Math 256B. Some Lemmas on Curves, and the End of the Proof of (II, 6.8)

This handout gives a few more lemmas on (nonsingular) curves, leading up to a more rigorous proof that the map of (II, 6.8) is finite if it is dominant.

Throughout this note, k is an algebraically closed field. Also, $t(C_K)$ is as in (II, 6.7) (i.e., a nonsingular projective curve over k whose function field is isomorphic to a given field K, finitely generated and of transcendence degree 1 over k).

Lemma 1. Let A be an entire k-algebra of finite type such that Spec A is a nonsingular curve over k. Let $K = \operatorname{Frac} A$, and let $X = t(C_K)$. Then there is an open embedding $i: \operatorname{Spec} A \hookrightarrow X$ that induces the isomorphism $\operatorname{Frac} A \to K(X)$.

Proof. Let X_0 be a projective closure of Spec A (I, Ex. 2.9). (In the language of schemes, this is done as follows. Choose a finite generating set $a_1, \ldots, a_n \in A$ for A over k; then the associated ring surjection $k[x_1, \ldots, x_n] \to A$ over k defined by $x_i \mapsto a_i$ for all i determines a closed embedding Spec $A \hookrightarrow \mathbb{A}_k^n$. Then X_0 is the closure of the image of this map into \mathbb{P}_k^n , with reduced induced subscheme structure (where we identify \mathbb{A}_k^n with the complement of the "hyperplane at infinity" H_0 as on p. 10 of Hartshorne).)

Moreover, letting $U_0 = \mathbb{P}_k^n \setminus H_0$, we have that Spec A is a closed subscheme of U_0 (via the usual identification of U_0 with \mathbb{A}_k^n), and the open subscheme $X_0 \cap U_0$ of X_0 is isomorphic to Spec A, since both schemes are reduced and have the same (closed) image in U_0 .

Now let $\pi: \widetilde{X} \to X$ be the normalization of X_0 (II, Ex. 3.8). Since Spec A is normal (it is nonsingular), π is an isomorphism over $X_0 \cap U_0$, so Spec A is also an open subscheme of \widetilde{X} . Also, since \widetilde{X} is birational to Spec A, we have

$$K(X) \cong K(\operatorname{Spec} A) = \operatorname{Frac} A$$
.

Finally, since \widetilde{X} is smooth and complete (it is finite, hence proper, over X_0), we have $\widetilde{X} \cong t(C_K)$, so one obtains the desired open embedding Spec $A \hookrightarrow t(C_K) = X$. \Box

Lemma 2. Let X be a variety over k, let U = Spec A be a nonempty open affine subset of X, and let $P \in X$ be a point not in U. Then there is a function $f \in A$ that does not extend to a regular function at P (i.e., $f \notin \mathcal{O}_{X,P}$).

Proof. This is Question 3a on Homework 10.

This next lemma is central to the main result of this handout.

Lemma 3. Let X be a complete nonsingular curve over k, let Y be any curve over k, and let $f: X \to Y$ be a morphism with f(X) = Y. Let $V = \operatorname{Spec} B$ be any nonempty open affine subset of Y, and let A be the integral closure of B in K(X). Then $\operatorname{Spec} A$ is isomorphic to an open subset U of X, compatible with the inclusion $A \subseteq K(X)$, and $U = f^{-1}(V)$.

Proof. Clearly A is integrally closed with fraction field K(X). Then dim Spec A = 1 and Spec A is normal, hence nonsingular. Also A is finite over B, hence of finite type over k. Thus Spec A is a nonsingular curve over k. The existence of U is then immediate from Lemma 1.

Next, since $X \cong t(C_{K(X)})$, the inclusion $B \subseteq A$ is compatible with the inclusion $K(Y) \subseteq K(X)$ induced by f. Therefore the natural map Spec $A \to \text{Spec } B$ coincides with $f|_U$. In particular, $f(U) \subseteq V$. In other words, $U \subseteq f^{-1}(V)$.

Therefore, if $U \neq f^{-1}(V)$, then there is a point $x \in X \setminus U$ such that $f(x) \in V$. Assume that x is such a point. Then, by Lemma 2, there is an $a \in A$ such that $a \notin \mathcal{O}_{X,x}$. Since a is integral over B, there are elements $b_0, \ldots, b_{n-1} \in B$ such that

$$a^n + b_{n-1}a^{n-1} + \dots + b_0 = 0$$

But since $f(x) \in \operatorname{Spec} B$, the local ring $\mathscr{O}_{Y,f(x)}$ contains B, so $b_i \in \mathscr{O}_{Y,f(x)} \subseteq \mathscr{O}_{X,x}$ for all *i*. Thus *a* is integral over $\mathscr{O}_{X,x}$.

However, since X is nonsingular, it is normal, so $\mathscr{O}_{X,x}$ is integrally closed. In particular, $a \in \mathscr{O}_{X,x}$, a contradiction. Hence $U = f^{-1}(V)$.

Finally, we get to the main result of this handout.

Proposition 4. Let X be a complete nonsingular curve over k, let Y be any curve over k, and let $f: X \to Y$ be a morphism with f(X) = Y. Then f is a finite morphism.

Proof. Let $V = \operatorname{Spec} B$ be any nonempty open affine subset of Y. By Lemma 3, $f^{-1}(V) = \operatorname{Spec} A$, where A is the integral closure of B in K(X). By (I, 3.9A), A is finite as a module over B, and we are done.