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Abstract. The study of twisted bilayer graphene (TBG) is a hot topic in condensed

matter physics with special focus on magic angles of twisting at which TBG acquires

unusual properties. Mathematically, topologically non-trivial flat bands appear at

those special angles. The chiral model of TBG pioneered by Tarnopolsky–Kruchkov–

Vishwanath [TKV19] has particularly nice mathematical properties and we survey,

and in some cases, clarify, recent rigorous results which exploit them.
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Figure 1. Left: a moiré pattern at CIRM in Luminy; right: a moiré

fundamental cell with regions of different (AA′, BB′, AB′... ) particle-

type overlaps. Tunneling potential |V (r)| concentrates in AA′/BB′ re-

gions and |U(r)| concentrates at AB′ regions.

References 40

1. Introduction

Investigation of physical properties of twisted bilayer graphene, and of similar struc-

tures, is a hot topics in condensed matter physics. One feature which is present when

periodic structures are twisted is the emergence of moiré patterns – see Figure 1. These

patterns create new periodic (or quasi-periodic) structures which now have much larger

fundamental cells. That is very useful and, for instance, has led to experimental obser-

vation of the Hofstadter butterfly [H∗13] – see [AvJi09] for the mathematical derivation

and history.

The property on which we focus in this mathematical survey is existence of flat bands

at certain angles of twisting (see §3.1 below for a review of the Bloch–Floquet theory

and for definition of band spectrum). Flat bands correspond to eigenvalues of infinite

multiplicity for the periodic Hamiltonian modeling the system. The first thought would

then suggest existence of highly localized eigenstates which would prevent conductivity.

If however the band topology is non-trivial (see §8 below) the localization is weak and

can lead to superconductivity, in a somewhat mysterious mechanism, certainly not

understood mathematically.
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The Bistritzer–MacDonald Hamiltonian (BMH) [BiMa11] is widely considered to

be a good model for the study of twisted bilayer graphene (TBG) and it achieved

celebrity for an accurate prediction of the twisting angle at which superconductivity

occurs [Ca*18]. The chiral limit of BMH is obtained by neglecting AA′/BB′ tunneling

(see Figure 1 and §2.2). It has many advantageous properties and was studied with

great success by Tarnopolsky–Kruchkov–Vishwanath [TKV19] and their collaborators,

see for instance Ledwith et al [Le*20]. One striking feature of the chiral limit, one which

is not present in the BMH model, is the existence of exact flat bands. The Hamiltonian

is of the form

H(α) =

(
0 D(α)∗

D(α) 0

)
, D(α) : H1(C;C2)→ L2(C;C2),

where D(α) is a first order (non-self-adjoint) matrix valued operator and α is dimen-

sionless constant (a much appreciated feature for mathematicians) with 1/α corre-

sponding to the angle of twisting. The bands are the eigenvalues of Hk(α) which is

obtained by replacing D(α) by D(α)+k in the definition ofH(α) and by taking periodic

boundary condition with respect to the lattice of periodicity of H(α), Γ. Hence,

H(α) has a flat band at zero energy ⇐⇒ SpecL2(C/Γ) D(α) = C.

It turns out (see §§2.2,5) that the set of α’s for which this happens is discrete – at

other α’s the spectrum is given by Γ∗, the reciprocal lattice of Γ (in the notation of

§2.1, Γ = 3Λ and Γ∗ = 1
3
Λ∗).

In this survey we discuss distribution of α for which H(α) has a flat band at zero

energy and properties of the corresponding eigenfunctions. We concentrate on pre-

senting rigorous mathematical results familiar to the author with precise pointers to

specific papers. In particular, we do not attempt to survey the vast physics literature

on TBG. The motivation comes from beautiful and mysterious properties of the dif-

ferential operator appearing in the chiral model (see Figure 2 for an illustration). We

also highlight some open mathematical problems. The most interesting are perhaps

Problems 1 and 9 as they still attract attention in the physics literature. Other prob-

lems concern finer aspects of the model and most are of purely mathematical interest

– I find Problems 2,3,8,15,18 and 20 particularly appealing.

Mathematical study of the chiral model of TBG started with the work of Watson–

Luskin [WaLu21] who showed existence of the first magic angle, and of Becker–Embree–

Wittsten–Zworski [Be*21, Be*22] who gave a spectral characterization of magic angles

and explained exponential squeezing of bands. It has been developed in several di-

rections by Becker–Humbert–Zworski [BHZ22a, BHZ22b, BHZ22b] (trace formulas,

existence of generalized magic angles, existence and properties of degenerate magic

angles, topological properties), Becker–Humbert–Wittsten–Yang [Be*23] (magic an-

gles for trilayer graphene), Becker–Oltman–Vogel [BOV23] (random perturbation of
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TBG), Becker–Zworski [BeZw23a, BeZw23b] (TBG in a magnetic field parallel to the

graphene sheets, deformation to the full Bistritzer–MacDonald model), Galkowski–

Zworski [GaZw23] (an abstract formulation of the spectral characterization, a scalar

model for magic angles), Hitrik–Zworski [HiZw23], Tao–Zworski [TaZw23b] (classically

forbidden regions for eigenstates), and Yang [Ya23] (twisted multiple layer graphene).

Many of these results are described in this survey.

During the writing of this survey it became apparent that we did not have a refer-

ence to the fact that the chiral model of TBG exhibits Dirac cones away from α’s at

which flat bands appear – see Open Problem 2. Mengxuan Yang and Zhongkai Tao

immediately provided an argument for that and it is included here as an appendix.

Notation In this paper we use the physics notation: for an operator A on L2(M,dm),

〈u|A|v〉 :=
∫
M
Av ū dm. Also, |u〉 denotes the operator C 3 µ → µu ∈ L2 and 〈u|,

its adjoint L2 3 v → 〈u|v〉 ∈ C. For z, w ∈ C ' R2, we use the real inner product,

〈z, w〉 := Re zw̄. If H is a function space (such as L2, Sobolev space Hs or spaces with

given periodicity conditions) then H(M ;Cn) denotes functions in H on M with values

in Cn. When the context is clear we may drop M and Cn.

Acknowledgements. I would like to thank Mike Zaletel for introducing me to TBG

and pointing out the semiclassical nature of small angle asymptotics. I am grateful

to my many collaborators on projects related to TBG, on whose work this survey is

based, especially to Simon Becker who produced most of the figures (and movies) in

our recent joint papers, some of which are re-used here. I would also like to thank

Patrick Ledwith, Lin Lin, Mitch Luskin, Allan MacDonald, Ashvin Vishwanath, and

Alex Watson for valuable physics perspectives (many of which, alas, remain a mystery

to this author). Simon Becker, Jens Wittsten and Mengxuan Yang provided many

insightful comments on earlier versions of this survey and I am very grateful for that

great help. Thanks go also to Zhongkai Tao for pointing out and clarifying a mistake

in §8. Partial support by the NSF grant DMS-1901462 and by the Simons Foundation

under a “Moiré Materials Magic” grant is also most gratefully acknowledged.

2. The Bistritzer–MacDonald Hamiltonian and its chiral limit

In this section we consider the Bistritzer–MacDonald Hamiltonian (BMH) [BiMa11]

from the PDE point of view without addressing its physical motivation. It has been

mathematically derived by Cancès–Garrigue–Gontier [CGG22] and Watson–Kong–

MacDonald–Luskin [Wa*22] and we refer to these papers above and [TKV19] for

physics background. As we will stress, its chiral limit exhibits beautiful and unusual

mathematical properties which have been our main motivation.
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The representation of BMH in the physics literature [BiMa11], [TKV19] is given as

follows: for two parameters α and λ we define

HBM(α, λ) =

(
−i(σ1∂x1 + σ2∂x2) T (α, λ)

T (α, λ)∗ −i(σ1∂x1 + σ2∂x2)

)
: H1(R2;C4)→ L2(R2;C4),

where we use Pauli matrices,

σ1 :=

(
0 1

1 0

)
, σ2 :=

(
0 −i
i 0

)
, r = (x1, x2) ∈ R2,

and •∗ denotes the hermitian conjugate.

The interlayer tunnelling matrix is defined as follows

T (α, λ) =

(
λV (r) αU(−r)

αU(r) λV (r)

)
.

The non-equivalent pairs of atoms in a fundamental cell of the honeycomb lattice of

graphene are labelled by A,B, with the labeling A′, B′ for the second sheet in TBG.

In the matrix potential T , U(±•) and V model AB′/BA′ and AA′/BB′ tunnelling

respectively, see Figure 1. They are defined as follows: with ω := exp(2πi/3),

U(r) =
2∑
i=0

ω`e−iq`·r, V (r) =
2∑
`=0

e−iq`·r, q` := R`(0,−1), R := 1
2

(
−1 −

√
3√

3 −1

)
.

(We note that R is the 2π/3 rotation matrix.) A useful equivalent representation of

HBM is given as follows:

AHBM(α, λ)A =

(
λC D(α)∗

D(α) λC

)
, A :=

1 0 0

0 σ1 0

0 0 1

 : C4 → C4,

where (with Dxj := (1/i)∂xj)

D(α) =

(
Dx1 + iDx2 αU(r)

αU(−r) Dx1 + iDx2

)
and C =

(
0 V (r)

V (−r) 0

)
.

In most of the figures we use the coordinates (x1, x2) and corresponding dual coordi-

nates k.

2.1. Change to the standard lattice Z+ωZ. The potentials U and V are periodic

with respect to the lattice Γ = 4πi(Z+ωZ) with finer twisted periodicity with respect

to the moiré lattice 1
3
Γ. It is mathematically nicer, especially when dealing with theta

functions, to use coordinates in which the moiré lattice is given by Λ := Z+ ωZ. This

corresponds to changing the physics coordinates r = (x1, x2) ∈ R2 to z ∈ C ' R2

defined by

x1 + ix2 = 4
3
πiz.
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This leads to an equivalent Hamiltonian,

H(α, λ) :=

(
λC D(α)∗

D(α) λC

)
: H1(C;C4)→ L2(C;C4), α ∈ C, λ ∈ R, (2.1)

where (with Dz̄ = (1/i)∂z̄ = (1/2i)(∂x1 + i∂x2))

D(α) =

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, C :=

(
0 V (z)

V (−z) 0

)
, (2.2)

where the parameter α is proportional to the inverse relative twisting angle. With

ω = e2πi/3 and K := 4
3
π, we assume that

U(z + γ) = ei〈γ,K〉U(z), γ ∈ Λ, U(ωz) = ωU(z), U(z̄) = −U(−z), (2.3)

Λ := Z⊕ ωZ, and

V (z) = V (z̄) = V (−z), V (ωz) = V (z), V (z + γ) = ei〈γ,K〉V (z). (2.4)

The specific potentials in HBM are, with K = 4
3
π,

U(z) = UBM(z) := −4
3
πi

2∑
`=0

ω`ei〈z,ω
`K〉, V (z) = VBM(z) :=

2∑
`=0

ei〈z,ω
`K〉, (2.5)

and these are the potentials used in (most) numerical experiments in the papers cited

in the abstract.

2.2. The chiral limit. When we put λ = 0 in (2.1) (or equivalently in HBM) we

obtain an operator build from D(α) only and satisfying a chiral symmetry:

H(α) := H(α, 0) =

(
0 D(α)∗

D(α) 0

)
,(

−1 0

0 1

)
H(α)

(
−1 0

0 1

)
= −H(α).

(2.6)

In particular, the spectrum of H(α) is symmetric with respect to 0. The great advan-

tage comes from reducing some properties of H(α) to those of the operator D(α). We

will see in §3 that H(α) has a perfect flat band at energy zero if and only if

SpecL2(C/3Λ;C2) D(α) = C, (2.7)

and that the set of α’s for which this happens is discrete. Outside of that discrete set

the spectrum on L2(C/3Λ) is given by 1
3
Λ∗. The domain of D(α) is given by H1(C/3Λ)

and it is a Fredholm operator of index 0. (In §3 we will consider a finer space L2
0(C;C2)

which is more suitable for Floquet theory and the study of flat bands; the reason for

C/3Λ is periodicity of potentials with respect to the lattice 3Λ.) The set, A, of α’s for

which (2.7) holds satisfies the following symmetries (see [Be*22], [BHZ22b, §2.3]):

A = −A = Ā. (2.8)
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Figure 2. The set of α’s for which (2.7) holds (with the potential given

by (2.5)), that is for which the chiral Hamiltonian has a perfectly flat

band at 0 energy. The regular distribution becomes less apparent when

the potential is relaxed while all the properties (2.3) are maintained.

Another advantage of the operator D(α) is that scalar valued holomorphic functions

act as scalars:

D(α)(fu) = fD(α)u, u ∈ H1
loc(C;C2), f ∈ O(C;C).

This was emphasized in [TKV19] and was a basis of the argument recalled in §6 below.

A crucial feature of D(α) is its non normality, [D(α), D(α)∗] 6= 0. This allows for

exotic phenomena such as (2.7), which in turn produce exactly flat bands appreciated

by physicists. As indicated in [Be*22] it also results in less desirable features such

as exponential squeezing of bands (see §10.1) and spectral instability (see Figure 5).

Those effects are exploited in [BOV23] where small random perturbations produce

dramatic changes in spectral behaviour, suggesting high instability of all but the first

magic angle.

The set of (complex) α’s for which (2.7) holds for the potential (2.5) is shown in

Figure 2. Its structure remains a mystery. One striking observation made in [TKV19]

is the even spacing of real α’s (shown in red and labeled 0 < α1 < α2 < · · · ) roughly

given by

αj+1 − αj ' 3
2
. (2.9)

(A more accurate computation based on the spectral characterization [Be*22] – see

Theorem 5 – suggests the spacing ' 1.515).

Open Problem 1. For U given in (2.5) establish an asymptotic quantization rule

(2.9). At the moment, there are no convincing arguments. A more general question is

obtaining asymptotics of real α’s for more general potentials satisfying (2.3). In that

case, a simple law similar to (2.9) is harder to observe – see the movie linked to Figure

3. See also §5.2 and §10 for discussions of related issues.

3. Basic symmetries and band theory of TBG

The translation symmetry of BMH are given as follows: for u ∈ L2
loc(C;C2) we define

Lγu(z) :=

(
ei〈γ,K〉 0

0 e−i〈γ,K〉

)
u(z + γ), γ ∈ Λ, K = 4

3
π. (3.1)
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We extend this action diagonally for w ∈ L2
loc(C;C4):

Lγw =

(
Lγw1

Lγw2

)
, w =

(
w1

w2

)
, wj ∈ L2

loc(C;C2).

We then have, in the notation of (2.1), (2.2) with U , V satisfying (2.3) and (5.9),

LγD(α) = D(α)Lγ, LγH(α, λ) = H(α, λ)Lγ. (3.2)

We also define the pull back of the rotation by 2π/3:

Ω : L2
loc(C;C2)→ L2

loc(C;C2), C : L2
loc(C;C4)→ L2

loc(C;C4),

Ωu(z) := u(ωz), C

(
w1

w2

)
:=

(
Ωw1

ω̄Ωw2

)
.

(3.3)

This gives

ΩD(α) = ωD(α), CH(α, λ) = H(α, λ)C . (3.4)

The natural subspaces of L2
loc(C;Cp), p = 2, 4, are given by

L2
k(C;C2) := {u ∈ L2

loc(C,C2) : Lγu = ei〈k,γ〉u}, ‖u‖L2
k

=

∫
C/Λ
|u(z)|2dm(z), (3.5)

and similarly for p = 4 with Lγ replaced by Lγ. We also define Sobolev spaces

Hs
k := L2

k ∩Hs
loc. With s = 1 they can be used as domains of our operators.

These spaces depend only on the congruence class of k in C/Λ∗,

Λ∗ :=
4πi√

3
Λ, k 7→ z(k) :=

√
3k

4πi
, Λ∗ → Λ, 〈p, γ〉 ∈ 2πZ, p ∈ Λ∗, γ ∈ Λ. (3.6)

The points of high symmetry, K, are defined by demanding that

p ∈ K =⇒ ωp ≡ p mod Λ∗.

They are given by

K = {K,−K, 0}+ Λ∗, K = 4
3
π. (3.7)

Mathematically, these are the fixed points of the action of z 7→ ωz on C/Λ∗. Physically,

±K are called the K-points at which Dirac points are present (see §6) and 0 is called

a Γ-point – see Figure 4. (A different choice of Lγ in (3.1) can result in different sets

of K-points – see [BeZw23a, §2].)

For k ∈ K/Λ∗ and p ∈ Z3 we also define

L2
k,p(C;C4) := {u ∈ L2

k(C;C4) : C u = ω̄pu}, (3.8)

with the definition of L2
k,p(C;C2) obtained by replacing C by Ω. We have orthogonal

decompositions L2
k =

⊕
p∈Z3

Lk,p, k ∈ K/Λ∗. Also, the actions of Lγ and C on L2
p,k

commute. In general, LγC = C Lωγ and the group generated by the action Lγ and C
(or the actions of Lγ and C ) is a discrete Heisenberg group – see §[Be*22, §2.1]. These
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spaces play an important role in the study of protected states, multiplicities and trace

formulas for magic angles.

3.1. Bloch–Floquet theory. The “twisted” translations Lγ can be used to define a

Bloch transform

Bu(k, z) := |C/Λ∗|−
1
2

∑
γ∈Λ

e−i〈z+γ,k〉Lγu(z), u ∈ S (C).

We then easily check that

Bu(k + p, z) = e−i〈z,p〉Bu(k, z), p ∈ Λ∗,

LαBu(k, •) = |C/Λ∗|−
1
2

∑
γ

e−i〈z+α+γ,k〉Lα+γu(z) = Bu(k, •), α ∈ Λ.

We can check that for u ∈ S (C),∫
C/Λ

∫
C/Λ∗
|Bu(k, z)|2dm(z)dm(k) =

∫
C
|u(z)|2dm(z),

and that

CBu(z) = u(z), Cu(z) := |C/Λ∗|−
1
2

∫
C/Λ∗

v(z, k)ei〈z,k〉dm(k).

This shows that B extends to a unitary map B : L2(C;C4)→H , where

H := {v(k, z) ∈ L2
loc(C;L2

0(C;C4)), v(k + p, z) = e−i〈z,p〉v(k, z), p ∈ Λ∗}.

We then define

Hk(α, λ) : D →H , D := H ∩ L2
loc(Ck;H

1
0 (C,C4)),

Hk(α, λ) := e−i〈z,k〉H(α, λ)ei〈z,k〉 =

(
λC D(α)∗ + k̄

D(α) + k λC

)
,

[Hk(α, λ)Bu](k, z) = [BH(α, λ)u](k, z).

(3.9)

We see that SpecL2
0
(Hk(α, λ)) (with the domain given by H1

0 ) is discrete and

SpecL2(C;C4)(H(α, λ)) =
⋃

k∈C/Λ∗

SpecL2
0
Hk(α, λ).

The Hamiltonian (2.1) possesses other important symmetries called the parity-

inversion/time-reversal symmetry, the particle-hole symmetry and the mirror sym-

metry – see [BeZw23b, §2.2] for a concise review. One consequence of the symmetries

is the existence and properties of protected states:

Theorem 1 ([Be*21, Be*22]). For the Hamiltonian (3.9) with U and V satisfying

(2.3),(5.9) and α, λ ∈ R,

dim kerH1
0
H±K(α, λ) ≥ 2, K = 4

3
π, (3.10)
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In addition, for α ∈ C
dim kerH1

0
(D(α)±K) ≥ 1. (3.11)

Moreover we can find a holomorphic function

C 3 α→ u±K(α) ∈ (C∞ ∩ L2
0)(C;C2) \ {0},

such that
(D(α)±K)u±K(α) = 0, u−K(α) = τ(K)E τ(K)uK(α),

τ(K)uK(0) =

(
1

0

)
, τ(±K)u±K(α) ∈ L2

±K,0,

E

(
u1(z)

u2(z)

)
:=

(
u2(−z)

−u1(−z)

)
, τ(k)u(z) := ei〈z,k〉u(z).

(3.12)

This was essentially established in [Be*21, Be*22] but for a streamlined proof of

(3.10) see [BeZw23b, Proposition 2], and for the proofs of (3.11) and (3.12), [BHZ22b,

Propositions 2.2, 2.3], respectively. An alternative proof of (3.11) which does not

involve H(α, 0) is presented in [Be*23].

Open Problem 2. Do upper and lower bands for the Bistritzer–MacDonald Hamil-

tonian have conic singularities at ±K for all real values of α and λ? That would mean

that ±K are Dirac points:

3.2. Flat bands in the chiral limit. The first advantage of the chiral model (2.6)

is that the spectrum of Hk(α) := Hk(α, 0) is symmetric with respect to 0 (that is not

true in the case of BMH – see §4). In view of (3.11) we know that that two bands

always touch at 0. Hence it is natural to label the spectrum of Hk(α) as follows:

SpecL2
0
Hk(α) = {E`(α, k)}`∈Z\0, E`+1(α, k) ≥ E`(α, k),

E`(α, k) = −E−`(α, k), E±1(α,±K) = 0, for all α ∈ C.
(3.13)

We note that E`(α, k), ` ≥ 1, are the ordered sequence of the singular values of the

non-self-adjoint operator D(α) + k.

A flat band at zero energy occurs at a given value of the parameter α if E1(α, k) = 0

for all k ∈ C. We recall that in the BMH, 1/α is proportional to the angle of twisting

of the two sheets of graphene. For a specific potential U satisfying (2.3) the magic α

(that is magic angles) and their multiplicities were defined as follows in [BHZ23]:
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Figure 3. Magic angles α for U1(z) = UBM(z) given in (2.5) (left) and

U2(z) = (UBM(z)−UBM(−2z))/
√

2 (right). Multiplicity of the flat bands

(no number → simple magic angle, 2 → two-fold degenerate magic an-

gle) in the figure. The movie https://math.berkeley.edu/~zworski/

Interpolation.mp4 shows the magic angles for interpolation between

these potentials: U(z) = (cos θ − sin θ)U1(z) + sin θU2; multiplicity one

magic angles are coded by ∗ and multiplicity two by ∗.

Definition (Magic angles and their multiplicities). A value of α in (2.2) is called

magical if H(α) has a flat band at zero

E1(α, k) ≡ 0, k ∈ C. (3.14)

The set of magic α’s is denoted by A or A(U) if we specify the dependence on the

potential. The multiplicity of a magic α is defined as

m(α) = mU(α) := min{j > 0 : max
k
Ej+1(α, k) > 0}. (3.15)

Magic angles are (up to physical constants) reciprocals of α ∈ A.

A numerical illustration of the sets A for different potentials satisfying (2.3) is shown

in Figure 3. Multiplicities are indicated there and in the linked animation. The

computation was done based on the spectral characterization described in the next

section. The protected nature of multiplicities one and two will be reviewed in §7.

Although the proof relies on the material presented in §5 we recall here a result

stating that if E1(α, k) touches 0 at some k away from the K-points then the band has

to be perfectly flat:

Theorem 2 ([Be*22], [BHZ22b]). For any U satisfying (2.3) and α ∈ C,

∃ k /∈ {−K,K}+ Λ∗ E1(α, k) = 0 =⇒ ∀ k ∈ C E1(α, k) = 0. (3.16)

https://math.berkeley.edu/~zworski/Interpolation.mp4
https://math.berkeley.edu/~zworski/Interpolation.mp4
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For the Bistritzer–MacDonald Hamiltonian (2.1) perfectly flat bands are not ex-

pected. That the antichiral model H(0, λ) cannot have flat bands was shown in [Be*21].

A perfectly flat band at 0 energy for a periodic Hamiltonian corresponds to an

eigenvalue of infinite multiplicity at 0 for the Hamiltonian acting on L2 (in our case

L2(C;C4) with the domain given by H1(C;C4)). Physical properties, such as super-

conductivity, are then related to the decay of the corresponding eigenfunctions. That

in turn is related to the topology of the flat band – see [TaZw23a, §8.5] and refer-

ences given there. Trivial topology gives exponential decay while nontrivial topology

forces the blow up of moments of the probability distribution of the Wannier functions

[TaZw23a, Theorem 9]. We will discuss the topology of flat bands for TBG in §8.

Open Problem 3. Show that the Hamiltonian (2.1), H(α, λ), with U and V 6≡ 0

satisfying (2.3),(5.9), cannot have flat bands when λ 6= 0. (Or give a counterexample

to this claim.)

Open Problem 4. Numerics indicate (see [BHZ22b, Figure 2]) that for U = UBM,

k 7→ E1(α, k)/[maxp∈CE1(α, p)] does not vary much with α, in particular in neighbour-

hoods of α ∈ A, and its graph is close to that of k 7→ |UBM(z(k))|, where z : Λ∗ → Λ,

see (3.6). What is the explanation of this phenomenon? For an animation of rescaled

bands see https://math.berkeley.edu/~zworski/KKmovie.mp4.

4. BMH as a perturbation of the chiral model

The Bistritzer–MacDonald Hamiltonian (BMH) (2.1) could, for small values of the

coupling constant λ, be considered as a perturbation of the chiral model. The actual

physical value of λ (see [BiMa11, TKV19]) is approximately given by λ = 0.7α.

The simplest case to consider is of α ∈ A which is positive and simple (which, in

the case of the potential in (2.5) we know rigorously for the smallest magic α and

numerically for other real α’s – see §7). Then, in the notation of (3.13),

E−2(α, k) < E−1(α, k) = 0 = E1(α, k) < E2(α, k), for all k.

This means that for |λ| � 1 in (3.13), the bands E±1(α, λ, k) are well defined.

A standard application of perturbation theory (see §9), the symmetries of D(α) and

H(α, λ), and of some basic properties of theta functions (see (6.11),(6.9),(6.10) below)

gives the following simple, but to us, surprising result:

Theorem 3 ([BeZw23b]). Suppose that α ∈ A∩R is simple and that k 7→ E±1(α, λ, k)

are the two lowest bands (in absolute value) of BMH in (2.1). Then there exist

e(α, •), f(α, •) ∈ C∞(C/Λ∗) such that

E±1(α, λ, k) = e(α, k)λ± |f(α, k)|λ2 +O(λ3), λ→ 0, (4.1)

https://math.berkeley.edu/~zworski/KKmovie.mp4
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Figure 4. Plots of k 7→ E±1(α, λ, k) for α the first real magic element

of A and λ = 10−3, 10−2, 10−1. We see that for very small coupling the

flat bands “move together” and split only when the coupling gets larger;

the quadratic term controls the splitting of the bands, see Figure 1.

For an animated version see https://math.berkeley.edu/~zworski/

Chiral2BM.mp4.

f(±K) = 0, (ωK ≡ K mod Λ∗, K 6= 0), and

e(α, k) = −e(α,−k) = −e(α, k̄) = e(α, ωk), ω = e2πi/3. (4.2)

The surprising fact is that the leading linear term (for very small λ) does not depend

on the band: when λ is switched on the two bands initially move together – see Figure 4.

However, |e(α, k)| � |f(α, k)| (except at the crossing points k = ±K) and hence the

quadratic term quickly dominates and is responsible for the splitting of the bands

– see [BeZw23b, Figure 2]. For the first magic α (and the potential in (2.5)), the

quadratic approximation provides an accurate description of the bands when λ = 0.7α

(the physical λ). For a discussion of the splitting of bands in the case of double α’s

see [BeZw23b, §5].

Open Problem 5. Show that |f(α,±K+ζ)| ∼ |ζ| which is equivalent to showing that

the Jacobian does not vanish: |∂kf(α,±K)|2 − |∂k̄f(α,±K)|2 6= 0. This is a simpler

(infinitesimal) version of Problem 2 at a magic angle.

5. Spectral characterization of magic angles

In §3 we gave the definition of A ⊂ C, the set of magic parameters α (corresponding

to the reciprocals of magic angles). The purpose of this section is to give a gen-

eral argument [GaZw23] for the discreteness of A which relies only on holomorphy

of α 7→ D(α), Fredholm properties, and existence of protected states. In the case of

operators appearing in [TKV19, Be*22, Be*23, Ya23] it also characterizes magic angles

as eigenvalues of a compact operator, which in turn allows their accurate numerical

computation (see Figure 3).

https://math.berkeley.edu/~zworski/Chiral2BM.mp4
https://math.berkeley.edu/~zworski/Chiral2BM.mp4
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We replace the operator D(α) + k by a family of operators acting between Banach

spaces X and Y . We let Ω ⊂ C be an open set and assume that for (α, k) ∈ Ω× C
Q(α, k) : X → Y, is a holomorphic family of Fredholm operators of index 0,

τY (p)Q(α, k)τX(p)−1 = Q(α, k + p), k ∈ C, p ∈ Λ∗,
(5.1)

where the maps τ•(p) : • → •, • = X, Y , are invertible bounded linear maps, and Λ∗

is a lattice in C. (The last condition can be significantly weakened but we leave in the

form relevant to periodic problems.)

We have the following for dichotomy: for a fixed α ∈ Ω

k 7→ Q(α, k)−1 is a meromorphic for k ∈ C with poles of finite rank (5.2)

or

kerX Q(α, k) 6= {0} for all k ∈ C. (5.3)

(See [GaZw23] and also [DyZw19, Appendix C] for a brief introduction to Fredholm

theory and families of meromorphic operators.)

We now define multiplicity as follows: if (5.2) holds then

m(α, k) :=
1

2πi
tr

∮
∂D

Q(α, ζ)−1∂ζQ(α, ζ)dζ, (5.4)

where the integral is over the positively oriented boundary of a disc D which contains

k as the only possible pole of ζ 7→ Q(α, ζ). Otherwise, that is when (5.3) holds, we

put m(α, k) =∞ for all k ∈ C.

Although seemingly very general and abstract, this definition is necessary in natural

examples as will be indicated in §§5.1,5.2.

Theorem 4 ([GaZw23]). Suppose that (5.1) holds and that for some α0 ∈ Ω and every

k ∈ C, we have,
m(α, k) ≥ m(α0, k) 6=∞. (5.5)

Then there exists a discrete set A ⊂ Ω such that for all k ∈ C

m(α, k) =

{
∞ α ∈ A,

m(α0, k) α /∈ A. (5.6)

We illustrate the theorem with some simple examples.

Examples. 1. Consider

Q(α, k) = eixDx + (α− 1
2
)eix + k, x ∈ R/2πZ, Dx := (1/i)∂x.

Then, in the notation of Theorem 4, X = L2(R/2πZ), Y = H1(R/2πZ) and

m(k, 0) ≡ 0, Λ∗ = 2πZ, A = Z + 1
2
. (5.7)

In this case we do not have the second condition in (5.1) but the proof in [GaZw23]

still applies as m(k, 0) ≡ 0. A direct elementary verification is of course much simpler.
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This is a special case of the class of one dimensional examples constructed by Seeley

[Se86] to show pathological properties of non-normal operators.

2. We can consider Q(α, k) = D(α) + k given in (2.2) with U satisfying (2.3). In

[Be*22] we took

X = L2(C/3Λ;C2), Y = H1(C/3Λ;C2).

In that case the assumptions were satisfied by

m(0, k) = 2 1l 1
3

Λ∗(k), τ(p)u(z) := ei〈p,z〉u(z).

3. In [BHZ22b] we took the point of view closer to the physics literature and had D(α)

act on

X = L2
0(C;C2), Y = H1

0 (C;C2),

where the spaces were defined in (3.5), so that

m(0, k) = 1lK0(k), K0 := {K,−K}+ Λ∗, τ(p)u(z) := ei〈p,z〉u(z).

(The protected states were reviewed in Theorem 1.) The sets A are the same in both

cases. However, there are multiplicity issues illustrated in [BHZ22b, Figure 4].

More interesting examples, in which m(α0, k) > dim kerQ(α0, k), will be given the

next two sections.

5.1. Spectral characterization. For operators appearing in TBG (see the examples

above) but also in the study of multilayer graphene – see [Be*23],[Ya23] and references

given there – the structure of operators Q(α, k) in Theorem 4 is more special.

A natural generalization of D(α) in (2.2) is given as follows

D(α) := 2Dz̄ ⊗ ICn +W (z) + αV (z) : H1
loc(C;Cn)→ L2

loc(C;Cn),

H(α) :=

(
0 D(α)∗

D(α) 0

)
,

(5.8)

where V (z),W (z) ∈ C∞(C;Cn ⊗ Cn). Here 2Dz̄ := ∂x1 + i∂x2 , z = x1 + ix2, and we

will write 2Dz̄ for the diagonal action on Cn-valued functions.

In (2.2) we had n = 2 and W = 0 but the presence of W is needed for other models.

Mathematically, having that term seems essential when n > 3 is considered as it helps

in controlling the number of protected states, see (5.10) below. We could consider an

even more general case of W (z) + αV (z) replaced by V (α, z).

Let

Λ = cΛ(Z + ωZ), cΛ ∈ C∗, ω = e2πi/3.

One nice choice is cΛ = 1 (used in [BeZw23a] and later papers and in §2.1 above) but

the lattices in the physics literature have different cΛ. Let Λ∗ := c−1
Λ (4πi/

√
3)Λ, be the

dual (reciprocal) lattice.
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The class of very general periodicity conditions is given as follows:

V (z + γ) = ρ(γ)−1V (z)ρ(γ), W (z + γ) = ρ(γ)−1W (z)ρ(γ),

ρ(γ) := diag
[
(exp(i〈γ, kj〉))nj=1

]
, kj ∈ C/Λ∗.

(5.9)

We remark that ρ(γ) is, up to a change of coordinates on Cn a general unitary repre-

sentation of the group Λ on Cn.

We then have

LγD(α) = LγD(α), Lγu(z) := ρ(γ)u(z + γ),

and Bloch–Floquet theory follows the same path as in §3.1 by considering the spectrum

of

Hk(α) :=

(
0 D(α)∗ + k̄

D(α) + k 0

)
: H1

ρ → L2
ρ,

L2
ρ := {u ∈ L2

loc(C;Cn), Lγu = u}, H1
ρ := H1

loc ∩ L2
ρ.

Equivalently we can consider

Dρ(α) := ρ(z)D(α)ρ(z)−1 = diag
[
(2Dz̄ − kj)nj=1

]
+Wρ(z) + αVρ(z),

•ρ(z + γ) = •ρ(z), •ρ(z) := ρ(z) • (z)ρ(z)−1, • = V,W,
(5.10)

which is a periodic operator with respect to Λ and look at the corresponding Hρ,k(α)

on Λ-periodic functions.

By putting

Q(α, k) := D(α) + k, X = L2
ρ, Y = H1

ρ ,

we can apply Theorem 4 to this case provided that D(0) (corresponding to α0 = 0)

has discrete spectrum. If the eigenvalues of D(0) are semisimple then

m(k, 0) = dim kerH1
ρ
(2Dz̄ +W (z) + k). (5.11)

This happens when W (z) ≡ 0 in which case

m(k, 0) = |{j ∈ [1, · · · , n] : k ≡ kj mod Λ∗}|.

The advantage of the special form of D(α) is that for k /∈ SpecHρ D(0), (D(0)+k)−1 :

L2
ρ → L2

ρ is a compact operator. Combined with Theorem 4 this gives

Theorem 5 ([Be*22],[BHZ22b],[GaZw23]). Suppose that Q(α, k) := D(α) + k where

D(α) is given in (5.8) and that D(0) has discrete spectrum. If for all k (see definition

(5.4))

m(α, k) ≥ m(0, k), (5.12)

then the Birman–Schwinger operator,

Tz := (D(0)− z)−1W (z) : L2
ρ → H1

ρ ↪→ L2
ρ, z /∈ Spec(P (0)), (5.13)
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has discrete spectrum independent of z and, in the notation of Theorem 4,

m(k, α) =

{
∞, 1/α ∈ Spec(Tz),

m(k, 0), otherwise.
(5.14)

In particular, H(α) in (5.8) has a flat band at 0 if and only if 1/α ∈ Spec(Tz).

Conversely, if the spectrum of Tz is independent of z /∈ SpecD(0), then (5.12) and

(5.14) hold.

As pointed out above, this spectral characterization, with magic angles as the spec-

trum of a compact operator, has been very useful in computing elements of A. Since

Tz is non-selfadjoint, pseudospectral issues (see [DSZ04] and references given there),

that is the large size of the norm of the resolvent of Tz, enter for large values of α. An

explanation of this is provided in §10.1 but a striking numerical illustration is given in

Figure 5.

An example of an operator with n = 3 can be found in [Be*23] where trilayer

graphene was studied (and (5.11) holds). A more interesting case is given by twisted

m-sheets of graphene studied mathematically in [Ya23]:

Example. Let us rename the operator D(α) in (2.2) as D1(α). Following [Ya23] and

the physics papers cited there, we put, for N > 1,

D(α) = DN(α, t) :=



D1(α) t1T+

t1T− D1(0) t2T+

t2T− D1(0)
. . .

. . .

tN−1T+

tN−1T− D1(0)


, (5.15)

with t = (t1, t2, · · · , tN−1) and

T+ =

(
1 0

0 0

)
, T− =

(
0 0

0 1

)
.

To find a suitable ρ in (5.9) we first choose k1 and k2 which work for D1(α) (for

instance, as in (3.1)) and then check that kj for 3 ≤ j ≤ 2N can be chosen consistently

so that (5.9) holds. Then D(α) is an example of an operator to which Theorem 5

applies with n = 2N . In this case m(0, k) = N 1lK(k) > dim ker(DN(0) + k) = 1lK(k)

(K = {K,−K} + Λ in the case of (3.1)). A direct argument in [Ya23, §4.2] showed

that set of α’s for which the spectrum of D(α) is a discrete set and that implies that

the spectrum Tz in (5.13) is independent of z /∈ K. Hence Theorem 5 implies that

(5.12) holds but it would be interesting to have a direct argument for that.
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Figure 5. : Left: the spectrum of D(α) (in the k plane) as α varies

(vertical axis). Flat surfaces indicate that 1/α is a magic angle. Right:

level surface of ‖(D(α)−k)−1‖ = 102 as a function of k and α: the norm

blows up at magic angles for all k (α near the magic values 0.586 and

2.221). The thickening of the “trunks” reflects the exponential squeezing

of the bands. This figure comes from [Be*22].

5.2. A scalar model. One of the difficulties of dealing with the operator D(α) given

in (2.2) is that it acts on vector valued functions – some of that will be highlighted in

§10. By increasing the order of the operator a scalar model non-equivalent to D(α)

but exhibiting flat bands was proposed in [GaZw23].

We first observe that D(−α) is the co-adjoint matrix of D(α) and hence

D(−α)D(α) = Q(α)⊗ IC2 +

(
0 α2Dz̄U(z)

−α[2Dz̄U ](−z) 0

)
,

Q(α) := (2Dz̄)
2 − α2U(z)U(−z).

(5.16)

From the semiclassical point (as α → ∞) of view the non-scalar term in (5.16) is of

lower order (see §10) and is natural to consider the operator Q(α) on its own.

We can then consider a self-adjoint Hamiltonian, on L2(C;C2) with the domain

given by H2(C;C2) (note that D2
z̄ is an elliptic operator),

H(α) :=

(
0 Q(α)∗

Q(α) 0

)
. (5.17)

This is a periodic operator with respect to the lattice Λ (note that for U satisfying

(2.3), U(z)U(−z) is Λ-periodic). And Floquet theory (as reviewed in §3.1) corresponds

to studying the spectra of

H(α, k) =

(
0 Q(α, k)∗

Q(α, k) 0

)
, Q(α, k) := (2Dz̄ + k)2 − α2U(z)U(−z),
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Figure 6. Comparison of the set of magic α’s, A for the potential

U = UBM given in (2.5) (shown as ◦) and Asc the set for which (5.18)

holds (with the same U ; shown as •). The real elements of Asc are

shown as •. They appear to have multiplicity two. When we interpolate

between the chiral model and the scalar model, the multiplicity two real

α’s split and travel in opposite directions to become magic α’s for the

chiral model: see https://math.berkeley.edu/~zworski/Spec.mp4.

on L2(C/Λ;C2) and with the domain H2(C/Λ;C2).

A flat band of H(α) given in (5.17) corresponds to

∀ k ∈ C 0 ∈ SpecHk(α) ⇐⇒ ∀ k ∈ C kerH1(C/Λ)Q(α, k) 6= {0}. (5.18)

To apply Theorem 4 we need to verify the first inequality in (using the definition (5.4))

m(α, k) ≥ m(0, k) = 2 1lΛ∗(k) > dim kerQ(0, k) = 1lΛ∗(k),

see [GaZw23, §3]. (Just as in the case of (5.15) it is important to consider the general-

ized multiplicities.) It then follows that there exists a discrete set Asc such that (5.18)

holds if and only if α ∈ Asc – see Figure 6.

The next two problems are probably the most doable on the list.

Open Problem 6. Adapt the theta function argument recalled in §6 to the scalar

model and show that the multiplicity of the flat bands is at least 2.

Open Problem 7. Adapt the trace argument is §7 to show that for the potential

U = UBM in (2.3), |Asc| =∞.

The situation is less clear for the next

Open Problem 8. Is the spectrum of Q(α, k) discrete for all α and k? Characterize

the set for which SpecQ(α, k) = ∅. (We should stress that this is a mathematical

curiosity: only the fact that 0 ∈ SpecQ(α, k) is relevant to the question of band theory,

bands being given by characteristic values of Q(α, k) as k varies.

https://math.berkeley.edu/~zworski/Spec.mp4
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The next problem is the analogue of Open Problem 1. One would like to hope that

the scalar nature of the operator could be of some help in the semiclassical analysis

(see §10).

Open Problem 9. If β1 < β2 < · · · is the ordered sequence of elements of Asc∩ [0,∞)

then, for the potential (2.5),

βj+1 − βj = 2γ + o(1), j →∞

where γ ' 3
2

is the asymptotic spacing between the elements of A ∩ [0,∞) (see (2.9)).

What happens for more general potentials satisfying (2.3)?

6. Theta function argument for magic angles

Magic angles for the chiral model were described in [TKV19] using a different ap-

proach than that recalled in §5 and coming from [Be*22]. It was based on an idea which

appeared earlier, in a different but related context, in the work of Dubrovin–Novikov

[DuNo80]. It was revisited in [BHZ22b] and here we present a slightly different variant.

The operator 2Dz̄ := (1/i)(∂x1 + i∂x2), z = x1 + ix2, acting on L2(C/Λ;C) with

the domain given by H1(C/Λ;C) is a normal operator (a sum of two commuting sel-

adjoint operators). Its spectrum is given by Λ∗ with simple eigenvalues and normalized

eigenfunctions given by v(p) = τ(p)v(0), v(0) := |C/Λ|− 1
2 , [τ(p)u](z) = ei〈z,p〉u(z),

p ∈ Λ∗. Hence, its resolvent

(2Dz̄ + k)−1 : L2(C/Λ;C)→ H1(C/Λ;C),

is a meromorphic family of operators with simple poles at p ∈ Λ∗ and residues

|v(p)〉〈v(p)|. Since 2Dz̄ is translation invariant, we have

(2Dz̄ + k)−1f(z) =

∫
C/Λ

Gk(z − ζ)f(ζ)dm(ζ), (2Dz̄ + k)Gk(z) = δ0(z), k /∈ Λ∗.

If a(k) is any entire function with the zero set given by simple zeros at Λ∗, then

k 7→ Fk(z) := a(k)Gk(z), is a holomorphic family of distributions,

(2Dz̄ + k)Fk(z) = a(k)δ0(z).
(6.1)

If uK is the protected state described in Theorem 1 and z0 ∈ C/Λ, then (6.1) gives

(note that uK is valued in C2 and Fk is scalar valued)

(2Dz̄ + k)(Fk−K(z − z0)uK(α, z)) = a(k −K)uK(α, z0)δ(z − z0). (6.2)

Hence,

∃ z0 uK(α, z0) = 0 =⇒ ∀k ∃u(k) ∈ H1
0 (D(α) + k)u(k) = 0, ‖u(k)‖L2

0
= 1. (6.3)

The required vanishing condition is strong: we are looking for simultaneous vanishing

of two complex valued functions of the complex variable (components of uK).
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Following [TKV19] we observe

τ(K)uK(α, z) =

(
ψ(z)

ϕ(z)

)
=⇒ ∀α ϕ(z(K)) = 0.

(Here we use the notation of (6.11) and recall from (3.8) and (3.12) that Lγτ(K)uK(α) =

ei〈γ,K〉τ(K)uK(α) and that τ(K)uK(α, ωz) = τ(K)uK(α, z) which then implies, follow-

ing the definitions, that ϕ(z(K)) = ω̄ϕ(z(K)).) Using (3.12) we have

τ(−K)uK(α, z) =

(
ϕ(−z)

−ψ(−z)

)
.

Since D(α)(τ(±K)u±K(α)) = 0, the Wronskian of τ(±K)u±K is a holomorphic Λ-

periodic function. Hence it is a constant depending only on α:

vF (α) :=
ψ(z)ψ(−z) + ϕ(z)ϕ(−z)

‖uK(α)‖2
=
ψ(z(K))ψ(−z(K))

‖uK(α)‖2
. (6.4)

(For an interesting physical interpretation of vF (α) as the Fermi velocity see [TKV19,

(8),(21),(22)]. We lose holomorphy in α because of the normalization.) We conclude

that

∃ z0 uK(α, z0) = 0 ⇐⇒ vF (α) = 0 ⇐⇒ ∃ ε ∈ {+,−} uK(α, εz(K)) = 0. (6.5)

This argument, essentially from [TKV19], establishes one implication in the first state-

ment of

Theorem 6 ([TKV19],[Be*22],[BHZ22b]). For any potential U satisfying (2.3), A
defined in §3.2 and vF (α) defined in (6.4), we have

vF (α) = 0 ⇐⇒ α ∈ A. (6.6)

Moreover, if α ∈ A is simple then

uK(α, z0) = 0 =⇒ z0 = z(K), (6.7)

and the zero is simple: uK(α, z) = (z − z(K))w(z), w ∈ C∞, w(z(K)) 6= 0.

The implication vF (α) 6= 0 ⇒ α /∈ A follows easily from building a formula for

(D(α) + k)−1 using u±K(α) – see [Be*22, Proposition 3.3]. The implication (6.7) is a

special case of [BHZ22b, Theorem 3]. The point z(K) =: −zS is called a stacking point

– see Figure 9. The proof of (6.7) was simplified in [Be*23] in a way which allowed an

adaptation to the trilayer case. For an animation showing the behaviour of uK(α) as

α increases along the real axis (for the potential (2.5)), see https://math.berkeley.

edu/~zworski/magic.mp4.

We recall another characterization of simple α ∈ A:

https://math.berkeley.edu/~zworski/magic.mp4
https://math.berkeley.edu/~zworski/magic.mp4
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Theorem 7 ([BHZ22b]). We have the following equivalence (using definition (3.15)

and denoting K0 := {K,−K}+ Λ∗)

m(α) = 1 ⇐⇒ ∀ k ∈ C dim kerL2
0(C/Λ)(D(α) + k) = 1

⇐⇒ ∃ p /∈ K0 dim kerL2
0(C/Λ)(D(α) + p) = 1.

(6.8)

Returning to (6.2) and (6.3) we see that for α ∈ A, simple, we can take (see

[BeZw23a, (3.43)])

u(k, z) = c(k)Fk(z)u0(z), kerH1
0
D(α) = Cu0, kerH1

0
(D(α) + k) = Cu(k), (6.9)

where c(k) is the normalizing constant so that ‖u(k)‖L2
0

= 1. (We know that in this

case u0 has a simple zero at 0 – see [BeZw23a, Proposition 3.6]. Please note that

u0 ∈ L2
0 exists only for α ∈ A, unlike τ(±K)u±K ∈ L2

±K , D(α)τ(±K)u±K = 0 which

exist for all α.) Using symmetries of D(α) we can also describe the kernel of (D(α)+k)∗

and that can be done in different ways. Following [BeZw23a, (3.44)] we can take (with

the advantage that it works also for more general potentials (7.7))

u∗(k, z) = c(k)F−k(z)

(
ϕ0(z)

−ψ0(z)

)
, u0 =:

(
ψ0

ϕ0

)
, kerH1

0
(D(α)+k)∗ = Cu∗(k), (6.10)

and ‖u∗(k)‖L2
0

= 1. (For other choices of u∗(k) when D(α) is given by (2.2) see

[BeZw23b, (2.9)].)

There are many choices for Fk (that is, choices of entire functions with simple zeros

precisely at Λ∗) and we can for instance follow [BeZw23a] and take

Fk(z) := e
i
2

(z−z̄)k θ(z − z(k))

θ(z)
, z(k) =

√
3

4πi
k, a(k) :=

2πiθ(z(k))

θ′(0)
,

θ(z) := θ1(z|ω) := −
∑
n∈Z

exp(πi(n+ 1
2
)2ω + 2πi(n+ 1

2
)(z + 1

2
)),

(6.11)

that is θ is the first Jacobi theta function and its simple zeros coincide with Λ –

see [Mu83] or [KhZa15]. Weierstrass σ function was used explicitly in [DuNo80] and

the theta function in [TKV19], but in fact it is only the canonical nature of Green’s

function and the set Λ∗ that matter (though of course constructing a function which

vanishes precisely at Λ∗ hides those special functions).

7. Existence and multiplicities of magic angles

So far we have not addressed the question of existence of magic α’s, and in particular

of existence of real simple α’s (see the definition in §3.2). It is not clear if there exist

more than one physical magic angle and the current experimental and theoretical

evidence suggests that there may only be one. The work of Becker–Oltman–Vogel

[BOV23] on random perturbations of TBG provides some mathematical evidence for

that.
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In the chiral model rigorous existence and simplicity of the first real magic angle has

however been established:

Theorem 8 ([WaLu21],[BHZ22a]). For the potential (2.5) and for the (discrete) set

of magic α’s, A, defined in §3.2, we have

minA ∩ [0,∞) = α1 ' 0.586. (7.1)

In addition, in the sense of (3.15),

m(α1) = 1, (7.2)

that is, α1 is simple.

Watson and Luskin [WaLu21] followed the approach of [TKV19] and proved exis-

tence of a zero of vF (α) given in (6.4) (see Theorem 6). That was done by a careful

analysis of the Taylor series at 0, with precise estimates of the remainder, and floating

point arithmetic.

The approach of [BHZ22a] was based on the spectral characterization from [Be*22]

(see §5) and the evaluation, theoretical and numerical, of sums of powers of magic α’s:

Theorem 9 ([Be*22],[BHZ22a]). For the potential in (2.5) we have∑
α∈A

α−4 =
8π√

3
, (7.3)

and more generally, for p ∈ N + 2,∑
α∈A

α−2p ∈ π√
3
Q. (7.4)

In the above sums the multiplicity of α ∈ A is given by the algebraic multiplicity of 1/α

as an eigenvalue of Tk, k /∈ Λ∗, where Tk is the Birman–Schwinger operator (5.13).

These identities are based on writing
∑

α∈A α
−2p = trT 2p

k , and (7.3) was proved in

[Be*22, §3.3] (the sum in (7.4) with p = 4 was also given as 80π/
√

3; since there we

considered action on L2(C/3Λ) rather than on L2
0, the multiplicities were nine fold

higher; we note that for odd powers of Tk the traces are 0 in view of (2.8)). The far

reaching generalization in (7.4) happened thanks to the expansion of the collaboration

in [BHZ22a]. It holds for a greater class of potentials. The existence of algebraic

multiplicities greater than geometric multiplicities (Jordan blocks) is suggested by

numerical experiments – see [BHZ23, §10.1].

The method for proving (7.3) provides an algorithm for finding the rational number

(
√

3/π) trT 2p
k . This allows a precise evaluation of regularized determinants of I − Tk

and that leads to an alternative proof of (7.1) and a proof of (7.2).

An immediate consequence of (7.3), (7.4), the transcendental nature of π/
√

3, and

of Newton identities is (see [BHZ22a, Theorem 6] for a more general version):



24 MACIEJ ZWORSKI

Theorem 10 ([BHZ22a]). For the potential (2.3),

|A| =∞. (7.5)

Before moving to the discussion of higher multiplities we present some open problems

related to the above theorems. They all seem quite hard.

Open Problem 10. Show that (7.5) holds for any non zero potential satisfying (2.3).

Open Problem 11. Using Theorem 5 it is not difficult to see that |{α ∈ A : |α| ≤
r} ≤ Cr2. Do we have lower bounds? Is there a way to use methods of Christiansen

[Ch99] (“plurisubharmonic magic”) to obtain results for generic potentials?

Open Problem 12. Show that for the potential (2.5) and α1 given in (7.1) we have

1
2
α2p

1

∑
α∈A

α−2p → 1, p→∞, p ∈ N.

This seems to be the case numerically as, min{|α| : α ∈ A \ {±α1}} > 1. Any type of

asymptotic result about trT 2p
k would be interesting.

We now turn attention to higher multiplicities. Figure 3 showed numerically com-

puted multiplicities, including α ∈ A ∩ R with m(α) > 1 (see (3.15) for the definition

of multiplicity). For the BM potential (2.5) “half” of the complex α’s have multiplicity

two (indicated by circles; we show α’s is the first quadrant):

Using Theorem 12 below and analysis of traces of T 2p
k restricted to different spaces

L2
p,k we obtain a partial mathematical confirmation of the above figure:

Theorem 11 ([BHZ23]). For the Bistritzer–MacDonald potential (2.5)

|{α ∈ A : m(α) > 1}| =∞,

that is, there exist infinitely many (complex) degenerate magic α’s.

The double α’s shown in the above figure are protected as we have a surprising

rigidity result expressed using the spaces defined in (3.8):
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Theorem 12 ([BHZ23]). For any potential satisfying (2.3) we have, with the definition

of multiplicity (3.15),

m(α) = 1 =⇒ dim kerL2
0,2
D(α) = 1,

m(α) = 2 =⇒ dim kerL2
0,0
D(α) = dim kerL2

0,1
D(α) = 1.

(7.6)

In particular, a multiplicity two α ∈ A cannot be split into simple α’s by deforming a

potential within the class (2.3).

In [BHZ23, Theorem 4] we also have an analogue of Theorem 7 for the case of double

α’s.

Open Problem 14. As suggested by (6.3) the multiplicity of α is closely related

to the number of zeros (counted with multiplicity) of the eigenstate of D(α). For

1 ≤ m(α) ≤ 2, Theorem 12 can be used to obtain the precise description (see §8).

What is the situation for higher multiplicities?

It is natural to ask if generically we only have simple or double magic α’s. We have

established it by expanding the class of allowed potentials:

D(α) := 2Dz̄ ⊗ IC2 +W (z), W (z) :=

(
0 αU+(z)

αU−(z) 0

)
, (7.7)

where the potentials satisfy

U±(z + γ) = e±i〈γ,K〉U±(z), γ ∈ Λ, U±(ωz) = ωU±(z). (7.8)

The self-adjoint Hamiltonian H(α) is defined by (2.6) and commutation relations

(3.2),(3.4) still hold. We then have the same Bloch–Floquet theory as in §3.1 and

the same definitions of A and m(α) (see §3.2).

As the space of allowed potentials W we use a Hilbert space of real analytic functions

equipped with the following norm: for a fixed δ > 0,

‖W‖2
δ :=

∑
±

∑
k∈Λ∗/3

|a±k |
2e2|k|δ, U±(z) =

∑
k∈K+Λ∗

a±k e
±i〈z,k〉. (7.9)

Then we define V = Vδ by

W ∈ V ⇐⇒ W satisfies (7.8), ‖W‖δ <∞. (7.10)

With this in place we can state

Theorem 14 ([BHZ23]). There exists a generic subset (an intersection of open dense

sets), V0 ⊂ V , such that if W ∈ V0 then for all α ∈ A (defined using (7.7))

1 ≤ m(α) ≤ 2.

A more precise formulation related to Theorem 12 is given in [BHZ23, Theorem 3].
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Open Problem 15. Does Theorem 14 hold for a generic set of potentials satisfying

(2.3)?

8. Topology of flat bands

Topology of flat bands refers to the topology of vector bundles over the k-space

torus C/Λ∗ obtained by considering eigenfunctions of Hk(α) = Hk(α, 0) (see (3.9)) for

α ∈ A, that is for α’s at which we have perfectly flat bands. The eigenfunctions are

given by

Φ :=

(
u

v

)
, u ∈ kerH1

0
(D(α) + k), v ∈ kerH1

0
(D(α)∗ + k̄), Hk(α)Φ = 0. (8.1)

The two components u, v, are completely decoupled and hence we can consider them

separately. Symmetries of D(α) (see [BeZw23b, §2.2] for a quick review) show that

we only need to consider kerH1
0
(D(α) + k). As we already mentioned, the nontrivial

topology implies blow up of moments of Wannier functions corresponding to lack of

localization – see [TaZw23a, Theorem 9, §8.5] and references given there.

We now assume that α ∈ A and that

1 ≤ m(α) ≤ 2, (8.2)

that is the band has multiplicity one or two in the sense of §3.2. In view of Theorem

7 and [BHZ23, Theorem 4] we have

V (k) := kerH1
0
(D(α) + k) ⊂ L2

0, dimV (k) = m(α), k ∈ C, (8.3)

and we can define a trivial vector bundle Ẽ → C of rank m(α):

Ẽ := {(k, v) : v ∈ V (k)} ⊂ C× L2
0(C/Λ;C2).

To define a vector bundle over the torus C/Λ∗ we need an equivalence relation on

C× L2
0(C/Λ;C2) based on

τ(p)∗Hk(α)τ(p) = Hk+p(α), τ(p)∗(D(α) + k)τ(p) = D(α) + k + p,

τ(p)−1V (k) = V (k + p), [τ(p)u](z) := ei〈z,p〉v(z), p ∈ Λ∗.
(8.4)

It is given as follows:

∃ p ∈ Λ∗ (k, u) ∼τ (k + p, τ(p)−1u) (8.5)

Using this (see [TaZw23a, Lemma 8.4] or [BHZ22b, Lemma 5.1]),

E := Ẽ / ∼τ→ C/Λ∗ (8.6)

is a holomorphic vector bundle over C/Λ∗. In the case of m(α) = 1 (and up to precise

definitions) this observation was made by Ledwith et al [Le*20]. In view of (6.9) the

line bundle can be identified with a theta bundle over the torus – see [BHZ22b, §5.3].
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A natural connection on this vector bundle can be defined either as the Chern

connection or the Berry connection, as they are equal in the holomorphic case – see

[BHZ23, §9, Proposition 9.1] for a detailed presentation and definitions. The scalar

curvature of this connection is a two form on C/Λ∗,

tr Θ = H(k)dk̄ ∧ dk, (8.7)

see [BHZ23, §9]. Here Θ is the curvature form taking values in Hom(E,E). The

following observations were made in [BHZ22b, §5.2] and [BHZ23, §9.3]:

H(k) ≥ 0, H(ωk) = H(k), H(k) = H(−k). (8.8)

In particular, K = {0, K,−K} (see (3.7)) is contained in the set of critical points of

H.

Open Problem 16. Show that for the potential (2.3) (or for a more general class of

potentials?) and α ∈ A ∩ R (or simply for α1 in (7.1)), K is the set of all critical

points of H(k), and that the maximum is attained at 0 (the Γ point) and the minimum

at ±K (the K-points):

For a discussion of analogous issues when multiplicity is equal to 2, see [BHZ23, §10.2].

The Chern number for complex vector bundles over a torus is defined using (8.7):

c1(E) :=
i

2π

∫
C/Λ∗

tr Θ = − 1

π

∫
F

H(k)dm(k), (8.9)

where F is a fundamental domain of Λ∗ and dm(k) = dxdy, k = x+ iy, the Lebesgue

measure. We have c1(E) ∈ Z (see [TaZw23a, Theorem 6] and references given there)

and if c1(E) 6= 0 then the vector bundle is non-trivial, that is it is not homeomorphic

to C/Λ∗ × Cn. For complex vector bundles over tori c1(E) is the only topological
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invariant. (For instance, for a simple α we could consider the complex vector bundle

defined using kerH1
0 (C,C4) Hk(α), see (8.1). Its Chern number vanishes and the bundle

is trivial.)

For simple α’s an evaluation of c1(E) follows easily from (6.9) – see [Le*20] for a

direct calculation and [BHZ22b, (5.9),(B.8)] for an argument based on general princi-

ples. It turns out [BHZ23, Theorem 5] that the Chern number does not change if α is

double:

Theorem 15 ([BHZ22b],[BHZ23]). Suppose that (8.2) holds and that the complex

vector bundle E is defined by (8.6). Then the Chern number defined in (8.9) is given

by

c1(E) = −1. (8.10)

Yang [Ya23] provided a mathematical justification of the Chern number calculation

in [LVK22],[WaLi22] (and of other issues related to flat bands in their setting) for two

twisted n-layer wafers of graphene. In that case, the analogue of the line bundle (8.6)

satisfies c1(E) = −n.

Open Problem 17. Does (8.10) hold without the assumption (8.2)?

9. Dynamics of Dirac points for in-plane magnetic field

Interesting mathematical phenomena arise when a constant magnetic field in the

direction parallel to the two twisted layers of graphene is added. Following Kwan–

Parameswaran–Sondhi [KPS20] and Qin–MacDonald [QiMa21] the new Hamiltonian

for the chiral model is given by

HB(α) :=

(
0 DB(α)∗

DB(α) 0

)
, DB(α) := D(α) + B, B :=

(
B 0

0 −B

)
, (9.1)

where B = |B|e2πiθ with |B| corresponding to the strength of the magnetic field and

2πθ is its in-plane direction; D(α) is the same as in (2.2).

For the BMH and the chiral model, the bands close to zero touch at 0 at ±K (see

(3.7) – these are the K-points in our coordinates) and the intersection is expected to

be conic (except for the perfectly flat bands), that is we see two Dirac points – see

Open Problem 2 and the figure there. Theorem 2 shows that for the chiral model,

H(α) = H(α, 0) in the notation of (2.1), once the bands touch 0 away from ±K, the

bands are perfectly flat.

It was observed numerically in [KPS20] that for the chiral model with in-plane

magnetic field (9.1) flat bands disappear when B 6= 0 and the two Dirac points move.

Moreover for α ∈ A the Dirac points seem to coalesce at the Γ point forming a

quadratic band crossing point (QBCP) – see Figure 8. In [BeZw23a] we provided a
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θ α

Figure 7. The dynamics of Dirac points for HB in (9.1) with the BM

potential (2.5). The magnetic field given by B = B0e
2πiθ with B0 = 0.1.

Colour coding (shown in colour bars) corresponds to different values of

θ on the left, and different values of α on the right. In the left figure α

varies between 0.1 and 0.9 and curves of different colour trace the cor-

responding Dirac points – see https://math.berkeley.edu/~zworski/

B01.mp4 for an animated version. When 3θ ∈ N we showed in [BeZw23a,

Theorem 3] that the Dirac points move along straight lines – see https:

//math.berkeley.edu/~zworski/Rectangle_1.mp4 where θ = 1
3
. In

the right figure, θ varies and curves of different colour trace the corre-

sponding Dirac points. The predominance of green (corresponding to the

range between 0.5 and 0.6) means that most of the motion happens near

the (first) magic alpha – for the dance of Dirac points for fixed B and as

α varies, see https://math.berkeley.edu/~zworski/first_band.mp4

which shows E1(α, k)/maxk E1(α, k). (The boundary Brillouin zone is

also shows; we take the image of the k plane by the map k 7→ z(k), see

(3.6) so that Λ∗ is mapped to Z + ωZ.)

more precise description of the dynamics of Dirac points for small magnetic fields. In

particular finer analysis and numerical evidence suggest that exact QBCP appear only

when Dirac points move along straight lines which happens when 3θ ∈ N (the direction

of the magnetic field is given by 2πθ) – see [BeZw23a, Theorem 3 and Figure 5].

The reason for the Dirac points appearing close to Γ when α is close to (simple)

elements of A, can be elegantly described using properties of theta functions. Since it

is a simple consequence of (6.9) and (6.10) we recall it, referring to [BeZw23a, §4] for

additional details. This also allows to present an approach to perturbation theory based

on Schur’s complement formula (via Grushin problems in the terminology of Sjöstrand

https://math.berkeley.edu/~zworski/B01.mp4
https://math.berkeley.edu/~zworski/B01.mp4
https://math.berkeley.edu/~zworski/Rectangle_1.mp4
https://math.berkeley.edu/~zworski/Rectangle_1.mp4
https://math.berkeley.edu/~zworski/first_band.mp4
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who turned Schur’s complement formula into a systematic tool) – see [TaZw23a, §2.6].

Same approach is used to obtain Theorem 3.

Suppose that α ∈ A is simple, and in the notation of (6.9) and (6.10) the operator

(see §1 for the review of notation)

D(α, k) :=

(
D(α) + k |u∗(k)〉
〈u(k)| 0

)
: H1

0 × C→ L2
0 × C,

is invertible with the inverse given by

E(α, k) =

(
E(k) |u(k)〉
〈u∗(k)| E−+(k)

)
: L2

0 × C→ H1
0 × C,

where E−+(k) ≡ 0 is the effective Hamiltonian: from Schur’s complement formula

[TaZw23a, (2.15)] we see that D(α) + k is invertible if and only if E−+(k) = 0. Since

α ∈ A, SpecL2
0
D(α) = C this is consistent with E−+(k) ≡ 0. For |B| � 1, we can

consider DB(α) as a perturbation of D(α) and we still have invertibility(
DB(α) + k |u∗(k)〉
〈u(k)| 0

)−1

=

(
EB(k) EB

+ (k)

EB
− (k) EB

−+(k)

)
,

EB
−+(k) = −〈u∗(k)|B|u(k)〉+O(B2),

see [TaZw23a, Proposition 2.12]. From (6.9) and (6.10) we then obtain that

EB
−+(k) = −c(k)−2B(G(k) +O(B)), G(k) = 2

∫
C/Λ

Fk(z)F−k(z)ϕ0(z)ψ0(z)dm(z),

where Fk is defined in (6.11). This definition combined with a theta function identity

θ(z + u)θ(z − u)θ(1
2
)2 = θ2(z)θ2(u+ 1

2
)− θ2(z + 1

2
)θ2(u),

and symmetries of ψ0 and ϕ0 (see §[BeZw23a, §4.1]) gives

G(k) = g0
θ(z(k))2

θ(1
2
)2

, g0 = g0(α) := 2

∫
C/Λ

θ(z + 1
2
)2ϕ0(z)ψ0(z)

θ(z)2
dm(z). (9.2)

For the Bistritzer–MacDonald potential and the first magic angle, α1 (see Theorem 8)

|g0| ' 0.07 6= 0. We now see that k is a Dirac point for (9.1) with α = α1 if and only

if EB
−+(k) = 0, and in particular

k ∈ SpecL2
0
DB(α1) =⇒ θ(z(k))2 +O(B) = 0. (9.3)

(For g0(α) for other real magic α’s see [BeZw23a, Table 1].)

Since θ(z(k))2 vanishes quadratically at 0 (the Γ point), equation (9.3) shows that

at α = α1 and for B small the Dirac points are near the Γ point. It also suggests

QBCP – see Figure 8 and [BeZw23a, §5] for a discussion of the bifurcation at Γ and

other points.
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Im k
Re k

E

Im k
Re k

E

Figure 8. WhenB is real in (9.1) the two Dirac cones approach Γ point

as α→ α∗ = α +O(B3) (α a simple real magic α) on the line Im k = 0

(left). For α = α∗, the quasi-momentum k at which the bifurcation

happens are the boundary of the Brillouin zone and the Γ-point which

is shown in the figure (right). The animation https://math.berkeley.

edu/~zworski/Rectangle_1.mp4 shows the motion of Dirac points in

this case.

The study of the effective Hamiltonian EB
−+(k) (a scalar function in our case) and

some additional arguments give the following result (see [BeZw23a, §2] for more de-

tailed statements):

Theorem 16. Suppose α ∈ A is simple and g0(α) 6= 0 where g0 is defined in (9.2).

Then there exists δ0 > 0 such that for 0 < |B| < δ0 and |α − α| < δ0, the spectrum of

DB(α) on L2
0 is discrete (that is the set of Dirac points) and

| SpecL2
0
(DB(α)) ∩ C/Γ∗| = 2, (9.4)

where the elements of the spectrum are included according to their (algebraic) multi-

plicity. In addition, for a fixed constant a0 > 0 and for every ε there exists δ such that

for 0 < |B| < δ, |α− α| < a0δ|B|,

SpecL2
0
(DB(α)) ⊂ Λ∗ +D(0, ε), (9.5)

where we recall that elements of Λ∗, in particular 0, correspond to the Γ point.

A more detailed description would be very desirable. Among things which were left

open in [BeZw23a] is the behaviour near K points when 3θ ∈ N – see [BeZw23a, Figure

5]. We state one, somewhat vaguely formulated, problem:

https://math.berkeley.edu/~zworski/Rectangle_1.mp4
https://math.berkeley.edu/~zworski/Rectangle_1.mp4
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Open Problem 18. Is there a dynamical system which fully explains Figure 7? Basic

symmetries of Dirac points are described in [BeZw23a, (2.10)] but the clean structure

may be due to the special BM potential (2.5). It becomes more complicated for other

potentials – see [BeZw23a, Figure 1].

The quantitative behaviour of Dirac points seems to remain similar for BMH and

clarifying that would also be nice. The agreement is particularly striking for 3θ ∈ N –

see https://math.berkeley.edu/~zworski/Dirac_BMH.mp4 (α0 = λ, α1 = α) where

a comparison of the movement of Dirac points for chiral, weakly interacting, and BMH

(λ = 0.7α) is animated. It is harder to catch Dirac points when λ 6= 0 as we do not

have a simple characterization as spectrum of DB(α) on L2
0. Hence the neighbourhoods

of the Dirac points are shown.

10. Small angle limit as a semiclassical limit

The small angle limit corresponds to letting α → ∞. In that case it is natural to

write α = λ/h, h ∈ (0, 1], λ ∈ K b C \ 0 and consider asymptotic behaviour as h→ 0.

When considering real and positive alpha we can simply take λ = 1.

The operator D(α) in (2.2) then becomes (up to an irrelevant factor of h−2)

P (x, hD) :=

(
2hDz̄ λU(z)

λU(−z) 2hDz̄

)
, Dz̄ = (1/2i)(∂x1 + i∂x2), (10.1)

which is a semiclassical differential system in the sense of [DyZw19, Appendix E.1.1].

Its matrix valued symbol is given by

p(x, ξ) =

(
2ζ̄ U(z)

U(−z) 2ζ̄

)
, z = x1 + ix2, ζ = 1

2
(ξ1 − iξ2). (10.2)

Theorem 2 shows that (with H1
0 = H1

loc ∩ L2
0 defined in (3.5))

hλ ∈ A ⇐⇒ SpecL2
0
P (x, hD) = C

⇐⇒ ∃u ∈ H1
0 , u 6= 0, P (x, hD)u = 0.

(10.3)

We note that E`(λ/h, k)2, defined in (3.13) (essentially the bands of H(α)), are the

eigenvalues of the self-adjoint operator

P2(x, hD, hk) := (P (x, hD) + hk)∗(P (x, hD) + hk). (10.4)

Since we only need to consider k in a fundamental domain of Λ∗, hk is a lower order

terms when h→ 0.

In §10.1 we will see one reason for the difficulty of finding λ’s with exactly 3Λ–

periodic solutions to P (x, hD)u = 0 (or u ∈ L2
0) when h is small, that is, the difficulty

of using (10.3) to characterize magic α = λ/h.

https://math.berkeley.edu/~zworski/Dirac_BMH.mp4
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Figure 9. Left: the vertices of the hexagon in a fundamental domain

of Λ are given by the stacking points ±zS, zS = i/
√

3 (we use the co-

ordinates of §2.1). They are non-zero points of high symmetry in the

sense that ±ωzS ≡ ±zS mod Λ. Right: the contour plot of |{q, q̄}q−1(0)|
for q given by the determinant of the semiclassical symbol of D(α) (see

(10.7)), α = 1/h; the set where {q, q̄}q−1(0) = 0 is in red. We should

stress that the structure of that set becomes more complicated for other

potentials U satisfying the required symmetries – see [Be*22, Figure 6].

Instead of (10.3) one could attempt to analyse semiclassically the spectral charac-

terization of Theorem 5: for k /∈ K (see (3.7); we could take k = 0),

λh ∈ A ⇐⇒ λ−1 ∈ SpecL2
0

(
(2hDz̄ − hk)−1W (z)

)
, W (z) :=

(
0 U(z)

U(−z) 0

)
,

which of course seems like a tautology. The problem here lies in the fact that (2hDz̄−
hk)−1, with the Schwartz kernel explicitely given in (6.11), is essentially independent

of h and is not a semiclassical pseudodifferential operator: hk is a lower order term

and the symbol of 2hDz̄, 2ζ̄ has all of C as its range.
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We finally remark that Open Problem 1 (and also 9) is semiclassical in nature: it

states a quantization rule

λn+1 − λn = γh+O(h2), γ ' 1
2
.

10.1. Exponential squeezing of bands. In [Be*22] we observed that the results

on the existence of localized quasimodes for non-normal semiclassical differential op-

erators with analytic coefficients implies existence of many exponentially small (as

α → ∞) Bloch eigenvalues for the chiral model. That means that as α gets large it

is hard to distinguish an exactly flat band from many bands that seem flat. Since the

phenomenon is semiclassical we use the notation of this section:

Theorem 17 ([Be*22]). Suppose that U is given by (2.3) and E`(1/h, k) are defined

in (3.13). Then, there exist constants c0, c1, c2 > 0 such that

|E`(1/h, k)| ≤ c1e
−c0/h, |`| ≤ c2/h. (10.5)

The proof is based on a result of Dencker–Sjöstrand–Zworski [DSZ04, Theorem 1.2′]

(see also [HiSj18, §II.2.8]) which in turn was based on works of Hörmander and of

Kashiwara, Kawai, and Sato. Roughly, it states the following fact: suppose that

Q(x, hD, h) is a (scalar) semiclassical differential operator with analytic coefficients

and q(x, ξ) is its principal symbol. Then

q(x0, ξ0) = 0, {Re q, Im q}(x0, ξ0) < 0 =⇒


∃ u(h) ∈ C∞, ‖u(h)‖L2 = 1,

‖Q(x, hD, h)u(h)‖L2 ≤ Ce−C/h,

u(h) is microlocalized at (x0, ξ0),

see [DSZ04] and references given there. Here {a, b} denotes the Poisson bracket which

in our 2D case and using the notation z and ζ in (10.2) is given by

{a, b} = ∂ζa ∂zb− ∂ζb ∂za+ ∂ζ̄a ∂z̄b− ∂ζ̄b ∂z̄a,

see [Zw12, §2.4] for an introduction to its geometric significance.

The type of microlocalization we have for u(h), implies in particular that that

|u(h, x)| ≤ e−|x−x0|
2/Ch, which means that u(h) “lives” in B(x0, h

1
2
−ε), for any ε > 0.

From such local approximate solutions we can built many approximate solutions with

any periodicity properties. (A model to keep in mind is the annihilation opera-

tor Q(x, hD) = hDx1 − ix1 with (x0, ξ0) = (0, 0) ∈ R2 × R2; we can then take

u(h, x) = c(h)e−x
2
1/h−x22/h.)

At points z0 with U(z0) 6= 0 an easy reduction (see [Be*22, Proof of Proposition

4.1]) shows that to construct u(h) ∈ C∞(C;C2) localized at z0 and satisfying

‖(P (x, hD, h) + hk)u(h)‖ ≤ Ce−1/Ch‖u(h)‖, (10.6)
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it is enough to find v(h) ∈ C∞(C;C), localized to z0 such that ‖Q(x, hDx, h)v(h)‖L2 ≤
Ce−1/Ch‖v(h)‖L2 where Q is a scalar operator with the principal symbol given by the

determinant of p in (10.2):

q(x, ξ) = (2ζ̄)2 − λ2U(z)U(−z), z = x1 + ix2, ζ = 1
2
(ξ1 − iξ2). (10.7)

Hence, in view of the discussion above, we need to look for (x0, ξ0) such that q(x0, ξ0) =

0 and {Re q, Im q}(x0, ξ0) < 0. Such points are indeed plentiful – see Figure 9 for the

case of λ = 1 and [Be*22, §4] for more examples.

Once we have (10.6) we obtain an en exponentially accurate approximate solution

to P2(x, hD, hk)u(h) = 0 where P2 was defined in (10.4). Self-adjointness of P2 then

implies existence of exponentially small eigenvalues. Using many localized approximate

solutions we can bound their number from below by 1/h, see [Be*22, §4].

Open Problem 19. Relate the geometry of level sets of z 7→ |{q, q̄}|q−1(z)=0| (see

Figure 9) to the concentration of mass of the protected states uK(λ/h) (see Theorem

1) as λ varies in a compact set and h → 0. For an animated example see https://

math.berkeley.edu/~zworski/bracket_dynamics.mp4 where h = 1/8 and λ varies

on a circle of radius 1. This problem is related to the issues discussed in §10.2 below.

10.2. Classically forbidden regions. The contour plot of z 7→ log |uK(α, z)| as α

changes (and U is given in (2.5)) as well as the link in Open Problem 19, suggest that

solutions to (D(α) + k)u = 0, u ∈ H1
0 (nontrivial only for α ∈ A if k 6= ±K) decay

exponentially in α near the hexagon spanned by the stacking points (see Figure 9)

and near the center of the hexagon. From the semiclassical point of view presented in

this section this means decay e−c/h which typically corresponds to classically forbidden

regions.

The standard notion of classically forbidden regions is based on ellipticity: if Q is a

principally scalar semiclassical differential operator, elliptic in the classical sense (that

is, for fixed h), with analytic coefficients and a scalar principal symbol q(x, ξ) then

(with neigh(x0) denoting some neighbourhood of x0)

q|π−1(x0) 6= 0, Qu = 0 in neigh(x0), ‖u‖L2 = 1 =⇒ ‖u‖L2(neigh(x0)) ≤ Ce−c/h, (10.8)

see [Ma02, Theorem 4.1.5], [HiZw23, Proposition 6.4]. (A typical example is given by

Q = −h2∆ + V (x) where V ∈ C∞ is real valued – there is no need for analyticity in

that case – see [Zw12, Theorem 7.3]; in that case the condition is simply that V (x0) > 0

as then for all ξ, q(x0, ξ) = ξ2 + V (x0) > 0.)

In the case of the operator P (x, hD) given in (10.1) there are no classically forbidden

regions: for every x ∈ R2 there exists ξ ∈ R2 at which the determinant of the principal

symbol (see (10.7)) vanishes, q(x, ξ) = 0.

The remedy for this is to use analogues of results on (analytic) hypoellipticity due to

Trépreau (with different proofs, following an approach due to Sjöstrand and reviewed

https://math.berkeley.edu/~zworski/bracket_dynamics.mp4
https://math.berkeley.edu/~zworski/bracket_dynamics.mp4
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Figure 10. Plots of |{q, q̄}| and of (rescaled) {q, {q, q̄}} above the in-

tersection of the imaginary axis and the fundamental domain in Figure 9.

The edges of the hexagon emanate right of zS and left of −zS.

in [HiSj18], provided by Himonas), which followed ideas of Egorov, Hörmander, and

Kashiwara (we defer to [HiZw23] for pointers to the literature). Hypoellipticity here

refers to having the same conclusion ‖u‖L2(neigh(x0)) ≤ Ce−c/h as in (10.8) but without

the assumption that q|q−1(x0) 6= 0.

A semiclassical version of a general hypoelliptic result we need is given as follows:

let Q satisfy the same general assumptions as before (10.8);

{q, q̄}|π−1(x0)∩q−1(0) = 0,

{q, {q, q̄}}|π−1(x0)∩q−1(0) 6= 0,

Qu = 0 in neigh(x0), ‖u‖L2 = 1

 =⇒ ‖u‖L2(neigh(x0)) ≤ Ce−c/h, (10.9)

see [HiZw23, Theorem 2].

To see why such a result could be true consider a simple one dimensional exam-

ple: q(x, ξ) = ξ + ix2, (x, ξ) ∈ R × R, x0 = 0. Then {q, q̄}(x0, ξ) = −4ix0 = 0,

{q, {q, q̄}}(x0, ξ) = −4i, so the condition holds. If 0 = q(x, hD)u = (h/i)(∂x− x2/h)u,

then u(x, h) = u(0, h)e
1
3
x3/h. For this to be uniformly bounded near 0, we need

u(0, h) = e−c/h, c > 0. So |u(x, h)| ≤ e−c/2h for |x| small. We remark that sim-

ilar bracket conditions in the semiclassical setting appeared recently in the work of

Sjöstrand–Vogel [SjVo23] who provided fine tunneling estimates for a model operator.

Any extension of their results to more general operators should have consequences in

our setting as well.

As in (5.16) we can reduce the problem of looking at solutions to h(D(α) + k) =

P (x, hD) + hk to a principally scalar problem, with the principal symbol given by

q(x, ξ) in (10.7). It then turns out that the condition in (10.9) holds at any x0 on an

open edge of the hexagon spanned by the stacking points – see Figure 10 for the case



MATHEMATICAL RESULTS ON THE CHIRAL MODEL OF TBG 37

of λ = 1 and U given in (2.5). Remarkably, due to the special properties of the BM

potential, the sign properties can be established analytically – see [HiZw23, §3].

At ±zS the condition in (10.9) does not hold. However, π−1(±zS) ∩ q−1(0) =

{(±zS, 0)} and

{q, q̄}(±zS, 0) = 0, {q, {q, {q, {q, q̄}}}}(±zS, 0) 6= 0. (10.10)

General hypoellipticity results of Trépreau do not apply to this case but a detailed

analysis of our specific principal symbol [TaZw23b] allows an application of the same

strategy as in the proof of (10.9) to obtain exponential decay near the stacking points.

Since the conditions in (10.9) and (10.10) are classical in the sense of involving the

symbol (that is, the “classical observable”, q(x, ξ)) and Poisson brackets (objects un-

derlying classical dynamics), we obtain the following result about classically forbidden

regions

Theorem 18 ([HiZw23],[TaZw23b]). There exists a fixed open neighbourhood, Ω, of

the hexagon spanned by the stacking points (see Figure 9) and c > 0 such that if

u(h) ∈ H1
0 satisfies (P (x, hD) + hk)u = 0 and ‖u(h)‖L2

0
= 1, then

‖u(h)‖L2(Ω) ≤ c−1e−c/h. (10.11)

The situation is more complicated at the center of the hexagon, z0 = 0. In that case,

the operator is not of principal type, that is, q(0, 0) = 0 (π−1(0) ∩ q−1(0) = {(0, 0)})
and dq(0, 0) = 0. This means that lower order terms should matter. That is confirmed

by comparing (5.16) with the scalar model Q(α) (with no lower order terms). For

Q(α), unlike for the chiral model, we do not see exponential decay near 0 (the decay

near the hexagon based on the properties of pricipal symbol q persists) : on the left

log |u| for u a protected state for D(α) and on the right same for Q(α):

Open Problem 20. Show that there exist a fixed neighbourhood Ω of 0 (see Figure 9)

and c > 0 such that if (P (x, hD)+hk)u = 0, where P is given in (10.1), and ‖u(h)‖L2
0

=

1, then ‖u(h)‖L2(Ω) ≤ c−1e−c/h.
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Figure 11. Two Dirac cones at K and K ′ points.

Appendix by Mengxuan Yang and Zhongkai Tao

We prove the existence of conic singularities in the first band of the chiral limit

[TKV19] of the Bistritzer–MacDonald Hamiltonian [BiMa11] of twisted bilayer graphene

when α /∈ A.

Theorem 19. Near ±K points, the first band E1(α, k) is given by

E1(α, k) = c(α) · |k ±K|+O(|k ±K|2), (A.1)

where c(α) ≥ 0 with the equality holds if and only if α ∈ A.

A key fact used in the proof is the existence of protected eigenstates [TKV19, Be*22]

described in Theorem 1. We also remark that a dual result is the existence of protected

states for the operator D(α)∗: there exists v±K(α) ∈ H1
0 (C;C2) such that τ(K)vK(0) =

(1, 0)T , τ(−K)v−K(0) = (0, 1)T ,

v±K(α) ∈ kerL2
0(C;C2)(D(α)∗ ± K̄). (A.2)

It also follows from the proof that the generalized eigenspace also has dimension 1,

i.e., the spectrum is simple.

Now we prove Theorem 19 by setting up a Grushin problem to compute the first

band E1(α, k) near k = ±K for α /∈ A. We refer to [DyZw19, Appendix C] for

a presentation of this method. The proof of Theorem 19 is based on the following

general fact: suppose that X1 ⊂ X2 are two Banach spaces and P : X1 → X2 be a

Fredholm operator of index 0 such that

kerP = span{ϕ}, kerP ∗ = span{ϕ∗}.
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Then there is a dichotomy:

P − z is invertible in a punctured neighbourhood of z = 0;

if moreover the eigenvalue z = 0 is simple, then 〈ϕ, ϕ∗〉 6= 0

or

P − z is not invertible for all z, and 〈ϕ, ϕ∗〉 = 0.

(A.3)

Proof of (A.3). The first part of the dichotomy follows from the analytic Fredholm

theory (see [DyZw19, Theorem C.8]), which says if P − z is invertible at one point

then (P − z)−1 is a meromorphic family.

Now suppose P − z is invertible in a neighbourhood of z = 0 and 0 is a simple

eigenvalue, then (P − z)−1 has the following expansion near z = 0:

(z − P )−1 = A0(z) +
Π

z

where A0(z) is holomorphic and Π is a rank one projector. From the expansion we see

PΠ = ΠP = 0. So

im Π ⊂ kerP = span{ϕ}, imP ⊂ ker Π.

Thus Π is of the form Π(y) = 〈y, v∗〉ϕ for some v∗ ∈ X∗2 . Moreover, 〈Px, v∗〉 = 0 for

any x ∈ X1, which implies P ∗v∗ = 0. Thus v∗ = cϕ∗ for some c ∈ C \ {0}. Since

Π2 = Π, we conclude 〈ϕ, ϕ∗〉 6= 0.

Suppose P − z is not invertible for any z, then we consider the following Grushin

problem: (
P − z R−
R+ 0

)
: X1 × C→ X2 × C

where ϕ∗(R−1) = 1 and R+ϕ = 1. One can compute from [DyZw19, Proposition

C.3] that E−+(z) = z〈ϕ, ϕ∗〉 + O(|z|2). By assumption E−+(z) = 0, so we conclude

〈ϕ, ϕ∗〉 = 0. �

We can now give

Proof of Theorem 19. For the chiral Hamiltonian

Hk(α) : H1
0 (C;C4)→ L2

0(C;C4), α ∈ C, (A.4)

we consider the existence of a Dirac cone at K point, as the point −K is simi-

lar. By the existence of protected states, there exist two normalized protected states

ϕ(α; z), ψ(α; z) ∈ kerL2
0(C;C4) HK(α) such that

ϕ(α; z) = (uK(α), 0C2)T , ψ(α; z) = (0C2 , vK(α))T . (A.5)
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We consider the Grushin problem for the operator Hk(α)− z near k = K:

Hk =

(
Hk(α)− z R−

R+ 0

)
: H1

0 (C;C4)⊕ C2 −→ L2
0(C;C4)⊕ C2 (A.6)

with

R− : (u
(1)
− , u

(2)
− )T 7→ u

(1)
− ϕ+ u

(2)
− ψ, R+ : u 7→ (〈u, ϕ〉, 〈u, ψ〉)T .

For k = K, the Grushin problem (A.6) is invertible with the inverse given by

E =

(
E E+

E− E−+

)
: L2

0(C;C4)⊕ C2 −→ H1
0 (C;C4)⊕ C2 (A.7)

with

Ev =
∑
j 6=±1

1

Ej − z
〈v, ϕj〉ϕj, E+v+ = R−v+, E−v = R+v, E−+ =

(
z

z

)
,

where {ϕj} is an orthonormal basis of eigenfunctions of HK(α) with eigenvalue Ej
such that ϕ1 = ϕ and ϕ−1 = ψ. By [DyZw19, Proposition C.3], the perturbed Grushin

problem (A.6) is well-posed for |k−K| sufficiently small and the eigenvalues of Hk(α)

are given by zeros of the determinant of

F−+ = E−+ +
∞∑
k=1

(−1)kE−A(EA)k−1E+, A =

(
k −K

k −K

)
. (A.8)

In particular, the leading order term is given by

E−AE+ =

(
(k −K)〈vK , uK〉

(k −K)〈uK , vK〉

)
(A.9)

This yields that E±1(α, k) = ±|〈vK , uK〉| · |k − K| + O(|k − K|2) near k = 0, where

〈vK , uK〉 = 0 if and only if α ∈ A by (A.3). �
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[DSZ04] N. Dencker, J. Sjöstrand and M. Zworski, Pseudospectra of semiclassical differential opera-

tors, Comm. Pure Appl. Math. 57(2004), 384—415.

[DuNo80] B.A. Dubrovin and S.P. Novikov, Ground states in a periodic field. Magnetic Bloch func-

tions and vector bundles. Soviet Math. Dokl. 22, 1, 240–244, 1980.

[DyZw19] S. Dyatlov and M. Zworski, Mathematical Theory of Scattering Resonances, AMS 2019,

http://math.mit.edu/~dyatlov/res/

[GaZw23] J. Galkowski and M. Zworski, An abstract formulation of the flat band condition,

arXiv:2307.04896.
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