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Abstract. In this expository article we relate the presentation of weighted estimates

in [Ma02] to the Bergman kernel approach of [Sj96]. It is meant as an introduction to

the Helffer–Sjöstrand theory [HeSj86] in the simplest setting and to its adaptations

to compact manifolds [Sj96], [GaZw].

1. Introduction

Suppose that P is a semiclassical differential operator (or a pseudodifferential oper-

ator, see (2.5)), for instance,

P = −h2∆ + V. (1.1)

Conjugation by exponential weights has a very long tradition going back to the origins

of Carleman and Agmon–Lithner estimates:

Pϕ := eϕ(x)/hPe−ϕ(x)/h, ϕ ∈ C∞(Rn;R), (1.2)

which in the case of (1.1) gives (with Dx = −i∂x, and v2 := v2
1 + · · ·+ v2

n, v ∈ Cn)

Pϕ = (hDx + i∇ϕ)2 + V (x)

= −h2∆ +∇ϕ · h∇+ V − |∇ϕ|2 + h∆ϕ.

Roughly speaking, exploiting the sign of V − |∇ϕ|2 leads to exponential decay (tun-

neling) estimates for solutions of Pu = 0 – see for instance [Zw12, §7.1] and references

given there. For exponential lower bounds (quanitative unique continuation, from the

mathematical point of view), one exploits positivity properties of [P ∗ϕ, Pϕ] of suitably

chosen ϕ using the identity (with L2 norms and u ∈ C∞c )

‖Pϕu‖2 = ‖P ∗ϕu‖2 + 〈[P ∗ϕ, Pϕ]u, u〉 ≥ 〈[P ∗ϕ, Pϕ]u, u〉, (1.3)

see for instance [Zw12, §7.2].

On the other hand conjugation (1.2) with ϕ(x) replaced by iϕ(x) gives the simplest

case of Egorov’s Theorem (see for instance [Zw12, Theorem 11.1]):

Piϕ = (hDx −∇ϕ(x))2 + V (x),

which corresponds to the pull back of the symbol by the canonical transformation

(x, ξ) 7→ (x, ξ −∇ϕ(x)) associated to the operator u(x) 7→ e−
i
h
ϕ(x)u(x).
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When ϕ is real, we have implicitly used analyticity of ξ → ξ2 to obtain (1.3). If we

formally conjugate (1.1) with V (x) = x2 by eϕ(hD)/h we obtain

eϕ(hD)/hPe−ϕ(hD)/h = −h2∆ + V (x− i∇ϕ(hD)),

where we used the analyticity of V (x) = x2. In general, we encounter problems akin

to flowing the heat equation backwards which again requires analyticy.

In many problems it is advantageous to use ϕ = G(x, hDx) but, as the discussion

above shows, the use of such weights requires analyticity assumptions (unless we use

weights of moderate growth in h and ξ – see [Zw12, §8.2] for a textbook discussion

and Faure–Sjöstrand [FaSj11], Dyatlov–Zworski [DyZw16] for recent applications and

references).

The use of strong microlocal weights (ϕ in some sense equal to G(x, hD)) has been

raised to the level of high art by Sjöstrand and his collaborators – see for instance

Hitrik–Sjöstrand [HiSj15] and references given there. Here we would like to concen-

trate on the approach motivated by scattering resonances and introduced by Helffer–

Sjöstrand [HeSj86].

The goal then is to justify the statement

e−G(x,hD)/hP (x, hD)eG(x,hD)/h ∼ P (x+ i∇ξG(x, hD), hDx − i∇xG(x, hD))

= P (x, hDx)− iHPG(x, hD) +O(‖G‖2
C2),

(1.4)

and then to exploit the possible gain of ellipticity for the right hand side. In particular,

the property HPG(x, ξ) > 0 can be used to great advantage. Here

HP :=
n∑
j=1

∂ξjP (x, ξ)∂xj − ∂xjP (x, ξ)∂ξj ,

is the Hamilton vector field of the symbol of P and O(‖G‖2
C2) means a norm bound

between suitable spaces, for instance L2 → L2 if P is order 0 and G of order 1. The

condition HPG > 0 and its weaker forms are called the escape function property or

the positive commutator property.

One tool for justifying (1.4) is the FBI transform† – see (2.1) and [HiSj15], [Ma02],

[Zw12, Chapter 13] for three introductions. Roughly speaking it turns the action of

the operator P to multiplication by its symbol (say, ξ2 + V (x), in the case of (1.1)).

When weights are introduced, this action turns into multiplication by the “deformed

symbol”. That is, roughly speaking, the symbol of the operator on right hand side of

(1.4).

†It is named after Fourier–Bros–Iagolnitzer and this name is used for its generalizations in mi-

crolocal analysis. In specific cases, and in other fields it is called Bargmann, Segal, Gabor, and wave

packet transform.
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Here we will present the simplest case of small (in C2) compactly supported weights

G. A very clear presentation (without the smallness assumption) following Nakamura

[Na95] is provided in Martinez [Ma02, §3.5] but our goal is to make simple things

complicated by explaining the theory in the way which adapts to the case of stronger

(non-compactly supported) weights used in [HeSj86] and to the case of compactly

supported weights on compact manifolds of [Sj96]. Our motivation comes from the

study of viscosity limits for 0th order (analytic) pseudodifferential operators [GaZw].

It partly justifies claims made in the physics literature, see for instance [RGV01]‡.

A properly interpreted version of (1.4) is given in Theorem 2 which comes in this

form from [Na95], [Ma02]. The proof however follows the strategy of [Sj96] and is

based on the study of orthogonal projections onto weighted spaces of (essentially)

holomorphic functions. Theorem 3 presents a more geometric version more directly in

the spirit of [Sj96].

Our exposition of this material is structured as follows:

• In §2 we review the properties of the FBI (Bargmann/Segal/Gabor/wave packet)

transform and the structure of pseudodifferential operator on the FBI transform

side. No (non-quadratic) weights enter here but the simple geometric structure

discussed in §2.2 provides a guide for more complicated constructions.

• §3 is devoted to the description of the projector onto the image of the FBI trans-

form, orthogonal with respect to the norm on L2(T ∗Rn, e−ϕ(x,ξ)/hdxdξ). That

follows the approach of [Sj96] which in turn is inspired by [BoSj76], [BoGu81]

and [HeSj86]. The description of the action of analytic pseudodifferential op-

erators on those spaces is then given in Theorem 2 in §4.

• §5 reviews some aspects of the analytic machinery of Melin–Sjöstrand [MeSj74]

which is needed for the more geometric approach to the justification of (1.4) in

§§6,7.

• A more geometric version, following the spirit of [HeSj86] and [Sj96], is pre-

sented in §6. Instead of putting in a weight, the phase space T ∗Rn is deformed

to Λ := {(x + iGx(x, ξ), ξ − iGξ(x, ξ)) : (x, ξ) ∈ T ∗Rn} (note the analogy with

the right hand side (1.4); Λ is always Lagrangian with respect to Im dζ ∧ dz on

T ∗Cn and symplectic for Re dζ ∧dz for G sufficiently small). That corresponds

to continuing the FBI transform analytically and then restricting it to Λ. The

action of an analytic pseudodifferential operator with symbol p on that space

‡Specifically, the claim that “The aim of this paper is to present what we believe to be the asymp-

totic limit of inertial modes in a spherical shell when viscosity tends to zero.” These viscosity limits

are essentially the resonances of zero order operators and hence it is natural to use the methods of

[HeSj86]. Except in simplest cases the methods based on spacial deformations in the spirit of complex

scaling – see [DyZw19, §4.5, §4.7] and references given there – are not sufficient.
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is (in some sense) close to multiplication by p|Λ – see Theorem 3. That is again

achieved by constructing an appropriate orthogonal projector.

• Finally, in §8 we discuss the equivalence of the two approaches by showing that

each deformation Λ corresponds to putting in a weight without a deformation

– see Theorem 4.

Acknowledgements. We would like to thank Semyon Dyatlov for many enlightening

discussions and Johannes Sjöstrand for helpful comments on the first version of this

article. Partial support by the National Science Foundation grants DMS-1900434 and

DMS-1502661 (JG) and DMS-1500852 (MZ) is also gratefully acknowledged.

2. The FBI transform

We define the usual FBI transform:

Tu(x, ξ) := ch−
3n
4

∫
Rn
e
i
h

(〈x−y,ξ〉+ i
2

(x−y)2)u(y)dy. (2.1)

Then T : L2(Rn)→ L2(T ∗Rn) is an isometry as is easily checked using Plancherel’s

formula – see for instance [Zw12, Step 2 of the proof Theorem 13.7]. We then notice

that

T (L2(Rn)) ⊂H := {u ∈ L2(T ∗Rn) : Zju = 0, j = 1, · · ·n},
ζj(x, ξ, x

∗, ξ∗) := x∗j − ξj − iξ∗j ,

Zj := ζj(x, ξ, hDx, hDξ) = e−ξ
2/2h2hDz̄je

ξ2/2h,

zj = xj − iξj, Dz̄j = 1
2i

(∂xj − i∂ξj).

(2.2)

In fact, the range of T is exactly given by H :

Proposition 1. The orthogonal projector Π0 : L2(T ∗Rn)→H is given by Π0 = TT ∗

and

Π0u(α) = h−nc0

∫
T ∗Rn

e
i
h
ψ0(α,β)u(β)dβ, α = (x, ξ), β = (x′, ξ′),

ψ0(α, β) = 1
2
(xξ − x′ξ′) + 1

2
(xξ′ − ξx′) + i

4
(x− x′)2 + i

4
(ξ − ξ′)2.

(2.3)

In particular, T (L2(Rn)) = H .

For the proof see [Zw12, Theorem 13.7] or [Ma02, Exercise 3.6.2].

Remark: Note that, using the holomorphic notation z = x− iξ, w = x′ − iξ′,

ψ0 = i
[
Φ0(z) + 1

2
(z − w̄)2 + Φ0(w)

]
, Φ0(z) := 1

2
| Im z|2. (2.4)
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2.1. Pseudodifferential operators on the FBI side. Suppose P = p(x, hD),

Pu = p(x, hD)u :=
1

(2πh)n

∫
Rn

∫
Rn
p (x, ξ) e

i
h
〈x−y,ξ〉u(y)dydξ,

|∂αx,ξp(x, ξ)| ≤ Cα.

(2.5)

is a pseudodifferential operator (with the symbol, p ∈ S(1) in the terminology of [Zw12,

Chapter 4]). We want to consider

P := TPT ∗ : H →H . (2.6)

There are many ways to think about this operator – see [Zw12, §13.4] for Sjöstrand’s

pseudodifferential approach. Here we look at it in the spirit of [Sj96].

Lemma 1. The operator (2.6) is given by

Pu =

∫
T ∗Rn

KP (α, β)u(β)dβ

with

KP (α, β) = c0h
−ne

i
h
ψ0(α,β)a(α, β) +O(h∞〈α− β〉−∞),

a(α, β) ∼
∞∑
j=0

hjaj(α, β), |∂γα∂
γ′

β aj(α, β)| ≤ Cγγ′j, a0(α, α) = p(α).
(2.7)

Proof. We calculate the integral kernel using, again, the completion of squares and

integration in y′:

KP =
e
i
h

(xξ−x′ξ′)

(2πh)n

∫
R3n

e
i
h

(y(η−ξ)−y′(η−ξ′)+ i
2

(x−y)2+ i
2

(x′−y′)2)p (y, η) dy′dydη

=
e
i
h
xξ

(2πh)
n
2

∫
R3n

e
i
h

(y(η−ξ)−x′η+ i
2

(x−y)2+ i
2

(ξ′−η)2)p (y, η) dydη.

We note that the integral is now absolutely convergent and, denoting the phase by Φ,

Im Φ ≥ 0. The stationary points of Φ are given by solving (or completing squares)

∂ηΦ = y − x′ + i(η − ξ′) = 0, ∂yΦ = η − ξ + i(y − x) = 0,

Φ′′ =

[
iIRn IRn

IRn iIRn

]
is non-degenerate.

The solutions are

y = yc := 1
2
(x+ x′) + i

2
(ξ′ − ξ), η = ηc := 1

2
(ξ + ξ′) + i

2
(x− x′).

We note that

|∂ηΦ|2 + |∂yΦ|2 ≥ 1
2
|x− x′|2 + 1

2
|ξ − ξ′|2.

Hence non-stationary phase estimate shows that if we restrict the integration to |y −
yc|2 + |x− xc|2 < 1 (using a smooth cut-off function), the remaining term is estimated

by O(h∞〈α− β〉), α = (x, ξ), β = (x′, ξ′).
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For the integral over the set close to the critical points we apply the complex sta-

tionary phase method [MeSj74, Theorem 2.3, p.148] to obtain (2.7)

a = a0 + ha1 + · · ·
= p̃

(
1
2
(x+ x′) + i

2
(ξ′ − ξ), 1

2
(ξ + ξ′) + i

2
(x− x′)

)
+O(h),

(2.8)

where p̃ is an almost analytic extension of p. We note that a0(α, α) = p(α). �

Also, just as for the kernel of Π0, K(α, β) has to satisfy the equations

ζj(α, hDα)K(α, β) = 0, ζ̃j(β, hDβ)K(α, β) = 0, ζ̃j(β, β
∗) := ζj(β,−β∗). (2.9)

The last condition follows from the fact that

0 = (ζjTP
∗T ∗)∗u(α) = (ζjP

∗)∗u(α) = Pζ∗j u(α) =

∫
K(α, β)ζ̄j(β,Dβ)u(β)dβ

=

∫ [
ζ̄j(β,−Dβ)K(α, β)

]
u(β)dβ.

That means that

ζj(α, dαψ0(α, β)) = 0, ζ̃j(β, dβψ0(α, β)) = 0, ∂̄zjak, ∂wjak = (|α− β|∞),

z = x− iξ, w = x′ − iξ′, α = (x, ξ), β = (x′, ξ′).
(2.10)

Of course this is satisfied in our explicit construction. Note that (2.10) determines

ak(α, β) uniquely from ak(α, α) modulo O(|α−β|∞). We can think about constructing

ak’s as follows: define

∆ := {(z, z̄) : z ∈ Cn} ⊂ Cn × Cn ' T ∗Rn × T ∗Rn, Cn 3 z = x− iξ ∈ Cn, (2.11)

which is a totally real subspace (see for instance [Zw12, 13.2]). With the variables

of (2.10), write ak(α, β) = bk(z, w̄). Then bk(z, w) is the almost analytic extension of

bk(z, z̄) = bk|∆.

Concerning ψ0, it is uniquely determined from (2.10) when we put

(dαψ0)(α, α) = ξdx, (dβψ0)(α, α) = −ξdx, ψ0(α, α) = 0, α = (x, ξ). (2.12)

Note that we could just demand that ψ0(α, α) = 0 as then the derivative conditions

follow from the equations. Conversely, the derivative conditions determine ψ0 up to

an additive constant.

We can now compare P to the Toeplitz operator

Tp := Π0MpΠ0, Mpu(α) = p(α)u(α).

(We sometimes abuse notation and write p for Mp so that Tp := Π0pΠ0.)
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Using the stationary phase method we obtain

Tpu(α) =

∫
K̃(α, β)u(β)dβ, K(α, β) = e

i
h
ψ0(α,β)ã(α, β),

ã = ã0 + hã1 + · · · , ã0(α, α) = p(α).

But the uniqueness statement means that

a0(α, β) = ã0(α, β) +O(|α− β|∞).

This immediately gives

Theorem 1. Suppose that P is a pseudodifferential operator (2.5) and that P :=

TPT ∗, Tp := Π0pΠ0. Then

P = Tp +O(h)H→H ,

or

〈TPu, Tv〉L2(T ∗Rn) = 〈pTu, Tv〉L2(T ∗Rn) +O(h)‖u‖L2(Rn)‖v‖L2(Rn). (2.13)

Also,

TP = pT +O(h
1
2 )L2(Rn)→L2(T ∗Rn). (2.14)

That (2.13) holds was first observed by Cordoba–Fefferman [CoFe78] while (2.14) is

an earlier result of Sjöstrand [Sj76]. (Both were formulated differently in the original

versions and these are the versions from [Ma02] and [Sj96].)

In Theorem 2 we will see a stronger formulation which (when the weight is 0) applies

here as well. We note however that when there is no weight we can use [Zw12, Theorem

13.10] to obtain an explicit q such that P = ΠqΠ +O(h∞)L2→L2 .

2.2. Geometry of Π0. We now revisit (2.10) and (2.12) in geometric terms. The

(quadratic) phase ψ0 generates a complex (linear) Lagrangian relation

C := {(α, dαψ0(α, β); β,−dβψ0(α, β)) : α, β ∈ C2n} ⊂ T ∗C2n × T ∗C2n, (2.15)

that is, a linear subspace of (complex) dimension 4n on which the (holomorphic)

symplectic form

σ2 := π∗Lσ − π∗Rσ, σ := d(α∗dα), πL(ρ, ρ′) = ρ, πR(ρ, ρ′) = ρ′,

vanishes. We note that C ⊂ S1 × S2 where

S1 = {ρ ∈ T ∗C2n : ζj(ρ) = 0}, S2 = {ρ ∈ T ∗C2n : ζ̄j(ρ) = 0}, ζ̄j(ρ) := ζj(ρ̄). (2.16)

That is a geometric version of (2.10). Since {ζj, ζk} = 0}, Sj are involutive of (complex)

dimension 3n. (Note that we have ζ̄j rather than ζ̃j as we have the usual sign switch

in the definition of C .) We also identify the symplectic subspace

{(ρ, ρ) : ρ ∈ S1 ∩ S2} ⊂ C . (2.17)
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Since

S1 ∩ S2 = {(x, ξ, ξ, 0) : (x, ξ) ∈ T ∗Cn},

(2.17) is a geometric version of (2.12).

We can present this more abstractly without an explicit mention of ζj’s. Thus we

consider

V := T ∗Cm, σ :=
m∑
j=1

dz∗j ∧ dzj, (z, z∗) ∈ T ∗Cm. (2.18)

For a linear subspace of W ⊂ V we define the symplectic annihilator of W by

W σ := {ρ ∈ V : σ(ρ, V ) = 0}.

We then consider involutive subspaces of V :

S ⊂ V, Sσ ⊂ S, dimC S = 2m− k. (2.19)

The Hamiltonian foliation of S is defined by the projection

p : S −→ S/Sσ. (2.20)

Assume now S1 and S2 are two such subspaces and that

dimC(S1 ∩ S2) = 2m− 2k, (S1 ∩ S1)σ ∩ S1 ∩ S2 = {0}. (2.21)

This means that S1 and S2 intersect transversally at a symplectic subspace and that

the (affine) leaves of the Hamiltonian foliations through points of S1∩S2 also intersect

transversally and we have identifications

S1 ∩ S2 3 ρ 7−→ ρ+ Sσj ∈ Sj/Sσj .

Composing the inverse of this map with (2.20) we obtain complex linear maps

pj : Sj → S1 ∩ S2,

p−1
1 (ρ) ∩ p−1

2 (ρ) = {ρ}, ρ ∈ S1 ∩ S2, dim p−1
j (ρ) = k.

(2.22)

The abstract (linear) version of (2.15) is given in

Lemma 2. Suppose that two involutive complex subspaces S1 and S2 satisfy (2.21)

and that C ⊂ S1× S2 is a complex Lagrangian subspace of V × V . Then the following

conditions are equivalent:

(1) C ◦ C = C , C ∩ ((S1 ∩ S2)× (S1 ∩ S2)) = ∆(S1 ∩ S2);

(2) C ∩ ((S1 ∩ S2)× (S1 ∩ S2)) = ∆(S1 ∩ S2);

(3) C := {(ρ1, ρ2) ∈ S1 × S2 : p1(ρ1) = p2(ρ2)},

where pj are defined in (2.22) and, for W ⊂ V , ∆(W ) := {(ρ, ρ) : ρ ∈ W} ⊂ V × V .
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Proof. We can find defining functions of Si’s, ζ
i
j, j = 1, · · · , k, {ζ ij, ζ i`} = 0, (chosen

them globally here as we are in the linear case). Then Hζij
are tangent to Sj. Hζ1

j
⊕ 0

and 0⊕Hζ2
j

are tangent to C . Defining Φt
i := exp(t1Hζi1

) · · · exp(tkHζik
) we see that C

is invariant under the action of Φ1
t ⊕ Φ2

s, t, s ∈ Ck. It then follows that

(ρ1, ρ2) ∈ C ⇐⇒ (p1(ρ1), p2(ρ2)) ∈ C . (2.23)

With this in place the lemma is immediate: (1) ⇒ (2) is obvious from the second

condition in (1); (2) ⇒ (3) follows from (2.23) and dimension counting; (3) ⇒ (1) is

clear: (ρ1, ρ) ∈ C and (ρ, ρ2) ∈ C implies that ρ ∈ S1 ∩S2 and hence p1(ρ1) = p2(ρ) =

ρ = p1(ρ) = p2(ρ2). �

3. Projector with weights

We now want to prove an analogue of (2.13) in the case of weighted spaces. For that

we assume that P = pw(x, hD) where p ∈ S(1) has a bounded analytic continuation

to a fixed neighbourhood of T ∗Rn ⊂ C2n. In that case, following Martinez [Ma02] and

earlier works, we will show that for ϕ ∈ C∞c (T ∗Rn) with ‖∇ϕ‖L∞ sufficiently small

(depending on the neighbourhood in which p is analytic) we have

〈TPu, Tv〉L2
ϕ

= 〈pϕTu, Tv〉L2
ϕ

+O(h)‖Tu‖L2
ϕ
‖Tv‖L2

ϕ
, (3.1)

where

pϕ(x, ξ) := p(x+ 2∂zϕ, ξ − 2i∂zϕ), z = x− iξ, L2
ϕ := L2(T ∗Rn; e−2ϕ/hdα),

see Theorem 2 at the end of §4. To do this we follow the same strategy as in §2 and

construct a self-adjoint projection

Πϕ : L2(T ∗Rn)→H , Π2
ϕ = Πϕ, Πϕ|H = IH ,

〈Πϕu, v〉L2
ϕ

= 〈u,Πϕv〉L2
ϕ
.

(3.2)

We write the last statement as Π∗,ϕϕ = Πϕ. In what follows, for the sake of clarity we

drop ϕ and, unless specifically stated, consider the adjoint in L2(e−2ϕ/hdα) only.

To describe Πϕ we make the assumption that ‖ϕ‖C2 is sufficiently small.

The strategy for describing Πϕ as h → 0 goes back to the works of Boutet de

Monvel–Sjöstrand [BoSj76], Boutet de Monvel–Guillemin [BoGu81], Helffer–Sjöstrand

and was outlined for compact manifolds and compactly supported weights in [Sj96].

The argument proceeds in the following steps:

• construction of a uniformly bounded operator (as h → 0) B : L2
ϕ → L2

ϕ such

that ZjB = O(h∞)L2
ϕ→L2

ϕ
, B∗ = B and B2 = B +O(h∞)L2

ϕ→L2
ϕ
;

• characterization of the unique properties of the Schwartz kernel of B: unique-

ness of the phase and the determination of the amplitude from its restriction

to the diagonal;
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• finding a projector P = O(1)L2
ϕ→L2

ϕ
onto the image of T .

• choosing f ∈ S(1), f ≥ 1/C so that A := PMfP
∗ (in the notation of §2),

satisfies A = B +O(h∞)L2
ϕ→L2

ϕ
; this relies on the uniqueness properties in the

construction of B;

• expressing Π as a suitable contour integral of the resolvent of A and using it to

show that Π = B + O(h∞)L2
ϕ→L2

ϕ
. (this, elementary and elegant part, can be

copied verbatim from [Sj96]).

To construct B we postulate an ansatz

Bu(α) = h−n
∫
eiψ(α,β)/h−2ϕ(β)/ha(α, β)u(β)dβ,

and as in (2.9)

e−iψ(α,β)/hZj(α, hDα)
(
eiψ(α,β)/ha(α, β)

)
= O(|α− β|∞),

e−iψ(α,β)/hZ̃j(β, hDβ)
(
eiψ(α,β)/ha(α, β)

)
= O(|α− β|∞),

Zj := hDxj − ξj − ihDξj , Z̃j := −hDxj − ξj − ihDξj .

(3.3)

We note that for Z̄k(α, hDα) := Z̃k(α,−hDα) we have (i/h)[Zj, Z̄k] = −2iδjk.

Self adjointness of B implies that we should also have

ψ(α, β) = −ψ(β, α), a(α, β) = a(β, α),

which is consistent with (2.9).

The fact that the weights to do not appear in Z̃j may seem surprising but is easily

verified: put KB := eiψ/ha/hn and note that

(Zj)
∗ = e2ϕ/hZ̄je

−2ϕ/h, Z̄jv := Zt
j v̄.

Then

0 ≡ (ZjB)∗u(α) = B∗Z∗j u(α) = BZ∗j u(α)

=

∫
KB(α, β)e−2ϕ(β)/h(Zj)

∗u(β)dβ

=

∫
KB(α, β)Z̄j(β, hDβ)

(
e−2ϕ(β)/hu(β)

)
dβ

=

∫
Z̃j(β, hDβ)KB(α, β)e−2ϕ(β)/hdβ, Z̃jv := Zj v̄.

(3.4)

Going back to (3.3) we obtain simple eikonal and transport equations for ψ and a:

ψxj − ξj − iψξj = O(|α− β|∞), −ψyj − ηj − iψηj = O(|α− β|∞),

α = (x, ξ), β = (y, η),
(3.5)
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and

a = a0 + ha1 + · · · ,
∂̄zak = O(|α− β|∞), ∂wak = O(|α− β|∞),

z = x− iξ, w = x′ − iξ′.
(3.6)

To guarantee the boundedness on L2
ϕ and decay away from the diagonal we also demand

that

− Imψ(α, β)− ϕ(α)− ϕ(β) = c0|α− β|2 +O(|α− β|3), c0 > 0. (3.7)

3.1. Phase construction. We now need to discuss the “initial conditions” for ψ: in

the free case they were given in (2.12) and geometrically in Lemma 2. We start in an

“ad hoc” way and then move to the geometric version. Thus we require that

ψ(α, α) = −2iϕ(α). (3.8)

In the notation of §2 (specifically with ψ0 as in (2.3)) we put

ψ(α, β) = ψ0(α, β) + ψ̃(z, w̄),

so that the equations become

∂z̄ψ̃(z, w̄), ∂wψ̃(z, w̄) = O(|z − w|∞), ψ̃(z, z̄) = −2iϕ(z).

(Recall that ψ0(α, α) = 0 and that 2∂z̄ψ0 = ξj, 2∂wψ0 = ξ′j, z = x − iξ, w = x′ − iξ′,
α = (x, ξ), β = (x′, ξ′).)

We note that the analogue of (2.12) is

(∂zψ̃)(z, z̄) = −2i∂zϕ(z), (∂wψ̃)(z, z̄) = −2i∂z̄ϕ(z). (3.9)

This is solved by taking an almost analytic extension of ϕ̃ = ψ̃|∆̄ from the totally real

submanifold ∆̄ – see (2.11). We note here that d((z, w), ∆̄) = |z − w̄|.
Remark. Note for any smooth function f(z), if g(z, w) is almost analytic near ∆̄

with g(z, z̄) = f(z), then since ∂z̄g(z, w), ∂w̄g(z, w) = O(|z − w̄|∞) we have ∂zf(z) =

∂zg|∆̄ + ∂w̄g|∆̄. Hence, ∂zg|∆̄ = ∂zf . Similarly, ∂z̄f = ∂wg|∆̄. �

We then get

ψ(α, β) = ψ0(α, β) + ψ̃(z, w̄).

Near the diagonal we have

Im ψ̃(z, w̄) = −2ϕ(z) + Im
(

(∂wψ̃)(z, z̄)(w̄ − z̄)
)

+O(‖ϕ‖C2|w − z|2)

= −2ϕ(z) + Im(−2i∂z̄ϕ(z)(w̄ − z̄)) +O(‖ϕ‖C2|w − z|2).
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Similarly,

Im ψ̃(z, w̄) = −2ϕ(w) + Im
(

(∂zψ̃)(w, w̄)(z − w)
)

+O(‖ϕ‖C2|w − z|2)

= −2ϕ(w) + Im
(

(∂zψ̃)(z, z̄)(z − w)
)

+O(‖ϕ‖C2|w − z|2)

= −2ϕ(z) + Im(−2i∂zϕ(z)(z − w)) +O(‖ϕ‖C2|w − z|2).

Adding up the two equalities we obtain

Im ψ̃(z, w̄) = −ϕ(z)− ϕ(w) +O(‖ϕ‖C2|w − z|2).

Hence,

− Imψ(α, β)− ϕ(α)− ϕ(β) = − Imψ0(α, β) +O(‖ϕ‖C2|α− β|2)

= −1
4
|α− β|2 +O(‖ϕ‖C2 |α− β|2).

Hence, if ‖ϕ‖C2 is small enough, we obtain (3.7).

Remark. A more careful analysis of the quadratic terms would show that we only

need
∑

i,j ∂zj z̄kϕ(z)ζj ζ̄k > −1
4
|ζ|2 which is a subharmonicity condition. We will not

pursue this direction here.

We now discuss the property B = B2 +O(h∞)L2
ϕ→L2

ϕ
and that will lead naturally to

the construction of a in (3.6). Denoting the kernel of B2 by KB2 (analogue of KB in

(3.4)) we have

KB2(α, β) =

∫
KB(α, γ)KB(γ, β)e−2ϕ(γ)/hdγ

= h−2n

∫
e
i
h

(ψ(α,γ)+ψ(γ,β)+2iϕ(γ)))a(α, γ)a(γ, β)dγ. (3.10)

In view of (3.7) we can assume that a is supported near the diagonal and that justifies

an application of (complex) stationary phase. Let

ψ1(α, β) = c.v.γ (ψ(α, γ) + ψ(γ, β) + 2iϕ(γ)) .

Since B2 is self-adjoint on L2
ϕ, ψ1(α, β) satisfies the eikonal equations (3.5). If we show

that (3.8) holds for ψ1 then the uniqueness in the construction of ψ will show that

ψ1 ≡ ψ to infinite order on the diagonal.

Remark. In our special case we can see that ψ1 = ψ quite immediately. Let us change

to holomorphic coordinates and recall (2.4). Then, with

Φ(z) := 1
2
| Im z|2 + ϕ(z), Ψ(z, w) = −1

4
(z − w)2 + iψ̃(z, w), (3.11)

we have

ψ(α, β) = i [Φ0(z) + Φ0(w)]− iΨ(z, w̄), Φ0(z) := | Im z|2.
Therefore, with γ 7→ (v, v̄), the

i[ψ(α, γ) + ψ(γ, β) + 2iϕ(γ)] = Ψ(z, v̄) + Ψ(v, w̄)−Ψ(v, v̄)− Φ0(z)− Φ0(w).
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Then immediately

Ψ(z, w̄) = c.v.v,v̄(Ψ(z, v̄) + Ψ(v, w̄)−Ψ(v, v̄)). (3.12)

In fact, treating v and v̄ as independent variables (stationary phase is “real”)

0 = ∂v(Ψ(z, v̄) + Ψ(v, w̄)−Ψ(v, v̄)) = ∂vΨ(v, w̄)− ∂vΨ(v, v̄)

= ∂ww̄Φ(w)(w̄ − v̄) +O(|w̄ − v̄|2),

0 = ∂v̄(Ψ(z, v̄) + Ψ(v, w̄)−Ψ(v, v̄)) = ∂v̄Ψ(z, v̄)− ∂v̄Ψ(v, v̄)

= ∂zz̄Φ(z)(z − v) +O(|z − v|2).

Since ∂zz̄Φ is non-degenerate we obtain v = z and v̄ = w̄. Inserting these critical values

in on the right hand side of (3.12) yields the desired equality. In particular, (3.12)

implies that ψ(α, β) = c.v.γ (ψ(α, γ) + ψ(γ, β) + 2iϕ(γ)) .

3.2. Geometry of the phase. We now proceed as in §2.2 but with complications

due to the fact that the smooth weight ϕ makes the problem non-linear and non-

holomorphic.

We start with a formal discussion assuming that ϕ has a holomorphic extension to

a neighbourhood of C2n, U (if ϕ or even ∇ϕ are bounded, everything we have said so

far remains valid).

Let

C := {(α, dαψ(α, β) + idαϕ(α); β,−dβψ(α, β)− idβϕ(β)) : (α, β) ∈ U × U}.

We now define

ζϕj (α, α∗) := ζj(α, α
∗ + i∂αϕ(α)), S1 := {ρ ∈ U : ζϕj (ρ) = 0}.

We note that (since in our case so far ζj(α, α
∗) are linear)

Zϕ
j (α, hDα) = eϕ(α)/hZj(α, hDα)e−ϕ(α)/h.

Using ζ̃j we similarly define ζ̃ϕj and S2.

Formally, we are in the situation described in Lemma 2 but for ϕ ∈ C∞c (T ∗Rn) we

need an almost analytic version. In the setting here we already constructed the phase.

However, the geometric point of view will be important in §6.1 where we consider a

different approach.

3.3. Amplitude construction. To find the amplitude a(α, β) we once again use the

fact that it is enough to determine a on the diagonal. Application of complex stationary

phase to (3.10) yields

KB2 = h−ne
i
h
ψ(α,β)b(α, β), b(α, α) ∼

∑
j

hjL2ja(α, γ)a(γ, α)|γ=α, (3.13)
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where L2j are differential operators of order 2j in γ and L0|∆ = f(α), |f(α)| > 0.

Since ψ(α, β) = −ψ(β, α), f(α) ∈ R. We note that if a(α, β) = a(β, α), then b(α, β) =

b(β, α) as the operator B2 is also self-adjoint. In particular, b(α, α) ∈ R.

Writing a ∼
∑

j h
jaj, we have

b(α, β) ∼
∑
j

hjbj(α, β), bj(α, α) =
∑

k+`+m=j

L2ka`(α, γ)am(γ, α)|γ=α.

We note that if a`(α, β) = a`(β, α) for ` ≤M then b`|∆ ∈ R for ` ≤M . Since

bM(α, α) = 2f(α)a0(α, α)aM(α, α) +
∑

k+`+m=M
`,m<M

L2ka`(α, γ)am(γ, α)|γ=α,

it follows that

a`(α, β) = a`(β, α), ` < M =⇒
∑

k+`+m=M
`,m<M

L2ka`(α, γ)am(γ, α)|γ=α ∈ R. (3.14)

We iteratively solve the following sequence of equations∑
k+`+m=j

L2ka`(α, γ)am(γ, α)|γ=α = aj(α, α) (3.15)

with aj|∆ real. Since a is defined by its values on the diagonal taking almost analytic

extensions from α = β will complete the proof. First, let

a0(α, α) =
1

f(α)
∈ C∞(T ∗Rn;R)

so that f(α)a0(α, α)2 = a0(α, α) (i.e. (3.15) is solved for j = 0). Next, take an

almost analytic extension of a0|∆̄ to define a0 in a small neighbourhood of ∆̄ with

a0(α, β) = a0(β, α).

Assume now that (3.15) is solved for j ≤M − 1. Then, (3.15) with j = M reads

aM(α, α) =
∑

k+`+m=M

L2ka`(α, γ)am(γ, α)|γ=α

= 2aM(α, α) +
∑

k+`+m=M
`,m<M

L2ka`(α, γ)am(γ, α)|γ=α

Putting aM(α, α) = −
∑

k+`+m=M
`,m<M

L2ka`(α, γ)am(γ, α)|γ=α we solve (3.15) for j = M .

From (3.14) we see that aM(α, α) is real. Taking an almost analytic continuation with

aM(α, β) = aM(β, α) then completes the construction of aM and hence by induction

and the Borel summation lemma we have

b = a+O(h∞) +O(|α− β|∞). (3.16)

with a(α, β) = a(β, α).



AN INTRODUCTION TO MICROLOCAL COMPLEX DEFORMATIONS 15

Finally, it remains to check that an operator R with kernel

KR(α, β) = χ(|α− β|/C)r(α, β)e
i
h
ψ(α,β)− 2ϕ(β)

h , r = O(h∞ + |α− β|∞), χ ∈ C∞c (R)

has R = O(h∞)L2
ϕ→L2

ϕ
. For that, consider the kernel of e−ϕ/2hReϕ/2h given by

KR,ϕ(α, β) = r(α, β)e
i
h

(ψ(α,β)+iϕ(β)+iϕ(α).

Now, by (3.7), ∣∣∣e ih (ψ(α,β)+iϕ(β)+iϕ(α))
∣∣∣ ≤ e−c|α−β|

2/h

and hence KR,ϕ = O(h∞)C∞c and is supported in |α − β| ≤ C. Schur’s lemma then

implies R = O(h∞)L2
ϕ→L2

ϕ
.

3.4. Construction of the projector. We first construct P with the following prop-

erties:

PTv = Tv, v ∈ L2(Rn), ‖P‖L2
ϕ→L2

ϕ
≤ C, (3.17)

with C independent of h.

The holomorphic structure will be used in the construction of P and we again write

z = x− iξ, Φ0(z) := 1
2
| Im z|2, and Φ as in (3.11). We then recall that

w = Tv, v ∈ L2(Rn) ⇔ u := e| Im z|2/2hw ∈ L2
Φ0

(Cn),

see for instance [Zw12, §13.3]. We construct

PΦ = O(1) : L2
Φ → HΦ, PΦu = u, u ∈ HΦ. (3.18)

We note that, since |Φ − Φ0| ≤ C, as spaces L2
Φ0

= L2
Φ and the issue is the uniform

boundedness as h→ 0. The following PΦ will satisfy (3.18):

PΦu(z) :=
Cn

(πh)n

∫
Cn
e−C|z−w|

2/h+2〈z−w,∂zΦ(z)〉/hu(w)dm(w), (3.19)

provided that C is suffiently large. To check uniform boundedness on L2
Φ we note that

2 Re〈z − w, ∂zΦ(z)〉 = Φ(z)− Φ(w) +O(‖Φ′′‖L∞|z − w|2). (3.20)

Since Φ′′ is uniformly bounded (in fact constant outside of a compact set) we see that

for C sufficiently large,

−Φ(z) + 2 Re
(
−C|z − w|2 + 〈z − w, ∂zΦ(z)〉

)
+ Φ(w) ≤ −|w − z|2,

which (using Schur’s criterion) shows uniform boundedness of PΦ on L2
Φ. For u ∈ HΦ

we have PΦu = u – see for instance [Zw12, (13.3.16)] (the fact that Φ(z) is not quadratic

plays no role in the argument). Returning to (3.17) we put

P := e−| Im z|2/2hPΦe
| Im z|2/2h.

We now construct the projector Π = Πϕ and relate it to the parametrix B con-

structed above. That is done by repeating the argument presented in [Sj96].
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We take f ∈ S(T ∗Rn), f ≥ c > 0, and consider

A := Af = PMfP
∗,ϕ, P ∗,ϕ = e2ϕ/hP ∗e−2ϕ/h.

We write the action of A as follows:

Au(α) =

∫
KA(α, β)u(β)e−2ϕ(β)/hdβ, KA(α, β) = h−ne

i
h
ψA(α,β)af (α, β),

where the phase and amplitude are obtained from the method of stationary phase in

the composition defining A. We claim that

ψA(α, β) = ψ(α, β) +O(|α− β|∞).

To see that we note that (6.14) and hence (3.5),(3.6) hold with ψ and a replaced by

ψA and af . Hence it is sufficient to check that (3.8) holds for ψA. We calculate the

critical value on the diagonal in notation used in (3.19),(3.20):

iψA(α, α) + Φ0(z) = c.v.w
(
−2C|z − w|2 + 2 Re〈z − w, ∂Φ(z)〉+ Φ(w)

)
= Φ(z) + c.v.w

(
−C|z − w|2 +O(|z − w|2)

)
= Φ(z) = Φ0(z) + 2ϕ(z).

Since the left hand side is equal to iψA(α, α) + Φ0(z), (3.8), and hence ψ ≡ ψA follow.

Since equations (3.6) are satisified by af , af is determined up to O(h∞ + |α− β|∞)

by af |∆. We want to choose f ∼
∑

j h
jfj so that

af (α, α) ∼
∑

af,j(α, α)hj, and af,j(α, α) = aj(α, α),

where a ∼
∑
hjaj is the amplitude in the construction of B. As in §3.3 (but with

different L2k’s, g := L0|∆ 6= 0) we have,

af,j(α, α) =
∑
k+`=j

L2kf`(α) = g(α)fj(α) +
∑
k+`=j
`<j

L2kf`(α).

(In our special case, the amplitude in P is constant which is not the case in gen-

eralizations – but the argument works easily just the same.) Using this, solving

af,j(α) = aj(α) for f is immediate. As in the construction of the amplitude of B

in §3.3 we see that f is real valued and f0 is bounded from below.

To summarize, we constructed

Bu(α) =

∫
e
i
h
ψ(α,β)a(α, β)e−2ϕ(β)/hdβ
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and found f such that

B = O(1) : L2
ϕ → L2

ϕ, B = B∗,ϕ, B = B2 +O(h∞)L2
ϕ→L2

ϕ
,

B = Af +O(h∞)L2
ϕ→L2

ϕ
, Af := PMfP

∗,ϕ,

f(α) ∼
∑
j

hjfj(α) ∈ S(1), f(α) > 1/C.
(3.21)

We can now quote [Sj96] verbatim to see that

Πϕ = B +O(h∞)L2
ϕ→L2

ϕ
. (3.22)

For the sake completeness we recall the argument. To start we observe that for u ∈
H := T (L2(Rn)), ‖u‖L2

ϕ
> 0,

〈Afu, u〉L2
ϕ

= 〈PfP ∗u, u〉L2
ϕ

= 〈fP ∗u, P ∗u〉L2ϕ ≥ min
α∈T ∗Rn

f(α)‖P ∗u‖2
L2
ϕ

≥ |〈P
∗u, u〉|2

C‖u‖2
L2
ϕ

= ‖u‖2
L2
ϕ
/C.

Hence,
‖u‖L2

ϕ
/C ≤ ‖Afu‖L2

ϕ
≤ C‖u‖L2

ϕ
, u ∈H ,

Afu = 0, u ∈H ⊥, A∗f = Af ,
(3.23)

and

Πϕ =
1

2π

∫
γ

(λ− Af )−1dλ, (3.24)

where γ is a positively oriented boundary of an open set in C containing [1/C,C] and

excluding 0. From (3.21) we know that

Af = A2
f +O(h∞)L2

ϕ→L2
ϕ

(3.25)

and we want to use this property to show that Πϕ is close to Af . For that we note

that if A = A2 then, at first for |λ| � 1,

(λ− A)−1 =
∞∑
j=0

λ−j−1Aj = λ−1 + λ−1

∞∑
j=0

λ−jA = λ−1 + Aλ−1(λ− 1)−1.

Hence, it is natural to take the right hand side as the approximate inverse in the case

when A2 − A is small:

(λ− Af )(λ−1 + Afλ
−1(λ− 1)−1) = I − (A2

f − Af )λ−2(λ− 1)−1.

In view of (3.25) and for h small enough, the right hand side is invertible for λ ∈ γ
with the inverse equal to I +R, R = O(h∞)L2

ϕ→L2
ϕ
. Hence for λ ∈ γ,

(λ− Af )−1 = λ−1 + λ−1(λ− 1)−1Af +O(h∞)L2
ϕ→L2

ϕ
.

Inserting this identity into (3.24) and using Cauchy’s formula gives

Πϕ = Af +O(h∞)L2
ϕ→L2

ϕ
= B +O(h∞)L2

ϕ→L2
ϕ
,
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which is (3.22).

4. Pseudodifferential operators on weighted spaces

We now want to present the action of pseudodifferential operators P = pw(x, hD),

p ∈ S(1) on the FBI transform side.

We will use the notation of [Zw12, §13.4] and note that by [Zw12, Theorem 13.9]

TPT ∗ = e−Φ0(z)/hqwΦ0
(z, hDz)e

Φ0(z)/h, q(x− iξ, ξ) := p(x, ξ),

qw
Φ0

(z, hDz)u :=
1

(2πh)

∫∫
ΓΦ0

(z)

q

(
z + w

2
, ζ

)
e
i
h
〈z−w,ζ〉u(w)dζ ∧ dw,

Φ0(z) := 1
2
| Im z|2, ΓΦ0(z) : w 7→ ζ =

2

i
∂zΦ0

(
z + w

2

)
, u ∈ HΦ0 .

(4.1)

(See the remark after Lemma 3 concerning convergence of the integral.) We note here

that the correspondence between q and p is formally valid for (x, ξ) ∈ C2n and that

κ : (x, ξ) 7→ (x− iξ, ξ) defines a complex linear canonical transformation. The contour

ΓΦ0 corresponds to integrating q|ΛΦ0
,

ΛΦ0 := κ(T ∗Rn) = {(z, ζ) : ζ = −2i∂zΦ0(z)}.

We have the following lemma (see [Sj02, §12.5] for a more general version and for

applications to scattering resonances):

Lemma 3. Suppose that p is holomorphic and bounded on R2n + BC2n(0, ρ0) ⊂ C2n

and that Φ(z) = Φ0(z) + 2ϕ(z) with ϕ ∈ C∞c (Cn), ‖ϕ‖C2 sufficiently small. Then on

HΦ = HΦ0,

qw
Φ0

(z, hDz) = qw
Φ(z, hDz) = O(1) : HΦ → HΦ,

where for u ∈ HΦ,

qw
Φ(z, hDz)u =

1

(2πh)n

∫∫
ΓΦ,c(z)

q

(
z + w

2
, ζ

)
e
i
h
〈z−w,ζ〉u(w)dζ ∧ dw,

ΓΦ,c(z) : w 7→ ζ = 2
i
∂zΦ

(
z + w

2

)
+ ci

z − w
〈z − w〉

,

(4.2)

where c > 0 is sufficiently small.

Remark. When q|ΛΦ
∈ S (ΛΦ) then we can take c = 0 and have a convergent integral

in (4.2). Since we assume analyticity the deformed contour provides a quick definition

for q bounded near ΛΦ +BCn(0, ρ0) which in the case of q ∈ S(ΛΦ) requires the usual

integration by parts and density (of S ⊂ S in the 〈z〉εS topology) arguments – see

the proof of [Zw12, Theorem 13.8].



AN INTRODUCTION TO MICROLOCAL COMPLEX DEFORMATIONS 19

Proof. We can deform the integral in (4.1) to the contour given by ΓΦ,c(z) (see the

remark above concerning convergence): since ϕ is small and we take c > 0 small the

deformation is allowed as q is holomorphic and bounded in ΛΦ0 + BCn(0, ρ0). To see

the boundedness on HΦ we use (3.20). �

We now discuss

ΠϕTPT
∗Πϕ = O(1) : HΦ → HΦ,

where the uniform boundedness follows from Lemma 3. We can apply the method of

stationary phase and for that it is useful to use the notation of (3.12). The phase then

becomes

ψ(α, β) + 2iϕ(β)− i[Ψ(z, w̄) + Ψ(z, v̄)− Φ(v) + i〈v − v′, ζ〉+ Ψ(v′, w̄)]

ζ = 2
i
∂zΦ

(
v + v′

2

)
+ ci

v − v′
〈v − v′〉

.

We now let

Ψ̃ = Ψ(z, v̄)− Φ(v) + i〈v − v′, ζ〉+ Ψ(v′, w̄), ζ = 2
i
∂zΦ

(
v + v′

2

)
+ ci

v − v′
〈v − v′〉

,

and show that

c.vv,v′,v̄,v̄′Ψ̃ = Ψ(z, w̄). (4.3)

In fact, for simplicity we take c = 0 and first compute

∂vΨ̃ = −∂vΨ(v, v̄) + ∂vΨ

(
v + v′

2
,
v̄ + v̄′

2

)
+ 1

2
∂2
vvΨ

(
v + v′

2
,
v̄ + v̄′

2

)
(v − v′),

∂v̄′Ψ̃ = 1
2
∂2
v̄vΨ

(
v + v′

2
,
v̄ + v̄′

2

)
(v − v′).

Since ∂v̄vΨ is non-degenerate the second equation shows that v = v′. But then the

first equation becomes −∂vΨ(v, v̄) + ∂vΨ(v, (v̄ + v̄′)/2) = 0 so that non-degeneracy of

∂2
v̄vΨ implies v̄ = v̄′.

Computing the remaining two derivatives,

∂v̄Ψ̃|v=v′ = ∂v̄Ψ(z, v̄)− ∂v̄Ψ(v, v̄),

∂v′Ψ̃|v=v′ = −∂vΨ(v, v̄) + ∂vΨ(v, w̄),

we use the non-degeneracy of ∂2
v̄vΨ to see that v = z and v̄ = w̄. But then the critical

value of Ψ̃ is given by Ψ(z, w̄).
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We conclude that we have an analogue of (2.8):

ΠϕTPT
∗Πϕu(α) = cϕh

−n
∫
KP,ϕ(α, β)u(β)e−2ϕ(β)/hdβ,

KP,ϕ(α, β) = e
i
h
ψ(α,β)a(α, β), a = a0 + ha1 + · · ·

a0(α, β) = q

(
z + w

2
,
2

i
∂zΦ

(
z + w

2

))
, q(x− iξ, ξ) = p(x, ξ),

Φ(z) = 1
2
| Im z|2 + ϕ(z), z = x− iξ, w = y − iη, α = (x, ξ), β = (y, η).

(4.4)

Since

Zj(α, hDα)KP (α, β) = 0, Z̃j(β, hDβ)KP (α, β) = 0,

construction of B shows that a(α, β) is determined (modulo O(h∞)L2
ϕ→L2

ϕ
) by a|∆.

Hence,

ΠϕTPT
∗Πϕ = ΠϕMpϕΠϕ +O(h)L2

ϕ→L2
ϕ
, (4.5)

where

pϕ(x, ξ) = q(z,−i∂zΦ(z)), z = x− iξ, (x, ξ) ∈ R2n

q(z, ζ) = p(z + iζ, ζ), Φ(z) = 1
2
| Im z|2 + ϕ(z).

But this means that

pϕ(x, ξ) = p(z + i(−2i∂zΦ(z)),−2i∂zΦ(z)) = p(x− iξ + i(ξ − 2i∂zϕ), ξ − 2i∂zϕ)

= p(x+ 2∂zϕ, ξ − 2i∂zϕ),

which agrees with (3.1). We also obtain the analogue of (2.14):

TP = pϕT +O(h
1
2 )L2

ϕ(Rn)→L2
ϕ(T ∗Rn). (4.6)

We summarize this in the following version of [Ma02, Corollary 3.5.3]:

Theorem 2. Suppose that P is given by (2.5) where the symbol p enjoys a holomorphic

extension satisfying

|p(z, ζ)| ≤M, | Im z| ≤ a, | Im ζ| ≤ b.

Then for ϕ ∈ C∞c (T ∗Rn) with ‖ϕ‖C2 sufficiently small and L2
ϕ := L2(T ∗Rn, e−2ϕ/hdxdξ),

〈TPu, Tv〉L2
ϕ

= 〈MPϕTu, Tv〉L2
ϕ

+ 〈RϕTu, Tv〉L2
ϕ
, (4.7)

where Rϕ = O(h∞)L2
ϕ→L2

ϕ
and

Pϕ(x, ξ, h) = pϕ(x, ξ) + hp1
ϕ(x, ξ) + · · · ,

pϕ(x, ξ) = p(x+ 2∂zϕ(x, ξ), ξ − 2i∂zϕ(x, ξ)), z = x− iξ.
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Proof. The leading term in (4.7) was already obtained in (4.5). Assume that we have

obtained pjϕ, j = 1, · · · , J − 1 so that

ΠϕTPT
∗Πϕ = Πϕ

(
J−1∑
j=0

hjpjϕ

)
Πϕ +RJ

ϕ, (4.8)

where

RJ
ϕu(α) = hJ−ncϕ

∫
T ∗Rn

e
i
h
ψ(α,β)aJ(α, β)e−2ϕ(β)/hu(β)dβ, aJ ∼ aJ0 + haJ1 + · · · ,

with aJk satisfying the transport equations (3.6). If we apply the method of stationary

phase to the first term of the kernel of the first term on right hand side of (4.8) we

obtain a kernel with the expansion

e
i
h
ψ(α,β)(a0 + ha1 + · · ·+ hJ−1aJ + hJrJ0 + hJ+1rJ1 + · · · ),

where aj’s are the same as in (4.4). Again all the terms satisfy (3.6) and hence are

uniquely determined from their values on the diagonal. Hence, if we put

pJϕ(α) := rJ0 (α, α) + aJ0 (α, α),

we obtain (4.8) with J replaced by J + 1. �

Remark. The equality (3.1) holds for more general weights, ϕ ∈ C1,1, by more

direct arguments – see [Sj90, Theorem 1.2]. Here we were interested in developing the

approach of [HeSj86],[Sj96] based on Bergman-like projectors.

5. Review of some almost analytic constructions

In §6 we will follow [Sj96] and describe the orthogonal projector L2
Λ → TΛ(L2(Rn))

(in the notation of Theorem 4). That will involve some more involved almost analytic

machinery and hence we will first consider some simpler examples. They seem to be

related to some (simpler) aspects of [Sj74].

5.1. General comments about almost analyticity. We will be concerned with a

neighbourhood of Rm in Cm and for U ⊂ Cm we define

f ∈ Caa(U) ⇐⇒ ∂z̄f(z) = OK(| Im z|∞), z ∈ K b U.

This definition is non-trivial only for U ∩ Rm 6= ∅. We write f ∼ 0 in U if f(z) =

OK(| Im z|∞), z ∈ K b U ⊂ Cm. We note that (see [Tr81, Lemma X.2.2]) that for

f ∈ C∞ that implies ∂αf ∼ 0 in U .

Suppose Λ is an almost analytic manifold and Λ ∩ Rm = ΛR. One way to define Λ

is through almost analytic defining functions: near any point z0 ∈ ΛR there exist a
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neighbourhood U of z0 in Cn and f1, · · · , fk ∈ C∞(Cm) such that

Λ ∩ U = {z : fj(z) = 0, 1 ≤ j ≤ n}, ∂zfj(z0) are linearly independent,

|∂z̄fj(z)| = O(| Im z|∞ + | sup
1≤`≤k

f`(z)|∞).

We now consider almost analytic vector fields:

V =
m∑
j=1

aj(z)∂zj , aj ∈ Caa(Cn),

which we identify with real vector fields V̂ such that for u holomorphic V̂ f = V :

V̂ := V + V̄ = ReV

=
m∑
j=1

Re aj(z)(∂zj + ∂z̄j) + i Im aj(z)(∂zj − ∂z̄j)

=
m∑
j=1

Re aj(z)∂Re zj + Im aj(z)∂Im zj .

Example. Suppose M ⊂ Cm, dimRM = 2k is almost analytic. Then vector fields

tangent to M are spanned by almost analytic vector fields, Vj = aj(z) · ∂z, ∂z̄aj(z) =

O(| Im z|∞), z ∈ M , j = 1, · · · k. In fact, using [MeSj74, Theorem 1. 4, 3◦] we can

write M locally near any z ∈ M ∩ Rm as {(z′, h(z′)) : z′ ∈ Ck}, h = (hk+1, · · · , hm) :

Ck → Cm−k, ∂z̄h = O(| Im z′|∞ + | Imh(z′)|∞). We then put

Vj = ∂zj +
m∑

`=k+1

∂zjh`(z
′)∂z` . (5.1)

The real vector fields V̂j then span vector fields tangent to M . �

Following [MeSj74] and [Sj74] we define the (small complex time) flow of V as follows

for s ∈ C, |s| ≤ δ

Φs(z) := exp ŝV (z). (5.2)

The right hand side is the flow out at time 1 of the real vector field ŝV . Unless

the coefficients in V are holomorphic [V̂ , îV ] 6= 0 which means that exp(s + t)V 6=
exp sV exp tV for s, t ∈ C. However, we have [îV , V̂ ] ∼ 0.

Lemma 4. Suppose that Γ ∈ Cm is an embedded almost analytic submanifold and V

is an almost analytic vector field. Assume that,

V̂ , îV are linearly independent and their span is transversal to Γ, (5.3)

and that, in the notation of (5.2),

| Im Φt(z)| ≥ |t|/CK , z ∈ K b Γ. (5.4)
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Then for any U b Cm, there exists δ such that

Λ :=
{

exp t̂V (ρ) : ρ ∈ Γ ∩ U, |t| < δ, t ∈ C
}

is an almost analytic manifold, ΛR = ΓR and dimRe Λ = 2k + 2.

We will use the following geometric lemma:

Lemma 5. Suppose Zj ∈ C∞(Rm;T ∗Rm), j = 1, · · · , J , are smooth vector fields and,

for s ∈ RJ ,

〈s, Z〉 :=
J∑
j=1

sjZj ∈ C∞(Rm;T ∗Rm).

Then for f ∈ C∞(Rm)

f(e〈s,Z〉(ρ)) =
P∑
p=1

1

p!
(〈s, Z〉)kf(ρ) +OK(|s|P+1), ρ ∈ K b Rm. (5.5)

while for Y ∈ C∞(Rm;T ∗Rm),

e〈s,Z〉∗ Y (ρ) =
P∑
p=1

1

p!
adk〈s,Z〉 Y (ρ) +OK(|s|P+1), ρ ∈ K b Rm. (5.6)

For a proof see for instance [Je14, Appendix A]. We recall that F∗Y (F (ρ)) :=

dF (ρ)Y (ρ).

Proof of Lemma 4. Let ι : Γ ↪→ Cm the inclusion map. Then

∂ exp(t1V̂ + t2 îV ) ◦ ι(ρ) : T(0,ρ)(R2
t × Γ)→ TρCm

is given by (T,X) 7→ T1V̂ +T2îV +ι∗X, which, thanks to our assumptions, is surjective

onto a 2k + 2 (real) dimensional subspace of T ∗Cm. Hence, by the implicit function

theorem Λ is a 2k + 2 dimensional embedded submanifold of Cm.

To fix ideas we start with the simplest case of Γ = {0} ⊂ Cn. In that case {Λ =

{Φt(0) : t ∈ C, |t| < δ}, and from our assumption | Im Φt(0)| ∼ |t1V̂ + t2îV | ∼ |t|. The

tangent space is given by

TΦt(0)Λ = {∂tΦt(0)T + ∂t̄Φt(0)T̄ : T ∈ C} ⊂ C2.

If we show that

∂t̄Φt(0) = O(|t|∞) (5.7)

then d(TΦt(0)Λ, iTΦt(0)Λ) = O(t∞) and almost analyticity of Λ follows from [MeSj74,

Theorem 1.4, 1◦]. The estimate (5.7) will follow from showing that for any holomorphic
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function f , ∂α1
t1 ∂

α2
t2 ∂t̄f(Φt(0))|t=0 = 0. But this follows from (5.5) and the fact that

[V̂ , îV ] ∼ 0 at 0. Indeed,

∂α1
t1 ∂

α2
t2 ∂t̄f(Φt(0))|t=0 = ∂α1

t1 ∂
α2
t2 ∂t̄

(
∞∑
k=0

1

k!

(
t1V̂ + t2îV

)k
f(0)

)
|t=0

= ∂α1
t1 ∂

α2
t2

(
∞∑
k=0

1

k!

(
t1V̂ + t2îV

)k
(V̂ + iîV )f(0)

)
|t=0

= V̂ α1 îV
α2

(V̂ + i îV )f(0) = V̂ α1 îV
α2

(V − V )f(0) = 0.

(5.8)

The fact that V̂ and îV commute to infinite order at 0 was crucial in this calculation.

Holomorphy of f was used to have Ŵf = Wf .

We now move the general case. For z ∈ Γ, TΦt(z)Λ is spanned by

∂tΦt(z)T + ∂t̄Φt(z)T̄ , T ∈ C, dΦt(z)X, X ∈ TzΓ. (5.9)

We can repeat the calculation (5.8) with 0 replaced by z to see that, using the assump-

tion (5.4) and the fact that Im Φt(z) = Im z +O(t),

∂t̄Φ(z) = O(|t|∞ + | Im z|∞) = O(| Im Φt(z)|∞). (5.10)

To consider dΦt(z)X = (Φt)∗Y (Φt(z)) we choose a vector field tangent to Γ, Y , Yc(z) =

X. We choose

Yc = Ŵc, Wc =
k∑
j=1

cjVj, c ∈ Ck, (5.11)

a constant coefficient linear combination of vector fields (5.1). Then dΦt(z)X =

(Φt)∗Yc(Φt(z)) and we want to show that

c 7→ (Φt)∗Yc(Φt(z)) is complex linear modulo errors O(| Im Φt(z)|∞). (5.12)

In view of (5.9) that shows that d(TΦt(z)Λ, iTΦt(z)Λ) = O(| Im Φt(z)|∞) and from

[MeSj74, Theorem 1.4, 1◦] we conclude that Λ is almost analytic.

To establish (5.12) we use (5.6) with 〈s,X〉 = s1V̂ + s2îV , s1 = Re t, s2 = Im t.

Since [V̂ , îV ] ∼ 0 and V̂ ∼ îV /i at Imw = 0, we see that

(Φt)∗Yc(w) =
∞∑
p=0

tp

p!
adp

V̂
Wc(w) +O(|t|K+1 + | Imw|∞). (5.13)

Because of the form of Wc (see (5.1) and (5.11))

adp
V̂
Wc(w) = âdpV Wc(w) +O(| Imw′|∞ + | Imh(w′)|∞),

and

c 7→ adpV Wc(w) is complex linear.
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Since w = Φt(z), z ∈ Γ,

| Imw′|+ | Imh(w′)| = O(| Im z′|+ | Imh(z′)|+ |t|)
= O(| Im z|+ |t|) = O(| Imw|+ |t|) = O(| Imw|),

since | Imw| = | Im Φt(z)| ≥ |t|/C. Combining this estimates with (5.13) gives (5.12).

�

5.2. Quasimodes and a positivity condition. We make the same assumptions

on p ∈ S as above but assume in addition that at (x0, ξ0), p(x0, ξ0) = 0 and

{Re p, Im p}(x0, ξ0) < 0. We want to show that there exists u(h) ∈ C∞c (Rn) such

that for P = P (x, ξ, h) = p(x, ξ) +O(h)S ,

P (x, hD, h)u = O(h∞)L2 , WFh(u) = (x0, ξ0), ‖u‖L2 = 1. (5.14)

(See [Zw12, 12.5] for a different argument based on a semiclassical adaptation of the

construction of Duistermaat–Sjöstrand.) The assumption that p ∈ S (R2n) is made

for convenience only: the construction is (micro)local in phase space.

5.2.1. Eikonal equation. Fix p̃ an almost analytic extension of p. We proceed as follows.

Assume that (x0, ξ0) = (0, 0) and write p(x, ξ) = a(x, ξ) + ib(x, ξ) +O(|x|2 + |ξ|2), a, b

real valued and linear. Since {a, b} = −c2 < 0, the linear version of Darboux’s theorem

[HöIII, Theorem 21.1.3] shows that there exists a linear symplectic change of variables

κ(y, η) = (x, ξ) (preserving T ∗Rn) such that

κ∗a = cη1 +O(|η|2 + |y|2), κ∗b = −cy1 +O(|η|2 + |y|2).

We now switch to coordinates (y, η) and we denote them again by (x, ξ). Writing p

for κ∗p and p̃ for κ∗p̃, we obtain,

p(0, 0) = 0, p(x, ξ) = c(ξ1 − ix1) +O(|x|2 + |ξ|2). (5.15)

For s ∈ Cn−1, small there exists ζ1(s) such that

p̃((0, s), (ζ1(s), is)) = 0, ζ1(0) = 0, ∂sζ1(0) = 0, ∂s̄ζ1(s) = O(| Im s|∞), α > 0.

We put Λ0 := {((0, s), (ζ1(s), is))} and then, in the notation of (5.2) we define

Λ = {exp t̂Hp̃(ρ) : ρ ∈ Λ0, t ∈ C, |t| < ε} ⊂ T ∗Cn.

To check that Λ is an almost analytic Lagrangian submanifold of T ∗Cn we use Lemma

4. The transversality condition (5.3) follows immediately form (5.15) and it remains to

check (5.4). For that we note that with t = t1 + it2 (and recalling that ζ1(s) = O(|s|2),

Im Φt((0, s), (ζ1(s), is))) = (t2c, α Im s, ct1,−Re s) +O(|t|2 + |s|2).
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Hence, we obtain (5.4):

| Im Φt((0, s), (ζ1(s), is)))| ≥ c(|t1|+ |t2|) + |s| − O(|t|2 + |s|2)

≥ |t|/C + |s|/C, |s| � 1.

We now claim that Λ is positive in the sense that for

1
i
σ(X, X̄) ≥ c|X|2, X ∈ T ∗(0,0)Λ ⊂ T ∗(0,0)Cn. (5.16)

(Here σ is the symplectic form (2.18).) In fact, vectors in T ∗(0,0)Λ are given by

X = ((T, S), (iT, iS)), S ∈ Cn−1, T ∈ C, (5.17)

from which (5.16) follows.

We now note that the (real) linear transformation κ extends to a complex linear

transformation on Cn × Cn and we can go back to the original coordinates (x, ξ) by

taking the almost analytic Lagrangian manifold κ(Λ). We also note that the positivity

condition (5.16) is invariant under linear symplectic transformations which are real

when restricted to Rn ×Rn (as then κ(X̄) = κ(X)). Hence κ(Λ) is an almost analytic

positive Lagrangian and we now denote it by Λ.

From (5.17) we see that π∗ : T(0,0)Λ → T0Cn is onto and hence we have an almost

analytic generating function, that is Ψ(z),

∂z̄Ψ = O(| Im z|∞ + | Im Ψ(z)|∞)

such that, as almost analytic manifolds,

Λ ∼ {(z,Ψz(z)) : |z| < ε}, Ψz(0) = 0. (5.18)

Proof of (5.18). Since Λ is a.a. Lagrangian, we have σ|Λ ∼ 0 (vanishes to infinite order

at ΛR) while the projection property shows that, near z = 0, Λ = {(z, ζ(z)) : z ∈ Cn},
ζ(0) = 0. Hence d(ζ(z)dz) ∼ 0 and (see [MeSj74, Theorem 1.4, 3◦])

∂z̄ζ(z) = O(| Im z|∞ + | Im ζ(z)|∞).

We note that for z = x ∈ Rn, the strict positivity at ΛR = {(0, 0)} shows that

|x|/C ≤ | Im ζ(x)| ≤ C|x|, x ∈ Rn, |x| < ε. (5.19)

We now see that

0 ∼ σ|Λ =
n∑
j=1

∂zζj(z) ∧ dzj +O(| Im z|∞ + | Im ζ(z)|∞)C∞(Cn;∧2nCn),

and in view of (5.19)

∂zkζj(x)− ∂zjζk(x) = O(|x|∞), x ∈ Rn, |x| < ε.
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For x ∈ Rn define Ψ by the simplest version of the Poincaré lemma:

Ψ(x) =

∫ 1

0

ζ(tx) · xdt.

Then

∂xjΨ(x) =

∫ 1

0

(
n∑
k=1

tzk∂xjζk(tx) + ζj(tx)

)
dt

=

∫ 1

0

(
n∑
k=1

tzk∂xkζj(tx) + ζj(tx)

)
dt+O(|x|∞)

=

∫ 1

0

∂t(tζj(tx))dt+O(|x|∞) = ζj(x) +O(| Im ζ(x)|∞),

(5.20)

in the last argument we used (5.19) again. We now define Ψ(z) as an almost analytic

extension of Ψ. From [MeSj74, Proposition 1.7(ii)] we obtain (5.18). �

The strict positivity of Λ implies that Im Ψxx(0) is positive definite:

T(0,0){z,Ψz(z)} = {(Z,Ψxx(0)Z) : Z ∈ Cn},

Im〈Ψxx(0)Z, Z̄〉 = 1
i
σ((Z,Ψxx(0)Z), (Z̄,Ψxx, Z)) ≥ c|Z|2.

The eikonal equation is satisfied in the following sense: for z ∈ Cn, |z| < ε,

p̃(z,Ψz) = O(| Im z|∞ + | Im Ψz|∞) = O(| Im z|∞ + | Im Ψ|∞), (5.21)

(We can replace Im Ψz with Im Ψ as for Im z = 0, Im Ψ ≥ 0 and hence | Im Ψx| ≤
C| Im Ψ| 12 .)

Proof of (5.21). We have for s ∈ C,

ŝHp̃p̃ = s∂ζ p̃ · ∂z̄p̃− s∂zp̃ · ∂ζ̄ p̃ = O(| Im z|∞ + |Im ζ|∞).

Since p̃|Λ0 = 0, we see that p̃(z,Ψz) ∼ 0 at ΛR. �

Hence to find u satisfying (5.14) we take

u(x) := eiΨ(x)/ha(x, h). (5.22)

Almost analytic extension of a will make a natural appearance in the transport equa-

tion.
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5.2.2. Transport equations. We write the amplitude as a = a0 + ha1 + · · · , aj ∈ S

and to find the transport equations we apply the method of com plex stationary phase

[MeSj74, Theorem 2.3, p.148] to

Pu(x) =
1

(2πh)n

∫
Rn

∫
Rn
P (x, ξ, h)e

i
h

(〈x−y,ξ〉+Ψ(y))a(y, h)dydξ

= e
i
h

Ψ(x)

[
p̃(x,Ψx)a(x, h) +

h

i

(
k∑
j=1

∂ζk p̃(x,Ψx)∂xk + 1
2

n∑
k=1

∂2
xkξk

p̃(x,Ψx)

)
a(x, h)

+ h

(
p̃1(x,Ψx)− i

n∑
k,`=1

Ψxkx`(x)∂2
ξkξ`

p̃(x,Ψx)

)
a(x, h) +O(h2)S

]
.

The first term is estimated using (5.21) and the transport equation become

Vpãk(z) + 1
2
divVp ãk(z) + icΨãk(z) = Fk−1(ã0, · · · , ãk−1), F−1 ≡ 0,

Vp := (πΛ)∗Hp̃ = ∂ζk p̃(x,Ψx)∂zk , πΛ : Λ = {(z,Ψz(z))} → Cn,

cΨ(z) := p̃1(z,Ψz)− i
n∑

k,`=1

Ψzkz`(z)∂2
ζkζ`

p̃(z,Ψz).

(5.23)

We now solve these equations using the “almost analytic” flow of Vp:

z(t, w′) := exp(t̂Vp)(0, w
′), | Im [z(t, w′)− w′]| ∼ |t|,

w′ ∈ BCn−1(0, ε), t ∈ C, |t| < ε.
(5.24)

So, for instance,

ã0(z) := exp g0(z), g0(z(t, w′)) := −
∫ 1

0

tb0(z(ts, w′))ds, b0 := 1
2
divVp + icΨ.

We now calculate the action of Vp on the g0(z(t, w′)) using almost analyticity of b0 and

the properties of z(t, w′) in (5.24):

Vpg0(z(t, w′)) = −
∫ 1

0

∞∑
k=0

sk

k!
Vpt̂Vp

k
tb0(z(0, w′)) +O(|t|∞)ds

= −
∫ 1

0

∞∑
k=0

sk

k!
t̂Vp

k+1
b0(z(0, w′)) +O(|t|∞) +O(| Im z(0, w′)|∞)ds

= −
∞∑
k=0

1

(k + 1)!
t̂Vp

k+1
b0(z(0, w′)) +O(|t|∞ +O(| Im z(0, w′)|∞)

= −b0(z(t, w′)) +O(|t|∞ + | Im z(0, w′)|∞)

= −b0(z(t, w′)) +O(| Im Ψ|∞ + | Im z|∞).

This gives (5.23) with k = 0. Similarly we obtain solutions to the remaining transport

equations. We obtain a by taking an asymptotic sum and multiplying it by χ(x) where
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χ ∈ C∞c (BRn(0, ε), χ ≡ 1 near 0. Then returning to (5.22) we see that

P (x, hDx, h)(eiΨ(x)/ha(x, h)) = O(h∞ + e−| Im Ψ(x)|/Ch| Im Ψ(x)|∞)C∞c = O(h∞)C∞c ,

WFh
(
eiΨ(x)/ha(x, h)

)
= {(0, 0)}.

(5.25)

6. Projector in the case of deformations

We now present a version of [Sj96, §2] in the case of the usual FBI transform on

Rn. It is based on deformation of T ∗Rn to a I-Lagrangian, R-symplectic submanifold

of T ∗Cn. In §8 we will show that this approach, described in §§3,4, is equivalent to

the approach using weights.

The FBI transform and weights used in [Sj96, §2] are different from the ones used in

[Ma02] and §3. The procedure of [Sj96], and earlier of [HeSj86], involves deformation

of Tu(x, ξ) to an I-Lagrangian, R-symplectic submanifold of C2n:

Λ = ΛG := {(x+ i∂ξG(x, ξ), ξ − i∂xG(x, ξ) : (x, ξ) ∈ R2n}, (6.1)

where G ∈ C∞c (R2n) is assumed to be small in C2. This means that for the symplectic

form (2.18) on C2n = T ∗Cn we have

Imσ|Λ = 0, σΛ := Reσ|Λ is non-degenerate.

Smallness of G is needed for the second property. We also note that Λ is a (maximally)

totally real submanifold of C2n ' R4n, TρΛ ∩ iTρΛ = {0}.
We parametrize Λ by (x, ξ) using (6.1) and define

TΛu(x, ξ) = Tu(x+ iGξ(x, ξ), ξ − iGx(x, ξ)). (6.2)

A natural weight associated to G is given by H(x, ξ) satisfying

dx,ξH = − Im ζ · dz|Λ. (6.3)

Since

− Im ζ · dz|Λ = − Im(ξ − iGx)d(x+ iGξ) = (Gx − (ξ ·Gξ)x) · dx− (Gξξξ) · dξ,

H is given by (we choose H = 0 for G = 0)

H(x, ξ) = G(x, ξ)− ξ ·Gξ(x, ξ). (6.4)

Lemma 6. For u ∈ S (R2n) define

SΛu(y) := c̄h−
3n
4

∫
R2n

e
i
h

(〈y−x−iGξ,ξ−iGx〉+ i
2

(x+iGξ−y)2)b(x, ξ)u(x, ξ)dxdξ,

b(x, ξ)dx ∧ dξ = d(ξ − iGx) ∧ d(x+ iGξ).

(6.5)

Then

SΛTΛv = v, v ∈ L2(Rn), (6.6)



30 JEFFREY GALKOWSKI AND MACIEJ ZWORSKI

and

TΛSΛ = O(1) : L2
Λ → L2

Λ, L2
Λ := L2(R2n, e−2H/hdxdξ). (6.7)

Remark. The weight H defined by (6.3) is precisely the unique weight (up to an

additive constant) for which (6.7) holds – see (6.9) in the proof below.

Proof. To prove (6.6) we write out the composition and deform the contour. The phase

in the composition is given by

〈ξ − iGx, y − y′〉+ i
2

(
(x+ iGx − y)2 + (x+ iGx − y′)2

)
.

If z = x + iGξ(x, ξ), ζ = ξ − iGx(x, ξ), then our choice of b shows that b(x, ξ)dxdξ =

dζ ∧ dz and, by deforming the contour from ΛG to Λ0 := R2n (note that ΛG and Λ0

coincide outside of a compact set),

SΛTΛu(y) = cc̄h−
3n
2

∫∫
ΛG

e
i
h

((y−y′)ζ+ i
2

((y−z)2+(y′−z)2))u(y′)dζdzdy′

= cc̄h−
3n
2

∫∫
Λ0

e
i
h

((y−y′)ζ+ i
2

((y−z)2+(y′−z)2))u(y′)dζdzdy

= T ∗Tu(y) = u(y).

To prove (6.7), we complete the squares in the phase arising in the composition of

TΛSΛ to obtain the phase

ψΛ = 1
2
(〈z, ζ〉 − 〈z′, ζ ′〉) + 1

2
(〈z, ζ ′〉 − 〈z′, ζ〉) + i

2
((ζ − ζ ′)2 + (z − z′)2)),

z := x+ iGξ, z
′ := x′ + iGξ′ ,

ζ := ξ − iGx, ζ := ξ′ − iGx′ ,

(6.8)

and where G•′ := G•′(x
′, ξ′).

We calculate (noting that as Λ is totally real we can use holomorphic differentials

by taking almost analytic extensions), d ImψΛ = (∂ + ∂̄) ImψΛ = Im ∂ψΛ, where d

denote the differential with respect to (x, ξ, x′, ξ′) and ∂ the holomorphic differential

with respect to (z, ζ, z′, ζ ′). Using the expression above and restricting to z = z′ and

ζ = ζ ′ we see that

d ImψΛ|(x,ξ)=(x′,ξ′) = Im(ζdz − ζdz′) = (−dx,ξH + dx′,ξ′H) |(x,ξ)=(x′,ξ′). (6.9)

This means that

ImψΛ = −H(x, ξ) +O((x− x′)2 + (ξ − ξ′)2) +H(x′, ξ′), (6.10)

and as G (and H ) are small in C2 the comparison with the case G = H = 0 gives

ImψΛ = −H(x, ξ) + (1
2
−O(‖G‖C2))((ξ − ξ′)2 + (x− x′)2) +H(x′, ξ′).

The Schur criterion now gives the boundedness in (6.7). �
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Remark. A more pedestrian way of seeing (6.10) follows from a direct calculation

and from using the formula (6.4):

2 ImψΛ = ξGξ − ξ′Gξ′ − xGx + x′Gx′ + ξ′Gξ − xGx′ + x′Gx − ξGξ′

+ (ξ − ξ′)2 − (Gx −G′x)2 + (x− x′)2 − (Gξ −Gξ′)
2

= 2ξGξ − 2ξ′Gξ + 2(ξ′ − ξ)Gξ + 2(x′ − x)Gx

+ (ξ′ − ξ)(Gξ′ −Gξ) + (x′ − x)(Gx′ −Gx)

+ (ξ − ξ′)2 − (Gx −G′x)2 + (x− x′)2 − (Gξ −Gξ′)
2

= −2G(x, ξ) + 2ξG(x, ξ) + 2G(x′, ξ′)− 2ξ′Gξ′(x
′, ξ′)

+ (1−O(‖G‖C2)((ξ − ξ′)2 + (x− x′)2)

= −2H(x, ξ) + 2H(x′, ξ′) + (1−O(‖G‖C2)((ξ − ξ′)2 + (x− x′)2).

We now move to construct the orthogonal projector

ΠΛ(L2
Λ) = TΛ(L2(Rn)), Π∗,HΛ = ΠΛ, Π2

Λ = ΠΛ, (6.11)

and describe its structure. That is done similarly to the construction of Πϕ in §3. The

complication comes from a more involved form of the operators ζj which requires the

use of the almost analytic methods reviewed in §5.

We start by defining operators which annihilate the deformed FBI transform. We

first recall that the holomorphic extension of T satisfies

ZjT ≡ 0, Zj = hDzj − ζj − ihDζj .

Hence,

ZΛ
j (x, ξ, hDx, hDξ)TΛ ≡ 0, ZΛ

j (x, ξ, hDx, hDξ) :=
(
hDzj − ζj − ihDζj

)
|Λ, (6.12)

where [
hDz|Λ
hDζ |Λ

]
=

[
I + iGxξ(x, ξ) iGξξ(x, ξ)

−iGxx(x, ξ) I − iGξ,x(x, ξ)

]−1 [
hDx

hDξ

]
.

Since Zj’s commute we have (with α = (x, ξ)) [ZΛ
j (α, hDα), ZΛ

k (α, hDα)] = 0.

We now repeat the construction outlined in [Sj96] and presented in the slightly

simpler setting in §3. Again, the argument proceeds in the following steps:

• construction of a uniformly bounded operator (as h → 0) BΛ : L2
Λ → L2

Λ such

that ZΛ
j BΛ = O(h∞)L2

Λ→L
2
Λ
, B∗,HΛ = BΛ and B2

Λ = BΛ +O(h∞)L2
Λ→L

2
Λ
;

• characterization of the unique properties of the Schwartz kernel of BΛ: unique-

ness of the phase and the determination of the amplitude from its restriction

to the diagonal;

• finding a projector Pλ = O(1)L2
Λ→L

2
Λ

onto the image of TΛ.
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• choosing f ∈ S(1), f ≥ 1/C so that A := PΛMfP
∗,H
Λ (in the notation of §2),

satisfies A = BΛ +O(h∞)L2
Λ→L

2
Λ
; this relies on the uniqueness properties in the

construction of BΛ;

• expressing ΠΛ as a suitable contour integral of the resolvent of A and using it

to show that ΠΛ = BΛ +O(h∞)L2
Λ→L

2
Λ
.

To construct BΛ we postulate an ansatz

BΛu(α) = h−n
∫
T ∗Tn

eiψ(α,β)/h−2H(β)/ha(α, β)u(β)dmΛ(β),

dmΛ(β) := (σ|Λ)n/n! = dα, β = Reα, α ∈ Λ,

(6.13)

and as in (2.9)

ZΛ
j (α, hDα)

(
eiψ(α,β)/ha(α, β)

)
= O(h∞ + |α− β|∞),

Z̃Λ
j (β, hDβ)

(
eiψ(α,β)/ha(α, β)

)
= O(h∞ + |α− β|∞),

(6.14)

where Z̃Λ
j , j = 1, · · · , n are defined in (6.16) below. The equations (6.14) are consistent

with ψ(α, β) = −ψ(β, α)and a(α, β) = a(β, α) – see §6.1.

Notation. Suppose Q is a differential operator with holomorphic coefficients defined

near Λ. We write

Q(α, hDα) = Q(z, ζ, hDz, hDζ),

and Q(α, hDα) for the corresponding anti-holomorphic operator. The operator Q can

be restricted to the totally real submanifold Λ and that restriction is denoted by QΛ.

If we parametrize Λ by α ∈ T ∗Rn we write QΛ = QΛ(α, hDα). This operator then has

an almost analytic extension to a neighbourhood of Λ and we denote it by the same

letter. We also consider the anti-holomorphic operator u 7→ Qtū,∫
Λ

u(α)[Qv](α)dα =

∫
Λ

[Qtu](α)v(α)dα,

and denote its restriction of Λ by Q̄Λ. The reason for this notation is the fact that, as

function on Λ ' T ∗Rn,

σ(Q
Λ
) = σ(QΛ). (6.15)

We use the same letter to denote its almost analytic extension to a neighbourhood of Λ.

We also define Q̃Λ, σ(Q̃Λ)(α, α∗) = σ(QΛ)(α,−α∗). Here σ refers to the semiclassical

principal symbol.

We illustrate this in a simple example: Λ = {(x, ξ − ig′(x)) : (x, ξ) ∈ R2}, g ∈
C∞(R;R). If Q = hDz − ζ − ihDζ then

QΛ = hDx + ig′′(x)hDξ − ξ + ig′(x)− ihDξ,

Q̄Λ = hDx − ig′′(x)hDξ − ξ − ig′(x) + ihDξ,

Q̃Λ = −hDx + ig′′(x)hDξ − ξ − ig′(x)− ihDξ,
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with the operators extended to a neighbourhood of Λ by taking holomorphic derivatives

and an almost analytic extension of g. �

We note again that the weight H does not appear in Z̃Λ
j . To see this we first compute

(ZΛ
j )∗,H :

〈ZΛ
j u, v〉L2

Λ
=

∫
T ∗Tn

ZΛ
j (α, hDα)u(α)v(α)e−2H(α)dmΛ(α)

=

∫
Λ

Zj(α, hDα)u(α)v(α)e−2H(α)/hdα

=

∫
Λ

u(α)((Zj(α, hDα))t(v(α)e−2H(α))dα

=

∫
Λ

u(α)
(
e2H(α)/hZj(α, hDα)e−2H(α)

)
v(α)e−2H(α))dα

where (see the remark about notation above) Zj(α, hDα)v(α) := (Zj(α, hDα)tv(α).

Hence (
ZΛ
j (α, hDα)

)∗,H
= e2H(α)/hZ

Λ

j (α, hDα)e−2H(α), Z
Λ

j = Zj|Λ.

We then have

0 ≡ (ZΛ
j BΛ)∗u(α) = B∗Λ(ZΛ

j )∗u(α) = BΛ(ZΛ
j )∗u(α)

=

∫
T ∗Tn

KΛ(α, β)e−2H(β)/h(ZΛ
j )∗u(β)dmΛ(β)

=

∫
Λ

KΛ(α, β)Zj(β, hDβ)
(
e−2H(β)/hu(β)

)
dβ

=

∫ (
Z̃j(β, hDβ)KΛ(α, β)

)
u(β)e−2H(β)/hdβ

=

∫
Z̃Λ
j (β, hDβ)KΛ(α, β)e−2H(β)/hu(β)dmΛ(β),

where

Z̃j(β, hDβ)v(β) := Zj(β, hDβ)tv(β) = Zj(β, hDβ)v(β), Z̃Λ
j := Z̃j|Λ. (6.16)

Explicitly we have

Z̃j(z, ζ, hDx, hDζ) = −hD̄zj − ζ̄j − ihD̄ζj , (6.17)

where [
hD̄z|Λ
hD̄ζ |Λ

]
=

[
I − iGxξ(x, ξ) −iGξξ(x, ξ)

iGxx(x, ξ) I + iGξ,x(x, ξ)

]−1 [
hDx

hDξ

]
.

Also, [Z̃Λ
j , Z̃

Λ
k ] = 0.
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6.1. Eikonal equations. Let ζΛ
j and ζ̃Λ

j be the principal symbols of ZΛ
j and Z̃Λ

j re-

spectively. The eikonal equations we want to solve are

ζΛ
j (α, dαψ(α, β)) = O(|α− β|∞), ζ̃Λ

j (β, dβψ(α, β)) = O(|α− β|∞), α, β ∈ Λ. (6.18)

We recall that ζΛ
j are restrictions to T ∗Λ of holomorphic functions on T ∗C2n: ζj =

x∗j − ξj − iξ∗j , (x, ξ, x∗, ξ∗) ∈ C2n × C2n. We now put

ζ
Λ

j (α, α∗) := ζ̃Λ
j (α,−α∗)

which is the principal symbol of Z
Λ

j .

From the geometric point of view, so that we remain in the same framework as

in §2.2, it is convenient to construct the phase function corresponding to BH :=

e−H/hBΛe
H/h. That means that properties of BΛ on L2(Λ) are equivalent to the prop-

erties of BH on L2, that is we want

BH = B∗H , B2
H = BH . (6.19)

We have

BHu(α) = h−n
∫
e
i
h
ψH(α,β)a(α, β)u(β)dβ,

ψH(α, β) := iH(α) + ψ(α, β) + iH(β).

To simplify the notation we first assume that Λ (and consequently H defined by (6.3)

and ζHj , ζ̄Hj ) are analytic. We will replace that by almost analyticity by proceeding as

in §5.

To construct ψH we consider CH , the relation associated to it:

CH = {(α, dαψH(α, β), β,−dβψH(α, β)) : (α, β) ∈ nbhdC4n(Diag(Λ× Λ))}. (6.20)

In view of (6.19) we must have

CH ◦ CH = CH , C
t

H = CH . (6.21)

(Here C
t

H := {(ρ̄, ρ̄′) : (ρ′, ρ) ∈ CH}, and ρ 7→ ρ̄ is defined after the almost analytic

identification of Λ with T ∗Rn.)

We define

ζHj (α, α∗) := ζΛ
j (α, α∗ − idH(α)),

ζ̄Hj (α, α∗) := ζ̄Λ
j (α, α∗ + idH(α)) = ζHj (ᾱ, ᾱ∗),

(6.22)

so that the formal analogue of (6.18) is given by

ζHj (α, dαψH(α, β)) = 0, ζ̄Hj (α,−dβψH(α, β)) = 0. (6.23)
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(Here again the ᾱ and ᾱ∗ are defined after an identification of Λ with T ∗Rn). We

construct CH geometrically – see §2.2 for the simpler linear algebraic treatment in the

case of the FBI transform without weights. In view of (6.20) and (6.23) we must have

CH ⊂ S × S, S := {ρ : ζHj (ρ) = 0, ρ ∈ nbhdC4n(T ∗Λ)},

S := {ρ̄ : ρ ∈ S} = {ρ : ζ̄Hj (ρ) = 0, ρ ∈ nbhdC4n(T ∗Λ)}.

If follows that the complex vector fields Hπ∗Lζ
H
j

and HπRζ̄
H
j

(πL(ρ, ρ′) := ρ, πR(ρ, ρ′) :=

ρ′)) are tangent to CH . By checking the case of T ∗Λ = T ∗Rn (no deformation and

hence H ≡ 0) we see, as in §2.2 that S ∩ S̄ is a symplectic submanifold (with respect

to the complex symplectic form) of complex dimension 4n. The independence of HζHk
,

Hζ̄Hj
, j, k = 1, · · ·n (again easily seen in the unperturbed case) shows that

BCn(0, ε)×BCn(0, ε)× (S ∩ S̄) 3 (t, s, ρ) 7→ (exp〈t,HζH 〉(ρ), exp〈s,Hζ̄H 〉(ρ)) ∈ C8n,

is a bi-holomorphic map to an embedded (complex) 4n dimensional submanifold. This

and idempotence (first condition in (6.21)) imply that

CH =
{

(exp〈t,HζH 〉(ρ), exp〈s,Hζ̄H 〉(ρ)) : ρ ∈ S ∩ S̄, t, s ∈ BCn(0, ε)
}
,

where 〈t,H•H 〉 :=
∑n

k=1 tkH•Hk , • = ζ, ζ̄.

The second condition in (6.21) is automatically satisfied (this makes sense since

CH ⊂ S × S̄ came from demanding that 0 = (ζHj B)∗ = B(ζHj )∗). Since π : CH →
nbhdC4n(Λ× Λ) is surjective we have have a parametrization given by (6.20) with ψH
determined up to an additive constant. We claim that we can choose that constant so

that

ψH(α, α) = 0. (6.24)

To see this we note that (from CH = C
t

H)

dαψH(α, β)|α=β = −dβψH(α, β)|α=β, α ∈ Λ,

and hence

dα(ψH(α, α)) = dαψH(α, β)|α=β + dβψH(α, β)|α=β

= 2i Im dαψH(α, β)|α=β, α ∈ Λ.
(6.25)

To find Im dαψH(α, β)|α=β it is convenient to go to the origins of the symbols ζHj
(6.22) : ZΛ

j ’s, with symbols ζΛ
j annihilate the phase in TΛ and hence

Sα := S ∩ T ∗αΛC = {(α, dαϕ(α, y) + idH(α)) : y ∈ Cn} ,
ϕ(α, y) := 〈z − y, ζ〉+ i(z − y)2/2,

z = αx + iGξ(αx, αξ), ζ = αξ −Gx(αx, αξ).
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In the case G = 0 (and hence H = 0), Sα and S̄α := S̄ ∩ T ∗αΛC intersect transversally

in one point and that has to remain true under perturbations. Hence we are looking

for a solution to

dαϕ(α, y) + idH(α) = dαϕ(α, y′)− idH(α). (6.26)

Now, at y = y′ = αx we have dαϕ(α, y) = ζdz|Λ and in view of the definition of dH in

(6.3), (6.26) holds. It follows that for α ∈ Λ

Sα ∩ S̄α = {(α,Re(ζdz|Λ)} ∈ T ∗Λ.

Next, by analytic continuation (replaced by almost analytic continuation below), it

follows (since intersection of S and S̄ is transversal and we have the right dimension)

that

J := S ∩ S̄ = {(α, ω(α) + ω̄(α)) : α ∈ nbhdC2n(Λ)}, ω(α)|Λ = 1
2

Re(ζdz|Λ), (6.27)

where we recall that ω̄(α) = ω(ᾱ). But this shows that π−1(diag(Λ × Λ)) ∩ CH is

real which means that Im dαψH(α, β)
∣∣
β=α

= 0 for α ∈ Λ showing that ψH(α, α) is a

constant which can be chosen be 0. This gives (6.24).

Remark. Vanishing of Im dαψH(α, β) also shows that

− ImψH(α, β) = O(|α− β|2)

and since G is assumed to be small, the case of G = 0 shows that

− ImψH(α, β) ≤ −|α− β|2/C, C > 0. (6.28)

This shows that BH given by (6.13) is bounded on L2. �

We now comment on the general case and explain how to use almost analytic ex-

tensions off Λ. We first identify Λ with T ∗Rn using (6.1) and extending G almost

analytically to C4n. We then define J by (6.27) using an almost analytic extension

of ω(α)|Λ (where ω̄(α) = ω(ᾱ)). We are now basically in the same situation as in

§5.2.1, except for a larger number of vector fields, with Λ replaced by CH and Λ0 by

{(ρ, ρ) : ρ ∈J }. Hence we define

CH =
{(

exp ̂〈t,HζH 〉(ρ), exp ̂〈s,Hζ̄H 〉(ρ)
)

: ρ ∈J , t, s ∈ BCn(0, ε)
}
.

Almost the same arguments as in §5.2.1 show that

| Im exp ̂〈t,HζH 〉(ρ)| ≥ |t|/C, | Im exp ̂〈s,Hζ̄H 〉(ρ)| ≥ |s|/C, ρ ∈J . (6.29)

In fact, for ζj := z∗j − ζj − iζ∗j and ζ̄j := z∗j − ζj + iζ∗j we have {ζj, ζ̄k} = 2iδjk. On

T ∗Λ, ζ̄Hk = ζHk and {ζHj , ζ̄Hk }/2i is positive definite. By taking a linear combination

of ζHj ’s we can then arrange that, at a given point, {ζHj , ζ̄Hk }/2i = δjk. We can then

make a linear symplectic change of variables at any point of T ∗Λ giving new variables

(x, y, ξ, η), x, y, ξ, η ∈ Rn, centered at 0 ∈ R4n, such that

ζHj = c(ηj + iyj) +O(|x|2 + |y|2 + |ξ|2 + |η|2), c > 0,
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and this holds also for almost continuations of ζHj . That means that near 0,

J = {(z, 0, ζ, 0) + F (z, ζ)) : (z, ζ) ∈ nbhdC2n(0)}, F = O(|z|2 + |ζ|2), (6.30)

We also note that for (z, ζ) ∈ R2n (which corresponds to the interection with T ∗Λ),

J is real. This means that in (6.30),

ImF (z, ζ) = O((| Im z|+ | Im ζ|)(|z|+ |ζ|)).

Hence,

| Im exp ̂〈t,HζH 〉((z, 0, ζ, 0) + F (z, ζ))| = |(Im z, c Im t, Im ζ, cRe t)|
+O((| Im z|+ | Im ζ|)(|z|+ |ζ|) + |t|2)

≥ |t|/C, if |z|, |ζ| � 1,

with the corresponding estimate for ζ̄H . Lemma 4 and (6.29) now show the almost

analyticity of CH . As in the proof of (5.18) we now obtain ψH = ψH(α, β) such that,

dᾱ,β̄ψH(α, β) = O (d((α, β), diag(Λ× Λ))∞) .

Restricting ψH(α, β) to Λ× Λ gives (6.18).

We now return to our original ψ in (6.13), ψ(α, β) = −iH(α) + ψH(α, β) − iH(β).

Our construction shows that

(6.18) holds, ψ(α, α) = −2iH(α), ψ(α, β) = −ψ(β, α), α, β ∈ Λ. (6.31)

Remark. Although we motivated our construction using the self-adjointness and

idempotence properties of the operator BΛ (or equivalently BH), the construction

shows that ψ is uniquely determined, up to O(|α− β|∞), by (6.31). �

We also record that

c.v.β (ψ(α, β) + 2iH(β) + ψ(β, α)) = ψ(α, α),

−H(α)− Imψ(α, β)−H(β) ≤ −|α− β|2/C, C > 0.
(6.32)

6.2. Transport equations. We now return to (6.14) and consider the transport equa-

tions satisfied by a. The analysis is similar to that in §5.2.2 and we start with a formal

discussion (valid when all the objects are analytic). In view of the eikonal equations

we have, as in (5.23),

a(α, β) ∼
∞∑
k=0

hkak(α, β),
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where, with ζΛ
j1 the second term in the expansion of the symbol of ZΛ

j , we want to

solve

Vjak(α, β) + cj(α, β)ak(α, β) = F j
k−1(a0, · · · , ak−1)(α, β), F j

−1 ≡ 0,

Vj := 〈Vj(α, β), ∂α〉, Vj(α, β)` := ∂α∗` ζ
Λ
j (α, dαψ(α, β)),

cj(α, β) := 1
2

2n∑
`=1

∂α`Vj(α, β) + ζj1(α, dαψ(α, β))

− i
2n∑

k,`=1

∂2
αkα`

ψ(α, β)∂2
α∗kα

∗
`
ζΛ
j (α, dαψ(α, β)).

(6.33)

We have similar expressions coming from the applications Z̃Λ
j (β, hDβ) with Vj, cj, F

j
k

replaced by Ṽj, c̃j, F̃
j
k , and with the roles of α and β switched. A key observation here

is that HζΛ
j (α) and Hζ̄Λ

j (β) are tangent to C and commute and that Vj and −Ṽj are

these vector fields in the parametrization of C by (α, β). Hence,

[Vj, Vk] = 0, [Vj, Ṽk] = 0, [Ṽk, Ṽk] = 0. (6.34)

We note that, for any b(α, β) ∈ S0,

ZΛ
j (α, hDα)

(
e
i
h
ψ(α,β)b(α, β)

)
= he

i
h
ψ(α,β)((Vj + cj)b(α, β) +O(h)),

Z̃Λ
j (β, hDβ)

(
e
i
h
ψ(α,β)b(α, β)

)
= he

i
h
ψ(α,β)((Ṽj + c̃j)b(α, β) +O(h)).

(6.35)

Moreover, solving (6.33) means that

ZΛ
j (α, hDα)

(
e
i
h
ψ(α,β)

K−1∑
k=0

hkak(α, β)

)
= hK+1e

i
h
ψ(α,β)F j

K−1(α, β),

Z̃Λ
j (β, hDβ)

(
e
i
h
ψ(α,β)

K−1∑
k=0

hkak(α, β)

)
= hK+1e

i
h
ψ(α,β)F̃ j

K−1(α, β).

(6.36)

Since

[ZΛ
j (α, hDα), ZΛ

k (α, hDα)] = 0, [Z̃Λ
j (β, hDβ), Z̃Λ

k (β, hDβ)] = 0,

[ZΛ
j (α, hDα), Z̃Λ

k (β, hDβ)] = 0,

we have from (6.34) and (6.35),

Vjck = Vkcj, Vkc̃j = Ṽjck, Ṽkc̃j = Ṽj c̃k. (6.37)

Similarly, (6.36) gives

(Vj + cj)F
`
K−1 = (Vk + ck)F

j
K−1, (Ṽj + c̃j)F̃

`
K−1 = (Ṽk + c̃k)F̃

j
K−1,

(Vj + cj)F̃
`
K−1 = (Ṽk + c̃k)F

j
K−1.

(6.38)
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Equations (6.37) and (6.38) provide compatibility conditions for solving (6.33):

(Vj + cj)ak = F j
k−1, (Ṽ` + c̃`)ak = F `

k−1, ak(α, α) = bk(α),

where the bk’s are prescribed. In fact, since the V`’s and Ṽj ’s are independent when

α = β (as complex vectorfields),

C2n × Cn × Cn 3 (ρ, t, s) 7→ (α, β) =
(

exp〈V, t〉(ρ), exp〈Ṽ , s〉(ρ)
)
∈ C2n × C2n,

〈V, t〉 :=
n∑
j=1

tjVj, 〈Ṽ , s〉 :=
n∑
`=1

sjṼ`,

is a local bi-holomorphic map onto of nbhdC4n(diag(Λ × Λ)) (almost analytic in the

general case). In view of this and of (6.34), (6.37), the following integrating factor,

g = g(α, β), is well defined (in the analytic case) on nbhdC4n(diag(Λ× Λ)):

g(e〈V,t〉(ρ), e〈Ṽ ,s〉(ρ)) := −
n∑
j=1

∫ 1

0

(tjcj + sj c̃j)|(α,β)=(eτ〈V,t〉(ρ),eτ〈Ṽ ,s〉(ρ))
dτ,

and satisfies

Vjg(α, β) = cj(α, β), Ṽjg(α, β) = c̃j(α, β), j = 1, · · · , n.

We then define ak(α, β) inductively as follows: at (α, β) = (e〈V,t〉(ρ), e〈Ṽ ,s〉(ρ)),

ak(α, β) = eg(α,β)bk(ρ)

+ eg(α,β)

∫ 1

0

e−g(γ,γ
′)(tjF

j
k−1(γ, γ′) + sjF̃

j
k−1(γ, γ′))|

(γ,γ′)=(eτ〈V,t〉(ρ),eτ〈Ṽ ,s〉(ρ))
dτ.

The compatibility relations (6.38) then show that (6.33) hold.

We now modify this discussion to the C∞ case using almost analytic extensions as

in §5.2.2 and that provides solutions of (6.33) for (α, β) ∈ Λ×Λ valid to infinite order

at diag(Λ × Λ) with any initial data on the diagonal. In the time honoured tradition

of [HeSj86] and [Sj96] we omit the tedious details.

Combination of §6.1 and 6.2 gives (2.9) with arbitrary a(α, α) ∼
∑

k bk(α)hk.

6.3. Construction of the projector. We now proceed as in §3.3 and obtain the

initial values, bk(α) in the construction of the amplitude. Thus let BΛ be given by

(6.13) with phase and amplitude satisfying (6.14) and (6.28) with a(α, α) to be chosen.

We also note that (6.14) determine a(α, β) (up to O(|α− β|∞ + h∞)) from a(α, α) ∼∑
k bk(α)hk.

To find bk’s we proceed by computing the expansion of B2
Λ using stationary phase.

Since ZΛ
j B

2
Λ = O(h∞)L2→L2 and B2

Λ is self-adjoint, the integration kernel of B2
Λ is

again determined by its values on the diagonal (for the phase see the remark after
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(6.31)). The stationary phase argument (3.13)-(3.16) gives the desired b′ks and we

obtain a(α, β) with

a(α, β) ∼
∞∑
k=0

hkak(α, β), |a0(α, α)| > 1/C,

such that BΛ given by (2.9) satisfies

B∗,HΛ = BΛ, BΛ = O(1) : L2
Λ → L2

Λ, B2
Λ = BΛ. (6.39)

We now proceed as in §3.4 and show that the exact orthogonal projector (6.11)

satisfies

ΠΛ = BΛ +O(h∞)L2
Λ→L

2
Λ
. (6.40)

The only difference in the argument is the construction of the the exact projector PΛ:

PΛ(L2
Λ(Λ)) = TΛ(L2(Rn)), P 2

Λ = PΛ, PΛ = O(1)LH(Λ)→LH(Λ).

But a bounded projection was already provided by Lemma 6 and in its notation we

can take

PΛ = TΛSΛ.

For f ∈ S(Λ), f(α) ∼
∑∞

k=0 fk(α)hk , f0(α) > 1/C, we now define

Af := PΛfP
∗,H
Λ , Afu(α) =: h−n

∫
Λ

e
i
h
ψ1(α,β)af (α, β)u(β)e−2H(β)/hdmΛ(β).

As in §3.4 we claim that ψ1 = ψ (modulo O(|α− β|∞)). Indeed, since A∗,Hf = Af and

PΛ = TΛSΛ, the arguments leading to (6.18) apply and those eikonal equations hold

for ψ1 as well. Hence, ψ1 is fully determined by its value on the diagonal and we find

that using ψΛ in (6.8) and (6.9)

ψ1(α, α) + 2iH(α) = c.v.β

(
ψΛ(α, β)− ψΛ(α, β)

)
= 0.

But this means that (6.31) holds for ψ1 and hence ψ1(α, β) = ψ(α, β) +O(|α− β|∞).

Choosing f so that Af = BΛ +O(h∞)L2
Λ→L

2
Λ

as in §3.4 and arguing as in that section

gives (6.40).

7. Pseudodifferential operators

We now discuss the action of pseudodifferential operators

Pu(x) =
1

(2πih)n

∫
Rn

∫
Rn
p(x, ξ)e

i
h
〈x−y,ξ〉u(y)dydξ, (7.1)

where p has a holomorphic extension satisfying

|p(z, ζ)| ≤M, | Im z| ≤ a, | Im ζ| ≤ b, (7.2)

for some a, b,M > 0.

We start with the following
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Lemma 7. Suppose that P is given by (7.1). Then

TΛPSΛ = O(1) : L2
Λ → L2

Λ, TΛPSΛ = c0h
−n
∫

Λ

KP (α, β)u(β)dβ,

KP (α, β) = e
i
h
ψΛ(α,β)aP (α, β) + r(α, β),

aP (α, β) ∼
∞∑
j=0

hjajP (α, β), a0
P (α, α) = p|Λ(α),

(7.3)

where ψΛ is given by (6.8) and

|r(α, β)| ≤ Ce−〈α−β〉/Ch.

Proof. Formally,

KP (α, β) =
|c|2

h
n
2

1

(2πh)n

∫
R2n

∫
Rn
e
i
h

(ϕ(α,y)+〈y−y′,η〉−ϕ∗(β,y′))p(y, η)dy′dηdy,

and the critical points of the phase

(y, y′, η) 7→ ϕ(α, y) + 〈y − y′, η〉 − ϕ∗(β, y′),

ϕ(α, y) = 〈αx − y, αξ〉+ i
2
(αx − y)2, ϕ∗(β, y) = ϕ(β̄, y), α, β ∈ Λ,

are

y = y′ = yc = 1
2
(αx + βx) + i

2
(βξ − αξ), η = ηc = 1

2
(αξ + βξ) + i

2
(αx − βx).

The critical value of the phase is given by ψΛ in (6.8). This gives a formal argument

for (7.3).

To justify this, we first shift contours by

η 7→ η + iε
y − y′

〈y − y′〉
,

which changes the phase to

〈αx − y, αξ〉+
i

2
(αx − y)2 + 〈y − y′, η〉+ 〈y′ − βx, βξ〉+

i

2
(βx − y′)2 + iε

(y − y′)2

〈y − y′〉
Next, we shift contours in y and y′:

y 7→ y + iε
η − αξ
〈η − αξ〉

, y′ 7→ y′ + iε
βξ − η
〈βξ − η〉

.

This results in the phase

〈αx − y, αξ〉+
i

2
(αx − y)2 + 〈y − y′, η〉+ 〈y′ − βx, βξ〉+

i

2
(βx − y′)2

+ iε
(η − αξ)2

〈η − αξ〉
+ iε

(η − βξ)2

〈η − βξ〉
+ iε

(y − y′)2

〈y − y′〉
− ε
[〈
αx − y,

αξ − η
〈αξ − η〉

〉
+
〈
βx − y′,

η − βξ
〈βξ − η〉

〉]
+O

(
ε2
[ |y − y|2
〈y − y′〉

+
|η − αξ|2

〈η − αξ〉2
+
|βξ − η|2

〈βξ − η〉2
])
.
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Therefore, choosing ε > 0 small enough (not depending on G), we observe that the

imaginary part of the phase satisfies

Im Φ ≥ Im

[
〈αx − y, αξ〉+

i

2
(αx − y)2 + 〈y − y′, η〉+ 〈y′ − βx, βξ〉+

i

2
(βx − y′)2

]
+ Im

[
iε

(η − αξ)2

〈η − αξ〉
+ iε

(η − βξ)2

〈η − βξ〉
+ iε

(y − y′)2

〈y − y′〉

]
− M

4
ε
[
|αx − y|2 + |βx − y′|2

]
− ε

M

|αξ − η|2

|〈αξ − η〉|2
+
|η − βξ|2

|〈βξ − η〉|2
]− Cε2 |y − y|

2

〈y − y′〉
≥ c|αx − y|2 + c|βx − y′|2 + cε|η − αξ|+ cε|η − βξ|+ cε|y − y′| − C‖G‖C1 .

In the last line we have used that G is compactly supported to see that

| Im (〈αx, αξ〉 − 〈βx, βξ〉) | ≤ C‖G‖C1 .

Now, suppose that |α− β| > δ. Then,

|αx − y|+ |βx − y′|+ |y − y′|+ |αξ − η|+ |βξ − η| > δ

and, choosing ‖G‖C1 small enough depending on δ, the integral is controlled by

Ce−〈α−β〉/Ch.

In particular, we have, modulo an acceptable error,

KP (α, β) =
|c|2

h
n
2

1

(2πh)n

∫
R2n

∫
Rn
e
i
h

(ϕ(α,y)+〈y−y′,η〉−ϕ∗(β,y′))p(y, η)χ(δ−1|α− β|) dy′dηdy

where χ ∈ C∞c (−2, 2), χ ≡ 1 on [−1, 1].

Since we are now working in a small neighborhood of the diagonal, the contour shift,

y 7→ y + yc(α, β) y′ 7→ y′ + yc(α, β), η 7→ η + ηc(α, β)

is justified. The phase after this contour shift is given by

i

4
[(αξ − βξ)2 + (αx − βx)2] +

1

2
(αx − βx, αξ + βξ) +

i

2
y2 +

i

2
y′2 + 〈y − y′, η〉.

The stationary point of the phase is now at y = y′ = η = 0 and the imaginary part

of the phase is always larger than at the critical point. Therefore, we may apply the

method of steepest decent to obtain the expansion in (7.3). �

We now proceed as in the proof of Theorem 2 to obtain

Theorem 3. Suppose that P is given by (2.5) where the symbol p enjoys a holomorphic

extension satisfying

|p(z, ζ)| ≤M, | Im z| ≤ a, | Im ζ| ≤ b.

For G ∈ C∞c (T ∗Rn) with ‖B‖C2 sufficiently small we define

Λ = ΛG := {(x+ iGξ(x, ξ), ξ − iGx(x, ξ)) : (x, ξ) ∈ T ∗Rn), L2
Λ := L2(Λ, e−2H(α)/hdα),
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where H is given by (6.4). Let TΛu := Tu|Λ (see (6.2)).

Then, for u, v ∈ L2(Rn),

〈TPu, Tv〉L2
Λ

= 〈MPΛ
Tu, Tv〉L2

Λ
+ 〈RΛTu, Tv〉L2

Λ
, (7.4)

where RΛ = O(h∞)L2
Λ→L

2
Λ

and

PΛ(z, ζ, h) = p|Λ(z, ζ) + hp1
Λ(z, ζ) + · · · , (z, ζ) ∈ Λ.

8. Weights vs. deformations

To show that the approaches of §3 and §6 are the same, we want to find ϕ = ϕ(x, ξ) ∈
C∞c (R2n) such that

TSΛ = O(1) = L2
Λ → L2

ϕ, TΛS = O(1) : L2
ϕ → L2

Λ. (8.1)

Let ϕG be the phase in TΛ and ϕ̃G be the phase in SΛ. We need

ϕ(x, ξ) = ϕmax(x, ξ) = ϕmin(x, ξ),

ϕmax(x, ξ) := max
(x′,ξ′)∈R2n

(− Im c.vy(ϕ0(x, ξ, y) + ϕ̃G(x′, ξ′, y))+H(x′, ξ′))

ϕmin(x, ξ) := min
(x′,ξ′)∈R2n

(−H(x′, ξ′) + Im c.vy(ϕ̃0(x, ξ, y) + ϕG(x′, ξ′, y))) .

(8.2)

We start by noting that

ϕG(x, ξ, y) = Φ(z, ζ, y)|(z,ζ)∈ΛG , Φ(z, ζ, y) = (z − y)ζ + i
2
(z − y)2,

and that

ϕ̃G(x, ξ, y) = −Φ̄(z, ζ, y)|(z,ζ)∈ΛG , Φ̄(z, ζ) = Φ(z̄, ζ̄).

The critical value of y 7→ Φ(z, ζ, y)− Φ̄(x, ξ, y) is given by

yc = yc(x, ξ, z, ζ) = 1
2
(x+ z + i(ξ − ζ)),

while the critical value of y 7→ Φ(x, ξ, y)− Φ̄(z, ζ, y) is given by

ȳc = ȳc(x, ξ, z, ζ) = 1
2
(x+ z + i(ζ − ξ)).

To find the maximum in (8.2) we first note that with z = x′ + iGξ′ and ζ = ξ′− iGx′ ,

Im Φ̄(x′, ξ′, yc) = 1
2

Im
(
i(ξ − ζ)ξ′ − i(x′ − 1

2
(x+ z + i(ζ − ξ)))2

)
= −1

4
((ξ′)2 + (x′)2) +O(〈ξ′〉+ 〈x′〉)→ −∞, (x′, ξ′)→∞.

Hence,

− Im[Φ(x, ξ, yc)− Φ̄(x′, ξ′, yc)] +H(x′, ξ′)→ −∞, (x′, ξ′)→∞

We then calculate (again with z = x′ + iGξ′ and ζ = ξ′ − iGx′)

dx′,ξ′(− Im c.v.y(Φ(x, ξ, y)− Φ̄(z, ζ, y)) = Im ∂z,ζΦ̄(z, ζ, y)|y=ȳc .
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Since dx′,ξ′H = − Im ζdz|Λ this means that the critical z, ζ are given by solving

Im(∂z,ζΦ̄(z, ζ, y)|y=ȳc−ζdz)|Λ = 0.

For the minimum we similarly obtain

Im(∂z,ζΦ(z, ζ, y)|y=yc+ζdz)|Λ = 0.

This shows that the critical points

(zc, ζc) = (zc(x, ξ), ζc(x, ξ)),

are the same for the maximum and minimum at (8.2). The maxima and minima are

non-degenerate as that is the case when G = 0 and hence holds for ‖G‖C2 sufficiently

small.

We now need to show that the critical values ϕmax and ϕmin are also equal. For that

we compute the differentials:

dx,ξϕmax(x, ξ) = − Im dx,ξΦ(x, ξ, y)|y=ȳc(x,ξ,zc,ζc) = Im dx,ξΦ̄(x, ξ, y)|y=yc(x,ξ,zc,ζc)

= dx,ξϕmin(x, ξ).

Hence ϕmax and ϕmin differ by a constant. Since G and H vanish outside a compact

set the critical values are both 0 when H = G = 0, we conclude the the constant is

equal to 0.

We can find an approximate value of ϕ(x, ξ) under the assumption that ‖G‖C2 is

small. In fact, the calculations above show that

ϕ(x, ξ) = G(x, ξ) +O(‖G‖2
C2).

This can also be seen by noting zc(x, ξ) = x′ +O(‖G‖C2) = x+O(‖G‖C2), ζc(x, ξ) =

ξ′+O(‖G‖C2) = ξ +O(‖G‖C2), and inserting this approximations and the value of yc

into − Im(Φ(x, ξ, y)− Φ̄(z, ζ, y)) +H(x′, ξ′).

This gives us

Theorem 4. There exist ε0, C0 such that if G ∈ C∞c (R2n) and ‖G‖C2 < ε0 then

‖TΛv‖L2
Λ
/C0 ≤ ‖Tv‖L2

ϕ
≤ C0‖TΛv‖L2

Λ
, v ∈ L2(Rn),

L2
Λ := L2(Λ, e−2H(x,ξ)/hdxdξ), L2

ϕ := L2(T ∗Rn, e−ϕ(x,ξ)/hdxdξ),

where Λ, TΛ are given in (6.1),(6.2), H is defined by (6.3), ϕ is given (implicitely) by

(8.2), and satisfies

ϕ(x, ξ) = G(x, ξ) +O(ε20).

Proof. We have shown that for ϕ given by (8.2) we have (8.1). Hence,

‖TΛv‖L2
Λ

= ‖TΛSTv‖L2
Λ
≤ ‖TΛS‖L2

ϕ→L2
Λ
‖Tv‖L2

ϕ
≤ C0‖Tv‖L2

ϕ
,

with the other bound derived similarly. �
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