
Math 256B. A Lemma for the Solution of Hartshorne (III, Ex. 4.4)

Let X be a topological space, and let

0 −→ F −→ G −→ R −→ 0

be a short exact sequence of sheaves of abelian groups on X . Let 0 −→ F −→ A · ,
0 −→ G −→ B· , and 0 −→ R −→ C · be resolutions of F , G , and R , respectively, such
that 0 −→ A · −→ B· −→ C · is exact (i.e., 0 −→ A i −→ Bi −→ C i is exact for all i ).

Also let 0 −→ F −→ I · and 0 −→ R −→J · be injective resolutions of F and R ,
respectively. Then, as was shown in class (on January 24, when proving Thm. 1.1A(c))
and on the first homework assignment, there is a commutative diagram

0 0 0y y y
0 −−−−→ F −−−−→ G −−−−→ R −−−−→ 0y y y
0 −−−−→ I 0 −−−−→ I 0 ⊕J 0 −−−−→ J 0 −−−−→ 0y y y
0 −−−−→ I 1 −−−−→ I 1 ⊕J 1 −−−−→ J 1 −−−−→ 0y y y

...
...

...
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with exact rows and columns.
We claim that there is a commutative diagram
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with exact rows and columns given as above, and where the maps F → F , G → G ,
and R → R are the identity maps.

This is really just a matter of constructing the maps f i , gi , and hi for all i ≥ 0 .

Lemma. Assume that the diagram

0 0 0y y y
0 −−−−→ F −−−−→ G −−−−→ R −−−−→ 0y y y
0 −−−−→ A 0 −−−−→ B0 −−−−→ C 0y y y
0 −−−−→ A 1 −−−−→ B1 −−−−→ C 1y y y

...
...

...

(3)

commutes and has exact rows and columns, and that we also have the diagram
(1). Then there exist morphisms

f · : A · → I · , g· : B· → (I ⊕J )· , and h· : C · →J ·

of complexes such that a diagram similar to (2) commutes.

Proof. In this proof we will first assume that B· → C · is surjective, and then later
notice that this surjectivity assumption was never actually used.

Similar to the proof of Theorem 1.1A(c), we start by showing a “key step.”

Claim. Let
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be a commutative diagram with exact rows and columns. Then there exist mor-
phisms f i : A i → I i , gi : Bi → I i ⊕J i , and hi : C i → J i , such that the
diagram still commutes.

Proof. Fix a splitting of the sequence 0 −→ I i −→ I i ⊕ J i −→ J i −→ 0 . In
particular, this gives a projection I i⊕J i → I i . Composing this with the composed
map G1 → G2 → I i ⊕J i gives a map G1 → I i . Since the map G1 → Bi is an
injection and I i is an injective object, the map G 1 → I i extends to give a map

f̃ i : Bi → I i such that the composed map G 1 → Bi f̃i

−→ I i equals the above map
G 1 → I i .

Define f i : A i → I i to be the composition A i → Bi f̃i

−→ I i .
Similarly to the construction of f i , we define hi : C i → J i by extending the

composition R1 → R2 → J i , using the facts that J i is an injective object and
R1 → C i is an injection. Composing hi with the map Bi → C i then gives a map

h̃i : Bi →J i .

We then define gi : Bi → I i ⊕J i to be the sum f̃ i + h̃i .
It remains to show that, after adding f i , gi , and hi to the diagram (4), it still

commutes. We first consider the parts
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The rightmost piece commutes by construction of hi .
We show that the middle piece commutes by arrow chasing, considering the com-

ponents of I i ⊕J i separately (using the chosen splitting).
Let γ ∈ G1 , and let αq +βq and αx +βx denote its images in I i⊕J i via maps

passing through G2 and Bi , respectively, with αq, αx ∈ I i and βq, βx ∈J i .
We claim that βq is obtained from γ by each of the following compositions of

maps:

G1 → G2 → I i ⊕J i →J i

G1 → G2 → R2 →J i

G1 → R1 → R2 →J i

G1 → R1 → C i hi

−→J i

G1 → Bi → C i hi

−→J i .

G1 → Bi h̃i

−→J i .
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Indeed, for the first composition, this is by definition of βq . The second, third, and
fifth follow from their predecessors by commutativity of (4), the fourth follows from its
predecessor by commutativity of the rightmost of the three pieces of (5), and the last

follows from its predecessor by definition of h̃i . But this latter element is actually βx .
Thus βq = βx .

We now consider αq and αx . By definition, αx is obtained by applying the

composed map G1 → G2 → I i ⊕J i → I i to γ . By construction of f̃ i , this map

is equal to the composed map G1 → Bi f̃i

−→ I i . Since applying this latter map to γ
gives αx , we have αq = αx .

Therefore the center piece of (5) commutes.
Before showing that the leftmost piece of (5) commutes, we first show that the

rectangles in the diagram
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commute. (Note that the triangle with vertices Bi , I i , and I i ⊕J i does not

commute, since that would require h̃i to be the zero map.)

The triangles above and below the arrow h̃i commute by the definitions of h̃i and
gi , respectively. Therefore the rectangle on the right commutes.

Showing commutativity of the rectangle on the left is a matter of showing that

(f̃ i + h̃i)◦j = f i . Since f̃ i ◦j = f i , this is equivalent to h̃i ◦j = 0 . This holds because

h̃i = hi ◦ k and k ◦ j = 0 .
Commutativity of the leftmost piece of (5) then follows immediately from commu-

tativity of the center piece of (5), since the leftmost piece is obtained from the center
piece by restricting the various maps to F1 , F2 , or A i , and noting that the relevant
other parts of the diagram are now known to commute. �

One then concludes the lemma by induction on i . Indeed, for the base case we
apply the claim, with i = 0 , F1 = F2 = F , G1 = G2 = G , and R1 = R2 = R ,
and with the maps F1 → F2 , G1 → G2 , and R1 → R2 equal to the identity maps.
For the inductive step, assume that i > 0 , and assume that the desired diagram
has been constructed up to (or, actually, down to) the i − 1 level. Then we may
apply the claim with F1 , F2 , G1 , G2 , R1 , and R2 equal to the cokernels of the
maps in the corresponding column of the previous application of the claim. Maps
between these sheaves exist by the universal property of cokernels. By exactness of the
vertical sequences in the diagrams (1) and (3), these cokernels inject into the i level
of the diagrams. This gives another diagram (4) at the i level, and the induction may
proceed. �

This gives the lemma needed for Ex. 4.4.


