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Abstract. Let k be an integral domain, n a positive integer, X a generic n×n matrix over
k (i.e., the matrix (xij) over a polynomial ring k[xij ] in n2 indeterminates xij), and adj(X)
its classical adjoint. For char k = 0, it is shown that if n is odd, adj(X) is not the product
of two noninvertible n×n matrices over k[xij ], while for n even, only one special sort of
factorization occurs. Whether the corresponding results hold in positive characteristic is not
known.

The operation adj on matrices arises from the (n−1)st exterior power functor on modules;
the analogous factorization question for matrix constructions arising from other functors is
raised, as are several other questions.

1. Introduction

If A is an n×n matrix over a commutative ring and adj(A) its classical adjoint,
i.e., the n×n matrix of appropriately signed minors of A, we have the well known
factorization

det(A) In = A adj(A) (1)

[2, p.193, (5)], [8, Prop. XIII.4.16]. Do the factors on the right in (1) have any further
natural factorizations?

To make this question precise, let us fix an integral domain k, and let k[xij ] be
a polynomial ring in n2 indeterminates xij (1 6 i, j 6 n). The matrix X = (xij ) is
called a generic n×n matrix over k, and we ask whether one can refine the factorization

det(X) In = X adj(X) (2)

as a factorization of det(X) In into noninvertible n×n matrices over k[xij ].
Taking the determinant of (2), we see that det(adj(X)) = det(X)n−1. Moreover,

det(X) is irreducible over k[xij ]. Indeed, det(X) is homogeneous of degree 1 in the
entries of each row of X, hence, any factor must be homogeneous of degree 1 or 0 in
those entries. Hence, if, in a factorization of det(X), one factor involves an x from
some row, then the other factor cannot involve any x from that row, so the first factor
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must involve all the x ’s in that row; the same applies to columns. It follows that in any
factorization, one factor must involve all the indeterminates and the other factor none;
hence the latter belongs to k and must, in fact, be a unit thereof, since the coefficients
of the monomials in det(X) are ±1.

It follows that in (2), X cannot be factored further into noninvertible square matri-
ces, and that if k is a field, so that k[xij ] is a unique factorization domain, any such
factorization of the other term, say

adj(X) = Y Z, (3)

must, up to units, satisfy

det(Y ) = det(X)d, det(Z) = det(X)n−1−d, where 0 < d < n− 1. (4)

One can deduce that this is also true whenever k is an integral domain, by noting that
it holds over the field of fractions of k, and again handling scalars in k by looking at
monomials having coefficient ±1 in det(X)n−1.

Given any homomorphism ϕ of k -algebras, let us also use the symbol ϕ for the
induced map on n×n matrices. Note that for each n×n matrix A over a commutative
k-algebra R, there is a unique k-algebra homomorphism ϕA : k[xij ] → R carrying the
generic matrix X to A. This map ϕA will therefore carry a factorization (3), if one
exists, to a factorization of adj(A), and the entries of the factor matrices ϕA(Y ) and
ϕA(Z) will be given by polynomials in the entries of A. In particular, if R = k = the
field of real or complex numbers, the matrices ϕA(Y ) and ϕA(Z) will vary continuously
with A.

By combining this observation with topological results from [4] and [6] we shall, in
Theorem 5, exclude for k of characteristic 0 the possibility of any factorizations (3)
satisfying (4), except possibly when n is even and one of the exponents d or n−1−d
is 1 .

In the first preprint version of this note, I asked whether the latter case actually
occurred; I and those I discussed the question with all expected a negative answer. To
our surprise, an affirmative answer was obtained (for arbitrary k) by R.–O. Buchweitz
and G. Leuschke [1]. Section 6 gives a quick proof of the existence of such factorizations,
inspired by working backwards from their construction in [1].

Let us note one caveat before beginning the development of Theorem 5. If we have a
factorization (3), the induced factorizations adj(A) = ϕA(Y )ϕA(Z) will be functorial
in the sense that they will respect homomorphisms among k-algebras; but it cannot be
assumed that they will have other reasonable “functoriality-like” properties, even when
these hold for adj. For instance, because the construction adj is induced by dualiza-
tion (matrix transpose) followed by the (n−1)st exterior power functor on modules, it
satisfies the multiplicative relation

adj(AB) = adj(B) adj(A), (5)

but it does not follow that for Y as in (3), we will have ϕAB(Y ) = ϕB(Y )ϕA(Y ). For
another example, (1) applied to a unimodular matrix U ∈ SLn(k) gives adj(U) = U−1,
which, combined with (5), yields adj(UAU−1) = U adj(A) U−1. But again, no such
property can be assumed for ϕA(Y ).
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On the other hand, let us note some valid consequences of functoriality in k. If we
have a factorization (3) satisfying (4) over a base ring k, we immediately get such a
factorization over every ring to which k can be mapped homomorphically; hence in
proving nonexistence of such factorizations, results for algebraically closed fields k will
imply results for general commutative rings k. Moreover, since a factorization of adj(X)
over a given k involves only finitely many elements of k, and any finitely generated
field of characteristic 0 embeds in C , restrictions on the form of factorizations with
k = C will imply the corresponding restrictions for all fields of characteristic 0, and
hence for all integral domains of characteristic 0.

(The limitation to integral domains is needed so that we can say that any factor-
ization (3) satisfies (4) for some d. Over a ring k of the form k1 × k2, in contrast,
we can get a factorization that “looks like” adj(X) = adj(X) · In over k1, but like
adj(X) = In · adj(X) over k2. However, if we consider only factorizations satisfying (4),
the restrictions on d that we will obtain for k = C will hold by the above reasoning
for every commutative ring k of characteristic 0.)

2. Valuations and ranks

We shall show here for k a field of arbitrary characteristic that if there exists a
factorization (3), then, for appropriate families of matrices A, the induced matrices
ϕA(Y ) will have constant rank. Varying A will thus yield a continuous map between
Grassmannian varieties; it is to this that we will apply topological results in the next
section. Our proof of the constant-rank result begins with

Lemma 1. Let R be a discrete valuation ring with valuation v, maximal ideal m, and

residue map π : R → R/m . If M is an n×n matrix over R such that π(M) has

nullity r (i.e., rank n−r), then v(det(M)) > r.

Proof. Left multiplication by some invertible matrix π(U) over R/m turns π(M) into
a matrix whose last r rows are zero. Since π(U) is invertible, v(det(U)) = 0, so
v(det(M)) = v(det(UM)), which is > r, since UM has r rows in m. �

Corollary 2. Let p be an irreducible element in a unique factorization domain R, vp

the corresponding valuation on R, and πp : R→ R/pR the residue map. Then for M
a square matrix over R, πp(M) has rank at least n− vp(det(M)).

Proof. Localize at pR and apply the preceding lemma in contrapositive form. �

Using this we can prove

Lemma 3. Let X = (xij) be a generic n×n matrix over a field k, and suppose

adj(X) admits a factorization (3) satisfying (4) for some d. Let A be any n×n matrix

over k which has the eigenvalue 0 with multiplicity exactly 1, and let ϕA denote the

homomorphism k[xij ] → k taking X to A. Then

rank(ϕA(Y )) = n−d, rank(ϕA(Z)) = d+1,

rank(ϕA(XY )) = n−1−d, rank(ϕA(ZX)) = d.

Proof. Let k[t ] be a polynomial ring in one indeterminate, and vt the valuation on this
ring induced by the element t. From the hypothesis on A, we see that det(tIn + A),
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i.e., the characteristic polynomial of −A in the indeterminate t, has constant term 0
but nonzero coefficient of t, so vt(det(tIn + A)) = 1. Writing ψ : k[xij ] → k[t ] for
ϕ(tIn+A), the k-algebra homomorphism taking X to tIn +A, we observe that

vt(det(ψ(Y ))) = vt(ψ(det(Y ))) = vt(ψ(det(X)d)) = vt(det(tIn +A)d) = d. (6)

Letting πt : k[t ] → k take t to 0, we have πtψ = ϕA, hence, taking M = ψ(Y ) in
Corollary 2 so that πt(M) = ϕA(Y ), and using (6) to evaluate vt(det(M)), we get
rank(ϕA(Y )) > n− d. Similarly, rank(ϕA(Z)) > n− (n− 1− d) = d+ 1.

On the other hand, note that A ϕA(Y ) ϕA(Z) = ϕA(X Y Z) = ϕA(det(X) In) =
det(A) In = 0, so the nullities of A, of ϕA(Y ), and of ϕA(Z) must add up to at least
n, i.e., their ranks can sum to at most 2n. Since the rank of the first is n− 1 and we
have just shown those of the other two to be at least n− d and d + 1, these must be
their exact values, giving the first two equalities. The other two are seen similarly. (In
obtaining the last one, we use (2) in the form det(X) In = adj(X)X, easily deduced
from the form given.) �

Remark 1. The above hypothesis that the eigenvalue 0 have multiplicity 1 is stronger
than saying that A has rank n−1. For example, the matrix consisting of a single n×n
Jordan block with eigenvalue 0 has rank n−1, but its eigenvalue 0 has multiplicity n.

We will formulate our next result in algebraic-geometric terms. For base field R or
C , this formulation will imply the corresponding topological statement, which is what
we will use in the next two sections; but as we will discuss in Section 5, the algebraic-
geometric statement has the potential of also yielding results in positive characteristic.

For 0 6 d 6 n, let Grk(d, n) denote the Grassmannian variety over k whose K-
valued points, for a field K over k, correspond to d-dimensional subspaces Vd ⊆

Kn. On the other hand, let CGrk(d, n) (for “complemented Grassmannian”) denote
the variety whose K-valued points correspond to pairs (Vd, V

′

n−d) consisting of a d-
dimensional subspace Vd and an (n−d)-dimensional subspace V ′

n−d such that Kn =
Vd ⊕ V ′

n−d.
The variety Grk(d, n) is projective; in particular, Grk(1, n) is (n−1)-dimensional

projective space. On the other hand, CGrk(d, n) is affine, since it can be identified
with the variety of idempotent n×n matrices of rank d.

Proposition 4. Suppose adj(X) admits a factorization (3) satisfying (4) for some d .

Then there exists a morphism of algebraic varieties CGrk(1, n) → Grk(d, n) that takes

every pair (V1, V
′

n−1) to a subspace of its second component V ′

n−1, and likewise a

morphism CGrk(1, n)→ Grk(n−1−d, n) with the same property.

Proof. Given a K-valued point a = (V1, V
′

n−1) of CGrk(1, n), let Ea denote the idem-
potent matrix over K that projects Kn onto V ′

n−1 along V1. This has eigenvalue 0
with multiplicity 1, hence, by Lemma 3, the matrix Ea ϕEa

(Y ) has rank n−1−d; so
its column space, a subspace of the column space V ′

n−1 of Ea, has that rank. This
construction can be seen to give a morphism of varieties, the second of the morphisms
whose existence we were to prove.

To get the first, note that taking the transpose of equation (3) and applying it to the
transpose of the matrix X gives a factorization adj(X) = Z ′Y ′ with det(Y ′) = det(Y )
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and det(Z ′) = det(Z). Applying the preceding result to this factorization gives the
desired morphism. �

3. The hairy sphere raises its unkempt head

If n 6 2, the condition 0 < d < n − 1 of (4) cannot be satisfied, so the first case
where a factorization (3) might be possible is when n = 3, d = 1. Suppose we had
such a factorization for k = R . Every point p of the real unit sphere S2 determines
a point (Rp, (Rp)⊥) of CGrR(1, 3), so applying to this either of the morphisms of
Proposition 4, we would get a continuous map S2 → GrR(1, 3) that takes each p ∈ S2

to a 1-dimensional subspace of (Rp)⊥; in other words, of the tangent space to S2 at p.
This would constitute a “combing of a hairy sphere”, which is known to be impossible
[7, Theorem 16.5], [5, p. 282], so no such factorization exists.

(The “hairy sphere” result as generally formulated asserts, for even m, the nonexis-
tence of a nowhere zero tangent vector field on Sm. What the above construction gives
is a map taking each p ∈ S2 to a point of the projective plane GrR(1, 3) representing
an unoriented tangent direction at p. But by simple connectedness of S2, we could lift
this to a map to the universal covering space of that projective plane, S2, which we
could interpret as a tangent vector field of everywhere unit length, getting the desired
contradiction.)

4. The general result

For general n and base-field C, we can use, in place of the “hairy sphere theorem”,
some results proved in [4] and [6]. As we did with CGrR(1, 3) and GrR(1, 3) in the
preceding section, in the proof of the next theorem we shall regard varieties GrC(d, n)
and CGrC(d, n) as topological manifolds (consisting of the C -valued points of the
algebraic varieties), and so be able speak of continuous maps between them.

Theorem 5. Suppose k is an integral domain of characteristic 0. Then if n is odd,

there is no factorization (3) of adj(X) into noninvertible matrices, while if n is even,

any such factorization has one of the exponents in (4) equal to 1, i.e., has d = 1 or

d = n− 2.

Proof. As noted in the next-to-last paragraph of Section 1, it will suffice to prove this
result for k = C . Let us put a Hermitian inner product on C

n; then L 7→ (L,L⊥) is a
continuous map GrC(1, n) → CGrC(1, n). If we have a factorization (3), Proposition 4
gives a continuous map CGrC(1, n) → GrC(d, n), taking (V1, V

′
n−1) to a subspace of its

second component. Composing, we get a continuous function GrC(1, n) → GrC(d, n),
taking each 1-dimensional subspace L ⊆ Cn to a d-dimensional subspace L′ of L⊥.

This gives a d-dimensional subbundle of the tangent bundle on (n−1)-dimensional
complex projective space, which by [6, Theorem 1.1(ii)] is possible if and only if n is
even and d = 1 or n−2. Alternatively, we may note that for L′ as in the preceding
paragraph, the map L 7→ L ⊕ L′ takes each 1-dimensional subspace L of Cn to
a (d+1)-dimensional subspace containing L, which, by [4, Theorem 1.5(a)], can only
happen if n is even and d+ 1 = 2 or n− 1, i.e., again d = 1 or n− 2. �
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5. The question in positive characteristic

I do not know whether Theorem 5 remains true if the characteristic 0 hypothesis is
deleted. One could hope to prove such a result using algebraic geometry in place of our
topological arguments.

Now the analog of [4, Theorem 1.5(a)] with continuous maps of topological spaces
replaced by morphisms of algebraic varieties over a general algebraically closed field
indeed holds [4, Theorem 1.5(b)]. However, the map L 7→ (L,L⊥) that we also called
on is not a morphism of algebraic varieties, so we cannot use it as before to yoke the
abovementioned result together with Proposition 4. (That map was constructed from
a Hermitian inner product, which is not bilinear but sesquilinear. A genuine bilinear
form on Cn cannot be positive definite, so that L⊥, defined using such a form, will not
always be complementary to L. And if one tries to retreat to the case k = R and use
a real inner product, this will not keep its positive definiteness at nonreal points, hence
it still does not lead to a morphism of varieties Grk(1, n) → CGrk(1, n).) Indeed, there
can be no nontrivial morphism of algebraic varieties Grk(1, n) → CGrk(1, n), because
Grk(1, n) is projective while CGrk(1, n) is affine.

What we may hope for, instead, is an analog of [4, Theorem 1.5(b)] applying directly
to morphisms CGrk(1, n) → Grk(d, n). We note, however, that [4, Theorem 1.5(b)] has
only one exceptional case for n even, the case d = n−1, in place of the two cases d = 2
and d = n−1 of [4, Theorem 1.5(a)]. Yet the example of the next section shows that
both of the latter cases occur; so the desired result on maps CGrk(1, n) → Grk(d, n)
would have to have a weaker conclusion than that of [4, Theorem 1.5(b)].

6. A factorization when n is even

We shall now see that factorizations of the sort allowed by Theorem 5 when n is even
do occur. Our argument is inspired by the construction of Buchweitz and Leuschke [1].

Lemma 6. Let R be a commutative integral domain, n a positive integer, and X an

n×n matrix over R having determinant 0. Then

(i) rank(adj(X)) 6 1 ;

(ii) for any alternating n×n matrix A over R, one has adj(X) A adj(X)T = 0 .

Proof. (i) If rank(X) = n−1, this follows from the equation X adj(X) = det(X)In = 0.
If rank(X) < n− 1, then all (n−1)× (n−1) minors of X are zero, so adj(X) = 0.

(ii) Since A is alternating, every row r of adj(X) satisfies rA rT = 0. But by (i),
the rows of adj(X) are pairwise linearly dependent, so for any two rows r, r′ of adj(X)

we see (using the fact that R has no zero-divisors) that rA r′
T

= 0. �

Our desired factorization is now given by part (iii) of

Theorem 7. Let R be a commutative ring, n a positive integer, X an n×n matrix

over R, and A any alternating n×n matrix over R. Then

(i) all entries of adj(X) A adj(X)T are divisible by det(X) ;

(ii) adj(X) A is right-divisible by XT and A adj(X) is left-divisible by XT ;

(iii) (Buchweitz and Leuschke [1]) if A is invertible (so that n is necessarily even),
then adj(X) is right-divisible by XTA and left-divisible by AXT .
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Proof. Clearly (i) and (ii) reduce to the case where R is a polynomial ring over the
integers, X a matrix of distinct indeterminates, and A an alternating matrix having
distinct indeterminates for its above-diagonal entries. In this case, R is a UFD and
det(X) an irreducible element, so that R/(det(X)) is an integral domain. Applying
Lemma 6(ii) to the image of the element adj(X) A adj(X)T in this domain, we get (i).

To get (ii), let us rewrite (i) (still in the case where R is a polynomial ring) as

adj(X) A adj(X)T = Y (det(X)In)

for some matrix Y over R. Making the substitution det(X)In = XTadj(X)T in the
right-hand side of this equation, we can right-cancel adj(X)T (since it has nonzero de-
terminant and R is a domain), getting adj(X)A = Y XT, the desired right divisibility
relation. The left divisibility statement follows by symmetry.

For A invertible, (iii) follows from (ii) by putting A−1 in place of A. (Note that
in the resulting factorization, the factor XTA or AXT has, up to units, determi-
nant det(X) , hence the other factor has determinant det(X)n−1. The latter factor is
constructed explicitly in [1], in terms of determinantal minors.) �

Let us record an interesting way of looking at (i) above.

Corollary 8. Under the general hypothesis of Theorem 7, if R is an integral domain

and X is nonsingular, then the matrix X−1A (XT)−1 over the field of fractions of R
has all its entries in det(X)−1R. (I.e., these entries, which one would a priori expect

to write using denominator det(X)2, can in fact be written with denominator det(X).)

Proof. Multiply the statement of Theorem 7(i) by (detX)−2, recalling that by (2),
det(X)−1adj(X) = X−1 , and hence that det(X)−1adj(XT) = (XT)−1 . �

Can we push the factorizations of Theorem 7(iii) still further? Suppose A and A′

are two invertible alternating matrices over R, and we write the factorizations given by
that result as

(AXT)Z = adj(X) = Y ′ (XTA′). (7)

Might Z and Y ′ themselves admit nontrivial factorizations?
A look at Theorem 5 quickly eliminates all possibilities except that Z might have a

right factor whose determinant (up to units) is det(X) and/or that Y ′ might have a
left factor with this property. Buchweitz and Leuschke inform me, however, that they
can show that no such factorizations occur.

Nonetheless, their result [1, Corollary 2.4] shows that in a different sense, the two
factorizations of (7) have a “common refinement”; that sense being that there exist a
scalar r ∈ R and a matrix W over R such that

adj(X) = A(rXT +XTWXT)A′, (8)

an equation which we see includes both the left divisibility of adj(X) by AXT and its
right divisibility by XTA′.

(Cf. [3, Proposition 7.3(i), p. 118]. Nothing like the hypothesis of that result is satis-
fied here. However, that result presents a sequence of ways in which a noncommutative
ring expression can have two factorizations; and (8) is an instance of the n = 2 term
of that sequence.)
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7. Further questions

The factorizations of Theorem 7(iii) are noncanonical: they depend on an invertible
alternating matrix A. This suggests that a context in which they would have a natural
meaning is that of a vector space given with a nondegenerate alternating bilinear form. It
would be interesting to know whether they can be given some illuminating interpretation
in that context.

Returning to the question with which we began this paper, but taking a more extra-
vagant goal than we did, we may ask whether one can describe all maximal factorizations
of the matrix det(X)In into noninvertible n×n matrices over k[xij ]. For any n, in
addition to the factorization (2), the same factorization with the order of factors re-
versed, and the two factorizations arising similarly from the transpose of X, there is
an obvious factorization into n diagonal matrices each having determinant det(X):

det(X) In = diag(det(X), 1, . . . , 1) · . . . · diag(1, . . . , 1, det(X)). (9)

When n is odd, are (2), its three variants just noted, and (9) “essentially” all there
are?

A factorization can be trivially perturbed by multiplying two successive factors on
the right and the left respectively by an invertible matrix U over k[xij ] and its inverse.
Also, because det(X)In is central, we can multiply the last factor in a factorization
by such a matrix U on the right and the first factor by U−1 on the left. We may
ask whether for n odd the five factorizations of the preceding paragraph form a set
of representatives of the orbits of all maximal factorizations of det(X)In under these
sorts of perturbations. (Factorizations gotten by permuting the terms of (9) are not
counterexamples: they can be obtained using permutation matrices in the role of U.) For
n even, we get additional factorizations from Theorem 7(iii), this time parametrized by
an alternating matrix A. (It is not clear how many degrees of freedom these additional
families have, modulo the equivalence relation introduced above.)

In each of the explicit factorizations noted above, one can see or show by homogeneity
arguments that the degree of the product matrix det(X) In in the n2 indeterminates
is precisely the maximum of the sums of the degrees of the matrix entries that get
multiplied together; i.e., that there is not too much “cancellation” in the calculation of
det(X) In as a product. We can, however, easily destroy this property by interpolating
invertible matrices U over k[xij ] having entries of high degree, and their inverses.
Could there be some principle saying that any factorization of a “good” matrix over
a polynomial ring is a perturbation, via interpolated matrices and their inverses, of a
factorization in which the degree is well behaved?

Turning in a different direction, let us observe that for an n×n matrix A over a
commutative ring k, say representing a linear map a : kn → kn, the classical adjoint
adj(A) can be characterized as the transpose of the matrix representing the linear
map ∧n−1 a : ∧n−1 kn → ∧n−1 kn, where ∧n−1 denotes the (n−1)st exterior power
functor. If instead we apply to a a lower exterior power functor ∧m, we get an en-
domorphism of the module ∧m kn, which is free of rank

(

n
m

)

. Again, taking for A

a generic matrix X, we may ask whether the resulting
(

n
m

)

×
(

n
m

)

matrix over k[xij ]
can be factored into noninvertible square matrices. (This matrix, incidentally, has de-

terminant det(X)

(

n−1
m−1

)

, and its product with the transpose of the matrix representing
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∧n−m a, with rows and columns appropriately indexed, is det(X) times the
(

n
m

)

×
(

n
m

)

identity matrix.)
Each of the above functors ∧m is a homomorphic image of the m-fold tensor product

functor ⊗m. In fact, when char k = 0, ⊗m decomposes into a direct sum of subfunctors
indexed by Young diagrams, and the functor ∧m corresponds to the height-m column
of boxes. (The length-m row of boxes corresponds in the same way to themth symmetric
power functor.) We may thus pose for each of these summands of ⊗m (and for the
various naturally arising functors in finite characteristic) the same question we have
studied here for ∧n−1 !
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