
Math 256B. Spectral Sequences

For concreteness, we work over the category Ab of abelian groups; however, ev-
erything will still work over an arbitrary abelian category.

Mostly this follows Lang’s Algebra, and also Vakil’s FOAG. (Note that Vakil in-
terchanges the roles of p and q .)

First, we give the definition of spectral sequence that is likely the most familiar to
mathematicians in algebraic geometry.

Definition. A spectral sequence is a sequence {Er, dr}r≥0 of bigraded objects

Er =
⊕
p,q∈N

Ep,qr ,

together with homomorphisms (called differentials) dr = dp,qr : Ep,qr → Ep+r,q−r+1
r

(hence of bidegree (r, 1− r) ) for all r, p, q , such that

(i). d2r = 0 , and
(ii). H(Er) = Er+1 (i.e.,

Ep,qr+1 = ker(dp,qr : Ep,qr → Ep+r,q−r+1
r )/ im(dp−r,q+r−1r : Ep−r,q−r+1

r → Ep,qr )

for all r, p, q ).

In the above, we also let E
(p,q)
r = 0 for all r ∈ N and all (p, q) ∈ Z2 \ N2 .

Remark. Let p, q ∈ N and n = p+ q . Then, for all r > n+ 1 , we have q − r + 1 < 0
and p− r < 0 (since p, q ≤ n ); hence dp,qr = dp−r,q+r−1r = 0 , and consequently

Ep,qr = Ep,qr+1 = Ep,qr+2 = . . . .

We let Ep,q∞ denote this limiting value.

Definition. Let (K·, D) be a (co)complex of abelian groups. Then a filtration of
(K·, D) is an N-graded filtration Kn = F 0Kn ⊇ F 1Kn ⊇ . . . of Kn for all n ∈ N
such that D(F pKn) ⊆ F pKn+1 for all n, p . We also assume that F pKn = 0 for
all sufficiently large p , depending on n .

Definition. A filtered complex is a complex (K·, D) with a filtration.

Definition. Let (K·, D) be a filtered complex. Then, for all n ∈ N , we define a
filtration {F pHn(K·)}p∈N of Hn(K·) as follows. By definition of filtration, the
inclusions F pKn → Kn for all n induce a map of F pK· → K· of complexes,
hence a map Hn(F pK·) → Hn(K·) for all n . We define F pHn(K·) to be the
image of this map. Since F p+1K· → F pK· is a map of complexes, and since
F 0K· = K· , we have

Hn(K·) = F 0Hn(K·) ⊇ F 1Hn(K·) ⊇ . . .

for all n . Moreover, for all n there is a p such that F pKn = 0 , which gives
F pHn(K·) = 0 (for the same p ).

The main theorem of this handout is the following.
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Theorem. Let (K·, D) be a filtered complex. Assume that F pKn = 0 for all n ∈ N
and all p > n . For all r, n, p ∈ N , define:

Xn;p
−1 = F pKn ,

Xn;p
r = F pKn ∩D−1(F p+rKn+1) ,

Y n;pr = D(X
n−1;p−(r−1)
r−1 ) +Xn;p+1

r−1 , and

En;pr = Xn;p
r /Y n;pr .

Then:

(a). Y n;pr ⊆ Xn;p
r (and therefore En;pr is well defined) for all r, n, p ;

(b). D induces well-defined maps

dr = dn;pr : En;pr → En+1;p+r
r

for all r, n, p ;
(c). with the above differentials, and letting Ep,qr = En;pr and dp,qr = dn;pr for all

r, n, p, q with p+ q = n , {Er, dr}r≥0 is a spectral sequence; and
(d). we have Fn+1Hn(K·) = 0 for all n , and

F pHn(K·)/F p+1Hn(K·) ∼= En;p∞

for all n ∈ N and all p = 0, . . . , n .

Proof. (a). When r = 0 ,

Xn;p
0 = F pKn ∩D−1(F pKn+1) = F pKn and

Y n;p0 = D(F p+1Kn−1) + F p+1Kn = F p+1Kn ,
(1)

so clearly Y n;p0 ⊆ Xn;p
0 .

Now assume r > 0 . Since Xn−1;p−r+1
r−1 = F p−r+1Kn−1 ∩D−1(F pKn) , we have

D(Xn−1;p−r+1
r−1 ) ⊆ D(D−1(F pKn)) ⊆ F pKn ;

combining this with D(Xn−1;p−r+1
r−1 ) ⊆ D−1(F p+rKn+1) (since D ◦D = 0 ) gives

D(Xn−1;p−r+1
r−1 ) ⊆ F pKn ∩D−1(F p+rKn+1) = Xn;p

r . (2)

Also,

Xn;p+1
r−1 = F p+1Kn ∩D−1(F p+rKn+1) ⊆ F pKn ∩D−1(F p+rKn+1) = Xn;p

r . (3)

Combining (2) and (3) then gives

Y n;pr = D(X
n−1;p−(r−1)
r−1 ) +Xn;p+1

r−1 ⊆ Xn;p
r .
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(b). This amounts to checking that D(Xn;p
r ) ⊆ Xn+1;p+r

r and D(Y n;pr ) ⊆ Y n+1;p+r
r .

For the first of these,

D(Xn;p
r ) ⊆ D(D−1(F p+rKn+1)) ⊆ F p+rKn+1

because Xn;p
r ⊆ D−1(F p+rKn+1) by definition, and

D(Xn;p
r ) ⊆ D−1(F p+2rKn+2)

because D ◦D = 0 , so

D(Xn;p
r ) ⊆ F p+rKn+1 ∩D−1(F p+2rKn+2) = Xn+1;p+r

r .

As for D(Y n;pr ) ,

D(Y n;pr ) = D(D(X
n−1;p−(r−1)
r−1 ) +Xn;p+1

r−1 )

= D(Xn;p+1
r−1 )

⊆ D(Xn;p+1
r−1 ) +Xn+1;p+r+1

r−1

= Y n+1;p+r
r .

Note that this holds also for r = 0 , because the value of Xn+1;p+r+1
r−1 did not play a

role here.

(c). This is a matter of checking that d2r = 0 and that H(Er) = Er+1 .
The fact that d2r = 0 is immediate from the fact that D2 = 0 .
To check that H(Er) = Er+1 , we follow Vakil 1.7.13.

Claim. ker dn;pr =
Xn;p+1
r−1 +Xn;p

r+1

Y n;pr
.

Proof. It is easy to check that ker dn;pr = (Xn;p
r ∩D−1(Y n+1;p+r

r ))/Y n;pr , so it suffices
to show that

Xn;p
r ∩D−1(Y n+1;p+r

r ) = Xn;p+1
r−1 +Xn;p

r+1 . (4)

Indeed, we have

Xn;p+1
r−1 = F p+1Kn ∩D−1(F p+rKn+1) ⊆ F pKn ∩D−1(F p+rKn+1) = Xn;p

r (5)

and

Xn;p
r ∩D−1(Xn+1;p+r+1

r−1 )

= F pKn ∩D−1(F p+rKn+1) ∩D−1(F p+r+1Kn+1 ∩D−1(F p+2rKn+2))

= F pKn ∩D−1(F p+rKn+1) ∩D−1(F p+r+1Kn+1)

= F pKn ∩D−1(F p+r+1Kn+1)

= Xn;p
r+1 . (6)
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Therefore, by definition of Y n+1;p+r
r , general properties of homomorphisms, (5), and

(6), we have

Xn;p
r ∩D−1(Y n+1;p+r

r ) = Xn;p
r ∩D−1(D(Xn;p+1

r−1 ) +Xn+1;p+r+1
r−1 )

= Xn;p
r ∩ (Xn;p+1

r−1 +D−1(Xn+1;p+r+1
r−1 ))

= Xn;p+1
r−1 + (Xn;p

r ∩D−1(Xn+1;p+r+1
r−1 ))

= Xn;p+1
r−1 +Xn;p

r+1 .

This is (4), so the claim is proved. �

Now consider the image of dn;p−rr : En;p−rr → En;pr . Since Xn−1;p−r+1
r−1 ⊆ Xn−1;p−r

r ,

im dn;p−rr =
D(Xn−1;p−r

r ) + Y n;pr

Y n;pr

=
D(Xn−1;p−r

r ) +D(Xn−1;p−r+1
r−1 ) +Xn;p+1

r−1
Y n;pr

=
D(Xn−1;p−r

r ) +Xn;p+1
r−1

Y n;pr
.

It will suffice to show that there is a well-defined isomorphism

En;pr+1 =
Xn;p
r+1

Y n;pr+1

=
Xn;p
r+1

D(Xn−1;p−r
r ) +Xn;p+1

r

φ−→
Xn;p
r+1 +Xn;p+1

r−1

D(Xn−1;p−r
r ) +Xn;p+1

r−1

∼=
ker dn;pr

im dn;p−rr

.

We first claim that

Xn;p
r+1 ∩ (D(Xn−1;p−r

r ) +Xn;p+1
r−1 ) = D(Xn−1;p−r

r ) +Xn;p+1
r . (7)

Since D(Xn−1;p−r
r ) ⊆ D(D−1(F pKn)) and D ◦D = 0 , we have

D(Xn−1;p−r
r ) ⊆ F pKn ∩D−1(0) ⊆ F pKn ∩D−1(F p+r+1Kn+1) = Xn;p

r+1 .

Also

Xn;p
r+1 ∩X

n;p+1
r−1 = F pKn ∩D−1(F p+r+1Kn+1) ∩ F p+1Kn ∩D−1(F p+rKn+1)

= F p+1Kn ∩D−1(F p+r+1Kn+1)

= Xn;p+1
r .

Combining these two facts gives (7), because

Xn;p
r+1 ∩ (D(Xn−1;p−r

r ) +Xn;p+1
r−1 ) = D(Xn−1;p−r

r ) + (Xn;p
r+1 ∩X

n;p+1
r−1 )

= D(Xn−1;p−r
r ) +Xn;p+1

r .



5

Therefore φ is well-defined and injective. Surjectivity of φ is clear, so φ is an isomor-
phism and (c) is proved.

(d). First of all, the fact that Fn+1Hn(K·) = 0 follows immediately from the assump-
tion that Fn+1Kn = 0 .

By definition of F pHn(K·) ,

F pHn(K ·) = im

(
Hn(F pK·) −→ kerDn

imDn−1

)
=

(F pKn ∩ kerD) + imD

imD
.

First consider En;p∞ . Since dn;pr = 0 for all r > n+1 (since En;p+rr = 0 ), we have
Xn;p
r = Xn;p

r+1 and Y n;pr = Y n;pr+1 for all r > n + 1 ; call these groups Xn;p
∞ and Y n;p∞ ,

respectively. We have
Xn;p
∞ = F pKn ∩ kerD

and
Y n;pr = D(F p−r+1Kn−1 ∩D−1(F pKn)) +Xn;p+1

r−1

for all n , r , and p , so

Y n;p∞ = D(Kn−1 ∩D−1(F pKn)) +Xn;p+1
∞

= D(D−1(F pKn)) +Xn;p+1
∞

= (F pKn ∩ imD) + (F p+1Kn ∩ kerD) .

And, naturally, En;p∞ = Xn;p
∞ /Y n;p∞ .

We then claim that there is a well-defined isomorphism

En;p∞ =
F pKn ∩ kerD

(F pKn ∩ imD) + (F p+1Kn ∩ kerD)

φ−→ (F pKn ∩ kerD) + imD

(F p+1Kn ∩ kerD) + imD
=

F pHn(K)

F p+1Hn(K)
.

To see this, we first note that

F pKn ∩ kerD ∩ ((F p+1Kn ∩ kerD) + imD) = F pKn ∩ ((F p+1Kn ∩ kerD) + imD)

= (F p+1Kn ∩ kerD) + (F pKn ∩ imD) .

Indeed, the first step holds because imD ⊆ kerD , and so kerD contains the quantity
in parentheses. The second step is true because F p+1Kn∩kerD is contained in F pKn .

Therefore φ is well-defined and injective. It is clearly surjective, so it is the desired
isomorphism. �


