,

$$X_{r-1}^{n;p+1} = F^{p+1}K^n \cap D^{-1}(F^{p+r}K^{n+1}) \subseteq F^pK^n \cap D^{-1}(F^{p+r}K^{n+1}) = X_r^{n;p} .$$
(3)

Combining (2) and (3) then gives

$$Y_r^{n;p} = D(X_{r-1}^{n-1;p-(r-1)}) + X_{r-1}^{n;p+1} \subseteq X_r^{n;p} .$$

(b). This amounts to checking that $D(X_r^{n;p}) \subseteq X_r^{n+1;p+r}$ and $D(Y_r^{n;p}) \subseteq Y_r^{n+1;p+r}$. For the first of these,

$$D(X_r^{n;p}) \subseteq D(D^{-1}(F^{p+r}K^{n+1})) \subseteq F^{p+r}K^{n+1}$$

because $X_r^{n;p} \subseteq D^{-1}(F^{p+r}K^{n+1})$ by definition, and

$$D(X_r^{n;p}) \subseteq D^{-1}(F^{p+2r}K^{n+2})$$

because $D \circ D = 0$, so

$$D(X_r^{n;p}) \subseteq F^{p+r}K^{n+1} \cap D^{-1}(F^{p+2r}K^{n+2}) = X_r^{n+1;p+r}$$
.

As for $D(Y_r^{n;p})$,

$$D(Y_r^{n;p}) = D(D(X_{r-1}^{n-1;p-(r-1)}) + X_{r-1}^{n;p+1})$$

= $D(X_{r-1}^{n;p+1})$
 $\subseteq D(X_{r-1}^{n;p+1}) + X_{r-1}^{n+1;p+r+1}$
= $Y_r^{n+1;p+r}$.

Note that this holds also for r = 0, because the value of $X_{r-1}^{n+1;p+r+1}$ did not play a role here.

(c). This is a matter of checking that $d_r^2 = 0$ and that $H(E_r) = E_{r+1}$. The fact that $d_r^2 = 0$ is immediate from the fact that $D^2 = 0$. To check that $H(E_r) = E_{r+1}$, we follow Vakil 1.7.13.

•

Claim. ker
$$d_r^{n;p} = \frac{X_{r-1}^{n;p+1} + X_{r+1}^{n;p}}{Y_r^{n;p}}$$

Proof. It is easy to check that $\ker d_r^{n;p} = (X_r^{n;p} \cap D^{-1}(Y_r^{n+1;p+r}))/Y_r^{n;p}$, so it suffices to show that

$$X_r^{n;p} \cap D^{-1}(Y_r^{n+1;p+r}) = X_{r-1}^{n;p+1} + X_{r+1}^{n;p} .$$
(4)

Indeed, we have

$$X_{r-1}^{n;p+1} = F^{p+1}K^n \cap D^{-1}(F^{p+r}K^{n+1}) \subseteq F^pK^n \cap D^{-1}(F^{p+r}K^{n+1}) = X_r^{n;p}$$
(5)

and

$$\begin{aligned} X_r^{n;p} \cap D^{-1}(X_{r-1}^{n+1;p+r+1}) \\ &= F^p K^n \cap D^{-1}(F^{p+r}K^{n+1}) \cap D^{-1}(F^{p+r+1}K^{n+1} \cap D^{-1}(F^{p+2r}K^{n+2})) \\ &= F^p K^n \cap D^{-1}(F^{p+r}K^{n+1}) \cap D^{-1}(F^{p+r+1}K^{n+1}) \\ &= F^p K^n \cap D^{-1}(F^{p+r+1}K^{n+1}) \\ &= X_{r+1}^{n;p}. \end{aligned}$$
(6)

Therefore, by definition of $Y_r^{n+1;p+r}$, general properties of homomorphisms, (5), and (6), we have

$$\begin{split} X_r^{n;p} \cap D^{-1}(Y_r^{n+1;p+r}) &= X_r^{n;p} \cap D^{-1}(D(X_{r-1}^{n;p+1}) + X_{r-1}^{n+1;p+r+1}) \\ &= X_r^{n;p} \cap (X_{r-1}^{n;p+1} + D^{-1}(X_{r-1}^{n+1;p+r+1})) \\ &= X_{r-1}^{n;p+1} + (X_r^{n;p} \cap D^{-1}(X_{r-1}^{n+1;p+r+1})) \\ &= X_{r-1}^{n;p+1} + X_{r+1}^{n;p} \,. \end{split}$$

This is (4), so the claim is proved.

Now consider the image of $d_r^{n;p-r} \colon E_r^{n;p-r} \to E_r^{n;p}$. Since $X_{r-1}^{n-1;p-r+1} \subseteq X_r^{n-1;p-r}$,

$$\begin{split} \operatorname{im} d_r^{n;p-r} &= \frac{D(X_r^{n-1;p-r}) + Y_r^{n;p}}{Y_r^{n;p}} \\ &= \frac{D(X_r^{n-1;p-r}) + D(X_{r-1}^{n-1;p-r+1}) + X_{r-1}^{n;p+1}}{Y_r^{n;p}} \\ &= \frac{D(X_r^{n-1;p-r}) + X_{r-1}^{n;p+1}}{Y_r^{n;p}} \,. \end{split}$$

It will suffice to show that there is a well-defined isomorphism

$$E_{r+1}^{n;p} = \frac{X_{r+1}^{n;p}}{Y_{r+1}^{n;p}} = \frac{X_{r+1}^{n;p}}{D(X_r^{n-1;p-r}) + X_r^{n;p+1}} \xrightarrow{\phi} \frac{X_{r+1}^{n;p} + X_{r-1}^{n;p+1}}{D(X_r^{n-1;p-r}) + X_{r-1}^{n;p+1}} \cong \frac{\ker d_r^{n;p}}{\operatorname{im} d_r^{n;p-r}} \,.$$

We first claim that

$$X_{r+1}^{n;p} \cap \left(D(X_r^{n-1;p-r}) + X_{r-1}^{n;p+1}\right) = D(X_r^{n-1;p-r}) + X_r^{n;p+1} .$$
(7)

Since $D(X_r^{n-1;p-r}) \subseteq D(D^{-1}(F^pK^n))$ and $D \circ D = 0$, we have

$$D(X_r^{n-1;p-r}) \subseteq F^p K^n \cap D^{-1}(0) \subseteq F^p K^n \cap D^{-1}(F^{p+r+1}K^{n+1}) = X_{r+1}^{n;p}.$$

 Also

$$\begin{split} X_{r+1}^{n;p} \cap X_{r-1}^{n;p+1} &= F^p K^n \cap D^{-1} (F^{p+r+1} K^{n+1}) \cap F^{p+1} K^n \cap D^{-1} (F^{p+r} K^{n+1}) \\ &= F^{p+1} K^n \cap D^{-1} (F^{p+r+1} K^{n+1}) \\ &= X_r^{n;p+1} \,. \end{split}$$

Combining these two facts gives (7), because

$$\begin{aligned} X_{r+1}^{n;p} \cap \left(D(X_r^{n-1;p-r}) + X_{r-1}^{n;p+1} \right) &= D(X_r^{n-1;p-r}) + (X_{r+1}^{n;p} \cap X_{r-1}^{n;p+1}) \\ &= D(X_r^{n-1;p-r}) + X_r^{n;p+1} \;. \end{aligned}$$

Therefore ϕ is well-defined and injective. Surjectivity of ϕ is clear, so ϕ is an isomorphism and (c) is proved.

(d). First of all, the fact that $F^{n+1}H^n(K^{\cdot}) = 0$ follows immediately from the assumption that $F^{n+1}K^n = 0$.

By definition of $F^p H^n(K^{\cdot})$,

$$F^{p}H^{n}(K^{\cdot}) = \operatorname{im}\left(H^{n}(F^{p}K^{\cdot}) \to \frac{\operatorname{ker} D^{n}}{\operatorname{im} D^{n-1}}\right) = \frac{(F^{p}K^{n} \cap \operatorname{ker} D) + \operatorname{im} D}{\operatorname{im} D}$$

First consider $E_{\infty}^{n;p}$. Since $d_r^{n;p} = 0$ for all r > n+1 (since $E_r^{n;p+r} = 0$), we have $X_r^{n;p} = X_{r+1}^{n;p}$ and $Y_r^{n;p} = Y_{r+1}^{n;p}$ for all r > n+1; call these groups $X_{\infty}^{n;p}$ and $Y_{\infty}^{n;p}$, respectively. We have

$$X^{n;p}_{\infty} = F^p K^n \cap \ker D$$

and

$$Y_r^{n;p} = D(F^{p-r+1}K^{n-1} \cap D^{-1}(F^pK^n)) + X_{r-1}^{n;p+1}$$

for all n, r, and p, so

$$Y_{\infty}^{n;p} = D(K^{n-1} \cap D^{-1}(F^{p}K^{n})) + X_{\infty}^{n;p+1}$$

= $D(D^{-1}(F^{p}K^{n})) + X_{\infty}^{n;p+1}$
= $(F^{p}K^{n} \cap \operatorname{im} D) + (F^{p+1}K^{n} \cap \ker D)$.

And, naturally, $E_{\infty}^{n;p} = X_{\infty}^{n;p}/Y_{\infty}^{n;p}$.

We then claim that there is a well-defined isomorphism

$$E_{\infty}^{n;p} = \frac{F^{p}K^{n} \cap \ker D}{(F^{p}K^{n} \cap \operatorname{im} D) + (F^{p+1}K^{n} \cap \ker D)}$$

$$\stackrel{\phi}{\longrightarrow} \frac{(F^{p}K^{n} \cap \ker D) + \operatorname{im} D}{(F^{p+1}K^{n} \cap \ker D) + \operatorname{im} D} = \frac{F^{p}H^{n}(K)}{F^{p+1}H^{n}(K)}$$

To see this, we first note that

$$F^{p}K^{n} \cap \ker D \cap \left((F^{p+1}K^{n} \cap \ker D) + \operatorname{im} D \right) = F^{p}K^{n} \cap \left((F^{p+1}K^{n} \cap \ker D) + \operatorname{im} D \right)$$
$$= (F^{p+1}K^{n} \cap \ker D) + (F^{p}K^{n} \cap \operatorname{im} D) .$$

Indeed, the first step holds because im $D \subseteq \ker D$, and so $\ker D$ contains the quantity in parentheses. The second step is true because $F^{p+1}K^n \cap \ker D$ is contained in F^pK^n .

Therefore ϕ is well-defined and injective. It is clearly surjective, so it is the desired isomorphism.