Math 256B. Some Lemmas on Curves, and the End of the Proof of (II, 6.8)

This handout gives a few more lemmas on (nonsingular) curves, leading up to a more rigorous proof that the map of (II, 6.8) is finite if it is dominant.

Throughout this note, k is an algebraically closed field. Also, $t\left(C_{K}\right)$ is as in (II, 6.7) (i.e., a nonsingular projective curve over k whose function field is isomorphic to a given field K, finitely generated and of transcendence degree 1 over k).

Lemma 1. Let A be an entire k-algebra of finite type such that $\operatorname{Spec} A$ is a nonsingular curve over k. Let $K=\operatorname{Frac} A$, and let $X=t\left(C_{K}\right)$. Then there is an open embedding $i: \operatorname{Spec} A \hookrightarrow X$ that induces the isomorphism Frac $A \rightarrow K(X)$.
Proof. Let X_{0} be a projective closure of $\operatorname{Spec} A$ (I, Ex. 2.9). (In the language of schemes, this is done as follows. Choose a finite generating set $a_{1}, \ldots, a_{n} \in A$ for A over k; then the associated ring surjection $k\left[x_{1}, \ldots, x_{n}\right] \rightarrow A$ over k defined by $x_{i} \mapsto a_{i}$ for all i determines a closed embedding $\operatorname{Spec} A \hookrightarrow \mathbb{A}_{k}^{n}$. Then X_{0} is the closure of the image of this map into \mathbb{P}_{k}^{n}, with reduced induced subscheme structure (where we identify \mathbb{A}_{k}^{n} with the complement of the "hyperplane at infinity" H_{0} as on p. 10 of Hartshorne).)

Moreover, letting $U_{0}=\mathbb{P}_{k}^{n} \backslash H_{0}$, we have that $\operatorname{Spec} A$ is a closed subscheme of U_{0} (via the usual identification of U_{0} with \mathbb{A}_{k}^{n}), and the open subscheme $X_{0} \cap U_{0}$ of X_{0} is isomorphic to $\operatorname{Spec} A$, since both schemes are reduced and have the same (closed) image in U_{0}.

Now let $\pi: \widetilde{X} \rightarrow X$ be the normalization of X_{0} (II, Ex. 3.8). Since $\operatorname{Spec} A$ is normal (it is nonsingular), π is an isomorphism over $X_{0} \cap U_{0}$, so $\operatorname{Spec} A$ is also an open subscheme of \widetilde{X}. Also, since \widetilde{X} is birational to $\operatorname{Spec} A$, we have

$$
K(X) \cong K(\operatorname{Spec} A)=\operatorname{Frac} A
$$

Finally, since \tilde{X} is smooth and complete (it is finite, hence proper, over X_{0}), we have $\widetilde{X} \cong t\left(C_{K}\right)$, so one obtains the desired open embedding $\operatorname{Spec} A \hookrightarrow t\left(C_{K}\right)=X$.
Lemma 2. Let X be a variety over k, let $U=\operatorname{Spec} A$ be a nonempty open affine subset of X, and let $P \in X$ be a point not in U. Then there is a function $f \in A$ that does not extend to a regular function at P (i.e., $f \notin \mathscr{O}_{X, P}$).

Proof. This is Question 3a on Homework 10.
This next lemma is central to the main result of this handout.
Lemma 3. Let X be a complete nonsingular curve over k, let Y be any curve over k, and let $f: X \rightarrow Y$ be a morphism with $f(X)=Y$. Let $V=\operatorname{Spec} B$ be any nonempty open affine subset of Y, and let A be the integral closure of B in $K(X)$. Then $\operatorname{Spec} A$ is isomorphic to an open subset U of X, compatible with the inclusion $A \subseteq K(X)$, and $U=f^{-1}(V)$.

Proof. Clearly A is integrally closed with fraction field $K(X)$. Then $\operatorname{dim} \operatorname{Spec} A=1$ and $\operatorname{Spec} A$ is normal, hence nonsingular. Also A is finite over B, hence of finite type over k. Thus $\operatorname{Spec} A$ is a nonsingular curve over k. The existence of U is then immediate from Lemma 1.

Next, since $X \cong t\left(C_{K(X)}\right)$, the inclusion $B \subseteq A$ is compatible with the inclusion $K(Y) \subseteq K(X)$ induced by f. Therefore the natural map $\operatorname{Spec} A \rightarrow \operatorname{Spec} B$ coincides with $\left.f\right|_{U}$. In particular, $f(U) \subseteq V$. In other words, $U \subseteq f^{-1}(V)$.

Therefore, if $U \neq f^{-1}(V)$, then there is a point $x \in X \backslash U$ such that $f(x) \in V$. Assume that x is such a point. Then, by Lemma 2, there is an $a \in A$ such that $a \notin \mathscr{O}_{X, x}$. Since a is integral over B, there are elements $b_{0}, \ldots, b_{n-1} \in B$ such that

$$
a^{n}+b_{n-1} a^{n-1}+\cdots+b_{0}=0
$$

But since $f(x) \in \operatorname{Spec} B$, the local ring $\mathscr{O}_{Y, f(x)}$ contains B, so $b_{i} \in \mathscr{O}_{Y, f(x)} \subseteq \mathscr{O}_{X, x}$ for all i. Thus a is integral over $\mathscr{O}_{X, x}$.

However, since X is nonsingular, it is normal, so $\mathscr{O}_{X, x}$ is integrally closed. In particular, $a \in \mathscr{O}_{X, x}$, a contradiction. Hence $U=f^{-1}(V)$.

Finally, we get to the main result of this handout.
Proposition 4. Let X be a complete nonsingular curve over k, let Y be any curve over k, and let $f: X \rightarrow Y$ be a morphism with $f(X)=Y$. Then f is a finite morphism.
Proof. Let $V=\operatorname{Spec} B$ be any nonempty open affine subset of Y. By Lemma 3, $f^{-1}(V)=\operatorname{Spec} A$, where A is the integral closure of B in $K(X)$. By (I, 3.9A), A is finite as a module over B, and we are done.

