QUANTUM DECAY RATES IN CHAOTIC SCATTERING

STEPHANE NONNENMACHER AND MACIEJ ZWORSKI

1. STATEMENT OF RESULTS

In this article we prove that for a large class of operators, including Schrodinger operators,
(1.1) P(h) = —R*A+V(z), VeC(X), X=R?

with hyperbolic classical flows, the smallness of dimension of the trapped set implies that
there is a gap between the resonances and the real axis. In other words, the quantum
decay rates are bounded from below if the classical repeller is sufficiently filamentary. The
higher dimensional statement is given in terms of the topological pressure and is presented
in Theorem 3. Under the same assumptions, we also prove a useful resolvent estimate:

log(1/h)

h )
for any compactly supported bounded function x - see Theorem 5, and a remark following
it for an example of applications.

(1.2) IX(P(h) = B)" "Xl rep2 < C

We refer to §3.2 for the general assumptions on P(h), keeping in mind that they apply
to P(h) of the form (1.1). The resonances of P(h) are defined as poles of the meromorphic
continuation of the resolvent:

R(z,h) ¥ (P(h) — 2)' : LX) — L3(X), Imz>0,
through the continuous spectrum [0, c0). More precisely,

R(z,h) : L2 (X)— LL.(X), z€C\ (~o0,0],

comp loc

is a meromorphic family of operators (here L? and L?  denote functions which are

comp loc
compactly supported and in L?, and functions which are locally in L?). The poles are
called resonances and their set is denoted by Res(P(h)) — see [4, 48] for introduction and
references. Resonances are counted according to their multiplicities (which is generically

one [22]).

In the case of (1.1) the classical flow is given by Newton’s equations:

o' (z,6) E (a(t),(1)),
2(t)=€(t), €t)=—dV(z(t), x(0)=x, £0)=¢.

1

(1.3)
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This flow preserves the classical Hamiltonian

def

p(x, &) =

and the energy layers of p are denoted as follows:

€2 +V(z), (z,6)eT*X, X =R?,

(1.4) e E{peTX, plp)=E}, &= |J &w. 6>0.

|E'—E|<6

The incoming and outgoing sets at energy F are defined as

(1.5) FE € {peT'X : p(p)=E, (p) A oo, t —Foo} CEp.
The trapped set at energy F,
(1.6) Kp¥Tinrg

is a compact, locally maximal invariant set, contained inside Tg(o RO)X , for some Ry. That
is clear for (1.1) but also follows from the general assumptions of §3.2.

We assume that the flow ®* is hyperbolic on K.

The definition of hyperbolicity is recalled in (3.11) — see §3.2 below. We recall that it is
a structurally stable property, so that the flow is then also hyperbolic on K, for E’ near
E. Classes of potentials satisfying this assumption at a range of non-zero energies are given
in [27], [37, Appendix c], [46], see also Fig.1. The dimension of the trapped set appears in
the fractal upper bounds on the number of resonances. We recall the following result [42]
(see Sjostrand [37] for the first result of this type):

Theorem 1. Let P(h) be given by (1.1) and suppose that the flow ® is hyperbolic on K.
Then in the semiclassical limit

(1.7) | Res(P(h)) N D(E,Ch)| = O(h™%)
where
(1.8) 2dy + 1 = Hausdorff dimension of K.

We note that using [32, Theorem 4.1], and in dimension n = 2, we strengthened the
formulation of the result in [42] by replacing upper Minkowski (or box) dimension by the
Hausdorff dimension. We refer to [42, Theorem 3] for the slightly more cumbersome general
case.

In this article we address a different question which has been present in the physics
literature at least since the seminal paper by Gaspard and Rice [15]. In the same setting
of scattering by several convex obstacles, it has also been considered around the same time
by Ikawa [19] (see also the careful analysis by Burq [6] and a recent paper by Petkov and
Stoyanov [33]).
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FIGURE 1. A three bump potential exhibiting a hyperbolic trapped set for
a range of energies. When the curve {V = E} is made of three approximate
circles of radii @ and centers at equilateral distance R, the partial dimension
dy in (1.8) is approximately log2/log(R/a) when R > a.

Question: What properties of the flow ®,, or of Kg alone, imply the exis-
tence of a gap v > 0 such that, for h > 0 sufficiently small,

z € Spec(P(h)), Rez~FE = Imz < —yh?

In other words, what dynamical conditions guarantee a lower bound on the
quantum decay rate?

Numerical investigations in different settings of semiclassical three bump potentials [23,
24], three disk scattering [15, 25, 47], Cantor-like Julia sets for 2z — 2% +¢, ¢ < —2 [43], and
quantum maps [31, 35], all indicate that a trapped set K of low dimension (a “filamentary”
fractal set) guarantees the existence of a resonance gap v > 0. Some of these works also
confirm the fractal Weyl law of Theorem 1. which, unlike Theorem 2 below, was first
conjectured in the mathematical works on counting resonances.

Here we provide the following
Theorem 2. Suppose that the assumptions of Theorem 1 hold and that the dimension dg
defined in (1.8) satisfies
1
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FIGURE 2. A sample of numerical results of [23]: the plot shows resonances
for the potential of Fig. 1 (h = 0.017). For the energies inside the box, the
fractal dimension is approximately dgy ~ 0.288 < 0.5 (see [23, Table 2]), and
resonances are separated from the real axis in agreement with Theorem 2.

Then there exists 6, v > 0, and hsy > 0 such that
(1.10) 0<h<hs, = Res(P(h))N([E—6FE+¢ —il0,hy])=0.

The statement of the theorem can be made more general and more precise using a more
sophisticated dynamical object, namely the topological pressure of the flow on Kg, associ-
ated with the (negative infinitesimal) unstable Jacobian ¢™(p) = —4 log det (d®"| E;) |t=0:

Pr(s) = pressure of the flow ® on K, with respect to the function sp™.

We will give two equivalent definitions of the pressure below, the simplest to formulate (but
not to use), given in (3.19).

The main result of this paper is
Theorem 3. Suppose that X is a smooth manifold of the form (3.1), that the operator
P(h) defined on it satisfies the general assumptions of §3.2 (in particular it can be of the

form (1.1) with X = R"™), and that the flow ® is hyperbolic on the trapped set Kg. Suppose
that the topological pressure of the flow on Kg satisfies

Pr(1/2) < 0.
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Then there exists & > 0 such that for any v satisfying
(1.11) 0<~vy< min (=Pr(1/2)),

|E—E'|<5
there ewits hs, > 0 such that
(1.12) 0<h<hs, = Res(P(h))N([E—6FE+¢ —il0,hy])=0.

For n = 2, the condition dy < 1/2 is equivalent to Pg(1/2) < 0, which shows that
Theorem 2 follows from Theorem 3. The connection between sgnPg(1/2) and a resonance
gap also holds in dimension n > 3; however, for n > 3 there is generally no simple link
between the sign of Pg(1/2) and the value of dy (except when the flow is “conformal” in
the unstable, respectively stable directions [32]).

The optimality of Theorem 3 is not clear. Except in some very special cases (for instance
when K consists of one hyperbolic orbit) we do not expect the estimate on the width of
the resonance free region in terms of the pressure to be optimal. In fact, in the analogous
case of scattering on convex co-compact hyperbolic surfaces the results of Naud (see [29]
and references given there) show that the resonance free strip is wider at high energies than
the strip predicted by the pressure. That relies on delicate zeta function analysis following
the work of Dolgopyat: at zero energy there exists a Patterson-Sullivan resonance with the
imaginary part (width) given by the pressure, but all other resonances have more negative
imaginary parts. A similar phenomenon occurs in the case of Euclidean obstacle scattering
as has recently been shown by Petkov and Stoyanov [33].

The proof of Theorem 3 is based on the ideas developed in the recent work of Anan-
tharaman and the first author [2, 3] on semiclassical defect measures for eigenfuctions of the
Laplacian on manifolds with Anosov geodesic flows. Although we do not use semiclassical
defect measures in the proof of Theorem 3, the following result provides a connection:

Theorem 4. Let P(h) satisfy the general assumptions of §3.2 (no hyperbolicity assumption
here). Consider a sequence of values hy — 0 and a corresponding sequence of resonant
states (see (3.22) in §3.2 below) satisfying

(1.13) ||u(hk:)||L2(7T(KE)+B(0,6)) = 1, Re Z(hk) =F+ 0(1), Im Z(h) > —Ch

where Kg is the trapped set at energy E (1.6) and § > 0. Suppose that a semiclassical
defect measure du on T*X is associated with the sequence (u(hy)):

(1.14) (a"(z, b D) xulh), xu(he)) — . a(p)du(p), k — oo,
acCl(T*X), xeCX), mXlswppa=1, 7:T"°X — X
Then

(1.15) supppu C I'h
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Real and imaginary parts of the first resonant state
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Density plot of the FBI transform of the first resonant state
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FiGUure 3. The top figure shows the phase portrait for the Hamilton-
ian p(z,&) = & + cosh™?(x), with I'f highlighted. The middle plot
shows the resonant state corresponding to the resonance closest to the
real axis at h = 1/16, and the bottom plot shows the squared modulus
of its FBI tranform. The resonance states were computed by D. Bindel
(http://cims.nyu.edu/~dbindel/resonant1d) and the FBI transform was
provided by L. Demanet. The result of Theorem 4 is visible in the mass of
the FBI transform concentrated on I'f, with the exponential growth in the
outgoing direction.

and there exists X > 0 such that

(1.16) lim Im z(hg)/he = —=A/2,  and Lpgpu= .

k—o0
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See Fig. 3 for a numerical result illustrating the theorem. A similar analysis of the phase
space distribution for the resonant eigenstates of quantized open chaotic maps (discrete-
time models for scattering Hamiltonian flows) has been recently performed in [21, 30].
Connecting this theorem with Theorems 2 and 3, we see that the semiclassical defect
measures associated with sequences of resonant states have decay rates A bounded from
below by 27 > 0, once the dimension of the trapped set is small enough (n = 2), or more
generally, the pressure at % is negative.

Our last result is the precise version of the resolvent estimate (1.2):

Theorem 5. Suppose that P(h) satisfies the general assumptions of §3.2 (in particular it
can be of the form (1.1) with X = R™), and that the flow ®' is hyperbolic on the trapped
set Kg. If the pressure Pr(1/2) < 0 then for any x € C°(X) we have

log(1/h
(117) HX(P(h) — E)_1XHL2(X)—>L2(X) < C% , 0< h < ho .

Notice that the upper bound C' log(1/h)/h is the same as in the one obtained in the
case of one hyperbolic orbit by Christianson [8]. To see how results of this type imply
dynamical estimates see [7, 8]. In the context of Theorem 5, applications are presented
in [9]. Referring to that paper for details and pointers to the literatures we present one
application.

Let P = —h?A, be the Laplace-Bertrami operator satisfying the assumptions below, for
instance on a manifold Euclidean outside of a compact set with the standard metric there.
The Schrodinger propagator, exp(—itA,), is unitary on any Sobolev space so regularity
is not improved in propagation. Remarkably, when K = (), that is, when the metric is
nontrapping, the regularity improves when we integrate in time and cut-off in space:

T
| Ixexpl=itAullusdt < Clullagg - x € G200,
0

and this much exploited effect is known as local smoothing. As was shown by Doi [12] any
trapping (for instance a presence of closed geodesics or more generally K = ()) will destroy
local smoothing. Theorem 5 implies that under the assumptions that the geodesic flow is
hyperbolic on the trapped set K C S*X, and that the pressure is negative at 1/2 (or, when
dim X = 2, that the dimension of K C S*X is less than 2) local smoothing holds with
H'/? replaced by HY?7¢ for any € > 0.

Notation. In the paper C denotes a constant the value of which may changes from line to
line. The constants which matter and have to be balanced against each other will always
have a subscript C, Cy and alike. The notation u = Oy (f) means that ||u||y = O(f), and
the notation T' = Oy _w(f) means that |Tullw = O(f)||ul|v.
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2. OUTLINE OF THE PROOF

It this section we present the main ideas, with the precise definitions and references
to previous works given in the main body of the paper. The operator to keep in mind is
P =P(h)=—h*A,+V, where V € C*(X), X = R", and the metric g is Euclidean outside
a compact set. The corresponding classical Hamiltonian is given by p = £2+ V(). Weaker
assumptions, which in particular do not force the compact support of the perturbation, are
described in §3.2.

First we outline the proof of Theorem 3 in the simplified case in which resonances are
replaced by the eigenvalues of an operator modified by a complex absorbing potential:

Py = Py(h) € P—iw,

where W € C*(X; [0, 1]), satisfies the following conditions:
W=>0, suppW C X'\ B(0, R1), Wix\Bo,R14m) =1,

for Ry, r; sufficiently large. In particular, R; is large enough so that nw(Kg) C B(0, Ry),
where K is the trapped set given by (1.6). The non-self-adjoint operator Py has a discrete
spectrum in Im z > —1/C and the analogue of Theorem 3 reads:

Theorem 3'. Under the assumptions of Theorem 3, for
(2.1) 0<~vy< min (=Pr(1/2)),

|E—E/|<6
there exits hg = ho(7y,0) such that for 0 < h < hyg,
(2.2) Spec(Pw (h)) N ([E — 6, E + 6] —i[0,hy]) = 0.

This means that the spectrum of Py (h) near E is separated from the real axis by
h~, where ~ is given in terms of the pressure Pg(1/2) associated with half the (negative
infinitesimal) unstable Jacobian.

This spectral gap is equivalent to the fact that the decay rate of any eigenstate is bounded
from below:

Pyu=zu, z€D(E,1/0), ue€ L®> = | exp(—itPy/h)ul| <e 7 ||ul.

This is the physical meaning of the gap between the spectrum (or resonances) and the real
axis — a lower bound for the quantum decay rate — and the departing point for the proof.
To show (2.2) we will show that for functions, u, which are microlocally concentrated near
the energy layer &g = p~!(E) (that is, u = x¥(z, hD)u + O(h™) for a x supported near
Er) we have
e~ Fw/hy|| < C R e |ul| 0< A< min (=Pg(1/2)),
0<t¢< Mlog(1/h),
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for any M. Taking M>> n/2X and applying the estimate to an eigenstate u gives (2.2).

To prove (2.3) we decompose the propagator using an open cover (W,)qca of the neigh-
bourhood &2, of the energy surface. That cover is adapted to the definition of the pressure
(see §85.25.3) and it leads to a microlocal partition of a neighbourhood of the energy
surface:

Z I, = x“(z,hD)+ O(h*®), x=1 on 85E/8, ess-supp II, € W, .

acA
The definition of the pressure in §5.2 also involves a time ty > 1, independent of h, but
depending on the classical cover. Taking

(2.4) N < Mlog(1/h) N e N, M > 0 fixed but arbitrary large,

the propagator at time ¢ = Nt acting of functions v microlocalized inside Eg/ ® can be
written as

(25) Ny = S U oo Uyt O ], U e
acAN
The sequences o = (v, - -+ , ay) which are classically forbidden, that is, for which the cor-

responding sequences of neighbourhoods are not successively connected by classical propa-
gation in time ty, lead to negligible terms. So do the sequences for which the propagation
crosses the region where W = 1: the operator exp(—itoPy /h) is negligible there, due to
damping (or “absorption”) by W.

As a result, the only terms relevant in the sum on the right hand side of (2.5) come from
a € AV N Ay where A; indexes the element of the partition intersecting the trapped set
Kg, and Ay are the classically allowed sequences — see (6.29). We then need the crucial
hyperbolic dispersion estimate proved in §7 after much preliminary work in §§4.3 and 5.1:
for N < Mlog(1/h), M > 0 arbitrary, we have for any sequence o € AY N Ay:

[N

N
2.6 Uy © 0 Uy || <R T2(1 + €)Y inf  det (d®™
26)  lUay =0 ) T det (490)l0)
The expression in parenthesis is the coarse-grained unstable Jacobian defined in (5.22), and
€0 > 0 is a parameter depending on the cover (W, ), which can be taken arbitrarily small

— see (5.24). From the definition of the pressure in §5.2, summing (2.6) over a € AV N Ay
leads to (2.3), with M = Mt,.

In §9 we show how to use (2.3) to obtain a resolvent estimate for Py : at an energy F
for which the flow is hyperbolic on K and Pg(1/2) < 0, we have

log(1/h
(2.7) 1(Pw = B) "2 x)—12(x) < C%/), 0<h<hg.

To prove Theorem 3, that is the gap between resonances and the real axis, we use the
complex scaled operator Py : its eigenvalues near the real axis are resonances of P. If V' is
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a decaying real analytic potential extending to a conic neighbourhood of R™ (for instance a
sum of three Gaussian bumps showed in Fig. 1), then we can take Py = —h2e 29 A+V (e?x),
though in this paper we will always use exterior complex scaling reviewed in §3.4, with
0 ~ M, log(1/h)/h, where M; is chosen depending on M in (2.4).

To use the same strategy of estimating exp(—itPy/h) we need to further modify the
operator by conjugation with microlocal exponential weights. That procedure is described
in §6. The methods developed there are also used in the proof of Theorem 4 and in showing
how the estimate (2.7) implies Theorem 5.

Since we concentrate on the more complicated, and scientifically relevant, case of reso-
nances, the additional needed facts about the study of Py and its propagator are presented
in the Appendix.

3. PRELIMINARIES AND ASSUMPTIONS

In this section we recall basic concepts of semiclassical analysis, state the general assump-
tions on operators to which the theorems above apply, define hyperbolicity and topological
pressure. We also define resonances using complex scaling which is the standard tool in
the study of their distribution. Finally, we will review some results about semiclassical
Lagrangian states and Fourier integral operators.

3.1. Semiclassical analysis. Let X be a C* manifold which agrees with R" outside a
compact set, or more generally

(3.1) X =XoUR"\ B(0,Ry))U---U(R"\ B(0,Ry)), Xo€X.
The class of symbols associated to the weight m is defined as Sgn’k(T*X )=
{a € C¥(T"X x (0,1]) : [0200a(w, & h)| < Cohh00eHH18D (gym—s } .

Most of the time we will use the class with 6 = 0 in which case we drop the subscript.
When m = k = 0, we simply write S(7*X) or S for the class of symbols. The reason
for demanding the decay in & under differentiation is to have invariance under changes of
variables.

We denote by \If%k(X ) or \Ifffk(X ) the corresponding class of pseudodifferential opera-
tors. We have surjective quantization and symbol maps:

Op : S™MT*X) — UPM(X), o, @ UPHX) — S™HTX)/S™ M1 (T X).
Multiplication of symbols corresponds to composition of operators, to leading order:
on(Ao B) = op(A)on(B),

and
o, 00p : S™HT*X) — S™H(T*X)/S™ (T X)),
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is the natural projection map. A finer filtration can be obtained by combining semiclassical
calculus with the standard calculus (or in the yet more general framework of the Weyl
calculus) — see for instance [41, §3].

The class of operators and the quantization map are defined locally using the definition
on R™:
(3.2)  Op(a)u(z) = a”(z, hD)u(z") = ! //a(f rr &) et =m My () dxdg
’ (2mh)™ 2 ’

and we refer to [11, Chapter 7] for a detailed discussion of semiclassical quantization (see
also [39, Appendix]), and to [13, Appendix D.2] for the semiclassical calculus on manifolds.

The semiclassical Sobolev spaces, H; (X ) are defined by choosing a globally elliptic, self-
adjoint operator, A € ¥,;°(X) (that is an operator satisfying o(A) > (£)/C everywhere)
and putting

lullm; = 1A% 22 -

When X = R",
7 2s 2 def 1 —i{z,€)/h
||U||H,§ ~ /Rn<f> | Fru(§)|°ds,  Fru(§) = W/R" u(z)e @&/hqy
Unless otherwise stated all norms in this paper, || o ||, are L2 norms.

For a € S(T*X) we follow [41] and say that the essential support is equal to a given
compact set K € T*X,

ess-supp, a = K € T* X,
if and only if
Vy e S(T*X), suppx C K = xa € h*S(T*X).

Here S§ denotes the Schwartz class which makes sense since X is Euclidean outside a
compact. In this article we are only concerned with a purely semiclassical theory and
deal only with compact subsets of T*X.

For A € ¥,(X), A= Op(a), we put
WEF;,(A) = ess-supp,, a,
noting that the definition does not depend on the choice of Op.

We introduce the following condition
(3.3) u € C™((0,1]; (X)), IP,hy, {z) " ullrzcey <A™, h<ho,

and call families, u = u(h), satisfying (3.3) h-tempered. What we need is that for u(h),
h-tempered, x*(x, hD)u(h) € h*S(X) for x € h*°S(T*X). That is, applying an operator
in the residual class produces a negligible contribution.

For such h-tempered families we define the semiclassical L2-wave front set :

(34)  WFy(u) =C{(z,¢&) : Jae S(T*X), a(z,&) =1, ||a“(z,hD)ul|r2 = O(h™)}.
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The last condition in the definition can be equivalently replaced with
a“(z,hD)u € h*C>((0,1],;C> (X)),
since we may always take a € S(T*X).

Equipped with the notion of semiclassical wave front set, it is useful and natural to
consider the operators and their properties microlocally. For that we consider the class of
tempered operators, T'=T'(h) : S(X) — S'(X), defined by the condition

3Pho, @) PTull ey < BN ullupog . 0 <h <o

For open sets, V. C V € T*X, U C U € T*X, the operators defined microlocally near
V x U are given by the following equivalence classes of tempered operators:

T ~ T" if and only if there exist open sets
U VeTlX, UeU, VeV, such that
AT —T')B = O _s(h™).
for any A, B € U,(X) with  WF,(A) cV, WF,(B)cU.

(3.5)

For two such operators T,T" we say that T = T" microlocally near V x U. If we assumed
that, say A = a"(x,hD), where a € C*(T*X) then Og_s(h>), could be replaced by
Op2_12(h*) in the condition. We should stress that “microlocally” is always meant in this
semi-classical sense in our paper.

The operators in ¥, (X) are bounded on L? uniformly in k. For future reference we also
recall the sharp Garding inequality (see for instance [11, Theorem 7.12]):

(3.6) acS(T*X), a>0 = (a“(x,hD)u,u) > —Chl|u|?., u€ L*(X),

and Beals’s characterization of pseudodifferential operators on X (see [11, Chapter 8] and
[42, Lemma 3.5] for the Ss case) :

| adw, ---adw, Allf2_z2 = O(hU~ON)
(37) AE\IIh,6(X) < VV[/jeDlﬁl(X)’ j:17---’N7

W; = (a,hD,) + (b,x), a,b € R", outside Xp.
Here adg C = [B, C].

3.2. Assumptions on P(h). We now state the general assumptions on the operator P =
P(h), stressing that the simplest case to keep in mind is

P=-hA+V(x), VeCR").

In general we consider

P(h) € U,(X), P(h) = P(h)",
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and an energy level £ > 0, for which

P(h) = p*“(z,hD) + hp¥(z,hD;h), p1 € S(T*X, (&)%),
(3.8) ] >C = p(x,8) 2(§)*/C, p=E =dp#0,

J Ry, VueC®(X\ B(0,Ry)), P(h)u(x)=Q(h)u(z).
Here the operator near infinity takes the following form on each “infinite branch” R™ \
B(0, Ry) of X:

Q(h) =Y aa(x;h)(hD,),
lal<2

with a,(z; h) = a,(z) independent of h for |a| = 2, an(z; h) € C°(R™) uniformly bounded
with respect to h (here C;°(R™) denotes the space of C* functions with bounded derivatives
of all orders), and

Z ao(2)€Y > (1/¢)|€)?, V€ € R, for some constant ¢ > 0,

|ar|=2

(3.9)
Z ag(z; h)EY — €%, as |z| — oo, uniformly with respect to h.
Jor| <2

We also need the following analyticity assumption in a neighbourhood of infinity: there
exist 6y € [0,7), € > 0 such that the coefficients a,(z;h) of Q(h) extend holomorphically
in x to

{rw:weC", dist(w,S")<e, reC, |r|> Ry, argr € [—€,0p+¢€)} ,

with (3.9) valid also in this larger set of 2’s. Here for convenience we chose the same Ry as
the one appearing in (3.8), but that is clearly irrelevant.

We note that the analyticity assumption in a conic neighbourhood near infinity auto-
matically strengthens (3.9) through an application of Cauchy inequalities:

(3.10) 2 D an(zh)e =& | < |27 fig(J2]) (©)*, #— o0,

Jor| <2

where for any j € N the function f;(r) \, 0 when r — oo.

3.3. Definitions of hyperbolicity and topological pressure. We use the notation

0'(p) = exp(tH,)(p), p=(2,§) €T'X,
where H,, is the Hamilton vector field of p,

def dp O pa_
Z%m or, 96~ P

in local coordinates in T*X. The last expression is the Poisson bracket relative to the
symplectic form w =" | d&§ A dx;.
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We assume p = p(x,&) and E > 0 satisfy the assumptions (3.8) and (3.9) of §3.2, and
study the flow ®' generated by p on €. The incoming and outgoing sets, 1%, and the
trapped set, Kg, are given by (1.5) and (1.6) respectively. The assumptions imply that Kpg
is compact.

We say that the flow ®! is hyperbolic on Kg, if for any p € Kg, the tangent space to £g
at p splits into flow, unstable and stable subspaces [20, Def. 17.4.1]:

i) T,(Er) = RH,(p) © E;r ©LE,, dim Eff =n-—1
(3.11) i) d®'(Ey) = E;;(p) , VteR
iti) IA>0, [|dOL(v)|| < Ce M|, forall v € ET, £t > 0.

K is a locally mazimal hyperbolic set for the flow ®'|¢,. The following properties are then
satisfied:

(3.12)
iv) Kg > pr— Epi C T,(Eg) is Holder-continuous
v) any p € Ky admits local (un)stable manifolds W= (p) tangent to Epi
vi) There exists an “adapted” metric g.q near K such that one can take C' =1 in 4i7).

The adapted metric g,q can be extended to the whole energy layer, such as to coincide with
the standard Euclidean metric outside T E(o RO)X . We call

def —o def ~_—
(3.13) E;_O = E,j_ & RH,(p), Epo = E, @RH,(p),

the weak unstable and weak stable subspaces at the point p respectively. Similarly, we
denote by W%(p) (respectively W~°(p)) the weak unstable (respectively stable) manifold.
The ensemble of all the (un)stable manifolds W= (p) forms the (un)stable lamination on
Kp, and one has

Fit? = UPGKEW:E(/)) .
If periodic orbits are dense in K, then the flow is said to be Aziom A on Kg [5].
Such a hyperbolic set is structurally stable [20, Theorem 18.2.3], so that

(3.14) 36 >0, VE' € [E—6,E+06], Kpg is a hyperbolic set for ®|¢,.
Besides, the total trapped set in the energy layer £, that is
(3.15) K¢ o U K, is compact.

le'~E|<6

Since the topological pressure plays a crucial role in the statement and proof of Theorem
3, we recall its definition in our context (see [20, Definition 20.2.1] or [32, Appendix A]).

Let d be the distance function associated with the adapted metric. We say that a set
S C Kg is (e, t)-separated if for p1, ps € S, py # p2, we have d(®¥ (py), @' (p2)) > € for some
0 < t' <t. Obviously, such a set must be finite, but its cardinal may grow exponentially
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with ¢. The metric g,q induces a volume form € on any n-dimensional subspace of T'(T*R™).
Using this volume form, we now define the unstable Jacobian on Kg. For any p € Kg, the
determinant map
n t . An 0 n ;40
A" AP (p)|gro : N"EJT — N'Egy )
can be identified with the real number

def Qq;t(p) (d(bt’ul N d(I)tUQ VAP dq)t’l}n)

(3.16) det (d®"(p)|10) = O (o Ao A ,
where (v1,...,v,) can be any basis of Ef°. This number defines the unstable Jacobian:
(3.17) exp A (p) & det (49" (p)] o)
and its (negative) infinitesimal version ¢ (p) o —Mh: . From there we take
(3.18) (e,8) = supZeXp —s A (p) .
pes

where the supremum is taken over all (e, t)-separated sets. The pressure is then defined as

of . .. 1
(3.19) Pr(s) = hr% lim sup 7 log Zy(e, s) .
€— t—00
This quantity is actually independent of the volume form €2: after taking logarithms, a
change in 2 produces a term O(1)/t which is irrelevant in the ¢ — oo limit.

From the identity A\ (p) = — fot dsp™(P*(p)) we see that, in the ergodic theory termi-
nology, Pg(s) is the topological pressure associated with the Holder function (“potential”)
sp™. We remark that the standard definition of the unstable Jacobian consists in restricting
d®'(p) on the strong unstable subspace E [5]; yet, including the (neutral) flow direction in
the definition (3.17) of A} (and hence of ) does not alter the pressure, and is better suited
for the applications in this article. In §5.2 we will give a different equivalent definition of
the topological pressure, more adapted to our aims.

We end this section by stating a simple property of the topological pressure, which we
will need further on. Although its proof its straightforward, we were unable to find it in
the literature.

Lemma 3.1. For any s € R, the topological pressures P2 (s) and Pg(s) satisfy the following
relation:

(3.20) Pr(s) = lim P2(s).

6—0

Proof. For any closed invariant set K, the pressure Pg(s) associated with the flow on K
can be defined through the variational principle

Puls)= s (hslr) = [edn),

neErg(
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where Erg(K) is the set of flow-invariant ergodic measures supported on K, and hgg(p) is
the Kolmogorov-Sinai entropy of the measure [45, Cor.9.10.1].
Take K = K9. Because the flow leaves invariant the foliation K¢ = | |, cl5—s.5+6) KB/

any ergodic measure supported on K9 is actually supported on a single K. Hence, we
deduce that

Pis)= sup  Puls).

E'€[E—6,E+3]

Now, from the structural stability of the flow on Kg, the function E’ — Pg (s) is continuous
near F (this continuity is an obvious generalization of [5, Prop.5.4]), from which we deduce
(3.20). O

3.4. Definition of resonances through complex scaling. We briefly recall the complex
scaling method — see [38] and references given there. Suppose that P = P(h) satisfies the
assumptions of §3.2. Here we can consider h as a fixed parameter which plays no réle in
the definition of resonances.

For any 6 € [0, 6y], let I'y C C™ be a totally real contour with the following properties:

FQ N B(Cn (0, R()) - B]Rn (0, R()) y
(3.21) [y NC™\ Ben(0,2Rg) = e?R* N C™ \ Ben (0,2Ry),
Fg={x+iFy(x) : x e R"}, O0SFy(x) = O,(0).

Notice that Fy(x) = (tan®)x for |z| > 2Ry. By gluing I'y \ B(0, Ry) to the compact piece
Xy in place of each infinite branch R"™ \ B(0, Ry), we obtain a deformation of the manifold
X, which we denote by Xj.

The operator P then defines a dilated operator:

def
Pg = Pﬂ’XQ, Pgu:Pu(uﬂ)]XQ,

where P* is the holomorphic continuation of the operator P, and u is an almost analytic
extension of u € C2°(Xy)

For @ fixed and E' > 0, the scaled operator Py— FE is uniformly elliptic in \IIZ’O (Xp), outside
a compact set, hence the resolvent, (P — z)™', is meromorphic for z € D(E,1/C). We
can also take 6 to be h dependent and the same statement holds for z € D(E,60/C'). The
spectrum of Py with z € D(FE,0/C) is independent of § and consists of quantum resonances
of P. The latter are generally defined as the poles of the meromorphic continuation of

(P—2)"! : C(X) — C®(X)
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from D(E,0/C)N{Imz > 0} to D(E,0/C) N {Imz < 0}. The resonant states associated
with a resonance z, Rez ~ E > 0, |Im z| < §/C, are solutions to (P — z)u = 0 satisfying

dU € C™ (Qg) , Qg def U Xy
(322) —e<0'<0+e¢
u:U’)(, Ugr IU‘XQ,, (PQ/—Z)UQ/ =0, 0<6 <9, Uy €L2(X9).
If the multiplicity of the pole is higher there is a possibility of more complicated states but
here, and in Theorem 4, we consider only resonant states satisfying (P — z)u = 0. At any

pole of the meromorphically continued resolvent, such states satisfying (3.22) always exist.
We shall also call a nontrivial ug satisfying (Py — 2)ug = 0, uy € L?(Xy), a resonant state.

If 4 is small, as we shall always assume, we identify X with Xy using the map, R : Xy —
X,

(3.23) Xg>x+— Rer e X,

and using this identification, consider Py as an operator on X, defined by (R™!)*PyR*. We
note that in the identification of L?(X) with L?(Xjy) using = — Rex,

C™H u(h)2x) < Nuh)|2xp) < C llu(h) || z2x)
with C independent of 6 if 0 < 0 < 1/C}.

For later use we conclude by describing the principal symbol of Py, as an operator on
L*(X) using the identification above:

(3.24) po(@, &) = p(x +iFy(w), [(1+ idFp(x)")] 7€) |

where the complex arguments are allowed due to the analyticity of p(z,&) outside of a
compact set — see §3.2. In this paper we will always take § = O(log(1/h)h) so that

po(z, &) — p(x, &) = O(log(1/h)h)(£)%. More precisely,

Repo(, €) = p(z, &) + O(7)(€)*,

Impy(, &) = —dep(x, §)[dFy(2)'€] + dup(, §)[Fy(2)] + O(0%)(€)* .
In view of (3.9) and (3.10), we obtain the following estimate when |z| > Ry:

(3.25)

(3.26) Im py(x,§) = =2(dFy(2)§, &) + O(0 (fo(lz]) + fa(lz])) + 6%)(€)*,
where f;(r) — 0 as r — oo. In particular, if R is taken large enough,
(3.27) (z,6) € £Y, |z| > 2Ry = Impy(x, &) < —C8.

4. SEMICLASSICAL FOURIER INTEGRAL OPERATORS AND THEIR ITERATION

The crucial step in our argument is the analysis of compositions of a large number —
of order log(1/h) — of local Fourier integral operators. This section is devoted to general
aspects of that procedure, which will then be applied in §7.
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4.1. Definition of local Fourier integral operators. We will review here the local
theory of these operators in the semiclassical setting. Let s : T*R™ — T*R"™ be a local
diffeomorphism defined near (0,0), and satisfying

(4.1) k(0,0) = (0,0), Kw=w.

(Here w is the standard symplectic form on T*R"™). Let us also assume that the following
projection from the graph of &,

(42)  TR"xTR"> (a),652° ") — (21,6 €R" xR",  (¢',¢") = w(2",¢"),

is a diffeomorphism near the origin. It then follows that there exists (up to an additive
constant) a unique function ¢ € C*®(R" x R"), such that for (z!,£°) near (0,0),

R(e(x', €0, €%) = (2!, v (2, €°)), detdge #0, ¥(0,0)=0.

The function ¢ is said to generate the transformation x near (0,0). The existence of such
a function 1 in a small neighbourhood of (0,0) is equivalent with the following property:
the n x n block (9z'/0z") in the tangent map dx(0,0) is invertible.

A local semiclassical quantization of K is an operator 7" = T'(h) acting as follows :

(4.3) Tu(z") %h // N2t €0 h)u(20)daldel .

Here the amplitude « is of the form

L—-1
o, &h) = W ay(z,§) +hbag(z,&h), VLEN,

J=0

with all the terms, a; , Gy € S(1), supported in a fixed neighbourhood of (0,0). Such an
operator 1" is a local Fourier integral operator associated with x.

We list here several basic properties of T' — see for instance [41, §3] and [13, Chapter 10]:
e We have T*T = A" (x,hD), A € S(T*R"),
oo, €0)P

| det ¢y (z1,£°)]

In particular, T is bounded on L? uniformly with respect to h.
If T*T = I microlocally near U D (0,0), then

(4.5) o (2!, €%)] = | det % (a1, )|2  for (2°,€%) near U.

(4.4) A(pg(at,€%),€%) = + Osy(h) .

o If a(0,0) # 0 then T is microlocally invertible near (0,0): there exists an operator
S of the form (4.3) quantizing k!, such that ST = I and T'S = I microlocally near
(0,0).
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e For b e S(1),
Tb"(x,hD) = c“(x,hD)T + Or2_12(h), K'c or=0b.

Moreover, if «(0,0) # 0, then for any b € S(1) supported in a sufficiently small
neighbourhood of (0, 0),

(4.6) Tv"(x,hD) = c"(x,hD)T, K'c=0b4 Ogqy(h).

The converse is also true: if x satisfies the projection properties (4.2) and T satisfies
(4.6) for all b € S(1) with support near (0,0), then 7 is equal to an operator of
the form (4.3) microlocally near (0,0). The relation (4.6) is a version of Egorov’s
theorem and we will frequently use it below.

e For b € S(1) we have b*(x,hD)T =T + Op2_2(h™), where T is of the form (4.3)
with the same phase ¥(z!,£%), but with a different symbol 3(x',£% h) € S(1). Its
principal symbol reads By(z', £%) = b(at, ¢! (2!, €°)) ap(x!, €°), and the full symbol
[ is supported in supp a.

The proofs of these statements are similar to the proof of the next lemma, which is an
application of the stationary phase method and a very special case of the composition
formula for Fourier integral operators.

FIGURE 4. A schematic illustration of the objects appearing in Lemma 4.1.
We labelled the 27 and &’ axes respectively by I'; and F]-L, in order to represent
also the more general case of (4.15).

Lemma 4.1. We consider a Lagrangian Ny = { (z, (), * € Qo }, wo € C°(Q), con-
tained in a small neighbourhood V- C T*R"™, such that k is generated by v near V. We
assume that

(4.7) k(o) = Ay ={(z,¢1(7)), 2 €}, o1 € G ().
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Then, for any symbol a € C(Q), the application of T to the Lagrangian state a(z) e*?0®)/h
associated with Ny satisfies

T
)

(4.8) T(ae/™)(z) = e @M (N "bi(x)h + hrrp(x, b)),

Il
o

where the coefficients b; are described as follows. Consider the map:
(4.9) Q13— g(x) Lo K (z, ¢ (7)) € Qo,

where m : T*R™ — R" is the standard projection along the fibres. Any point x' € € is
mapped by g to the unique point 2° satisfying

k(2% ¢p(2%)) = (a1, e (a))

The principal symbol by is then given by
(4.10)

bzl = iBo/h 0‘0(351750) det da(zM)|3 1 R 0 _ 1
0($ ) =e |det 1" (l‘l €0>|% | et g(l’ )’2 aog(x )7 ﬁo € K, g - ‘Poog(x )7
z€ )

and it vanishes outside €y. Furthermore, we have for any ¢ > N:
1bllcen) < Cegllalloesziay .  0<j<L-1,

(4.11)
HTL(.v h)”C‘(Ql) < CALHCLHQZJ&LJW(QO) .

The constants Cy; depend only on k, o, and supg, |0%¢o|, for 0 < |B| < 2(+ j.

Proof. The stationary points of the phase in the integral defining T'(a e™¥/")(z') are ob-
tained by solving:
0 /(0
1 ¢0y _ /.0 ¢0 0y _ £ = (),
oo (91,€) ~ () +ula) =0 = { HZ0E )
The assumption (4.7) implies, for ' € Q'] the existence of a unique solution z° = g(z!),
£% = ¢} o g(z'), and the nondegeneracy of the Hessian of the phase. One also checks that,

after inserting the dependence z°(x'), £°(z!) in the critical phase, the derivative of the
latter satisfies

dpr (P(at, €%(21)) = (2°(2"), E%(x)) + po(2°(2h))) = ¢ (a).
This shows that the critical phase is equal to ¢1(z!), up to an additive a constant.

The stationary phase theorem (see for instance [18, Theorem 7.7.6]) now shows that (4.8)
holds with

(4.12) bo(xh) = e/ det(I — e (x", €%) o g (2°))] % ag(a*, %) a(2”)
(413) bj<x1) - Z Lj’ (I17 Dw,f) (aj—j’ (ZEI, §)a(x)) |€=§0,z:a¢0 .

j'=0
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Each Lj(x, D, ¢) is a differential operator of order 2j, with coefficients of the form
Py (a)
det(I — g (a!,§°) o g (a®))¥ |
where P}, is a polynomial of degree < 2j in the derivatives of ¥ and ¢y, of order at most

2j+2 (the right hand side of (4.12) can also be written as Lo(ca)). The remainder rz(z'; h)
is bounded by a constant (depending on M and n) times

(aj<ar SUPLe |00 ((2", §) = (2,€) + po(2)) ’)2L(Z|a|s2L+n sup, ¢ |07 ¢ (a(z', §)a(x))|)
inf, ¢ | det (1 — 0% (24, €) o () |- ’

with similar estimates for the derivatives 9°ry(e;h). The bounds (4.11) follow from the
structure of the operators L;, and the above estimate on the remainder.

It remains to identify the determinant appearing in (4.12) with the more invariant for-
mulation in (4.10). The differential, drx(z?, £°), is the map (62°, 6£%) — (dx', 6¢Y), where
62" = g, 02" + g 0E°
5" = WlbE + b
and the 1" are evaluated at (z',£%). By expressing dz', 66! in terms of dz°, §¢° we get

e - (Ut L )
- e €)= (g vte )

The upper left block in this matrix is indeed invertible, as explained at the beginning of the
section. From (4.14) we also see that the restriction of dr to Ay followed by the projection
7 is given by

02" — 0’ = (Y,) T (I — e 0 ) (02”) .
Hence, noting that g = mox™ o (7|y,) ™ = (mo ko (m|p,) )7}, we get
el ee)
det(I — g (2!, £°) o g (a?)) |
which completes the proof of (4.10). O

det(dg(z"))

We want to generalize the above considerations by relaxing the structure of x: we only
assume that r is locally a canonical diffecomorphism such that x(0,0) = (0,0). Without
loss of generality, we can find linear Lagrangian subspaces, I';, l“jL CT*R™ (j =0,1), with
the following properties:

e I} is transversal to I'; (that is, T; NT; = {0})"

'Here T+ is not the symplectic annihilator of T' — see for instance [18, Sect.21.2]
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o if 7; (respectively 7;") is the projection T*R™ — I'; along I'j, (respectively the
projection T*R" — FjL along T';), then, for some neighbourhood U of the origin,
the map

(4.15) K(U) x U 3 (k(p), p) — mi(k(p)) x my (p) € Ty x Ty

is a local diffeomorphism from the graph of |y to a neighbourhood of the origin in
[y x Ty. If we write the tangent map dk(p) as a matrix from Ty & I'g to I'y & T'y,
then the upper-left block is invertible.

Let A; be linear symplectic transformations with the properties
A1) ={(2,00} cT'R", A;(T7) ={(0,€)} C T"'R",

and let M, be metaplectic quantizations of A;’s (see [11, Appendix to Chapter 7] for a
self-contained presentation in the semiclassical spirit). Then the rotated diffeomorphism

(4.16) o Ajoro Ayt

has the properties of the map x in Lemma 4.1. Let T be a quantization of % as in (4.3).
Then
def

(4.17) T= MY oT o M,
is a quantization of k.

By transposing Lemma 4.1 to this framework, we may apply T to Lagrangian states
supported on a Lagrangian Ag, x(Ag) = Ay, such that m; : A; — T, is locally surjective,
j =0,1. The action of k~! on A; can now represented by the function

(4.18) g=moor to(mly) Ty —=Ty.

Finally, performing phase space translations, we may relax the condition x(0,0) = (0,0).
4.2. The Schrodinger propagator as a Fourier integral operator. Using local coor-
dinates on the manifold X, the above formalism applies to propagators acting on L?(X).
Lemma 4.2. Suppose that P(h) satisfies the assumptions of §3.2,

Ve Yy (B-6,E+0), xeS(1), xlgg=1, Vi@ (V).
For a fized time t > 0, let
(4.19) Uy (t) & exp(—ity®(z, hD) P(h) X" (z,hD)/h),
be a modified unitary propagator of P, acting on L*(X).

Take some py € VoNEg, and call py = ®(po) € V1. Let fo : 7(Vy) = R™, fi:7(V) — R”
be local coordinates such that fo(m(po)) = fi(m(p1)) = 0 € R™. They induce on Vo, Vi the
symplectic coordinates

def

(4.20) Fi(z,8) = (fi(x), (df;(x)") ¢ =€V, j=0,1,
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where V) € R™ is fized by the condition Fj(p;) = (0,0). Then the operator on L*(R"),
(4.21) Té(t) < e (FN U (1) (fo) el n I,

is of the form (4.17) for some choices of A;’s, microlocally near (0,0).

Although complicated to write, the lemma simply states that the propagator is a Fourier
integral operator in the sense of this section.

Sketch of the proof of Lemma 4.2: The first step is to prove that for a € S(1) with support
in Y = 1 we have
(4.22) U (t) " a“(x, hD)U,(t) = a}’(z,hD), a; = (®)*a + Ogq1y(h).
This can be see from differentiation with respect to ¢ :
1 1

Oy’ = 7 [X"Px"saf] = 5
Since (¢/h)[P,a}’] = (Hpa)” + O(h) we conclude that ay’ = [(®¢)*a|” + Or2—r2(h). An
iteration of this argument shows (4.22) (see [13, Chapter 9] and the proof of Lemma 6.2
below). The converse to Egorov’s theorem (see [41, Lemma 3.4] or [13, Theorem 10.7])
implies that (4.19) is a quantization of ®', microlocally near py X p.

[P, ai’] + O(h™), a5 = a”.

On the classical level, the symplectic coordinates Fy, F; of (4.20) are such that the
symplectic map

kY Flodo Fy' satisfies  #(0,0) = (0,0).

Hence the operator T#(t) is a quantization of x, and can be put in the form (4.17) for

some choice of symplectic rotations A;, microlocally near (0,0). A possible choice of these
rotations is given in Lemma 4.4 below. [

We will now describe a particular choice of coordinate chart in the neighbourhood U, of
an arbitrary point p € K. Using the notation of the previous lemma, U, may be identified
through a symplectic map F}, with a neighbourhood of (0,0) € T*R". This way, Lagrangian
(respectively isotropic) subspaces in T,(7*X) are identified with Lagrangian (respectively
isotropic) subspaces in To(T*R™).

We now recall that the weak stable and unstable subspaces E;EO defined by (3.13) are
Lagrangian. The proof of that well known fact is simple: for any two vectors v, w € E;’,
we have

vt € R, w(v,w) = ®*w(v, w) = w(®Lv, PLw).
By assumption, the vectors on the right hand side converge to zero when ¢t — —o0,
which proves that strong unstable subspaces are isotropic. The same method shows that
w(v, H,) = 0, so weak unstable subspaces are Lagrangian. The same results apply to stable
subspaces. Besides, the isotropic subspace £ is transversal to the Lagrangian E;FO, so the

tangent space to the energy layer £ at p is decomposed into T,Ep = E;ro ® L.
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Lemma 4.3. Take any point p € Kg. As above, we may identify a neighbourhood U, C
T*X of p with a neighbourhood of (0,0) € T*R™. The tangent space T,(T*X) is then
identified with To(T*R™) = T*R".

The space T*R™ can be equipped with a symplectic basis (e1,. .., en; f1,..., fn) such that
er = Hy(p), EF = span{ey,...,e,} and E = span{fa,..., fu}. We also require that
Qpler A--- Nen) = 1, where Q is the volume form on E° induced by the adapted metric
Gaa (see vi) in (3.12)). The two Lagrangian subspaces

def 40 L def
I'=E" and I'™=E ®Rf

are transversal. Let us call (Y1, ..., Gn, T, - - -, ) the linear symplectic coordinates on T*R™
dual to the basis (e1,...,en; f1,. ., [n)-

There exists a symplectic coordinate chart (y,n) near p = (0,0), such that

0 0
(4.23) m=p—F, a—yi(0,0):ei and 3_m(070):fi’ i=1,...,n.
Such a chart will be called adapted to the dynamics. (y,n) is mapped to (§,7) through a
local symplectic diffeomorphism fizing the origin, and tangent to the identity at the origin.

Proof. Once we select the Lagrangian I' = E;ro, with the isotropic £ plane transversal to
[, it is always possible to complete F into a Lagrangian I'* transversal to I, by adjoining

to E a certain subspace Rv. Since I' @ I'* spans the full space T*R", the vector v must
be transversal to the energy hyperplane 7T,E5.

Since we took e; = H(p) we can equip E with a basis {ey, ..., e,} satisfying ,(e; A
ea A+ Nep) = 1. There is a unique choice of vectors {fi,..., f,} such that these vectors
generate 't and satisfy w(f;,e;) = &;; for all 4, j = 1,...,n. The property w(f;, e;) = 0 for
J > 1 implies that f; is in the energy hyperplane, while w(f1,e1) = dp(f1) = 1 shows that
p((§,1)) = E + i+ O(7;) when 7; — 0.

From Darboux’s theorem, there exists a (nonlinear) symplectic chart (y°,7°) near the
origin such that 7} = p — E. There also exists a linear symplectic transformation A such
that the coordinates (y,n) = A(y’,1°) satisfy 71 = 7} as well as the properties (4.23) on
To(T*R™). The last statement concerning the mapping (7,7) — (y,n) comes from the fact
that the vectors 0/0y;, 0/0n; satisfy (4.23) as well. O

Lemma 4.4. Suppose that P satisfies the assumptions of §3.2 and the hyperbolicity as-
sumption (3.11). Fizing t > 0 and using the notation of Lemmas 4.2 and 4.3, we consider
the symplectic frames Ty and Ty ®TL, constructed respectively near po and py = ®*(py).

Then, the graph of ®' mear p; x py projects surjectively to Ty x Ty (see (4.15)). This
implies that the operator (4.21) can be written in the form (4.17), where the metaplectic

operators M; quantize the coordinate changes Fj(x,€) v (37,7, while T(t) quantizes ®*
written in the coordinates (3°,7°) — (g', 7).
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The symplectic coordinate changes (¢, 1) — (y?, 1) can be quantized by Fourier integral
operators Ty, Ty of the form (4.3) and microlocally unitary. If we setU; o T;oM,, j=0,1,
the operator (4.21) can then be written as
(4.24) THt) =U; o T(t) o Uy

microlocally near (0,0), where T'(t) is a Fourier integral operator of the form (4.3) which
quantizes the map @, when written in the adapted coordinates (y°,n°) — (y*,n').

Proof. We may express the map ®' from V; to V; using the coordinate charts (y°,n°) on
Vo, respectively (y',n') on Vi. The tangent map d®'(p,) is then given by a matrix of the
form

o O O

(4.25) A0t (py) =

oo o
(s N en Nt e}
* = % %
o=
L

Since the full matrix is symplectic, the block,

b %)

is necessarily invertible: this implies that the graph of ®' projects surjectively to I'; x I'g:
in some neighbourhood of p; x py. Equivalently, if we represent ®f near p; X py as a map
% in the “linear” coordinates (4°,7°) and (g',7'), the graph of & projects surjectively to

(7%,7°), so that the operator T'(t) = M; o T*(t) o My ' quantizing & can put in the form
(4.3) near the origin.

For each j = 0, 1, the tangency of the charts (77, 7’) and (y’,n’) at the origin shows that
the graph of the the coordinate change (37, 7’) — (y’,n’) projects well on (y7,7%7), so this
change can be quantized by an operator Tj of the form (4.3), microlocally unitary near the
origin. The operator T'(t) = Ty o My o T*(t) o M o T¢ quantizes ®', when written in the
coordinates (y°,1n°) — (y',n'), and can also written in the form (4.3) near the origin. [

4.3. Tteration of the propagators. Later we will compose operators of type U(tg) I,
where II, is a microlocal cut-off to a small neighbourhood W, C £2. In view of Lemma
4.2 the estimates on these compositions can be reduced to estimates on compositions of
operators of type (4.3). The next proposition is similar to the results of [3, Section 3].

We take a sequence of symplectic maps (k;);=1,._ s defined in some open neighbourhood
V' C T*R™ of the origin, which satisfy (4.2). Now the x; do not necessarily leave the
origin invariant, but we assume that x;(0,0) C V for all i. We then consider operators
(T})i=1,..,s which quantize «; in the sense of (4.3) and are microlocally unitary near an open
set U € V containing (0,0). Let 2 C R™ be an open set, such that U &€ T*(2, and for all 1,
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For each i we take a smooth cutoff function y; € C°(U; [0, 1]), and let

def 4

(4.26) S ¥ (2, hD) o T} .

We now consider a family of Lagrangian manifolds Ay = {(x, ¢} (z)); z € Q} C T*R",
k =0,...,N sufficiently close to the “position plane” {£ = 0}:

(4.27) lop] <€, 0% <C,, 0<k<N, aeN".

Furthermore, we assume that these manifolds are locally mapped to one another by the
Kk;’s: there exists a sequence of integers (i), € [1, J])k=1,. n such that

(428) (AkﬂU)CAkH, k=0,...,N—1.

Kifiq
We want to propagate an initial Lagrangian state a(x) e0@/h g € C®(Q) through the

sequence of operators 5;,, k=1,..., N.

At each step, the action of x; '[s, can be projected on the position plane, to give a map

gy, defined on 7x;, (U) C 2 :

(4.29) ge(@) = mo Ky (2, () -

For each x = 2V € , we define iteratively 2*~! = gy (2¥), k = N, ..., 1: this procedure is
possible as long as each z* lies in the domain of definition of g;. Let us state our crucial
dynamical assumptions: we assume that for all such sequences (2, ..., z%), the Jacobian

matrices, dz* /02!, are uniformly bounded from above:

‘_H k—i—l O---Ogl)

(4.30)

H@xl’ Z)HSOD, 0<k<I<N,

where Cp is independent of N. This assumption roughly means that the maps g, are
(weakly) contracting.

We will also use the notations

k

(4.31) Dy < sup | detdgy(x)z, = |J 22
€N e

and assume that the Dy are uniformly bounded: 1/Cp < Dy < Cp.

We can now state the main propagation estimate of this section which describes an
N-iteration of Lemma 4.1.

Proposition 4.1. We use the above definitions and assumptions, and take N arbitray
large, possibly varying with h.

Take any a € C°(SY), and consider the Lagrangian state u = a e**°/" associated with the
Lagrangian Ag.
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Then we may write
(4.32) (Siy 0+ 0 Siy)(a e/ (z) = elen @/ ( }:hffv )+ hERY (2, h)),

where each a}) € C°(Q) is independent of h, while RL € C*((0, 1], S(R™)).
If 2N € Q defines a sequence (see (4.29)) ¥~ = gi(a*), k = N,...,1, then

(433) @} (@ L4Hm,m>mmmn%m%

otherwise aé-v(:vN) =0,j=0,...,L—1. Also, we have the bounds
(4.34) laX ooy < Che Iy (N + 1) HaHCsz(Q), j=0,...,L—1, (€N,

(4.35) HRgHLQ(R") <Cp HG/HCQL-H’L(Q) + CO Z Ji E3L+n

The constants C; 4, Cy, Cr, depend on constants in (4.27) and on the operators (S;)i=1,..J.
A crucial point in the above proposition is the explicit dependence on V.

Proof. The proof of the proposition proceeds by iterating the results of Lemma 4.1, keeping
track of the bounds on the symbols and remainders.

For each i, the operator S; = x¥ T; can also be written in the form (4.3), up to an error
Op2_2(h™®), with the symbol o'(z!, &% h) replaced by B (x!',£% h) of compact support,
and principal symbol 3 (2!, £%) = ;i (a', ¢! (24, €%)) af (21, £°). From the unitarity of T;, o)
satisfies (4.5) near U; as a result, when applying S; to a Lagrangian state as in Lemma 4.1,
the first ratio in (4.10) should be replaced by y;(z!, £Y).

To abbreviate the formulas, we set
fi(x) F €@y, (2, ¢(2)) | det dge(x)[Z,  k=1,...,N,
where using unitarity (4.5),
o0 (@051 (gk(2)))
| det ¥y e (2, 051 (gx(2)))]2

Here (3, is a constant phase, as in (4.10). We will also use the short notation

exp(ivk(x)) = e

o, € ¥y, §=0,...,L—1, £eN.

We first analyze the principal symbol a)Y (z). The formula (4.10) and the definition of f;,
give

(4.36) ay (%) = fy (@) ag (=),
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which by iteration yields (4.33).From || fx||co < Dy the recursive relation (4.36) also implies
the bound afly < Jy ||al|co.
To estimate higher C* norms we differentiate (4.36) with respect to z™:

day vy 02N da) Tt Ofn oy
&JS_N_fN(x ) oxN 8:EN—1+8xN 0

(=)

(to simplify the notation we omit the subscripts corresponding to the coordinates in zV =

(z7,...,2))). Since we already control ajy ", and the norms || fx||c are bounded uniformly

rrn

in N, the above expression can be schematlcally written as
dal) OxN=t dall
oxN OxN  QxN-1

with an implied constant independent of N. Applying this equality iteratively to daf/Ox*
down to £ = 0, we obtain

= fn + O(JIn-1 ||al|co),

dal)

oxN
afol N-2
+O<JN—1+fN N IN-—2+ [Nfn-a 9N

a 0z° da
% ~ = Infn-1-- fi N88+

1
Jy_z+ ... +foN—1 f2 ) HCLHCO.

Notice that aj = a. Using the uniform bounds for the Jacobian matrices £% + and for the
Dy, this expression leads to

J
ayy < CJy ||aller + Cllal|co Z D—N < CoxJn (N +1)|allcr .

k=1

The same procedure can be applied to higher derivatives of a)’: since || fy||ce is uniformly
bounded, the chain rule shows that the ¢th derivatives of (4.36) can be written

8€aé\f axN—1>g aéaN—l(xN—l)

Gy~ v )( 0N (QxN-1)!

+ O(aoe ).

Assume we have proven the bounds (4.34) for the algﬂz_l, k=0,...,N. Iterating the above
equality from k = N — 1 down to k = 0 yields the following estimate for 8‘al’ /(0x™)*

(4.37)
o'al) 0%a? OrN-1\ ¢
(0N ) = fnfn-1- fl( ) (a;(’;(;[‘f‘o(r]NlNE_l"’fN( ;xN ) Ivo2 (N =17+

83:N‘2

oxN

) Iva OV =2 ot e o 25) Vil

+foN—1< 9N
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Using the uniform bounds (4.30) for % and Dy, we get

J
an, < Co Jy |lal|oe + Cl|al|cer Z DN kY < Coo Iy (N +1)al|ce -
k=1

We can now deal with higher-order coefficients aév , by double induction on j and N.
Above we have proved the bounds for j = 0 and all N. Assume now that, for some j > 1,
we have proved the bounds (4.34) for aé\,’,ﬁ for all j/ < j, ¢ >0 and all N > 1. By induction
on N we will prove the bounds for that j and all V.

Applying Lemma 4.1 term by term to ™V ~! & ZJL o al ' +h R we see that cach
component a depends on the components a 57, 0 < 4" <4, and not on RN '. More
precisely, from (4.13) we get

ZLN 61]\; N-— 1)(IN)
(4.38)
:fN(ﬁN) j 2N- 1 +Z Z F 67 jle(qu).
=1 |y[<2j

As explained in the proof of Lemma 4.1, the functions I')/, (x) can be expressed in terms
of the map k;, and the functions py_; and 3°¥. From the assumptions on the latter, the
norms, ||} ||ce, are bounded uniformly with respect to N, so (4.38) implies the following
upper bound:

(4.39) aly < Dyaly'+C Za] T
j . . .

(4.40) < Dyajy ' +C Uy Z N7 la| o
j'=1

(4.41) < Dyals ' +CjJInaa N7 allces .

This inequality can be used in an induction with respect to NN, starting from the trivial

a9y = 0. Assuming a}\;' < Cjo Jy_1 N¥ [|al|c2; for some Cjo > 0, we obtain

Ci .
——J N3l ;.
Gl N ) e

The constant Cj can be chosen large enough, so that the brackets are smaller than
N3 4 3jN*~1 < (N 4 1), which proves the induction step for a},.

(4.42) aj'\,fo < CioJy (NSJ' +

Once we have proved the bounds for the sup-norms of the symbols aN we can estimate
their derivatives by induction on /¢, as we did above for the principal symbol a)’. Assume
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that we have proved the bounds (4 34) for all aévl, N >1,0<1</¢—1. If we differentiate

(4.38) ¢ times with respect to 2V, we get
da N HaN-1 J
j N—1 N-1
FreET Ofazy+ Qa5 i eeay)
i=1

N1\ ¢
(OxN ) _fN< 81‘N> (

where the implied constant depends on the bounds on [T [|c¢. Taking into account what

we already know on ajve —t and a¥Y this takes the form

Jj— J’ 425"
ay OrN-1y¢ 9taN ! s
(83:13)4 = In ( oxrN ) (axl\Jf—1)e + O(JN—l NI Hchz+2j) .

Applying iteratively this equality to 8%;“ /(02%)¢ down to k = 1 (as in (4.37)) and using
a(x) =0, j >0, we find:

1 ot aj-v

lallceres (92%)¢

+ fvfnaa (ag;\;?)ej]v:s (N — 2)”3]'*1 +. o+ fnfyoi f (%)Z) )

From the uniform bound (4.30) and || fx||co < Dy, this gives

afol

oxN

. L .
(4.43) = Oy N gy ) I (N = 1)+

N N L+3i—1
k=1

< CipJy N for a certain C1 4 > 0.
k

This proves the induction step £ — 1 — ¢, so that we now have proved the bounds for aﬂ
for all N > 1, ¢ > 0. This achieves to show the induction step on j, and (4.34).

To estimate the remainder RY (z, h) we define 1, (z, h) by
Sik+1 (ewk/h<ag + ha’f i Rt 1aL 1))
= eien/h(ghtt 4 hallerl oo BEE 4 pEpkL (o ) |
Due to the cutoff ¥, the remainder will be O((h/(h + d(e, 7 supp x;))*) outside m supp x;,

so it is essentially supported inside 2. On the other hand, from Lemma 4.1 and the
estimates (4.34), we get

L-1 L—1
I (0. ) leeqeny < Cre Y llafllgesnvaas < Cre Y Ty (k+ 1742 Ja]| gernsar
§=0 §=0

< CL,K Jk (k + 1)3L+€+n HCLHCe+n+2L .
In particular,

(4.44) Hrlz—i—l(.’ h)HL?(R") S CL Jk (k‘ + 1)3L+n||CLHC2L+n .
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The remainder R%(x,h) can now be written as

N-1
RY =rk +e /N7 (S; 00008, (rk e/t
k=1

Since we assumed that 7Tj’s are microlocally unitary on the support of x;’s, and that
0 < x; <1, we have from the sharp Garding inequality:

1551l 2 @ry—L2@®ny < 14 Coh
The above formula for R and (4.44) give the estimate (4.35). O

Remark 4.1. We can also obtain slightly weaker pointwise estimates on RY in place of
the L? estimates of (4.32). In fact, since y;,’s are compactly supported we have

REF | RY [l oony < CellRY (e < CoIRY |2y

and hence

”R]LV( )HCIZ Rn) <CLgh 5 Z||ClH02L+n 1+CO Z‘] k,3L+n

5. CLASSICAL DYNAMICS

In this section we analyse the evolution of a family of Lagrangian leaves through the
classical flow. We will check that these Lagrangians (which remain in the vicinity of the
trapped set) stay “under control” uniformly with respect to time. Eventually, this uniform
control, which implies that the conditions (4.27) hold, will allow us to apply Proposition 5.1
in §7.

5.1. Evolution of Lagrangian leaves.

5.1.1. Poincaré sections and Poincaré maps. We describe the construction of Poincaré
sections and maps associated with the flow ®* on £ in the vicinity of K. This construction
will be used in the next section.

Take py € Kg. We use an adapted coordinate chart (y°,n°) centered at py = (0,0) to
parametrize the neighbourhood of py in 7% X, with properties as described in Lemma 4.3.
To keep in mind that

0
E*zspan{ 0), izQ,...,n},
PO ayl( )
and similarly for £ ), we keep the “time” and “energy” coordinates y7, 717, but rename
d similarly { Epo k the “time” and “ ” dinat (1) 77? but
the transversal coordinates as

Odﬁf ()dcf 0 .
yJH, 415 j=1,...,n—1.
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For any small € > 0 and using the Euclidean disk D, = {u € R, |u|] < €}, we define a
neighbourhood of py as the polydisk

(5.1) Us(e) ={ || <e, In)| <6, v’ €D., "D, }.

Here 6 > 0 corresponds to an energy interval where the dynamics remains uniformly hy-
perbolic, as mentioned in (3.14). The intersection Uy(e) N Eg is obtained by imposing the
condition 79 = 0, and a Pomcare section Yo = Yo(e) transversal to the flow is obtained by
imposing both 79 = 0 and y? = 0. The chart (u°, s°) on % is symplectic with respect to
the induced symplectic structure on .

Let us assume that the point ®'(py) belongs to a polydisk U; () constructed similarly
around a certain point p; € Kp, using an adapted chart (y*,n'). As a result, the Poincaré
section ¥ = {y; = ni = 0} will intersect the trajectory (®*(po))js—1<- at a single point,
which we call p,. The Poincaré map r is defined, for p € ¥y(e) near py, by taking the
intersection of the trajectory (®'(p));—1j<e with the section X; (this intersection consists of
at most one point). This map is automatically symplectic. In general, the strong (un)stable
spaces E;z are not exactly tangent to X1, but close to it: they form “angles” O(e) with the
intersections,

S+ def

B, = ESNT, %,
Furthermore, since the (un)stable subspaces Eff are Holder continuous with respect to
p € Kg, with some Hélder exponent v > 0, and d(pf, p1) < €, the subspaces E;E form

“angles” O(e7) with Ei The tangent map dr(py) maps Ei to Ei Hence, using the

coordinate frames {(u",s%)} on 3y (centered at py) and {(u!,s')} on Zl (centered at py),
the symplectic matrix representing dr(po) can be written in the form

52 st = (5 )+ (21).

where the second matrix on the right has uniformly bounded entries. From the assumptions
(3.11) on hyperbolicity, for e small enough there exists

(5.3) v=e+0(E") <1
such that the matrix A satisfies
(5.4) A7 <v and [A7Y|<v,

where [[!A7!|| is computed using the norms on T}, %, T, ¥ induced by the adapted metric
Jad (see §3.3). By extension, in the neighbourhood V' C ¥y where it is defined, x takes the
following form in the coordinates (u°, s%) — (u!, s!):

(55) k(%) = (u', ") (pp) + (Au’ + a(u’, %), AT+ B(u°,s%), (W0, eV,
and the smooth functions «a, [ satisfy
(56) 06(0,0) = B(0,0) = 0, Hoz||c1(v) S CEW, HﬁHCl(V) S Cé"y .
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5.1.2. Evolving Lagrangian leaves. Given € > 0, one can choose a finite set of points
(pi € Kg)icr, adapted charts (y°,n') centered on p;, such that the polydisks U;(e) =
{1yt <e, |ni| <6, v € D,, s* € D.} form an open cover of the trapped set K¢ in the
energy layer £9:

(5.7) Ky c | JUite).

i€l

For some index ig € I, let A = A) . C U, (¢) N Eg be a connected isoenergetic Lagrangian

leaf?. For any ¢ > 0 we call A = ®!(A).

We consider a point py € A, and assume that there exists an integer N > 0 such that,
for at each integer time 0 < k < N, the point p, = ®*(py) belongs to the set U, (g) for
some 7j, € . We then call A} _ the connected part of (U‘SKE(I)‘SA’“) NU;, (€) containing py.

We may use the symplectic coordinate chart (y®,n%*) to represent AL . Being contained

in a single energy shell &g, the Lagrangian leaf A _ is foliated by flow trajectories (bichar-
acteristics). It can be put into the form

(58) A= U\s\<6q)s(5k) )

where S¥ = AF _NY,; is an n — l-dimensional Lagrangian leaf in the symplectic section

loc - ‘
Y. (e) = U (e) n{y}* = ny* =0} (see Fig. 5 for a representation of the above objects).
We will be interested in Lagrangian leaves which are “transversal enough” to the sta-
ble subspace £, , and can therefore be represented by graphs of smooth functions in the

adapted charts:

(5.9) Noe = { (™ 0™) « 0™ = FH(y™) } .

The intersection S* = AF
Sk = {(ui’“,si’“) L fk(ui’“), utt € DE} ,

and (5.8) implies that F*(y*) = (0, f*(u')), so that (5.9) takes the form

(5.10) Af=A{ (i, u™; 0, fE(u™)), |y¥| < e, u'* € D.} .

M, is then also given by a graph:

Convention: In the rest of this section the norm || - || applying to an object living on
2, = D. x D, corresponds to the Euclidean norm on 7, Diy >, relative to the adapted
metric gnq(p;, ). The same convention applies to the norm || - || of a linear operator sending

an object on 3;, to an object on X;, | (or vice-versa).

The following proposition (similar to the Inclination Lemma of [20, Proposition 6.2.23])
shows that, if € has been chosen small enough and A is “transversal enough” to the stable
manifolds (that is, in some “unstable cone”), then the local Lagrangian leaves Af . remain
in the same unstable cone, uniformly with respect to k =0,..., V.

2Here and below, a leaf is a contractible submanifold with piecewise smooth boundary.
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Proposition 5.1. Fix some 1 > 0. Then there exists €, > 0 such that, provided the
diameter € € (0,¢e,,), the following holds.

Suppose the Lagrangian A = A, C Eg N U, () is the graph of a smooth function f° in
the adapted frame (y™,n™), and is contained in the unstable ~;-cone:

Ao = { (", w50, fO(u)), || <&, u® €D}, with sup|ldf*(u®)]| <.
w0

i) Then, for any 0 < k < N, the connected component AL . C U, () containing py. is
also a graph in the frame (y'™, n“v), and is also contained in the unstable ~i-cone:

Ale = { (", u™;0, f*(u™)), [y <e, u™ € Do}, with  sup [df*(u™)| <.
uikEDa
it) For any integer £ > 2, there exists v, > 0 such that, if f° is in the unstable y,-cone and
satisfies || fOlce < e, then
(511) szovaN? ”kaCe De) < Ye-
iti) From the above properties, near py the map ®N|y can be projected on the planes
{n = 0} and {n~ = 0}, inducing a map y* — y~.

In the case where the sets U; () contain a trajectory in K&, (so these sets may be
centered on p;, = ®*(p;,)), the projected map y* — y'~ satisfies the following estimate on
its domain of definition:

oy +
det <8y0) — (14 0(e)) exp (M (ps)) -
Here XY, is the unstable Jacobian given in (3.17). The crucial point is that the implied
constant is independent of N.

Proof. We follow the proof of the stable/unstable manifold theorem for hyperbolic flows
[20, Thm 6.2.8 and Thm 17.4.3].

For each k = 0,..., N, the Poincaré section ¥;, does generally not contain pj, but it
contains a unique iterate p, = ®°p; for some s € (—¢,e). The Poincaré map kj from
Vi C i (€) to 8;,,, (e) will satisfy xr(p),) = plys-

Since d(p;,, py,) < € and d(ps,,,, ppy1) < €, there exists C' > 1 such that the extended
Poincaré map from ¥;, (¢) to X;,, (Ce) sends p;, to a point p; € ¥, (Ce). We are thus
in the situation of §5.1.1, with po, pj, p1 being replaced by p;, , p;, , pi,,, (see Fig. 5). In the
charts (u's, s') r— (u'*+1, s%+1) the map kj, takes the form

(512)  rp(u®, s™) = (w1, s™0) (], ) + (Apu™ + ag(u'*, s™), 'Agts™ + Gy(u™, s™)) |

where ||AY], |4 < v and the smooth functions dy, B satisfy (5.6). It is convenient
to shift the origin of the coordinates (u', s') (respectively (u"+1,s"+1)) such as to center
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them at pj, (respectively at p}, ;). We call the shifted coordinates (u*,s*) (respectively
(uF*1) s¥1)). In these shifted coordinates, we get
(5.13) kg (u®, s%) = (Akuk + oy (uF| sP), tA,;lsk + B(u”, sk)) , (u*, s*) € V.

The shifted functions ay, G still satisfy (5.6), where V' = Vj, corresponds to the neighbour-
hood of pj where kj, is defined.

FiGURE 5. Illustration of the objects appearing in the proof of Proposi-

tion 5.1. The local Lagrangians Af A{“Otl appear in light blue, and are

foliated by bicharacteristics. The axes around p;,, p;,,, represent the stable
and unstable subspaces Epi on those points. The axes around p} = ri(p;,)

are the projected subspaces E’pi,.

After fixing the coordinate charts, we can study the behaviour of the intersections S* =
A N, when k grows. We are exactly in the framework of [20, Theorem 6.2.8], and we

loc
will use the same method to control the S*.

We first show that, if € is chosen small enough, the unstable ;-cone in S* is sent by ry,
inside the ;-cone in S**1. Let us assume that

SE={(Wh fF W)}y, sup ldff <

ukeD.
The projection of ki|gr on the horizontal subspace reads:
(5.14) uP s uF T = g (W) R (W) = A 4 ap(uF) R (),
so by differentiation we get it is uniformly expanding from some neighbourhood D. C D,
to D.:
ouktt Oay,  Ooy, OfF
Touk — F + our  Osk JuF

(515) :Ak—I—O(&T’y(l—F’h)).
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The property [|A,'|| < v < 1 shows that, for £7(1+4 ) small enough, this map is uniformly
expanding. Hence, this map is tnvertible, and its inverse,

def -
(5.16) uF T s uF E g (WY

is uniformly contracting:

k
(517) Hd§k+1( k+1 H - H(’?uk“ S Vi, UkJrl c D57
with 11 = v+ Ci(7(1 + 1)) < 1. As a result, since gx4+1(0) = 0, we have
[l = Ngr (D < v flu™ I, W™ e D

We also see that the intersection S*™! = £ (S*) can be represented as the graph S*+! =
uF L FEHL (AN Rt e DoV in the coordinates centered at pl ., with the explicit
Pl+1 p
expression

(5.18) ) = U ) + Bt ), u e Dl = o (uFH).
Differentiating this expression with respect to u**! leads to

o k+1 o k o k
i = Coer ) [(A + 0, 1) S ) + 04, 1))

Since for € small enough we have uniformly
AT + 0685wt fruP )l S vey, v =v+Cpe” < 1,
the above Jacobian is bounded from above by
i fk+1
[P
If e > 0 is small enough, the above right hand side is smaller than v,y;. We have thus proved

that the ~;-unstable cones in Y are invariant through ry, which proves the statement 7)
of the proposition.

S 141 (Vg’h + 087) .

Let us now study the higher derivatives of the functions f*, obtained by further differ-
entiating (5.18). We use the norms

= ma sup ||[0% f ,
fllorwy = _max_ sup|o* o]

and will proceed by induction of the degree ¢ of differentiation. Let us assume that for some
¢ > 2, there exists 7,_; such that all functions f*, 0 < k < N, satisfy [|f*]|ce-r < o1
Above we have proved this property for ¢ = 2. By differentiating ¢ times (5.18), we get
aéfk-i-l auk aéfk
Gary ~ (gm 0
fkarl B
|+ IP@f . 0 )

uk—l—l)ﬁ

)f (*4;" +asﬁ’“) + Pp(0fF, . 0 Y

ka‘

= |

0
‘§V1V2
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Here P, is a polynomial of degree ¢, with coefficients uniformly bounded with respect to

k and u* € D.. Using the assumption || f*||ce-1 < 7,1, there exists Cp_1(7,_1) > 0 such
that the following inequality holds:

8€ fk+1

H (Ouk+1)

If we now choose 7, > 0 such that

C
o> e (S0 1),

we check that the condition | f*||ce < 4, implies that ||0°f**||co < a7, Hence, all
functions f*, 0 < k < N, satisfy || f*||ce < v,, which proves statement 7).

aka

(Buk)e H + Cea(e-).

The important point in 447) is the uniformity of the estimate with respect to N. To prove
such a uniform estimate, one needs to analyze the trajectory (p})i—o,. n With respect to
the “reference trajectory” (p;, ). It is useful to replace the coordinates (u“c n') on X% by
coordinates (¥, 3%) with the following properties. We define the local (un)stable manifolds
on the Poincaré sections:

WE L WOE(p, )N Sk

The new coordinates (@, 3%) satisfy: -
W, ={@",0), @ eD.}, W, ={0,5), seD.},
(@",5%) = (u'*, s™) + O(||(u™, s*)||*) near the origin,
and they need not be symplectic. In these coordinates, the Poincaré map ry, : L% — Yik+1
has a more precise form than in (5.13): we can still write it as

ki (0¥, 87) = (Ap@" + ap(3¥, 5%), "4, 15" + B(a*, §%))
but the smooth functions ay, Oy satisfy more constraints than before:
e(0,5%) = B,(@*,0) =0 and day(0,0) = dB,(0,0) = 0.

This shows that, near the origin, ay(a*, ) = O(||@"|| + ||5*||)||@*|| and similarly for Sj.
Using these coordinates, we can show that most of the points along the trajectory (pj},) are
very close to the reference points (p;, ). If we call (@*,5*) the coordinates of pj € S*, we
have

W = At 4 o (@, 5%) = Ag® + O(e ||a¥])
= A g (af,5) = AT+ O(e |15]) -

Taking into account the fact that [|aV| < Ce and [|5°|| < Cé, for € small enough there
exists v3 = v+ O(e) < 1 such that

[a*| < Cevy™, | <Cevy, k=0,...,N.

3As suggested in the statement of the proposition, we now assume that pi, = ®*(p;,) forallk =0,..., N.
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These estimates prove that, if N is large, the points pj for k> 1, N — k> 1 are close to
pi.- The tangent of the map @* — @*! induced by projecting ry|gr on the planes {5 = 0}
is given as in (5.15) by

8u’“+1 80ék 8C¥k 8f’“

—=A = A, + O(||a* ).

= A 2 OODTT s o) + 1)

To obtain the last equality we used the fact that ||df*| is uniformly bounded, as shown
above. The tangent of the map obtained by projecting ky_1 © - 0 Kg|go on the planes
{8 = 0} then reads

%ZE(AHO(HZE’“HH\EWI) iﬂmo )
]ﬁAk H(I+O(€(V§Vik+V§)))

k=0

The determinant of the last factor is of order 1+ O(¢), so we deduce
N

(5.19) det <au

i) = (1+0()) det ( HAk

We then recall that the change of variables (@, §%) — (u®, s%) is close to the identity:
o(ak, %)
(3 sy) =1+ 9

As a result, the estimate (5.19) applies as well to the Jacobian of the map xy_10---0Kg|s0,
projected in the planes {s = 0}, {s'¥ = 0}, which we denote by det(Ou™~ /du™).

We now consider the map y* — y* induced by projecting |50 on the planes {" = 0},
{n'~ = 0}. From the structure of the adapted coordinates, the tangent to this map has the

form .
<8le> (1 *
Ayio )~ \0 (0u™v /ou™) )

so the estimate (5.19) also applies to det(Jy'™ /Oy™).

Finally, we remark that if we take A = W;g (?, then the tangent map at py = p;, is given
by

i N-1
(Fae )0 =TT 4.
k=0
Hence in this case we find
N-1

oy’
det ( kHO Ay) = det( o

IN

) = det (d<I>N|Ep+ig ) = exp(Af(pio)) -
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For the second equality we have used (3.16) and the fact that, for each k, the adapted
coordinates satisfy Q(9/dy* A ... A3/Oy’*) =1 at the origin (see Lemma 4.3). O

Remark 5.1. Due to structural stability, the results of Proposition 5.1 apply to Lagrangian
leaves A € Ep transversal to the stable lamination, for any energy E' € (E — 6, E + §),
with the difference that the evolved local Lagrangians are of the form
(5. 20)

Ao = { W1 0™ B = B, fH (™)), [yt < e, Ju| <e )}, with [Jdf*(u™)[| < 7.
The Poincaré sections used in the proof are taken as U;(¢) N {y, = 0, ni = E' — E}. All
constants can be taken to be independent of E' € (E — 6, E 4 0).

Remark 5.2. Each f*: (D.), — R*! representing the Lagrangian A} _ of (5.20) can be
written as f*(u) = ¢}, (u) for some function ¢k : (D:)y — R. Therefore, the function

ok(yr,u) < op(w) + (B — E)yy,  uweD., |y <e,

generates AF in the symplectic coordinates (y',n).

loc

5.2. An alternative definition of the topological pressure. To connect the resonance
spectrum with the topological pressure (3.19) of the flow, we use an alternative definition
of the pressure [34, §0.2 II], which will provide us with a convenient open cover of K2,.

Taking § > 0 small enough to satisfy (3.14), consider V = (V})yep a finite cover of K9,
made of sets of small diameters contained in the energy layer £%, and relatively open in
that layer. For any integer T > 0, the refined cover V(™) is made of the sets

(5.21) v, ﬂ O *WVy),  B=boby...by_s € BT

The T-strings 3 such that V3 N K # () make up a subset By C BT. Below it is convenient

to coarse-grain the unstable Jacobian (3.17) on subsets W C £
(5.22) VW CE, WNKL#A0,  Sr(W)E — inf MN(p).

s
pPEWNKY,

We define the following quantity, similar to (3.18):

Zr(V,s) ¥ 1nf{ > exp{s Sp(Vs)} « BrC By, Ky | vﬁ} .

BeBr BeBr
The topological pressure of the flow on K2 can then be obtained as follows:
1
4 — J—
Pp(s) =  lim lim o log Zr(V,s).

Here the covers V are as above: they cover K¢ in the energy strip £, and are relatively
open. Finally, the pressure Pg(s) can be obtained through the limit (3.20).
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From now on we will restrict ourselves to the parameter s = 1/2. Let us fix some small
€0 > 0. From the above limits, there exists a cover Vy of K9 in £% (of arbitrary small
diameter € > 0) and an integer ¢, > 0 depending on V, such that

1
(5.23) - oa Z4(V,1/2) = PR1/2)| < .

As a consequence, there exists a subset B, C Bj , such that { Vs, 3 € B, } is an open
cover of K¢ in &2, which satisfies

Z exp{% S (Va)} < exp {to(Pp(1/2) +€)} -

BEBy,
We rename the family { Vs, 0 € By, } as { W,, a € Ay }, so the above bound reads
1
(5.24) > exp{ Sio(Wa)} < exp {to(PL(1/2) +€0) } .
a€A;

Each set W, contains at least one point p, € K¢, which we may set as reference point:
following Lemma 4.3, we can represent W, by an adapted chart (y* n®) centered at p,.
Similarly, we can also equip any V, € V, with adapted charts (y°,7°) centered at some
point p, € V; N K3,

Each point p € W, = Vj evolves such that ®*(p) € Vj, forall k = 0,...,t,—1. Therefore,
as long as € has been chosen small enough, we are in position to apply Proposition 5.1 and
Remarks 5.1,5.2 to isoenergetic y;-unstable Lagrangian leaves in W,,.

Proposition 5.2. Take any energy E' € [E—0, E+ 6| and any index a € Ay. Assume that
A C Ep NW, is a Lagrangian leaf generated in the chart (y*,n*) by a function ¢ defined
on a subset D, C D., and is contained in the unstable v,-cone:

A {(y,us B — E,¢'(u) : u* € Do}, with ||¢"|lcopyy <m-

Then for any index a' € Ay, the Lagrangian leaf ®*(A)NW, is also in the unstable v -cone
in the chart (y*,n®).

Besides, the map y* — y® obtained by projecting ®|5 on the planes {n® = 0} and
{n® =0}, satisfies the following estimate on its domain of definition:

Oy v +
det <8ya> =(14+0(7)) exp ()\to(pa)) )

Here N/ (p,) is the unstable Jacobian (3.17) of the reference point p, € WoN K%, and y > 0

1s the Holder exponent of the unstable lamination. The implied constant is uniform with
respect to 1g.

(Z/

Proof. From Proposition 5.1, we know that for any p € A and any k£ = 0,...,t5 — 1, the

connected component AF of ®*(A)NVj, containing ®(p) lies in the unstable y;-cone with

respect to the chart (y”,7%). On the other hand, since A is a connected leaf inside W,
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at each step k = 0,...,ty — 1 its image ®*(A) is fully contained in Vj,, and is connected, so
that AL is actually equal to ®*(A) for all k = 0, ...,t, — 1. Finally, we apply one iteration

of Proposition 5.1 to the leaf A" = ®*~*(A) C V;, _, NEp, and deduce that any intersection
O(N)N W, = ®(A) N W, is also in the y;-unstable cone.

We now prove the statement concerning the Jacobian of the induced map. It is a direct
consequence of part iii) in Proposition 5.1, after replacing the time N by ¢y. Let p, be the
reference point in W, N K¢, on which the coordinates (y*,n?) are centered. If V, is a set
containing ®(p,), we may enlarge it into a set of diameter Ce, such that ®%(WW,) C V,

and Wy C V,. On V, we may use adapted coordinates (y° 7°) centered on the point

Db L pto (pa), and represent ®|, by a map y* — y°. In this setting, Proposition 5.1,ii1)

shows that the associated Jacobian satisfies
b

Iy
det (@) — (14 0(€)) exp(N,(pa)) -
There remains to compare the coordinates (y°,n?) with the coordinates (y*,n®) centered on
par € Wer. Since the (un)stable subspaces at p, and p, form angles O(e”) and d(pp, par) =
O(€), the representation of ®%|, through 3 — y satisfies

b

) = (1+O(")) det (g—za) = (140(")) exp(Ay, (pa)) -

a/

(5.25) det (gy
ya

l

Notice that, even though ¢y (depending on the cover V, in an unknown way) can be very
large, applying ®% onto a near-unstable isoenergetic leaf A C W, does not fold it.

5.3. Completing the cover. We need to complete the family (W, ).ea, in order to cover
the full energy strip £%. Far from the interaction region (which we define using the radius
Ry of §3), we take the unbounded set

Wo = &N {|z(p)| > 3Ro} .
We complete the cover with a finite family of relatively open sets
(Wa C g%)aGAQ )

with the following properties. These sets should have sufficiently small diameters, and for
some uniform d; > 0 they should satisfy:

d(Wo, ) +d(W,o, T5) > dy, where TE < | ] T,
|[E'—E|<é

where '}, are the incoming/outgoing sets given in (1.5). Finally, the full family should
cover E%:

&y =)W, where A={0}UA; UA,.

a€A
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Lemma 5.1. Such a cover exists. Consequently, there exists Ny € N, such that for any
ndex a € Ay we have

' (W) N{|z(p)| < 3R} =0  for any t > Nyto,
or

O H(W,) N{|x(p)| <3Ro} =0 for any t > Noty.

Proof. The complement of Uyeca, W, in 5;; N Tg(% RO)X is at a certain distance D > 0 from
K2.. On the other hand, from the uniform transversality of stable and unstable manifolds,
there exists d; > 0 such that

(526) vp S gg n TE(O,?)RO)Xa d(p7 ng) + d(p7 F]TE(S) <4d, = d(pa Kg?) <D.

We first cover the set S_ = {p € £, N T03m0)X + d(p, I'.’) > 2d;} by small open sets
{W,, a € Ay} at distance > d; from I';’. There exists 7_ > 0 such that at any time
t > T_, the iterate ®'(WW,) has escaped outside T 03r0)X for any a € A;.

We then cover the set S, = {p € €5 NTh03r.X & dp, ;%) < 2dy, d(p,T't°) > 2d,} by

small open sets {W,, a € Aj} at distance > d; from I'L’. Now, there exists 7 > 0 such
that all these sets have escaped outside T 35\ X for times ¢t < —T',. From (5.26), points

pEELN 0,380 X which are neither in S_ nor in S, are at distance < D from K¢, and

therefore already belong to some W,, a € A;. Finally, we take A, o Ay UAS, and Ny € N

such that Nytg > max(7_,7T). O

6. QUANTUM DYNAMICS

As reviewed in §3.4 resonances are the eigenvalues of the complex scaled operator FP.
To prove the lower bound on the size of the imaginary part of a resonance z(h), with a
resonant state ug(h) € L*(Xy), |lug|| = 1, we want to estimate

exp(—t|Imz(h)|/h) = [|exp(—itFy/h) ug(R)||, t>1,

where the exponential of —itPy/h is considered purely formally. In principle that could
be done by estimating || exp(—itPy/h)x"(x, hD)||, where x* provides a localization to the
energy surface. However, the imaginary part of Py can be positive of size ~ 6 ~ Mhlog(1/h)
and that poses problems for such estimates.

Hence the first step is to modify the operator P, without changing its spectrum. To
make the notation simpler, we normalize the operator so that we work near energy 0. In
the case of (1.1) that means considering

Accordingly, the energy strips and trapped sets will be denoted by &£%, K?°.
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6.1. Modification of the scaled operator. To modify the operator Py we follow the
presentation of [42, §84.1,4.2,7.3] which is based on many earlier works cited there.

Thus instead of Py we consider the operator Py . obtained by conjugation with an expo-
nential weight:

(6.1) Py e G PGt Ih e = My, 6 = Myhlog(1/h).

This section is devoted to the construction of an appropriate weight G* = G*(x, hD). The
large constant M; will be of crucial importance for error estimates in our argument and will
be chosen large enough to control propagation up to time M log(1/h), roughly M; > M.
The constant M, will also be given below.

We start with the construction of the weight G(z, ¢):
Lemma 6.1. Suppose that p satisfies the general assumptions (3.8) (with the energy E > 0
now in the interval (—6,8)). Then for any open neighbourhood V of K°, V & T500,m0)X >
and any 09 € (0,1/2), there exists G € C(T*X) such that
P € TosryX = HyG(p) 20,
(6.2) p € Tho3rH)X N (E°\V) = H,G(p) >1,
VpeT*X, H,G(p)> —d.

Proof. The construction of the function G is based on the following result of [16, Appendix]:
for any open neighbourhoods U,V of K°, U C V, there exists Gy € C*(T*X), such that

GO|U = 0, HpG() > 0, HpG0|g2§ < C, HpGO|85\V >1.

Such a Gj is an escape function, and is necessarily of unbounded support. We need to
truncate Gy into a compactly-supported function, without making H,G( too negative. For
T >0, a€(0,1) to be fixed later, let y € C>*(R) satisfy

0, |t’>77 /
t) = t)| < 2aT, t) > —2a, teR.
x(t) {t, 1| < aT, Ix(t)] < 2a X'(t) > «Q

(we obtain y by regularizing a piecewise linear function with these properties). Let ¢ €
Ce(R;[0,1]) be equal to 1 for |[t| < 1 and 0 for |¢| > 2. For R > 0 to be fixed later, we

define
def

G(p) = x(Go(p)) v(p(p)/6) ¥ (|z(p)|/R),
which vanishes on U, outside £% and for |z| > 2R. We then compute
H,G = X'(Go) HpGotb(p/0) (x| /R) + (1/R) x(Go) ¥(p/0) /(|| / R) Hy(lx])

This is bounded from below by 0 for {|z| < R, |Go| < T}, and by 1, if in addition
p €&\ V. For any p € T*X we have

H,G(p) > —Coa(1+T/R),
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for some Cy > 0, since (3.10) shows that |H,(|z])] < C; on £%. Choosing R > 3R, and
T = T(a, Ry) large enough so that |Go(p)| < oT for p € E¥ N T50,3r.)X > we have now
guaranteed the first two conditions in (6.2). To obtain the last condition we need

Co a(l + T(CY, Ro)/R) < (50 ,
and this follows from choosing o small enough and then R large enough. U
Using the identification (3.23) we consider G given in Lemma 6.1 as a function on 7% Xy,

and define Py, by (6.1). We note that exp(£eG(x,hD)/h) is a pseudodifferential operator
with the symbol in the class Ss(h=“°) for any § > 0 and some Cjy, and that the operator

o0 k
def —eGW e Y w € 1
Py = e O/ py Gt/ — gmiadar py E E(—Eade)k(Pe)
k=0

has its symbol in the class S((£)?). This expansion shows that
Py (h) = Py(h) —ie{ps, G} (2, hD) + 2 (x, hD)
= py (v, hD) — ie{pg, G}*(x, hD) + ¥ (x, hD) + hey (z,hD), e; €S,

where py is the principal symbol of Py given by (3.24). In particular, denoting by O(«) the
quantization of a symbol in a.S, we have

def

RePy. = (Py+ PG*,E)/Q = (Repg)”(z, hD) + e{Impg, G} (2, hD) + O(h + €*)

= Repy'(z, hD) + O(h + fe + €°) ,
Im Py, © (Pye — Py,)/(2) = Imp§ (z, hD) — e{Re pg, G} (x, hD) + O(h + ¢*)
= Impy (v, hD) — e(H,G)" (z,hD) + O(h + €*).

We can use our knowledge of py, see (3.24)-(3.26), and the fact that the set V' used to define
G is contained in T5(0,r) X+ to deduce that, for any p € &7,

(6.3)

0 peV,
(6.4)  Impy(p) —eHp,G(p) < ¢ CO—e=—(Mx—C)0 p ¢V, lx(p)l < 2Ry,
—-Co+ 650 = —0(0 — 50M2) |£If(p)‘ > 2R, ,

We now choose M, in (6.1) such that C' < My < C'/dy, so that

(6.5) Impy(p) — eH,G(p) <0 for any p € £°.
The sharp Garding inequality (3.6) and (6.5) give, in the sense of operators,
(6.6) Im x“(x,hD) Py (h) x*(x,hD) < Ch, suppx C &7

where y € S(1) is real valued. Achieving this approximate negativity was the main reason
for introducing the weight GG. Indeed, we notice that, before conjugating by this weight,
we only had Im(x" Pyx") < Chlog(1/h).
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6.2. The evolution operator. We take the energy width § > 0 as in §5, and construct the
weight G accordingly, as explained in the previous section. Let the function xs € S(T*X)
satisfy

(6.7) supp x5 C €Y%, Xslgss = 1.

In this section we will compare the two energy-localized operators

(68) Py x{(2,hD) P(h)x§(2,hD)  and P x¥ (2, hD) Py (k) x§ (2, hD)
P, is obviously bounded and hermitian on L*(X), and P is bounded on L*(X,) ~ L3(X)

(using the map z — Rex). We may thus define a unitary group and a non-unitary group
as follows (t € R):

(6.9) Up(t) & exp(—itPy/h), respectively U(t) % exp(—itP/h).
The need for the cutoff x§ comes from the non-dissipative contributions of Im P, which

are compensated by the weight G only close to the energy surface. In view of the bound
(6.6) we have

(6.10) U ||r2mrz < exp(Ct),  t>0.

We make the following observation based on §3.4 and the boundedness of e<¢"®@/h

L2

on

ReS(P(h)) N D&g/c = Spec(Pg(h)) N D(;,g/o = Spec(ngg(h)) N Dg}g/c,
Dso/c & {z : |Rez| <4, Imz>—-0/C}.
Hence, from now on, by a normalized resonant state of z(h) € Res(P(h)) N Djg/c we mean

(6.11) u(h) € L*(Xg), lu(h)l| =1, Ppcu(h) = 2(hyu(h).

Proposition 6.1. Let us put 6, = §/4, C > 0, and let u(h) be given by (6.11) with
|Rez(h)| < 61, Imz(h) > —Ch. Then for any fited M > 0 and any time 0 < t <
M log(1/h), we have

(6.12) U(t) u(h) = exp(—itz(h)/h) u(h) + Or2(h™),

where U(t) is the modified propagator given by (6.9). More precisely, the L* norm of the
error in (6.12) is bounded by h™ for any L and 0 < h < hg = ho(L, M).

Proof. Let v(t) = U(t)u — exp(—itz/h)u, so that

ihdw(t) = PU(t)u — ze /My
= Pot)+et), et) e MNP ).
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Since (P, — 2)u = 0, we know that WF,(u(h)) lies in £%/3, so that x¥u = u + Or2(h™).
Hence, ||e(t)|| = O(h*) and, using (6.6),

Billv()2 = 2 Re(@o(t), v(t)) = = (Im Pu(t), v(t)) + 2 Im{e(t), v(t))
< Cllo@” + lle@®)|*, v(0)=0.
The Gronwall inequality implies that
oo < e [ feto)lPas,

and the lemma follows from the logarithmic bound on ¢. 0

SN

The following lemma compares the two propagators in (6.9).

Lemma 6.2. For any fixred t > 0, the operator

(6.13) V()Y Uy () UR)

is a pseudodifferential operator of symbol v(t) € S,(T*X) for any v € (0,1/2).
Proof. To prove both statements, we simply differentiate V'(s) with respect to s:
1
sV (s) = 7 a(s)®(x,hD)V(s), V(0)=1,

a(s)" (z, hD) % % Uo(s)" (P — By) Us(s) .

Using Egorov’s theorem, we obtain the following general bounds on the symbol a(s), uni-
form for s € [0, ]:

—Chlog(1/h) < Rea(s) < Ch, [0%l(s)| < Cyhlog(1/h), Va € N*".

To show that V/(¢) is the quantization of a symbol v(t) € S, we use the Beals’s characteri-
zation of pseudodifferential operators recalled in (3.7). We proceed by induction: suppose
we know that

Vi1 () € adyy, - --ady, V() = Opa 2 (R0 N > 1 V() = V(1)
where W;’s are as in (3.7). We now consider the differential equation satisfied by

V() € ady, Viv_1(t) .

Using the derivation property ady (AB) = (adw A)B + A(ady B) we see that
OV (t) = adw, - -adw, ((a/h)"(z, L)V (t))
= (a/h)"(z,hD)Vy(t) + Ex(t), En(t) = Opa—p2(h¥47),
where we used the induction hypothesis and the fact that
adw, ---adw, (a/h)"(z,hD) = Opa_r2(log(1/h)h*) = Opa, 2 (KF177).

J
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Since Vy(0) = 0, Duhamel’s formula shows that

t
Vn(t) = / V(t —s)En(s)ds = OLQHLQ(}LN(I—W)) :
0
concluding the inductive step and the proof. 0

The following lemma shows that the propagators U(t) and Uy(t) act very similarly on
wavepackets localized close to the trapped set.

Lemma 6.3. Consider open sets Ug € UG € E¥ N TE(O,RO/Q)X such that Ug is a neigh-
bourhood of K°, while the weight G constructed in Lemma 6.1 vanishes identically on Us.

Take 6, = /4 as in Proposition 6.1 and fix some t > 0. Assume that the open set V is
such that ®*(V) € UgNE® for all times s € [0,t]. Take any I1 € C>(V). The propagators
U(t) and Uy(t) then satisfy

(U(t) = Up(t)) (2, hD) = O p2(h) .

Proof. The proof is very similar to that of the previous lemma. The norm is equal to
|(V(t)—=1)I1"|| p2_ 2. Differentiating this operator with respect to ¢, we find for all s € [0, ¢]:

A,V (s) 1" = % Uo(s)™ (P — By) Up(s) V(s) 1"
From the dynamical assumption and using Egorov’s theorem, we easily deduce that
Uo(s)™ (P — By) Up(s) = 0, microlocally near V,
uniformly for all s € [0,¢]. Since II is supported inside V, we obtain O,V (s)II* =
Opr2_12(h>). O

Using Lemma 6.2 we also prove a basic semiclassical propagation estimate for U(t).

Proposition 6.2. Take 61 as in Proposition 6.1 and fix some t > 0 and some v € [0,1/2).
i) Take 1y, Y1 € S,(1) such that 110" takes the value 1 near supp ¢y: precisely, assume

(6.14) d(suppto,C{p : 110 ®'(p) =1}) = h7/C', suppiy C E™,

where d(e, ®) is a Riemannian distance on T*X which coincides with the standard Euclidean
distance outside Tp g\ X . Then

(6.15) VY (x, hD) U (t) ¥y (x, hD) = U(t) ¥y (x, hD) + Op2_12(h*) .
i) If 1o, Y1 € S,(1) are such that Yo = 1 near supp iy o O, then
(6.16) W, hD) U (8) % (x, hD) = ¢ (2, AD) U (t) + Opa_ 12 (h) .
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Before proving the proposition we remark that if instead g, 1o € S(1) satisfy

(6.17) d(supp iy, supp s o ') > 1/C, suppiy; C £,
then
(6.18) W (2, hD) U(8) 6 (2, hD) = Oy (h™).

Indeed, we can apply (6.15) with ¢, =1 — 9.

Proof of Proposition 6.2: We use Lemma 6.2 to write
(619) v (w, hD)U (W6, hD) = Up(t) (Ug(t) ™ v (, hD) Up(t)) V (£)05¢ (. hD)

Pseudodifferential calculus on ¥y, ., (see for instance [11, Chapter 7] or [13, Chapter 4]) shows
that the wavefront set of the operator V' (t)y§ (z, hD) is a subset of supp ¢y, while Egorov’s
theorem and the condition (6.14) implies that Uy(¢) ™ ¥ (x, hD) Uy(t) = I microlocally in
an h7-neighbourhood of suppvy. This operator can thus be omitted in (6.19), up to an
error O(h™), which proves the first statement.

The proof of second statement goes similarly: ¢ (z,hD) = 1 microlocally near the
wavefront set of Uy(t) ™' ¢ (z, hD) Uy(t). O

We can use this proposition to show that the “deep complex scaling” region acts as an
absorbing potential, that is, strongly damps the propagating wavepackets.

Lemma 6.4. Take 6, as in Proposition 6.1, Ry as in (3.21) and fix some time t; > 0.
Then, for any symbol ¢ € S(T*X) satisfying

(6.20) Vi € [0,t1], supp(ypo®7) C E¥5 N {|z(p)| > 5 Ro/2},
we have
0
(621) HU(tl)ww(I', hD)HL2—>L2 S exp <_h_Cb> wa(x, hD)HL2~>L2 —+ OLQ*)L2(hOO> s

where Cy > 0 is independent of the choice of 1.

Proof. For any symbol v, € S(1) supported inside £% N {x > 2R}, the estimates (6.4)
imply that

(6.22) I (Pyg (x, hD)u, ¢ (2, AD)u) < —%Hw&”(% hD)ul* + O(h™)||ull*

for some C} > 0. From the hypothesis (6.20) on 1), and assuming Ry is large enough, there
exists a symbol ¢, € S(1) such that
suppy C E N{x > 2Ry} and d(suppv, C{p : ¢10®'(p) =1}) >1/C, te€[0,t].
Proposition 6.2, ) then shows that

VY (x, hD) U ()" (x,hD) = U(t) " (x,hD) + Orz_12(h>), uniformly for ¢t € [0,¢].
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Combining this with (6.22) we obtain, uniformly for ¢ € [0, ¢]:

DTl = = Tl PUTU )6+, w0 (1) u) + O ul

20
< _ Hp? 2 h® 2
& U@l + 00 Jul?,
from which the lemma follows by Gronwall’s inequality, with 1/Cy = 2t,/C}.. U

6.3. Microlocal Partition. We consider 6, = 6/4 as in Proposition 6.1, and take a smooth
partition of unity adapted to (W, N £%)4ca, which by quantization produces a family
(Il, € U}p)aea such that

WEF,(Il,) c W, N g/, = IT;, and Z I, =1 microlocally near £%/2.

a€A

Me = 7-Y 10,

acA

The difference

is also a pseudodifferential operator in ¥y, and

WE, (o) NEM2 =0
Using this microlocal partition of unity, we decompose the modified propagator (6.9) at
thnetw
(6.23) Ulto) = > Us, U E Ulty)1,.

a€ AUoo
We then decompose the N-th power of the propagator as follows:
(6.24) U(Nto) = Y Usyo---0Uy, + Ry.

acAN

The remainder Ry is the sum over all sequences a containing at least one index a; = oo.
The following lemma shows that the remainder Ry is irrelevant when applied to states
microlocalized near &:

Lemma 6.5. Suppose that x € CP(T*R) is supported inside /> and that we consider
logarithmic times in the semiclassical limit:

1
(6.25) N < Mlogﬁ, M >0 fized.

Then the remainder term in (6.24) satisfies
[Bx X" (2, hD)| 22 = O(h),
with the implied constants depending only on M.
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Proof. Let o € AN be a sequence containing at least one index a; = oco. Call j,, the
smallest integer such that a; = oo, so the corresponding term in Ry reads

U

ay

U

QXjm +1

U(to) Il []%.m_1 "'Ua17 with Apy e, QG 1 € A.
The lemma will be proved once we show that

(626) Hoo Ua "'Ua1 Xw(l’, hD) = OLZ*)L2(]7,OO) s

Jm—1

with implied constants uniform with respect to the sequence a. Indeed, the remaining
factor on the left is bounded as

||UQN...U

Qj +1

Ulty)|| < CeY < Ch™ M,

and the full number of sequences is (|4 + 1)Y = O(h~¢"M).

The estimate (6.26) is obvious if j,, = 0, because WF,(Il,) and WEF,(x") are at a
positive distance from each other. To treat the cases 7, > 0, we will define a family of N
nested symbols which cutoff in energy in various ranges between ¢;/4 and §;/2. Because
N ~ log(1/h), we must use symbols in some class Sy (1), 0’ € (0,1/2). We first define a
sequence of functions x; € C°(R,[0,1]), s =1,..., N, as follows:

) 1|t < 6,/4 ) ! H<o/d
£ = , () = , > 1

The function Yy vanishes for [t| > §;/4 + Nh®, and we will take h small enough so that
61/4+ Nh® < 6;/2. From there, the energy cutoffs x; € Sy (1) are defined by

def -~ .
Xj(xaé-) = Xj(p(xag)) ] = 17' . '7N'
From the support properties of y, the first cutoff satisfies
(6.27) X7 (z,hD) x*(x,hD) = x" (2, hD) + Op2_12(h™).

For any j = 1,...,jm — 1, we have x; = x; o ®, and the nesting between x; and x;11
allows us to apply the propagation results of Proposition 6.2, 7):

(6.28) Xi1 (@, hD) Us,; X5 (2, hD) = U, X (2, hD) + O(h™), j=1,...,jm—1.

Therefore, inserting x¥,, after each U,, leaves the operator (6.26) almost unchanged. Fi-

nally, the cutoff, ;,, is supported in the energy shell {|p(p)| < &,/4 + N h?'} which, for h
small enough, is at finite distance from WF,(I1,), so that

Hoo X;Um (ZL’, hD) = OL2_,L2(hOO) .

Combining this expression with (6.27,6.28) proves (6.26) and the lemma. O
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The set AN of N-sequences can be split between several subsets. Using the time Ny
characterized in Lemma 5.1, we define the set Ay C AV as follows:

(W, )W, A0, j=1,...,N—1,

6.29 =ap...ay € Ay =
( ) “Tm an N {and OéjEAl, N0<j<N—N0.

The sequences in Ay spend most of the time in the vicinity of the trapped set.

The next Lemma shows that we can discard all sequences except for those in Ay:

Lemma 6.6. Suppose that (6.25) holds. Then there exists Cy > 0 such that, for h small
enough,
D |Uay 00 Uay |l < Cy AN @0 0Ot
ac AN\ Ayx
If N < Mlog(1/h), 8 = Myhlog(1/h), and M; > Mty, this implies that

(6.30) > NUay 00Ul < AMI/C 0 < h < ho(M,M,,]A]).
ac AN\ Ay

Proof. Take a € AN\ Ay. If the first condition on the right in (6.29) is violated, then the
property WF,(I1,) € W, N %/ for a € A and Eq. (6.18) imply that ||U,| = O(h>).

Assume that for some j, Ny < j < N — Ny, we have o; ¢ A;. We have three possibilities.
First, assume a; = 0. In that case, the factor U,, = U(to)Ily can be decomposed as
U(to — 1)U (1)II,. If Ry has been chosen large enough, the set Wy = £ N {z(p) > 3Ry}
satisfies the property

(W) C {lz| > 8Ry/3}, t<[0,1].
Using the fact that W Fj,(Ily) € Wy N £3/4 and applying Lemma 6.4 for ¢; = 1, we find
(6.31) U (ty — U (DI < et~ Cyexp(—0/hCh) + O(h™) .

Second, assume «; € A5, where we use the same notation as in the proof of Lemma 5.1.
In that case,

(6.32) ' (W,,) C Wy for any ¢ > Noto.
Applying Proposition 6.2, i), Ny times, one realizes that the operator
IT U, “Uqjyy Ua,

4Ny Y04 Ng—1 Qjy1

is negligible unless W F, (11 intersects Wy. This is the case if aj4n, = 0, or ajyn, € Ay

aj+N0)

and Wo,, v, N Wo # (). In both cases, we have (as long as Ry has been taken large enough)
(Pt(WaHNO) C {|z| > 8Ry/3}, te€][0,1],

and the estimate (6.31) applies to ||U(to)I1

i+ Ng H



52 S. NONNENMACHER AND M. ZWORSKI

Third, if j € AS, we have ®/(W,,.) € W, for t < —Nyty. Again, iterating Proposition 6.2,

J
i) Ny times shows that the operator

Mo, U, -+ U,

j—1 Qj—Np+1

Ulto) I
will be negligible unless W, No intersects Wy. This yields
U (t0) o, || < ™D Cyexp(—0/hCy) + O(h™).

aj—NO

For these three cases, we find, using (6.10),
Uy -0 Uy, || < eCW=NoMo exp(—0/hCy) .

This estimate concerns an individual element o € AN\ Ay. Summing over all such elements
produces a factor |A]", which proves the first estimate. The second estimate follows from
the assumptions on N and 6. O

The following proposition, which is at the center of the method, controls the terms
a € Ay in (6.24). The proof is more subtle than for the above Lemmas, and uses the whole
machinery of Sections 4.3 and 5. In particular, a crucial use is made of the hyperbolicity
of the classical dynamics on K?. For this reason, we call the following bound a hyperbolic
dispersion estimate.

Proposition 6.3. Assume the time N < Mlog(1/h) for some M > 0. Then, if the
diameter € > 0 of the cover Vy has been chosen small enough, for any a € Ay N AN we
have the following bound:

N
1
(6.33) Vg 00 Uy | < 721+ ) TLexp {5 SuWWe)
j=1
where the coarse-grained Jacobian Sy, (e) is defined in (5.22), and €y is the parameter ap-
pearing in (5.23).

Before proving this proposition in §7, we show how it implies Theorem 3.

6.4. End of the proof of Theorem 3. Suppose that ||u(h)|| = 1 is an eigenfuction of
Py (h), with the same conditions as in Proposition 6.1: Py .(h)u(h) = z(h)u(h), | Re z(h) —
E| <61, Imz(h) > —Ch. Then, taking t = Nty, N < M log(1/h) in Proposition 6.1, we
get
exp(Nt Tm 2(h) /h) = |U(Nto)u()]| + O(h).
Using the decomposition (6.24) and Lemmas 6.5, 6.6, the state U(Nty) u(h) can be decom-
posed as
U(Nto)u(h) = ) Uay 0+ 0 Ugyu(h) + Or2 (W),
acApn

where M3 can be as large as we like, if we take § = M;hlog(1/h) with M, large, depending
on Mtg.
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The norm of the right hand side can be estimated by applying (6.33) to the factors

U, -+ Upny+1. This leads to

QAN—-Ng—1
N—No—1
(6.34) exp(NtoImz(h)/h) < Ch (1 +e)™ Y ] e2 50 Way) 4 O(pMs) |
a€Ay j=No+1
The sum over Ay can be factorized:
N—No—1

S0 3500 Wey) < ’A‘2N0+1< Y e Sl

a€An j=No+1 a€A;

Combining this bound with (5.24), we finally obtain:
(6.35)  exp (NtoImz(h)/h) < C"h™"*(1+ €)™ exp (Nto(Pg(1/2) + €)) + O(hM>).

)N—2N0—1

Taking the logarithm and dividing by Nt,, we get

log(1/h
Im z(h)/h < PL(1/2) + 3o + n% +log C' /Nty .
0
We can take N = M log(1/h) with M arbitrary large (and consequently with M; in the

definition of 6, large), so that, for any h sufficiently small (say, h < h(d, €)):
Im z(h)/h < Pe(1/2) + 4e -

In §5.2 we could take ¢y > 0 as small as we wished. This proves Theorem 3 with a bound
slightly sharper than (1.11).

7. PROOF OF THE HYPERBOLIC DISPERSION ESTIMATE

To prove the estimate in Proposition 6.3, we adapt the strategy of [2, 3] to the present
setting. We decompose an arbitrary state microlocalized inside W,, into a combination
of Lagrangian states associated with “horizontal” Lagrangian leaves (namely, Lagrangian
leaves situated in some unstable cone). By linearity, the evolution of the full initial state can
be estimated by first evolving each of these Lagrangian states. Proposition 5.1 shows that,
being in an unstable cone, the Lagrangians spread uniformly along the unstable direction,
at a rate governed by the unstable Jacobian. Proposition 4.1 shows that this spreading
implies a uniform exponential decay of the norm of the evolved Lagrangian state, and by
linearity, a uniform decay of the full evolved state.

7.1. Decomposing localized states into a Lagrangian foliation. In this section we

consider states w € L*(R™) with wavefront sets contained in an open neighbourhood W of

the origin, WF,(w) C W oo B(e), x B(e),. Here B(e) is the open ball of radius € in R™.

We will decompose such a state w into a linear combination of “local momentum states”
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(eq)neB(2e), associated with horizontal Lagrangian leaves (A;),cp(2s). Each Lagrangian leaf
A, is defined by

def * n
Ay =A{(y;n) e T'R", y € B(2e)},  n€ B(2).
This family of Lagrangian foliates B(e) x B(e):

we |J An  ANAy =0 if n#y.

neB(2¢)

The associated Lagrangian states e, are defined as follows. We start from the “full” mo-
mentum states €, € C>°(R"):

é(y) = exp(i(n,y)/h), yeR", neR",
and we smoothly truncate these states in a fixed ball:

(71) eﬁ(y) = én(y) Xa(y)a Xe € C(?O(B(2€))7 Xs’B(3z—:/2) =1.

Notice that all states e, satisfy
(7.2) lenllzz = lIxell < Ce.

The h-Fourier decomposition of an arbitrary state w & LQ(RZ) reads

dn -
w = /Rn @rh) (Fnw)(n) & -
With the assumption WF;(w) C B(e), x B(g),, one deduces that

(7.3) w= [ N G () e+ O]

This is the decomposition into horizontal Lagrangian states we were aiming at. If we apply
a semiclassically tempered operator T' to this state (see §3.1), we obtain

dn 00
o= [ . T F)(n) (T ) + Ol

This gives the following bound for the norm of T w:

T wl|ze < Ch™"2 /B(2 )dn |(Frw))[ T eyl + OR>)[w]

(7.4) /
< —n/2 0o .
< CR™ max 1T €| lwl]] + O(h*)||w]]
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7.1.1. Decomposition of the initial state into mear-unstable Lagrangian states. By using
semiclassical Fourier integral operators, see for instance [13, Chapter 10], we can transplant
the construction of the previous paragraph to any local coordinate representation. Here we
will decompose states microlocalized in the sets W,, a € A;. The horizontal Lagrangians
are constructed with respect to the coordinate chart (y*,n®) centered at some point p, €
W, N K?°, as described in Lemma 4.3. In order to cover the set W,, we use the following
family (A, q):

(75) A777a = { (ya; na)a ya € B(2€)} ) n € B((Sa 25) )

where B(J,¢) o {n = (m,s) € R", |m| <0, |s| < e}. Notice that these Lagrangians
are isoenergetic (A, , C &,,), and they belong to arbitrarily thin unstable cones in W, in
particular the cones used in Proposition 5.1 and Remark 5.1.

Using the Fourier integral operator U, associated with the coordinate change (z,§) —
(y*,m") (see Lemma 4.4), each state (7.1) can be brought to a Lagrangian state:

ena = U, e, associated with the Lagrangian leaf A, , C &,, ,

with norms bounded as in (7.2).

7.2. Evolving the Lagrangian states through U, ---U,,. We now consider an arbi-
trary sequence a € Ay N AY. For any normalized u € L*(X), the state

w I, u satisfies WEFy(w) C W,, NEX/4,

and can thus be decomposed into the Lagrangian states (e, o,) associated with the leaves
Ay, asin (7.3). In order to prove the estimate (6.33), we will first study the individual
states

(7.6) Uasy ©---0Uqy o Ul(to) €nay n € B(301/4,2¢).
We recall that each set W,, a € Ay, has the property
(7.7) OF(W,) C Vi, k=0,...,to—1, for some sequence by, ..., by _1 .

Therefore, to the sequence a = a;y ... ay € AY corresponds a sequence 3 = 3y . .. Bng,—1 of
neighbourhoods Vj, visited at the times & = 0,..., Nt;, — 1. For later convenience, we also
consider a set V, (of diameter C's), which contains ®* (W, ).

From now on, we fix some 1 € B(301/4,2¢) and compute the state (7.6), making use of
various properties proved in the preceding sections.

7.2.1. Evolution of the near-unstable Lagrangians A, ,,. The results of §4.2 and Lemma 4.1
show that it is relevant to study the evolution of the Lagrangian A . o Ayy.o "Wy, through

the following operations: one evolves A = through ®%  then restricts the result on W,,,
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then evolves it through ®% restrict on W,,, and so on. It is also useful to consider the
intermediate steps, that is, for k = mtg+m/, 0 < m < N, 0 < m' < ty, we take

Armto def q)tO(A(m—l)tO) NW, m=1,...,N—1,

loc loc

Amto+m def®m (Amt0>7 mlzl,..';to_]"

loc loc

Fix 71 = 1/2. By construction, Al is contained in the unstable v;-cone in the coordinates
(y*r,n*). We can thus apply Proposition 5.1, i) and Proposition 5.2 to this sequence of
Lagrangian leaves: each AF _is contained in the unstable y;-cone (when expressed in the
coordinates (y%,n%) on the set Vj, ). Furthermore, part ii) of the proposition shows that
the higher derivatives of the functions ¢, generating AF = also remain uniformly bounded
with respect to k. The sequence of Lagrangians is thus totally “under control”, and the
implied constants are independent of the choice of n € B(3d1/4,2¢) parametrizing the
initial state e, q, .

7.2.2. Analysis of the operator Uy, - - - U,,. We now show that all the propagators U(1) in
(7.6) may be replaced by the unitary propagators Uy(1), up to a negligible error. For each
a € A; we recall that the set W, satisfies (7.7). All the sets V}, € V) were chosen so that
®!(V;) remains close to K° in the interval ¢ € [0,1]. As a result, one can apply Lemma 6.3

to the differences (U(1) — Up(1))II¥, where II, € U, satisfies
Il,=1 near Vj, ' (WF,(II,)) € Us forall te[0,1].
Each factor U, = U(ty)Il, can then be decomposed as follows:
79 Ul(to) 11, = U(1)ﬁ~bto_1 = U(1)ﬁb~1U(1)Ha +O(h™)
= Up(1)Iy,, , -+ - Up(1)Iy, Up(1)IL, + O(R™) .

The first equality uses the propagation properties of Proposition 6.2, i) and (7.7). The

second one is obtained by applying Lemma 6.3 to all factors U(1)II;,. The operator (7.6)
can thus be expanded as follows:

(7.9) Uny © -0 Uny = Spyy Byig—1 ©** © Spr o oy + O(h™),
where we called

Sperse S g Up(1),  k=0,...,Ntg—1, totk+1,
dgﬂamHUo(l) k+l=mty, m=1,...,N—1,
= My, Uo(1).

SﬂNt07ﬁNt071 =
The operator ﬁ’mo € U, on the last line has a compactly supported symbol, and is equal to
the identity, microlocally near the set VY, , so that Iy, Ul(to) oy = Ul(to) oy + O(R™).

Sﬁk+1ﬁk
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From Lemmas 4.2 and 4.4, each of the propagators Sg,,, 5, can be put in the form
(7'10) Sﬁkﬂﬁk = L{E;Hl T5k+1ﬂk u/ﬁk + O(hoo) )

where Up, is the Fourier integral operator quantizing the local change of coordinates
(z,€) — (y%,n%) (see Lemma 4.4), while Tj, | 5, is an operator of the form (4.26), which
quantizes the map kg, 5, ,, obtained by expressing ®! in the coordinates (y%,n%)
(yPrsr, mhen).

Inserting (7.10) in (7.9), we obtain

UaN T Uaz U(to) Enar = u;mo © TﬁNtOﬁO €n + OL2<hOO) )
where we took for short Ty, 5, o T4y Bntg-1 © - © Ty 6 -

Here we used the fact that Uj Us, = I microlocally near the wavefront set of ﬁg]z, I1,,, or

/
Ntg*

7.2.3. Applying the semiclassical evolution estimate. The state T3y, .60 €n has the same
form as the left hand side in (4.32). Since the Lagrangians

Ao = {1 = g1 (y™))}

remain under control uniformly for 1 < k < N, we can apply Proposition 4.1 to obtain a
precise description of that state: for any integer L > 0, we may write

Try 0 En(y) = a0 (y) ¥ ®/h L pE RO (y) -y e R™.

The symbol a™¥% admits an expansion,

L-1

a“o(y) =Y W al(y),

Jj=0

which we now analyze. Starting from some y € B(Ce¢), let us assume that there exists no
sequence of coordinates

(yk)kZO,..A,Nto , Y= yNtO ) yk_l = gk(yk) 3

where g, is the projection of the map H§k17/8k71|Ak on the axes {n’ = 0}, {n’-1 = 0}. In

loc

that case, Proposition 4.1 shows that o’V (y) = 0.
On the other hand, if such a sequence exists, the principal symbol a)™(y) satisfies a
formula of the type (4.33). The functions y;, now correspond to the symbols of the operators

Ig,, I, or Iy, , which are uniformly bounded from above by 1+ O(h).

The main factor in (4.33) is the product of determinants | det dgy(y*)|'/?, which corre-

sponds to the uniform expansion of the Lagrangians along the horizontal direction. To
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estimate this product, we follow §4.3 and group these determinants by packets of length ¢.
According to Proposition 5.2, we have for any to-packet:

(m+1)t0

[T Idetdg(y") "2 = det (

k=mto+1

Qy(m+Dtoy —1/2
aymto >

= (14 0()) e Molban)/2 iy — 0, N—1.

Here we have used the coordinate frames (y%mt nmt0) to label points in W,,, instead of the
coordinates (y“m,n“m) centered at p,,, € W,,,; this change does not modify the estimate
of the Corollary, as is clear from (5.25). The product of determinants is thus governed
by the unstable Jacobian along the trajectory. Because the points p,, € W, N K° are
somewhat arbitrary, we prefer to use the coarse-grained Jacobian (5.22) to bound the above
right hand side. Taking the product over all ty-packets, we thus obtain, for some C' > 0
independent of N:

N-1
1
(7.11) |ad™(y)| < H (1+Ch)* (14+Ce) exp (5 Sis(Wa,)),  y €suppa)™ C B(Ce).
m=0

The proof of Proposition 5.1 (see (5.17)) also shows that the determinants det dgy(y) satisfy
sup | detdgy(y)| < det(A4,) ' +Ce7, k=1,...Nty.

y€Dom(gy,)
We will assume e small enough, such that the right hand side is bounded from above by
vy < 1. This implies that the Jacobians Ji of (4.31) decay exponentially when k — oo.
Henceforth, the higher-order symbols aj»v  bounded as in (4.34), are smaller than the
principal symbol, so that the upper bound (7.11) also holds if we replace aév 0 by the full
symbol a™V*. This decay of the J;, also shows that the remainder RLN 0 estimated in (4.35),
is uniformly bounded in L?. As a result, the bound (7.11) implies the following bound:

N-1
(7.12) [Ty, 0 €nll < Ce(14CeM)N H eStoWam)/2 n € B(301/4,2¢).

m=0
To end the proof of Proposition 6.3, there remains to apply the decomposition (7.3) to the
w = I, u, with u € L?(X) of norm unity, and the bound (7.4) that follows:

N-1
[Uay 00Uyl < Ceh™? (14 CeMN ] eSoWem) 4 O(n).

m=0
Notice that the main term on the right hand side is larger than A3 for some M; > 0.

This bound thus proves Proposition 6.3 if, given ¢y > 0, we choose the diameter £ of the
partition V, small enough. [



QUANTUM DECAY RATES IN CHAOTIC SCATTERING 59
8. MICROLOCAL PROPERTIES OF THE RESONANT EIGENSTATES
In this section we will use the results of §6.1 and §6.2 to prove Theorem 4. We will turn
back to the notation of §3.2, that is, the operator to keep in mind is
P(h) = —h*A+V(x), with symbol p(z,&) =&+ V(z).
We also recall that
(8.1) Py =e GNPy e/t e = My, 0= Mhlog(1/h), G = G"(x,hD),

where G is given by Lemma 6.1, and M; > 0 can be arbitrary large. In this section we will
choose the set V in Lemma 6.1 to be

(8.2) V =Tg03r,2)X, and assume that G(z,£) =0 for x € B(0, Ro/2).

We now consider a resonant state v in the sense of (3.22), in particular u|p(o,ry) = Uo|B(0,R0)-
If u satisfies (3.22) for some choice of Ry > 0 (which implies a choice of deformation Xp,
see §3.4), then it has the same property with any larger Ry (and associated Xy). The state

Ug e L =G /hyy s in L*(Xy), and satisfies (Pp. — 2z)ug. = 0.
Furthermore, the support properties of G imply

(8.3) lug,e — ullL2(B(o,Ros2)) = O(R™) [lug,ellL2(xy) -
The following lemma provides control on the behaviour of ug . near infinity.

Lemma 8.1. Let Py be the operator given by (8.1) for some choice of Ry > 1 and My > 1.
Suppose that

(8.4) (Ppe—2)uge =0, Imz>—-Ch, Rez=FE+o0(1), |ugellrzx, =1.

Then, there exist Ry > 4Ry and Cy > 1, independent of My, such that

(8.5) |, || £2 x4\ Ben (0,1)) = O(hM/C0) 0 < h < ho(M).

Proof. We will use the properties of the “deep complex scaling” region, explained in

Lemma 6.4. The first step is localization in energy. Take ¢ € C°((—2,2),[0,1]), ¥|-11 = 1,
and define

(8.6) bo(p) = ¥(A(p(p) — E)/b1),  hi(p) = ¥(8(p(p) — E)/d1) -

Fix some time ¢; > 0, and consider spatial cutoffs xo, x1 € C*(X,][0,1]) localized near
infinity:

X;(x) =0 forz e B(0,R;), x;j(z)=1 forze X\ B(O,R;+1), j=0,1,

where the radii Ry > Eo + 2> 1 are sufficiently large so that the following conditions are
satisfied:

(8.7) Vt € [0,t1], supp((xoto)o @) C ELXP A {|z| > 5Ry/2},
(8.8) (xo®0)(p) =1 mnear supp((x1¢1) o ®").
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We will now estimate the norm of the following state:

(8.9) v 1 0P (2, hD) U () xo ¥ (z, hD) ug.e

Using the condition (8.8), we apply Proposition 6.2, ii) to the operator x1 ¥}’ U(t1) xo0 ¥4,
and obtain

v=x197(z, hD)U(t;) uge + Or2(h™)
= e it1z/h X107 (2, hD) uge + Or2(h™)
= ¢ iz/h X1Uge + Or2 (hoo) .

In the second equality we have applied Proposition 6.1. For the third one we used the
microlocalization of ug . on Ex:

(8.10) VY (z, hD) ug,e = uge + Opr(h™), Vk.
On the other hand, the condition (8.7) allows us to apply Lemma 6.4:
1U(t1) X0 95 (2, hD) wg.o|| < e |[xo 9§ (2, hD) p,e|| + O(h™)
< M X ug.e]| + O(R).

Here we have taken 6 = M;hlog(1/h), and used again the microlocalization of uy . near

&p.

Using Im z > —C'h and combining the above estimates, we find
X1 wo,el] < e« R+ O(R).

This proves the Proposition once we take R; > maX(}Nﬁ +1,4Ry). 0

Remark. The statement of the lemma can be refined using exponential weights to give a
stronger statement about ug . (including the case of € = 0):

”60|$|/C2u9,6||L2(X9\B(Cn (0,R1)) — 0(1) ,

see [36] for a similar argument.

Lemma 8.2. Let K = Kg be the trapped set (1.6) for p(x,&) at energy E. Suppose that
U 15 as in Lemma 8.1 and G and € have the properties in (8.1) and (8.2). Then for any
d > 0 there exists C(d) > 0 such that

(811) ||u||976 S 0(5) ||u||L2(7r(K)+BX(075)) , 0<h S ho(é) .

As a consequence for any resonant state u = u(h) with Rez — E' = o(1), Imz > —Ch, we
have
(8.12)

VR >0, 30(5, R), ho(é, R) , ||u||L2(B(0’R)) < C(5> HuHLQ(ﬂ(K)+BX(O75)) , h< h0<5, R) .
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This means that a normalization in any small neighbourhood of 7(K) leads to an h-
independent normalization in any compact set. That property allows us to define a global
measure 4 in Theorem 4.

Proof. Lemma 8.1 shows that, to establish (8.11), it is enough to prove
(8.13) [uo,ell By, 0,r1) < CllullL2(m(r)+Bx 05, 0 < h < ho(6).

For 9y > 0 small and R; as in Lemma 8.1, we consider the compact set

def "5, %
S EN N Ty X -

)
If p € SNT %™, there exists T, > 0 and a neighbourhood of p, U, C £2°, such that
(8.14) o " (U,) Cc T*(n(K) + B(0,46)),

provided &, is small enough depending on § (so that K2 € T*(n(Kg) + B(0,4))).

On the other hand, if p ¢ S NT$%, there exists T, > 0 and a neighbourhood of p,
U, C E¥° such that

(8.15) o (U,) c T*(X \ B(0,2Ry)) .

Since the set S is compact, we can cover it with the union of two families of sets {U,,, j €
J1} and {U,,, j € Jo} of the preceding two types, where J;, J, are (disjoint) finite index
sets. We can also choose open sets U [’)j € U,, such that Ujes,uU ;], still covers S. We note
that these covers have different properties than the cover (W,),c4 constructed in §5.2.

We now construct a “quantum cover” adapted to the above classical cover:
Aj € U,(Xy), WFL(4)) €U, , Aj = I microlocally near U, , j € JiUJs.

In view of the localization of ug. to the energy shell (see (8.10)) we have

[uo.ellz2B0,r)) < C Z [ A; uo.ell -

jeJ1UJ2
Hence (8.13) will follow from the bounds
(8.16) [Aj ug.ell < Cllug.ell 2y Bosy + ORT),  j €L
(8.17) A ug|| < C M/ e,

With U(t) defined by (6.9), Proposition 6.1 and the condition |Im z| < C'h imply that for
any bounded ¢ > 0:

1A ug || < e A; Uugel + OR®), j€ Uy,
Considering operators tA; € W (Xy) with the properties
WF,(A;) C & (Uy,) A; = I microlocally near ® 7 (WF,(4;)),
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we may apply Proposition 6.2, i7):
1A; up.cl| < 15| A; U(T,,) ug el + O(h)
< 45 U(T,) Aj .||+ O(h)
< O || Ay up|| + O(R™).
In the last line we used the bound (6.10) and ||A;|| < C’. Notice that the times T}, are

uniformly bounded, depending on §, R;. From (8.14) we obtain the first estimate in (8.16).
Lemma 8.1 and (8.15) provide the second estimate. This completes the proof of (8.11).

To see how (8.12) follows from (8.11) we choose Ry > 2R in the construction of Py, (see
(8.1) and (8.2) above). From the support properties of the weight G, we have the following
relationship between ug . and the corresponding resonant state wu:

|u — Ue,e“H'g(B(o,Ron)) = 0(h™) Hu@,eHm(xg) ) Vk.

Then
llullz2(Beo,r)) < lluo,cllL2(x) (1 + O(h™)) < C(6, R) ||l L2 (n(x)+B(0,5)) -

The next proposition is a refined version of (1.15) appearing in Theorem 4:

Proposition 8.1. Suppose u satisfies the assumptions of Theorem 4, and that a € C° is
supported in T*X \ T'},. Then for any x € C°(X) we have

(8.18) @ (2, hD) x u|| < Car B for any M > 0,
that is u = 0 microlocally in T*X \ T'f. The constant Cy; in (8.18) depends on E, a and
X-
Proof. We choose Ry such that supp x C B(0, Ry/2) in the construction of Py, described
in the beginning of this section. Then, by Lemma 8.2, the normalization in Theorem 4 is,
up to uniform constants, equivalent to the normalization |lug.|/z2(x,) = 1. From (8.3) we
see that
la®(z, hD) x ul| = [|a®(z, hD) x ug.e|| + O(h™) .

The condition on the support of a shows that for d; > 0 small enough, suppa N FEJO = 0.
Using an energy cutoff ¢y of the form (8.6) supported inside 5%0, there exists a time 7" > 0
such that

& T supp(at)y) € T*(X \ B(0,2R,)) NEY
where Ry is given Lemma 8.1. Taking into account the microlocalization of type (8.10), we
get

la®(z, hD) x ul| = [|a®(z, hD) ¥g (x, hp) X ug,c|| + O(h™).

We can now proceed as in the previous lemma:
la® 15 X ol < Clla” g x U(T) ug,el| < C @ g x U(T) 1 xaxuo,e|l,
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where 11 € C®(T*X, [0, 1]) satisfies ¢1].25, = 1, while x; € C*(X) vanishes on B(0, R;)
E

and takes the value 1 for |z| > 2R;. The second line above is then due to Proposition 6.2,
ii). Lemma 8.1 shows that |x1 ug.|| = O(hM/) so we finally get
| (@, hD) xul| = O(RM/),

where M; can be taken arbitrary large. 0

Proof of Theorem 4: The inclusion (1.15) follows directly from Proposition 8.1, which shows
that only points in T'j; can be in the support of the limit measure.

The proof of (1.16) follows the standard approach (see [17] and for a textbook presen-
tation [13, Chapter 5]). Suppose that x and w are as in (1.14). From Lemma 8.2 we
know that ||xu(h)| < C, with the constant C) independent of h. Hence, there exists
a sequence (hy N\, 0)gen for which (1.14) holds for any A = a"(z,hD), a € CX(T*X),
suppa € (7*x)"(1). From this support property we get A[P, x] = Or2_2(h*>), so that

O(h*) = Im((P — z)xu, Axu) = Im(Pyu, Axu) — Im 2{Axu, yu)

h
= 5 ((Hya)" (@, hD)xu, xu) — Tm 2(Axu, xu) + O(h?)||xul* .

For the sequence (hy) appearing in (1.14) we obtain

1 I
5/]@@du—%/aduzo(l), k — oco.
k

Hence there exists A > 0 such that Im z(hy)/hy — —A/2, and

/Hpad,u—i—/\/ad,uzo.

which is the same as (1.16). L

9. RESOLVENT ESTIMATES

In this section we will prove Theorem 5 and consequently we assume that the hypothesis
of that theorem hold throughout this section. In particular £ > 0 is an energy level at
which the pressure, Pg(1/2), is negative. We first need a result which is a simpler version
of the estimates on the propagator U(t) described in §6.4.

Proposition 9.1. Suppose W € C*(X;[0,1]), W > 0 satisfies the following conditions
suppW C X \ B(0, Ry), Wlx\Bo,Ri+r) = 1,

for Ry,r1 sufficiently large. Assume Pg(1/2) < 0 and choose A € (0,|Pg(1/2)|). Then
there exists g > 0, such that, for any ¢ € S(1) supported inside 5%0, and any M >0,

(9.1) e FM=II (2 hD) || pope < Ch™™2 e + Oy (h™), 0 <t < Mlog(1/h).
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The proof of this proposition is very similar to the proof in the case of the complex-scaled
operator I treated in §6. In fact the case of the absorbing potential is easier to deal with
than complex scaling, and in particular we do not need the weights G. The modifications
needed to apply §6 directly are given in the appendix.

Before proving (1.17) we will establish a resolvent estimate for the operator with the
absorbing potential.

Proposition 9.2. Let P = P(h), the energy E > 0, and the absorbing potential W be as
in Proposition 9.1. Then for any € > 0,

- » n(l+¢€) log(1/h)
(9.2) ||(p(h) —W — E) ||L2(X)—>L2(X) < 2’PE(1/2)’ h >

0 < h < hg(e).

Proof. We will use Proposition 9.1 and h-dependent complex interpolation similar to that
in [44].
If we put
UL(t) < exp(—it(P(h) = iW)/h) &*(z, kD),
where 1 is as in (9.1), then the following estimates valid for any M > 0 and 0 < h < hy:

( def

1+0(h), 0<t<Tp, Tg(h)=nlog(l/h)/(2)),

(9-3) IO < § Coh /2> Ty <t < Ty, Tu(h)< Mlog(1/h),

\ hM/CO ) 14 Z TM )
where Cj is independent of M. The notation Tg(h) comes from the analogy with the

Ehrenfest time (the time the system needs to delocalize a Gaussian wavepacket).

The first estimate in (9.3) follows from the subunitarity of exp (—it(P(h) —iW)/h) and
the bound ||¢"||z2z2 < 1+ O(h). The second estimate follows from Proposition 9.1 by
absorbing the remainder O,;(h*) in the leading term by taking h < hj;, small enough.
The last estimate follows by writing

Uy (t) = exp ( —i(t = Tan)(P(h) — iW)/h) Ur(Twr)
and using subunitarity for the first factor and the previous estimate for ||Uy (1)
The estimates (9.3) and ellipticity away from the energy surface give the following
Lemma 9.1. In the notations of Proposition 9.1 and (9.3) we have, for any N > 0,
Cy+Tg(h hN
1 E( ) +

h Imz’
Imz>0, |z—E|<d, 0<h<hy.

I(P(R) —iW — 2) M [g2—2 <

(9.4)
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Proof. We first prove the same estimate for the energy-localized operator
1 [~ ,
(P(h) —iW — 2) """ (2, hD) = E/ Uy(t) ™" Tmz>0.
0

From (9.3) we obtain

1 Te Tn 0

I =i =2 om0l < 1 ([ [ [T e ta
h Tm
< Tg(h)/h+C/(hA +Tmz) + KM/ /Tm ».

This is the estimate on the right hand side of (9.4) once we take M large enough and h
small enough.

To solve (P —iW — 2)u = (1 —¢¥)f, f € L*(X), we follow the following standard
procedure — see for instance [13, Proof of Theorem 6.4] for a simple example. There exists
i € C°(T*X;[0,1]) supported near the energy surface g, such that the pseudodifferential
operator (P — iW — z — it¥)~! is uniformly bounded in L? for z as in the Lemma and
h € (0, hg), while (1 — %) = Opa_r2(h>). Tt follows that

(P —iW —2)(P —iW — z —i){") ' (1 =) f = (1 = ¢") f + Rf,
where R = Op2_.12(h™). If we put

def

LE (P —iW —z— i) N1 —9%) + (P —iW — 2) "'y,

then
. C/N+Tp(h) BN
— — = < — o0
P-iw—or=1+n, o)< LITEW Iy op),
and (P —iW — z)™' = L(I + R)~! satisfies the estimate (9.4). O

To estimate the norm of resolvent on the energy axis, ||(P — iW — E)™!||, we need the
following parametric version of the maximum principle

Lemma 9.2. Suppose that ( — F(() is holomorphic in a neighbourhood of [—1,1] +
il[—c_,cy], for some fized cx > 0, and that

oBIPQ <M, Celh ] +ilen e,

| <)|—a+ CE[_1’1]+i(O’C+]’

Im C
where M, > 1, while v < 1. Then for € satisfying ’yM%/a < % < 1 we have
[FO)]<(1+€)a
Proof. Let g(¢) = exp(—3M(? + iaC), with a € R to be chosen later. Then g(0) = 1 and
19(Q)] < exp (= 3M(Re¢)” + 3M (Im () + |al| Im(]) .



66 S. NONNENMACHER AND M. ZWORSKI

Let 1 > 6_ > §, > 0. Then the following bounds hold on the boundary of [—1,1] 4+
/L.[—(;_75+]:

—2M + 3M 6% + [ald- ReC=+1, —6_<Im( <6,
log |F(Q)g(¢)| < 4 M +3Mé? +ad_, |Re¢| <1, Im( = —4_,

log(a +7/04) +3M6% —ady, |Re(| <1, Im¢=4,.

Following the standard “three-line” argument we select

— 55 (M Hlog(a+ 7/6.) = %(—M +log(a +7/64)),

so that the bounds for Im{ = +6., |Re z| < 1 are the same:

a

5. 0_
log | F <M ! 0u) 5y T 3ME
og | F(Qg(C)l = M—r5— +log(a+ /04 ) === + 3M0o=

< Moo~ +log(a+7v/64) + 3M62 .

To ensure that the above right hand side is smaller than log(a(1+¢)), we need the following
conditions to be satisfied:

L0 M<e, MS* <e, vy/ad, <e.
These conditions can be arranged if €%/2 is large enough compared with vM 3 /a, which is the
condition in the statement of the lemma. One easily checks that the bound log |F'({)g(¢)| <

log(a(1 + €)) then also holds for |Re(] = 1, Im{ = 40, and therefore for ( = 0 by the
maximum principle. [l

End of the proof of Proposition 9.2: To apply Lemma 9.2 we need the estimate of Lemma 9.1,
but also an estimate of ||(P —iW — z)7!|| for |Rez — E| <, | Im z| < Ah (where we recall
that (P — W —z)~! has no poles in that strip for & small enough). We can cite [10, Lemma
6.1]* and obtain

(P —iW —2)7Y|| < Coexp(Cch™™¢), Imz > —Mh.
Lemma 9.2 applied to the data

F(Q)={P—iW-E-hQ)""f.9), fgel*X), lfl=llgl=1,
Cy + Tg(h)
o= ————",
h
proves the Corollary (observe the condition yM 2 Ja < 11is satisfied for h small enough). O

M =Ch™, v =n,

4Strictly speaking the quoted lemma is stated for P with bounded symbols. However, since the symbol
of P —iW — z is bounded away from zero outside a compact set, exactly the same argument applies.
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To pass from the estimate (9.2) to an estimate on x(P — 2)"'x, x € C®(X), we first
recall (see for instance [44]) that if supp x C B(0, Ry), where Ry is as in §3.4, then

X(P—2)"x=x(P—2)"'x.
Also, if supp 7*y Nsupp G = 0, then
X(PO o Z)_1X _ XeeG“’/h<P975 . Z)—le—er/hX
= X(Ppe = 2)7'x + Opaep2(h%) [|(Poe — 2) ']
Hence,

(9:5) IX(Ps = 2) " xll = (1 + O(h™))|[(Poe — 2) ] -

For future use, we now consider an auxiliary simpler scattering situation, namely an
operator P* = P*(h) satisfying the assumptions of §3.2 and for which the associated classical
flow is non-trapping at energy E, that is, Kz = (). From a result of Martinez [26], we have

x(P*—2)"'x =0(1/h), ze D(E,Ch),

see [28, Proposition 3.1]°. Below we will need an estimate for the resolvent of Pg . given in
the next lemma.

Lemma 9.3. Suppose that P* = P*(h) is an operator satisfying the assumptions of §3.2
and that the flow of p* is non-trapping at energy F, that is, K = 0. Then in the notation

of 86.1,
(9.6) (Pj,—2)" = Opa_s2(1/h), z€ D(E,Ch).

Proof. Since Pg}e — z is a Fredholm operator on L?(X) (as elsewhere we identify X, with
X), the estimate will follow if we find Q(z) such that, for z € D(E, Ch),
(9.7) (Pg,e —2)Q(z) =1+ A(2), Q(z)=012_12(1/h), A(z) = Or2_r2(h).

We will solve this problem in two steps, away and near the energy layer £g. Consider the
two nested energy cutoffs

(9.8) bo(z,€) = ¥((p(x, &) — E)/6),  ¢1(x,8) = v(8(p(x,§) — E)/9d),

where 1 € C*((—2,2),[0,1]) and and 9|_1; = 1. Since Pg’e is elliptic on supp(1l — )
(that is, away from Eg), standard symbolic calculus (as in the proof of Lemma 9.1) provides
an operator (Qo(z) such that

(Pg’E —2)Qo(z) =1 — Y (x,hD) + Ao(z), Qo(z) = Or2_12(1), Ao(z) = Op2_r2(h).

5The statement of that Proposition should be corrected to include a cut-off y, or, without a cut-off, a
factor log(1/h) on the right hand side of [28, (3.2)]. Lemma 9.3 gives a correct global version without the
logarithmic loss.
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We now treat the problem near the energy layer. We want to produce an operator @Q(z)
such that

(Pg& —2)Q1(2) = ¥ (x,hD) + Ai(2), Qi(2) = Orz12(1/h), Ai(2) = Orz_r2(h).

To that aim we use the tools developed in §6.2 and consider the energy-localized propagator

UA(t) & exp(—itFj /h),  Pj, 4§ (x,hD) Pf v (x,hD),

which satisfies ||U%(t)|| < €“* for any ¢ > 0. The non-trapping assumption at energy E
implies that

(9.9) 3T >0, Vpe&/ ' NThpspyX.  |m(@'(p)| >3Ry, t>T.
We claim that we can take
. T
(9.10) Qi(z) ¥ % / U ()0 (z, hD)e /"t .
0
Indeed,

(P}, — 2)Qi(2) = ¥Y (2, hD) + Ay(2)

.
A2) E — VAW hD) + 5 / (P}, — B ) U*(t) i’ (, hD) €/ "dt
0

The escape property (9.9) shows that there exists a time 0 < Ty, < 7', such that points
in 52/4 NT *p(o,3ry) X Will have escaped outside B(0,5R/2) after T" — Tyin, while points
in 52/4 NT (X \ B(0,3Ry)) cannot penetrate inside B(0,5R,/2) before the time Tpiy. In
both cases, Lemma 6.4 provides the following estimate:

IUH(T)4¢ (a, hD)|| = O /),

for some Cy = Co(T — Timin). On the other hand, M; can be chosen arbitrary large, in
particular we assume that M;/Cy > 1.

To analyse the second term in the definition of A;, we use the energy cutoff 1;/5(p) o

Y(4(p(p) — E)/6), which is nested between 1, and 1)y, and write
Ff. = By = Pj (1= §) + (1= ") Py 4 (1 — ¥i)n) + Opapa(h™).
From the support properties of the ; and using (6.18), we get
(L =) U oY, (L= i) UR() 9 = Opap2 (h™) .

These estimates show that A;(z) = Op2_12(h).

As a result, the operators Q(z) = Qo(z) + Q1(z) and A(z) = Ag(z) + A1(2) satisfy (9.7)
completing the proof. O
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Proof of Theorem 5: We now return to our original operator P(h) with properties described
in §3.3. As is seen from (9.5), it is sufficient to prove the bound

(Ppe — E)™" = Opa_r2(log(1/h)/h).
As in the Lemma above, we will construct an approximate inverse
(Ppe—E)Q=1+A, Q=O0(og(1/h)/h), A=O0O(h).

We consider the cutoffs (9.8). Once again, the operator can be easily inverted away from
the energy shell. We then need to solve

(9.11) (Poe — E)Q1 = ¥Y'(x,hD) + Ay, Q1= O(log(1/h)/h), Ay = O(h).

We will now use our knowledge of the absorbing-potential resolvent, see Proposition 9.1
and Proposition 9.2: we will use the fact that the operators B, and P — W are very
similar near the trapped set.

Assume that 1 < Ry < R3 < Ry < Ry < Ro/2, where the radius R; is used to define
the absorbing potential W, while Ry is used in the complex deformation of X (see §3.4),
and the weight G is supposed to vanish on 7= 'B(0, Ry/2). Consider the spatial cutoffs
Xj € C2(X,[0,1]), j = 1,2, satisfying

supp X S B(O7R])7 Xj’B(O,Rj_H) = 17 ] = 17273'
To solve (9.11), we first put

def

Q2 = xi (P —iW — E)"xayt .
We can then compute
(9.12) (Poc = E)Q2 = xa¥y’ + [P, xa) (P — iW — E) ™ 'xothy’ + Opa_p2(h™),
where the error term is due to the weight G, which vanishes near the supports of x;:
X e/t = Xj + OL2—>H;§(hOO) , k.
On the other hand, Proposition 9.2 implies that
Q2 = Opa_p2(log(1/h)/h) . [Poal(P—iW — E) 'xaty’ = Opa_pa(log(1/h)).

To treat the operator on the right, we observe that the differential operator [P, x| vanishes
outside B(0, Ry), while x; vanishes outside B(0, R;). We are thus in position to apply

Lemma A.2. For any v € L?, ||v|]| = 1, set f o x2¥{v. The support of f is contained

inside B(0, Ry), and its wavefront set lies inside £%. As a consequence, the state u o

(P —iW — E)~Lf also satisfies WF},(u) C £5, and the wavefront set of the state [P, x1]u is
contained inside WFj,(u) N T*(X \ B(0, Ry)). According to the Lemma,

(9.13) ' (WF,([P, x1]u)) N Th03r)X =0 for any t > T(Ry, Ry, E/2).
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Using T'= T'(Rs, Ry, E/2), we put

def 1

T
@5 = _E/ U(t)e"™M[Pxa) (P = iW — E)"'xo¢} = Opap2(log(1/h)/h).
0
Like in the proof of Lemma 9.3, the outgoing property (9.13) implies that
(Ppe — E)Qz = —[P,x1](P —iW — E) 7 xol + Opa_ 2 (RM/) .
Hence, assuming M; > 1, we have

(Poe — E)(Q2 + Q3) = x2¥)’ + Orar2(h) .
There remains to find an approximate solution with the right hand side given by
(1= x2)¥) + Opar2(h).
Since we chose Rj3 large enough to contain 7(Kg), we can choose some 1 < Ry < Rz, and
construct an operator P! which is non-trapping in the sense of Lemma 9.3, and satisfies
P*x\p(o,ry = Plx\po,Ry) -
From the discussion leading to (9.5) follows that

i xvso.r) = Poclx\so.m) + Orapy (h).
Using the cutoff x3, we put
def

Qs = (1 - Xz)(Peﬁ,E - E)fl(l - X2)wiu>

and then check that
(Ppe — E)Qs = (1 —x2)¥y — A+ Op2p2(h™), Q4= Op2_12(1/h),

Ay E PPy, — E) 1= xa)¥¥ . Ay = Opepa(1).

The operator A, = X2A4 where x2 has the same properties as x» (in particular, Xo|suppys =
1). For any v € L?, the state A, v will be supported inside B(0, R3), and its wavefront set
will be contained in £5. One can thus adapt the construction of @, + Q3 when replacing
20y by A4, to obtain an approximate inverse ()5 with the properties

(PQ,E - E)QS - A4 + OLQHL2<h) ) Q5 = OLQH[? (10g(1/h)/h) :

We conclude that ) & Q2 + Q3 + Q4 + Q5 satisfies (9.11), which proves the Theorem.

[

APPENDIX

In this appendix we explain how the methods of §6 apply to the case in which the
deformed operator Py is replaced by the operator with the absorbing-potential operator,
P — W, where W is described in Proposition 9.1. The arguments are easier in the case of
P — W and the only complication comes with the following replacement of Lemma 6.2:
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Lemma A.1. Let W satisfy the conditions given in Proposition 9.1. Then any fixed t > 0,
the operator

(A1) V(t) def oitP/h e—it(P—z'W)/h,7
satisfies
(A.2) V(t) = (0(t))" (2, hD) + Opa_p2(h*®), v(t) € S12(T°X).

Proof. We start as in the proof of Lemma 6.2: differentiating V'(s) with respect to s gives
1 v ,
5V (s) = 7 a(s)”(z,hD)V(s), V(0)=1, a(s)“(z,hD) %< f_eisP/hyyeisP/h
with a € S. Let
t
Alt) & / a(s)ds,  wvolt) X exp(A(t)/h).
0

We claim that the function vy € S7/2. If fact, by Egorov’s theorem,
A= Ag+0O(h), A /W &) ds <0,

hence we only need to check the claim for exp(Aq(t)/h). The non-negativity and the C?*-
boundedness of (—Ap) imply the standard estimate |Jf, () Ao| < C|Ao|V?, |a| = 1, from
which we see that for any 5 € N,

k
0 exp(Ao(t)/h) = | D hF[]0%Ao | exp(Ao(t)/h)
25:15416 =1
k
= 3 oM IT (14612 exp(Ao(t) /kh)
Z? 1 Be=pB £=1
< Cp Z Hh L+38018,0 < (O Hh—f\ﬁel O(h18/2y
Ze 15[ BE 1

that is, vo(t) € S1/2. It follows that

Duun(s)"(,hD) =  (a(s)uu(s))“(x, hD)
1

= 5 al(s)"(z, hD)vo(s)" (w, kD) —r(s)"(, hD),

where the symbolic calculus shows that r(s) € h'/2S; 5. By Duhamel’s formula,

E(t) oo V(t) —vo(t)”(x,hD) = /0 V(t —s)r(s)(x, hD)ds = Or2_2(h'/?),
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and
t

V(t) = vo(t)”(x, hD) + /0 (vo(t — s)#r(s))”(x,hD)ds
+ /0 /05 V(t—s—s)E(s—s)r(s)(x,hD)ds'ds

= vo(t)"(x, hD) + /0 (vo(t — s)#r(s))"(x,hD)ds + Orz_2(h) .

The iteration of this argument gives the full expansion of a symbol v(t) € Si/2, the quan-
tization of which is equal to V'(¢) modulo an error Oz 12(h>). O

Using this Lemma we obtain the analogues of all the results of §6.2, for ¢t > 0, with U(t)
replaced by exp(—it(P — iW)/h), and errors given by O(h*) instead of O(hM1 /). The
proof of the modified Proposition 6.3 is then the same, and Proposition 9.1 follows from
the argument presented in §6.4. For instance, here is a version of the propagation results
of Proposition 6.2 (see also Proposition 8.1):

Proposition A.1. Fiz T > 0. Then for any v =v(h) € L?, ||v|| = O(h™™) (in particular,
v is h-tempered in the sense of (3.3)),

WF,(exp(—it(P —iW)/h)v) C & (WF,(v)),
where WE}, is defined by (3.4).

Proof. In the notation of Lemma A.1 we write
exp(—it(P —iW)/h)v = exp(—itP/h) V(t) v,

and observe that the symbolic calculus on S/, and (A.2) give WF,(V(t)v) C WF(v).
Indeed, if a(x,hD)"v = Orz2(h*), a(x,§) = 1 in a neighbourhood of (xg,&y) (that is,
(x0,&) ¢ WE,(v)), then for any symbol b with suppb € {a = 1},

b (z, hD)V (t) = b“ v(t)" a® + Opz2_12(h™).
Hence b (z, hD)V (t)v = Or2(h™®), and (z9,&) ¢ WF(V(t)v). It follows that all we need

is the inclusion
WF,(exp(—it P/h)V (t)v) C &' (WF,(V (t)v)),
and that follows from the h-temperedness of V(¢)v and Egorov’s theorem. O

In §9 we also need the following propagation result:

Lemma A.2. Let P satisfy the general assumptions of §3.2 and W is as in Proposition
9.1, in particular W|po,r,) = 0. Suppose that, for some radii 1 < Ry < Ry, we have

(P—iW —2u=f, Imz=0O(h),
[ull = O(=™), |If| =0(1), suppf e B(0,Ry).
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Then
Ve>0, dT = T(RQ,R(),E) >0, s.t.
(A.3) V(z,8) € WEL(u) \ Tho,p,) X with p(z,§) > ¢,
|T(®(x,8))| > 3Ry, Vt>T.

Here w: T*X — X is the natural projection. In other words, u|x\p(o,r,) s outgoing.

Proof. The principal symbol satisfies Im(p — iW — Rez) < 0 hence we have backward
propagation:
(A4) WFy(u) C &' (WFy(u) U | ] ®(WF(f)), VE>0.
0<s<t
Indeed, we check that
(ihdy, — (P — iW))(U(t)u — e~/hy) = e=t2/h

and thus, by Duhamel’s formula,

h
from which (A.4) follows by applying Proposition A.1.

From ellipticity of P —iW —z in X'\ B(0, Ry +71), we have ||u|| r2(x\p(0,r,4r1)) = O(h™).
Together with (A.4), this implies that

C ot
6—itz/hu — U(t)u + i / eXp(—i(t — 3)(P — ZW)/h) e_isz/h f dS,
0

s def
WFA(u) € Ty U|J @ (WE(f)), Ty % {(2,6) : exp(th,)(2,€) /00, t — —o0}.
s>0
The assumptions on P in §3.2 (essentially the fact that it is close to the Euclidean Laplacian

near infinity) show that for x(t) o (D (o, &), p(xo, &) > €,

d d
(A.5) e @®Plmo 2 0, |zl > R = Z[a()P >0, t>0,

if R is large enough. Indeed,

d? d

SO = 2.9 (a(0), /(1)) = 2.5 (a(), pla(), £())

= 2lpe|* + 2(x(t), Pl [pe] — Péelpr]) = 467 — 0(1)(6)*,
where we used (3.10) to obtain

e, = o((&)l™), = o((&)*[|™),

(here o(1) — 0 as z — oc). Hence t — |z(t)|? is strictly convex and that proves (A.5).

Now observe that, for any point p € WFy(u) \ T g, X, we have p € I'y \ Tj 5y X,

or p € ®(WF,(f)) for some s > 0. In both cases, there exists 1 < Ry < Ry and ¢ > 0

such that ®~'(p) € T;(()’RQ). Thus, the trajectory (®°(p))scj—t,0 has necessarily crossed
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the sphere {|z| = Ry} for some ty, coming from inside. From the above discussion, the
trajectory is then strictly outgoing (d|z(s)|/ds > 0) for s > ;. In particular, there exists
a time T = T'(Ry, Ry, €) (uniform for all such p) such that ®°(p) will be outside B(0,3Ry)
for s > T. OJ
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