
MICROLOCAL ANALYSIS OF FORCED WAVES

SEMYON DYATLOV AND MACIEJ ZWORSKI

Abstract. We use radial estimates for pseudodifferential operators to describe long

time evolution of solutions to iut − Pu = f where P is a self-adjoint 0th order

pseudodifferential operator satisfying hyperbolic dynamical assumptions and where

f is smooth. This is motivated by recent results of Colin de Verdière and Saint-

Raymond [CS18] concerning a microlocal model of internal waves in stratified fluids.

1. Introduction

Colin de Verdière and Saint-Raymond [CS18] recently found an interesting connec-

tion between modeling of internal waves in stratified fluids and spectral theory of zeroth

order pseudodifferential operators on compact manifolds. In other problems of fluid

mechanics relevance of such operators has been known for a long time, for instance in

the work of Ralston [Ra73]. We refer to [CS18] for pointers to current physics literature

on internal waves and for numerical and experimental illustrations.
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Figure 1. On the left: the plot of the real part of u(50) for P =

〈D〉−1Dx2 + 2 cosx1 on T2 and f given by a smooth bump function

centered at (−π/2, 0). We see the singularity formation on the line

x1 = −π/2. On the right: Σ := κ(p−1(0)) ⊂ ∂T
∗T2. The attract-

ing Lagrangian, Λ+
0 , comes from the highlighted circles. See §1.3 for a

discussion of the examples shown in the figures.
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The purpose of this note is to show how the main result of [CS18] (see also [CdV18])

follows from the now standard radial estimates for pseudodifferential operators. In par-

ticular, we avoid the use of Mourre theory, normal forms and Fourier integral operators

and do not assume that the subprincipal symbols vanish. We also relax some geomet-

ric assumptions. The conclusions are formulated in terms of Lagrangian regularity in

the sense of Hörmander [HöIII, §25.1]. We illustrate the results with numerical exam-

ples. There are many possibilities for refinements but we restrict ourselves to applying

off-the-shelf results at this stage.

Radial estimates were introduced by Melrose [Me94] for the study of asymptotically

Euclidean scattering and have been developed further in various settings. We only

mention some of the more relevant ones: scattering by zeroth order potentials (very

close in spirit to the problems considered in [CS18]) by Hassell–Melrose–Vasy [HMV04],

asymptotically hyperbolic scattering by Vasy [Va13] (see also [DyZw16, Chapter 5]

and [Zw16]) and by Datchev–Dyatlov [DaDy13], in general relativity by Vasy [Va13],

Dyatlov [Dy12] and Hintz–Vasy [HiVa16], and in hyperbolic dynamics by Dyatlov–

Zworski [DyZw16]. Particularly useful here is the work of Haber–Vasy [HaVa15] which

generalized some of the results of [HMV04]. A very general version of radial estimates

is presented “textbook style” in [DyZw, §E.4].

1.1. The main result. Motivated by internal waves in linearized fluids the authors

of [CS18] considered long time behaviour of solutions to

(i∂t − P )u(t) = f, u(0) = 0, f ∈ C∞(M),

P ∈ Ψ0(M), P = P ∗
(1.1)

where M is a closed surface and P satisfies dynamical assumptions presented in §1.2.

By changing P to P − ω0 we can change f to the more physically relevant oscillatory

forcing term, e−iω0tf .

Since the solution u(t) is given by

u(t) = −i
∫ t

0

e−isPf ds = P−1(e−itP − 1)f, (1.2)

(where the operator P−1(e−itP −1) is well defined for all t using the spectral theorem),

the properties of the spectrum of P play a crucial role in the description of the long

time behaviour of u(t). Referring to §1.2 for the precise assumptions we state

Theorem. Suppose that the operator P satisfies assumptions (1.5), (1.8) below and

that 0 /∈ Specpp(P ). Then, for any f ∈ C∞(M), the solution to (1.1) satisfies

u(t) = u∞ + b(t) + ε(t), ‖b(t)‖L2 ≤ C, ‖ε(t)‖
H−

1
2−
→ 0, t→∞, (1.3)

where

u∞ ∈ I0(M ; Λ+
0 ) ⊂ H−

1
2
−(M) (1.4)
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and I0(M ; Λ+
0 ) is the space of Lagrangian distributions of order 0 (see §4.1) associated

to the attracting Lagrangian Λ+
0 defined in (1.9).

The proof gives other results obtained in [CS18]. In particular, we see that in the

neighbourhood of 0 the spectrum of P is absolutely continuous except for finitely many

eigenvalues with smooth eigenfunctions – see §3.2.

In the case of Morse–Smale flows, Colin de Verdière [CdV18, Theorem 4.3] used a

hybrid of Mourre estimates (in particular their finer version given by Jensen–Mourre–

Perry [JMP84]) and of the radial estimates [DyZw, §E.4] to obtain a version of (1.3)

with an estimate on WF(u∞). At this stage the purely microlocal approach of this

paper would only give ‖ε(t)‖
H−

3
2−
→ 0.

1.2. Assumptions on P . We assume that M is a compact surface without boundary

and P ∈ Ψ0(M) is a 0th order pseudodifferential operator with principal symbol

p ∈ S0(T ∗M \ 0;R) which is homogeneous (of order 0) and has 0 as a regular value.

We also assume that for some smooth density, dm(x), on M , P is self-adjoint:

P ∈ Ψ0(M), P = P ∗ on L2(M,dm(x)),

p := σ(P ), p(x, tξ) = p(x, ξ), t > 0, dp|p−1(0) 6= 0.
(1.5)

The homogeneity assumption on p can be removed as the results of [DyZw, §E.4] and

[DyZw17] we use do not require it. That would however complicate the statement of

the dynamical assumptions.

We use the notation of [DyZw, §E.1.3], denoting by T
∗
M the fiber-radially compact-

ified co-tangent bundle. Define the quotient map for the R+ action, (x, ξ) 7→ (x, tξ),

t > 0,

κ : T
∗
M \ 0 −→ ∂T

∗
M. (1.6)

The rescaled Hamiltonian vector field |ξ|Hp commutes with the R+ action and

X := κ∗(|ξ|Hp) is tangent to Σ := κ(p−1(0)). (1.7)

Note that Σ is an orientable surface since it is defined by the equation p = 0 in the

orientable 3-manifold ∂T
∗
M .

We now recall the dynamical assumption made by Colin de Verdière and Saint-

Raymond [CS18]:

The flow of X on Σ is a Morse–Smale flow with no fixed points. (1.8)

For the reader’s convenience we recall the definition of Morse–Smale flows generated

by X on a surface Σ (see [NiZh99, Definition 5.1.1]):

(1) X has a finite number of fixed points all of which are hyperbolic;

(2) X has a finite number of hyperbolic limit cycles;

(3) there are no separatrix connections between saddle fixed points;
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Figure 2. On the left: the plot of the real part of u(50) for P given

by (1.11) and f given by a smooth bump function centered at (−π/2, 0).

We see the singularity formation on the line x1 = −π/2 and the slower

formation of singularity at x1 = π/2. On the right: Σ := κ(p−1(0)). The

attracting Lagrangian Λ+
0 comes from the highlighted circles.

(4) every trajectory different from (1) and (2) has unique trajectories (1) or (2) as

its α, ω-limit sets.

As stressed in [CS18], Morse–Smale flows enjoy stability and genericity properties –

see [NiZh99, Theorem 5.1.1]. At this stage, following [CS18], me make the strong

assumption that there are no fixed points. By the Poincaré–Hopf Theorem that forces

Σ to be a union of tori.

Under the assumption (1.8), the flow of X on Σ has an attractor L+
0 , which is a union

of closed attracting curves. We define the following conic Lagrangian submanifold of

T ∗M \ 0 (see [HöIII, §21.2] and Lemma 2.1):

Λ+
0 := κ−1(L+

0 ). (1.9)

1.3. Examples. We illustrate the result with two simple examples on M := T2 =

S1 × S1 where S1 = R/(2πZ). Denote D := 1
i
∂. Consider first

P := 〈D〉−1Dx2 − 2 cosx1, p = |ξ|−1ξ2 − 2 cosx1,

|ξ|Hp = −ξ1ξ2

|ξ|2
∂x1 +

ξ2
1

|ξ|2
∂x2 − 2(sinx1)|ξ|∂ξ1 ,

Λ+
0 = {(±π/2, x2; ξ1, 0) : x2 ∈ S1, ±ξ1 < 0}.

(1.10)

In this case κ(p−1(0)) (with κ given in (1.6)) is a union of two tori which do not cover T2

(and thus does not satisfy the assumptions of [CS18] but is covered by the treatment

here, and in [CdV18]). See Figure 1 for the plot of Reu(t), t = 50 and for a schematic

visualization of Σ = κ(p−1(0)).
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Our result applies also to the closely related operator

P := 〈D〉−1Dx2 − 1
2

cosx1, p = |ξ|−1ξ2 − 1
2

cosx1,

|ξ|Hp = −ξ1ξ2

|ξ|2
∂x1 +

ξ2
1

|ξ|2
∂x2 − 1

2
sinx1|ξ|∂ξ1 .

(1.11)

The attracting Lagrangians are the same but the energy surface κ(p−1(0)) consists of

two tori covering T2 (and hence satisfying the assumptions of [CS18]) – see Figure 2.

2. Geometric structure of attracting Lagrangians

In this section we prove geometric properties of the attracting and repulsive La-

grangians for the flow et|ξ|Hp where p satisfies (1.8).

2.1. Sink and source structure. Let Σ(ω) := κ(p−1(ω)). If δ > 0 is sufficiently

small then stability of Morse–Smale flows (and the stability of non-vanishing of X)

shows that (1.8) is satisfied for Σ(ω), |ω| ≤ 2δ. Let L±ω ⊂ Σ(ω) be the attractive

(+) and repulsive (−) hyperbolic cycles for the flow of X on Σ(ω). We first establish

dynamical properties needed for the application of radial estimates in §3:

Lemma 2.1. L+
ω is a radial sink and L−ω a radial source for the Hamiltonian flow

of |ξ|(p − ω) = |ξ|σ(P − ω) in the sense of [DyZw, Definition E.50]. The conic

submanifolds

Λ±ω := κ−1(L±ω ) ⊂ T ∗M \ 0

are Lagrangian.

Remark. It is not true that L±ω are radial sinks/sources for the Hamiltonian flow of

p − ω since [DyZw, Definition E.50] requires convergence of all nearby Hamiltonian

trajectories, not just those on the characteristic set p−1(ω). See Remark 3 follow-

ing [DyZw, Definition E.50] for details. The singular behavior of |ξ| at ξ = 0 is

irrelevant here since we are considering a neighbourhood of the fiber infinity.

Proof. We consider the case of L+
ω as that of L−ω is similar. To simplify the formulas

below we put ω := 0. To see that Λ+
0 is a Lagrangian submanifold we note that Hp and

ξ∂ξ are tangent to Λ+
0 and independent (since X does not vanish on L+

0 ). Denoting

the symplectic form by σ, we have σ(Hp, ξ∂ξ) = −dp(ξ∂ξ) = 0, that is σ vanishes on

the tangent space to Λ+
0 .

We next show that L+
0 is a radial sink. For simplicity assume that it consists of a

single attractive closed trajectory of X of period T > 0, in particular eTX = I on L+
0 .

Define the vector field

Y := H|ξ|p
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which is homogeneous of order 0 on T ∗M \ 0 and thus extends smoothly to the fiber-

radial compactification T
∗
M \ 0, see [DyZw, Proposition E.5]. We have Y = X on

∂T
∗
M ∩ p−1(0), thus L+

0 ⊂ ∂T
∗
M is a closed trajectory of Y of period T .

Fix arbitrary (x0, ξ0) ∈ L+
0 and define the linearized Poincaré map P induced by

deTY (x0, ξ0) on the quotient space T(x0,ξ0)(T
∗
M)/RY(x0,ξ0). The adjoint map P∗ acts

on covectors in T ∗(x0,ξ0)(T
∗
M) which annihilate Y(x0,ξ0). To prove that L+

0 is a radial

sink it suffices to show that the spectral radius of P is strictly less than 1.

Put ρ := |ξ|−1 which is a boundary defining function on T
∗
M , then Σ = ∂T

∗
M ∩

p−1(0) is given by {p = 0, ρ = 0}. Since Y = X on Σ and L+
0 is an attractive cycle

for X on Σ, we have

P|ker(dp)∩ker(dρ) = c1 for some c1 ∈ R, |c1| < 1.

Since Y is tangent to ∂T
∗
M = ρ−1(0), we have Y ρ = f2ρ for some f2 ∈ C∞(T

∗
M\0;R).

Recalling that Y = H|ξ|p we compute Y p = pH|ξ|p = −pHp(ρ
−1) = f2p. Denoting

c2 := f2(x0, ξ0) we then have

P∗(dp(x0, ξ0)) = c2dp(x0, ξ0), P∗(dρ(x0, ξ0)) = c2dρ(x0, ξ0).

Thus P has eigenvalues c1, c2, c2. On the other hand, eTY preserves the symplectic

density |σ ∧ σ| which has the form ρ−3d vol for some density d vol on T
∗
M which is

smooth up to the boundary. Taking the limit of this statement at (x0, ξ0) we obtain

detP = det deTY (x0, ξ0) = c3
2. It follows that c1 = c2 and thus P has spectral radius

|c1| < 1 as needed. �

For future use we define the conic hypersurfaces in T ∗M \ 0

Λ± :=
⋃
|ω|<2δ

Λ±ω . (2.1)

2.2. Geometry of Lagrangian families. We next establish some facts about fam-

ilies of Lagrangian submanifolds which do not need the dynamical assumptions (1.8).

Instead we assume that:

• p : T ∗M \ 0→ R is homogeneous of order 0;

• Λ ⊂ T ∗M \ 0 is a conic hypersurface;

• dp|TΛ 6= 0 everywhere;

• the Hamiltonian vector field Hp is tangent to Λ.

Under these assumptions, the sets

Λω := Λ ∩ p−1(ω)

are two-dimensional conic submanifolds of T ∗M \0. Moreover, similarly to Lemma 2.1,

each Λω is Lagrangian. Indeed, if G is a (local) defining function of Λ, namely G|Λ = 0
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and dG|Λ 6= 0, then Hp being tangent to Λ implies

{p,G} = 0 on Λ. (2.2)

Thus Hp, HG form a tangent frame on Λω and σ(Hp, HG) = 0 on Λ, where σ denotes

the symplectic form.

Since ξ∂ξ is tangent to each Λω, for any choice of local defining function G of Λ we

can write

ξ∂ξ = ΦHp + ΘHG on Λ (2.3)

for some functions Φ,Θ on Λ. Since the one-dimensional subbundle RHG ⊂ TΛ is

invariantly defined we see that Φ ∈ C∞(Λ;R) does not depend on the choice of G.

The function Φ is homogeneous of order 1. Indeed, we can choose G to be homoge-

neous of order 1 which implies that [ξ∂ξ, HG] = 0; we also have [ξ∂ξ, Hp] = −Hp. By

taking the commutator of both sides of (2.3) with ξ∂ξ we see that ξ∂ξΦ = Φ.

On the other hand, taking the commutators of both sides of (2.3) with Hp and HG

and using the following consequence of (2.2),

[Hp, HG] = H{p,G} ∈ RHG on Λ,

we get the following identities:

HpΦ ≡ 1, HGΦ ≡ 0 on Λ. (2.4)

The function Φ is related to the ω-derivative of a generating function of Λω (see (4.3)):

Lemma 2.2. Assume that Λω is locally given (in some coordinate system on M) by

Λω = {(x, ξ) : x = ∂ξF (ω, ξ), ξ ∈ Γ0}, (2.5)

where ξ 7→ F (ω, ξ) is a family of homogeneous functions of order 1 and Γ0 ⊂ R2 \ 0 is

a cone. Then we have

∂ωF (ω, ξ) = −Φ(∂ξF (ω, ξ), ξ). (2.6)

Proof. Let G be a (local) defining function of Λ. Taking the ∂ξ-component of (2.3) at

a point ζ := (∂ξF (ω, ξ), ξ) ∈ Λ we have

ξ = −Φ(ζ)∂xp(ζ)−Θ(ζ)∂xG(ζ). (2.7)

On the other hand, differentiating in ω the identities

p(∂ξF (ω, ξ), ξ) = ω, G(∂ξF (ω, ξ), ξ) = 0

we get

〈∂xp(ζ), ∂ξ∂ωF (ω, ξ)〉 = 1, 〈∂xG(ζ), ∂ξ∂ωF (ω, ξ)〉 = 0. (2.8)

Combining (2.7) and (2.8) we arrive to

〈ξ, ∂ξ∂ωF (ω, ξ)〉 = −Φ(ζ) = −Φ(∂ξF (ω, ξ), ξ)

which implies (2.6) since the function ξ 7→ ∂ωF (ω, ξ) is homogeneous of order 1. �
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Now we specialize to the Lagrangian families used in this paper. We start with a

sign condition on Φ which will be used in §5:

Lemma 2.3. Suppose that for Λ = Λ+ or Λ = Λ−, with Λ± given in (2.1) we define

Φ± using (2.3). Then for some constant c > 0

± Φ±(x, ξ) ≥ c|ξ| on Λ±. (2.9)

Proof. We consider the case of Φ+ as the case of Φ− is handled by replacing p with

−p. Recall from Lemma 2.1 that each L+
ω = κ(Λ+ ∩ p−1(ω)) is a radial sink for the

flow et|ξ|Hp . Take (x, ξ) ∈ Λ+ with |ξ| large. Then (with S∗M denoting the cosphere

bundle with respect to any fixed metric on M)

e−tHp(x, ξ) ∈ S∗M for some t > 0, t ∼ |ξ|. (2.10)

Recall from (2.4) that HpΦ
+ = 1 on Λ+. Thus

Φ+(x, ξ) = Φ+(e−tHp(x, ξ)) + t ≥ |ξ| − C.

It follows that Φ+(x, ξ) ≥ c|ξ| for large |ξ|; since Φ+ is homogeneous of order 1, this

inequality then holds on the entire Λ+. �

We next construct adapted global defining functions of Λ± used in §4.2:

Lemma 2.4. Let Λ± be defined in (2.1). Then there exist G± ∈ C∞(T ∗M \ 0;R) such

that:

(1) G± are homogeneous of order 1;

(2) G±|Λ± = 0 and dG±|Λ± 6= 0;

(3) HpG± = a±G± in a neighborhood of Λ±, where a± ∈ C∞(T ∗M \ 0;R) are

homogeneous of order −1 and a±|Λ± = 0.

Proof. We construct G+, with G− constructed similarly. Fix some function G̃+ which

satisfies conditions (1) and (2) of the present lemma. It exists since Λ+ is conic and

orientable (each of its connected components is diffeomorphic to [−δ, δ] × S1 × R+).

Let Θ+ be defined in (2.3):

ξ∂ξ = Φ+Hp + Θ+HG̃+
on Λ+. (2.11)

Commuting both sides of (2.3) with ξ∂ξ we see that Θ+ is homogeneous of order 0.

Moreover Θ+ does not vanish on Λ+ since Hp is not radial (since the flow of X in (1.7)

has no fixed points). Choose G+ satisfying conditions (1) and (2) and such that

G+ = Θ+G̃+ near Λ+.

Then (2.11) gives

ξ∂ξ = Φ+Hp +HG+ on Λ+. (2.12)
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We have HpG+|Λ+ = 0, therefore HpG+ = a+G+ near Λ+ for some function a+.

Commuting both sides of (2.12) with Hp and using that HpΦ+ ≡ 1 on Λ+ from (2.4)

we have

Hp = [Hp, ξ∂ξ] = Hp + [Hp, HG+ ] = Hp +H{p,G+} = Hp + a+HG+ on Λ+.

Since HG+ does not vanish on Λ+, this gives a+|Λ+ = 0 as needed. �

One application of Lemma 2.4 is the existence of an Hp-invariant density on Λ±:

Lemma 2.5. There exist densities ν±ω on Λ±ω , ω ∈ [−δ, δ], such that:

• ν±ω are homogeneous of order 1, that is Lξ∂ξν±ω = ν±ω ;

• ν±ω are invariant under Hp, that is LHpν±ω = 0.

Proof. In the notation of Lemma 2.4 define ν±ω by |σ ∧ σ| = |dp ∧ dG±| × ν±ω where σ

is the symplectic form. The properties of ν±ω follow from the identities

Lξ∂ξσ = σ, Lξ∂ξdp = 0, Lξ∂ξdG± = dG±, LHpσ = 0

and the following statement which holds on Λ±:

LHp(dp ∧ dG±) = dp ∧ d(a±G±) = 0. �

3. Resolvent estimates

Here we recall the radial estimates as presented in [DyZw, §E.4] specializing to the

setting of §1.2. We use the notation of [DyZw, Appendix E] and we write ‖u‖s :=

‖u‖Hs(M).

Since we are not in the semiclassical setting of [DyZw, §E.4] we will only use the

usual notion of the wave front set: for u ∈ D ′(M), WF(u) ⊂ T ∗M \ 0 – see [DyZw,

Exercise E.16]. Similarly, for A ∈ Ψk(M) we denote by ell(A) ⊂ T ∗M \0 its (nonsemi-

classical) elliptic set. Both sets are conic.

3.1. Radial estimates uniformly up to the real axis. Since L−ω is a radial source

we can apply [DyZw, Theorem E.52] (with h := 1) to the operator

P̃ε := P̃ − iε〈D〉 ∈ Ψ1(M), P̃ := 〈D〉1/2(P − ω)〈D〉1/2, ε ≥ 0.

Here, since P̃ is self-adjoint, the threshold regularity condition [DyZw, (E.4.39)] is

satisfied for P̃ with any s > 0. Strictly speaking one has to modify the proof of [DyZw,

Theorem E.52] to include the antiselfadjoint part −iε〈D〉 which has a favorable sign

but is of the same differential order as P̃ . (In [DyZw] it was assumed that the principal

symbol of P is real-valued near L−ω .) More precisely, we put P := P̃ and f := P̃εu

(instead of f := P̃ u) in [DyZw, Theorem E.52]. Since P̃ε satisfies the sign condition



10 SEMYON DYATLOV AND MACIEJ ZWORSKI

∂T
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ML−

ω
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B̃−

∂T
∗
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L+
ω

B+

B̃+

Figure 3. An illustration of the supports of the operators appearing in

(3.2) (left: radial sources) and (3.3) (right: radial sinks). The horizontal

line on the top denotes ∂T
∗
M , the arrows denote flow lines of |ξ|Hp.

for propagation of singularities [DyZw, Theorem E.47], it suffices to check that the

positive commutator estimate [DyZw, Lemma E.49] holds. For that we write

Im〈f,G∗Gu〉L2 = Im〈P̃ u,G∗Gu〉L2 − εRe
〈
〈D〉u,G∗Gu

〉
L2 . (3.1)

Here G ∈ Ψs(M) is the quantization of an escape function used in the proof of [DyZw,

Lemma E.49]; recall that we put h := 1. We now estimate the additional term in (3.1):

−Re
〈
〈D〉u,G∗Gu

〉
L2 = −‖〈D〉1/2Gu‖2

L2 + 〈Re(G∗[〈D〉, G])u, u〉L2

≤ C‖B1u‖2
s−1/2 + C‖u‖2

H−N

where in the last line we used that G∗[〈D〉, G] ∈ Ψ2s(M) has purely imaginary prin-

cipal symbol and thus Re(G∗[〈D〉, G]) ∈ Ψ2s−1(M). The rest of the proof of [DyZw,

Lemma E.49] applies without changes. See also [DyGu16, Lemma 3.7].

Applying the radial estimate in [DyZw, Theorem E.52] for the operator P̃ε =

〈D〉1/2(P −ω− iε)〈D〉1/2 to 〈D〉−1/2u we see that for every B̃− ∈ Ψ0(M), Λ− ⊂ ell(B̃−)

there exists A− ∈ Ψ0(M), Λ− ⊂ ell(A−), such that

‖A−u‖s ≤ C‖B̃−(P − ω − iε)u‖s+1 + C‖u‖−N ,
u ∈ C∞(M), s > −1

2
, |ω| ≤ δ, ε ≥ 0,

(3.2)

where C does not depend on ε, ω and N can be chosen arbitrarily large. The supports

of A−, B̃− are shown on Figure 3.

The inequality (3.2) can be extended to a larger class of distributions: it suffices that

B̃−(P −ω− iε)u ∈ Hs+1(M) and that A−u ∈ Hs′(M) for some s′ > −1
2
. See Remark 5

after [DyZw, Theorem E.52] or [DyZw16, Proposition 2.6], [Va13, Proposition 2.3].

Similarly we have estimates near radial sinks [DyZw, Theorem E.54] for L+
ω . Namely,

for every B̃+ ∈ Ψ0(M), Λ+ ⊂ ell(B̃+), there exist A+, B+ ∈ Ψ0(M), such that Λ+ ⊂
ell(A+), WF(B+) ∩ Λ+ = ∅, and

‖A+u‖s ≤ C‖B̃+(P − ω − iε)u‖s+1 + C‖B+u‖s + C‖u‖−N ,
u ∈ C∞(M), s < −1

2
, |ω| ≤ δ, ε ≥ 0,

(3.3)
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L−
ω L+

ω

A− A+

B+

s > −1/2 s < −1/2

Figure 4. A schematic representation of the flow et|ξ|Hp on the fiber

infinity ∂T
∗
M intersected with the energy surface p−1(ω), with the reg-

ularity thresholds for the estimates (3.2) and (3.3).

where C does not depend on ε, ω and N can be chosen arbitrarily large. The in-

equality is also valid for distributions u such that B̃+(P − ω − iε)u ∈ Hs+1(M) and

B+u ∈ Hs(M) and it then provides (unconditionally) A+u ∈ Hs(M) – see Remark 2

after [DyZw, Theorem E.54] or [DyZw16, Proposition 2.7], [Va13, Proposition 2.4].

Away from radial points we have the now standard propagation results of Duistermaat–

Hörmander [DyZw, Theorem E.47]: if A,B, B̃ ∈ Ψ0(M) and for each (x, ξ) ∈WF(A)

there exists T ≥ 0 such that

e−T |ξ|Hp(x, ξ) ∈ ell(B), e−t|ξ|Hp(x, ξ) ∈ ell(B̃), 0 ≤ t ≤ T,

then

‖Au‖s ≤ C‖B̃(P − ω − iε)u‖s+1 + C‖Bu‖s + C‖u‖−N ,
u ∈ C∞(M), s ∈ R, |ω| ≤ δ, ε ≥ 0,

(3.4)

with C independent of ε, ω. We also have the elliptic estimate [DyZw, Theorem E.33]:

(3.4) holds with B = 0 if WF(A) ∩ p−1([−δ, δ]) = ∅ and WF(A) ⊂ ell(B̃).

Let us now consider

uε = uε(ω) := (P − ω − iε)−1f, f ∈ C∞(M), |ω| ≤ δ, ε > 0.

For any fixed ε > 0, P − ω − iε ∈ Ψ0(M) is an elliptic operator (its principal sym-

bol equals p − ω − iε and p is real-valued), thus by elliptic regularity uε ∈ C∞(M).

Combining (3.2), (3.3) and (3.4) we see that for any β > 0

‖uε‖− 1
2
−β ≤ C‖f‖ 1

2
+β + C‖uε‖−N , (3.5)

and that

‖Auε‖s ≤ C‖f‖s+1 + C‖uε‖−N , WF(A) ∩ Λ+ = ∅, s > −1
2
. (3.6)

Here the constant C depends on β, s but does not depend on ε, ω. Indeed, by our

dynamical assumption (1.8) every trajectory et|ξ|Hp(x, ξ) with (x, ξ) ∈ p−1([−δ, δ])\Λ+

converges to Λ− as t → −∞ (see Figure 4). Applying (3.4) with B := A− and

using (3.2) we get (3.6). Putting A := B+ in (3.6) and using (3.3) we get (3.5).
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In particular, we obtain a regularity statement for the limits of the family (uε):

∃ εj → 0, u ∈ D ′(M), uεj
D ′(M)−−−→ u =⇒ u ∈ H−

1
2
−(M), WF(u) ⊂ Λ+. (3.7)

Note also that every u in (3.7) solves the equation (P − ω)u = f .

3.2. Regularity of eigenfunctions. Motivated by (3.7) we have the following reg-

ularity statement. The proof is an immediate modification of the proof of [DyZw17,

Lemma 2.3]: replace P there by A−1(P − ω)A−1 where A ∈ Ψ−
1
2 (M) is elliptic, self-

adjoint on L2(M,dm(x)) (same density with respect to which P is self-adjoint) and

invertible. We record this as

Lemma 3.1. Suppose that P satisfies (1.5) and (1.8). Then for ω sufficiently small

and for u ∈ D ′(M)

(P − ω)u ∈ C∞, WF(u) ⊂ Λ+, Im〈(P − ω)u, u〉 ≥ 0, |ω| ≤ δ

implies that u ∈ C∞(M).

In particular this shows that if (P − ω)u = 0 and WF(u) ⊂ Λ+ then u ∈ L2, that is

ω lies in the point spectrum Specpp(P ). Radial estimates then show that the number

of such ω’s is finite in a neighbourhood of 0:

Lemma 3.2. Under the assumptions (1.5) and (1.8), with δ sufficiently small,

| Specpp(P ) ∩ [−δ, δ]| <∞;

(P − ω)u = 0, u ∈ L2(M), |ω| ≤ δ =⇒ u ∈ C∞(M).
(3.8)

Proof. If u ∈ L2(M) then the threshold assumption in (3.2) is satisfied for P − ω near

Λ− and for −(P − ω) near Λ+. Using the remark about regularity after (3.2), as well

as (3.4) away from sinks and sources, we conclude that

‖u‖s ≤ C‖u‖−N (3.9)

for any s and N . That implies that u ∈ C∞(M). Now, suppose that there exists an

infinite set of L2 eigenfunctions with eigenvalues in [−δ, δ]:

(P − ωj)uj = 0, 〈uk, uj〉L2(M) = δkj, |ωj| ≤ δ.

Since uj ⇀ 0, weakly in L2, uj → 0 strongly in H−1. But this contradicts (3.9) applied

with s = 0 and N = 1. �

From now on we make the assumption that P has no eigenvalues in [−δ, δ]:

Specpp(P ) ∩ [−δ, δ] = ∅. (3.10)

By Lemma 3.2 we see that (3.10) holds for δ small enough as long as 0 /∈ Specpp(P ).
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3.3. Limiting absorption principle. Using results of §§3.1,3.2 we obtain a version

of the limiting absorption principle sufficient for proving (1.3). Radial estimates can

also easily give existence of (P − ω − i0)−1 : H
1
2

+(M) → H−
1
2
−(M) but we restrict

ourselves to the simpler version and follow Melrose [Me94, §14]. The only modification

lies in replacing scattering asymptotics by the regularity result given in Lemma 3.1.

Lemma 3.3. Suppose that P satisfies (1.5), (1.8), and (3.10). Then for |ω| ≤ δ and

f ∈ C∞(M), the limit

(P − ω − iε)−1f
H−

1
2−(M)−−−−−−→ (P − ω − i0)−1f, ε→ 0+

exists. This limit is the unique solution to the equation

(P − ω)u = f, WF(u) ⊂ Λ+, (3.11)

and the map ω 7→ (P − ω − i0)−1f ∈ H− 1
2
−(M) is continuous in ω ∈ [−δ, δ].

Remark. Replacing P with −P we see that there is also a limit

(P − ω + iε)−1f
H−

1
2−(M)−−−−−−→ (P − ω + i0)−1f, ε→ 0+

which satisfies (3.11) with Λ+ replaced by Λ−.

Proof. We first note that Lemma 3.1 and the spectral assumption (3.10) imply that (3.11)

has no more than one solution. By (3.7), if a (distributional) limit (P − ω − iεj)−1f ,

εj → 0, exists then it solves (3.11).

To show that the limit exists put uε := (P − ω − iε)−1f and suppose first that

‖uε‖− 1
2
−α is not bounded as ε→ 0+ for some α > 0. Hence there exists εj → 0+ such

that ‖uεj‖− 1
2
−α →∞. Putting vj := uεj/‖uεj‖− 1

2
−α we obtain

(P − ω − iεj)vj = fj, ‖vj‖− 1
2
−α = 1, fj

C∞(M)−−−−→ 0. (3.12)

Applying (3.5) with N = 1
2

+α we see that vj is bounded in H−
1
2
−β(M) for any β > 0.

Since H−
1
2
−β(M) ↪→ H−

1
2
−α(M), β < α is compact we can assume, by passing to a

subsequence, that vj → v in H−
1
2
−α(M). Then (P − ω)v = 0 and the same reasoning

that led to (3.7) shows that WF(v) ⊂ Λ+. Thus v solves (3.11) with f ≡ 0, implying

that v ≡ 0. This gives a contradiction with the normalization ‖vj‖− 1
2
−α = 1.

We conclude that uε is bounded in H−
1
2
−α(M) for all α > 0. But then similarly

to the previous paragraph (uε)ε→0 is precompact in H−
1
2
−α(M) for all α > 0. Since

every limit point has to be the (unique) solution to (3.11), we see that uε converges as

ε→ 0+ in H−
1
2
−α(M) to that solution.

As for continuity in ω, we note that the above proof gives the stronger statement

(P − ωj − iεj)−1f
H−

1
2−(M)−−−−−−→ (P − ω − i0)−1f (3.13)
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for all εj → 0+, ωj → ω, and |ωj| ≤ δ. �

In §4.2 we will need the following upgraded version of Lemma 3.3:

Lemma 3.4. Suppose that P satisfies (1.5), (1.8), and (3.10). Let s < −1
2

and

g ∈ Hs+1(M), WF(g) ⊂ Λ+, where Λ+ is defined by (2.1). Then for |ω| ≤ δ the limit

(P − ω − iε)−1g
Hs−(M)−−−−−→ (P − ω − i0)−1g, ε→ 0+ (3.14)

exists, and WF((P − ω − i0)−1g) ⊂ Λ+. In particular, for k ≥ 1 and f ∈ C∞(M) the

limit

(P − ω − iε)−kf H−k+
1
2−(M)−−−−−−−→ (P − ω − i0)−kf, ε→ 0+, (3.15)

exists. Finally, (P − ω − i0)−1f ∈ Ck
ω([−δ, δ];H−k− 1

2
−(M)) with ∂kω(P − ω − i0)−1f =

k!(P − ω − i0)−k−1f .

Proof. We follow closely the proof of Lemma 3.3 and put uε := (P −ω− iε)−1g. Since

P−ω−iε is elliptic for every ε > 0, we have uε ∈ Hs+1(M) and WF(uε) ⊂WF(g) ⊂ Λ+,

so it remains to establish uniformity as ε→ 0+. We use the following version of (3.6)

(which follows from the same proof): for every A ∈ Ψ0(M) with WF(A) ∩ Λ+ = ∅
there exists B̃ ∈ Ψ0(M) with WF(B̃) ∩ Λ+ = ∅ such that

‖Auε‖s′ ≤ C‖B̃g‖s′+1 + C‖uε‖−N , s′ > −1
2

(3.16)

where the constant C does not depend on ω, ε. We also have the following version

of (3.5): there exists B′ ∈ Ψ0(M) with WF(B′) ∩ Λ+ = ∅ such that

‖uε‖s ≤ C‖g‖s+1 + C‖B′g‖1 + C‖uε‖−N , s < −1
2
. (3.17)

Here the norms ‖B̃g‖s′+1 and ‖B′g‖1 are finite since WF(g) ⊂ Λ+. From (3.16)

and (3.17) we get regularity for limit points of uεj similarly to (3.7):

∃ εj → 0+, u ∈ D ′(M), uεj
D ′(M)−−−→ u =⇒ u ∈ Hs(M), WF(u) ⊂ Λ+.

The existence of the limit (3.14) follows as in the proof of Lemma 3.3, replacing −1
2

by s in Sobolev space orders; here u = (P − ω − i0)−1g is the unique solution to

(P − ω)u = g, WF(u) ⊂ Λ+.

Iterating this argument, we get existence of the limit (3.15) and continuous dependence

of (P−ω−i0)−kf ∈ H−k+ 1
2
− on ω ∈ [−δ, δ] similarly to (3.13), with u = (P−ω−i0)−kf

being the unique solution to

(P − ω)ku = f, WF(u) ⊂ Λ+.

It remains to show differentiability in ω. For simplicity we assume that ω = 0 and

show that for f ∈ C∞(M),

∂ω
[
(P − ω − i0)−1f

]∣∣
ω=0

= (P − ω − i0)−2f in H−
3
2
−. (3.18)
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The case of higher derivatives is handled by iteration. To show (3.18) we denote

uε(ω) := (P − ω − iε)−1f and write for ω 6= 0, with limits in H−
3
2
−

u0(ω)− u0(0)

ω
= lim

ε→0+

uε(ω)− uε(0)

ω
= lim

ε→0+
(P − ω − iε)−1(P − iε)−1f

= (P − ω − i0)−1(P − i0)−1f.

(3.19)

To show the last equality above we first note that the family (P −ω− iε)−1(P − iε)−1f

is precompact in H−
3
2
−α(M) for any α > 0 as follows from iterating (3.17). By (3.16)

every limit point u of this family as ε→ 0+ satisfies P (P − ω)u = f , WF(u) ⊂ Λ and

thus equals (P−ω−i0)−1(P−i0)−1f . Finally, letting ω → 0 in (3.19) we get (3.18). �

4. Lagrangian structure of the resolvent

In this section we describe the Lagrangian structure of the resolvent refining the

results of Haber–Vasy [HaVa15] in our special case. To start, we briefly review basic

theory of Lagrangian distributions following [HöIV, §25.1].

4.1. Lagrangian distributions. Let M be a compact surface and Λ0 ⊂ T ∗M \ 0 a

conic Lagrangian submanifold without boundary. Denote by Is(M ; Λ0) ⊂ D′(M) the

space of Lagrangian distributions of order s on M associated to Λ0. They have the

following properties:

(1) Is(M ; Λ0) ⊂ H−
1
2
−s−(M);

(2) for all u ∈ Is(M ; Λ0) we have WF(u) ⊂ Λ0;

(3) if Λ1 ⊂ Λ0 is an open conic subset and u ∈ Is(M ; Λ0), then u ∈ Is(M ; Λ1) if

and only if WF(u) ⊂ Λ1;

(4) for all A ∈ Ψk(M) and u ∈ Is(M ; Λ0) we have Au ∈ Is+k(M ; Λ0);

(5) if additionally σ(A)|Λ0 = 0, then Au ∈ Is+k−1(M ; Λ0).

Denote

Is+(M ; Λ0) :=
⋂
s′>s

Is
′
(M ; Λ0).

A simple example on a torus (in the notation of §1.3) is given by

u(x) := (x1 − π
2
− i0)−1ϕ(x), ϕ ∈ C∞c (B(0, 1)), u ∈ I0(T2; Λ+

0 ) ⊂ H−
1
2
−(T2), (4.1)

where Λ+
0 is given in (1.10).

To define Lagrangian distributions we use Melrose’s iterative characterization [HöIV,

Definition 25.1.1]: u ∈ D′(M) lies in Is+(M ; Λ0) if and only if WF(u) ⊂ Λ0 and

A1 . . . A` u ∈ H−
1
2
−s−(M) for any A1, . . . , A` ∈ Ψ1(M), σ(Aj)|Λ0 = 0. (4.2)

Note that [HöIV] uses Besov spaces ∞Hs, however this does not make a difference

in (4.2) since Hs ⊂ ∞Hs ⊂ Hs′ for all s′ < s, see [HöIII, Proposition B.1.2].
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We also need oscillatory integral representations for Lagrangian distributions. As-

sume that in some local coordinate system on M , Λ0 is given by

Λ0 = {(x, ξ) : x = ∂ξF (ξ), ξ ∈ Γ0} (4.3)

where Γ0 ⊂ R2 \ 0 is an open cone and F : Γ0 → R is homogeneous of order 1. (Every

Lagrangian can be locally written in this form after a change of base, x, variables –

see [HöIII, Theorem 21.2.16]. Using a pseudodifferential partition of unity we can

write every Lagrangian distribution as a sum of expressions of the form (4.4).) Then

u ∈ Is(M ; Λ0) if and only if u can be written (modulo a C∞ function) as

u(x) =

∫
Γ0

ei(〈x,ξ〉−F (ξ))a(ξ) dξ (4.4)

where a(ξ) ∈ C∞(R2) is a symbol of order s− 1
2
, namely

|∂αξ a(ξ)| ≤ Cα〈ξ〉s−
1
2
−|α|, ξ ∈ R2 (4.5)

and a is supported in a closed cone contained in Γ0. See [HöIV, Proposition 25.1.3].

An equivalent way of stating (4.4) is in terms of the Fourier transform û: eiF (ξ)û(ξ) is

a symbol, that is, satisfies estimates (4.5).

We finally review properties of the principal symbol of a Lagrangian distribution,

used in the proof of Lemma 4.5 below, referring the reader to [HöIV, Chapter 25] for

details. The principal symbol of a Lagrangian distribution, u, with values in half-

densities, u ∈ Is(M,Λ; Ω
1
2
M), is the equivalence class

σ(u) ∈ Ss+
1
2 (Λ;MΛ ⊗ Ω

1
2
Λ)/Ss−

1
2 (Λ;MΛ ⊗ Ω

1
2
Λ),

see [HöIV, Theorem 25.1.9], where

• Ω
1
2
Λ is the line bundle of half-densities on Λ;

• MΛ is the Maslov line bundle; it has a finite number of prescribed local frames

with ratios of any two prescribed frames given by a constant of absolute value

one. Consequently it has a canonical inner product and does not enter into the

calculations below;

• Sk(Λ;MΛ ⊗ Ω
1
2
Λ) is the space of sections in C∞(Λ;MΛ ⊗ Ω

1
2
Λ) which are sym-

bols of order k, defined using the dilation operator (x, ξ) 7→ (x, λξ), λ > 0,

see the discussion on [HöIV, page 13]. In the parametrization (4.4) we have

σ(u|dx| 12 ) = (2π)−
1
2a(ξ)|dξ| 12 . The factor |dξ| 12 accounts for the difference in

the order of the symbol.

If P ∈ Ψ`(M ; Ω
1
2
M) satisfies σ(P )|Λ = 0 and u ∈ Is(M,Λ; Ω

1
2
M) then

Pu ∈ Is+`−1(M,Λ; Ω
1
2
M), σ(Pu) = 1

i
Lσ(u) (4.6)
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where L is a first order differential operator on C∞(Λ;MΛ⊗Ω
1
2
Λ) with principal part Hp.

The equation (4.6) is the transport equation for P (the eikonal equation corresponds

to σ(P )|Λ = 0) – see [HöIV, Theorem 25.2.4]. If P is self-adjoint, then its subprincipal

symbol is real-valued by [HöIII, Theorem 18.1.34] and thus by [HöIV, (25.2.12)]

L∗ = −L on L2(Λ;MΛ ⊗ Ω
1
2
Λ). (4.7)

4.2. Lagrangian regularity. We now establish Lagrangian regularity for elements in

the range of the operators (P − ω ∓ i0)−1 constructed in §3.3:

Lemma 4.1. Suppose that P satisfies (1.5), (1.8), and (3.10). Let f ∈ C∞(M) and

u±(ω) := (P − ω ∓ i0)−1f ∈ H−
1
2
−(M), |ω| ≤ δ.

Then u±(ω) ∈ I0(M ; Λ±ω ). Moreover, the symbols of u±(ω) depend smoothly on ω:

u±(ω) ∈ C∞ω
(
[−δ, δ]; I0(M ; Λ±ω )

)
, (4.8)

where the precise meaning of (4.8) is explained in Lemma 4.4 below ( (4.25) and

Remark 2).

Remark. Lemma 4.1 is similar to the results of Haber and Vasy [HaVa15, Theorem

1.7, Theorem 6.3]. There are two differences: [HaVa15] makes the assumption that the

Hamiltonian field Hp is radial on Λ±ω (which is not true in our case) and it also does

not prove smooth dependence of the symbols of u±(ω) on ω. Because of these we give

a self-contained proof of Lemma 4.1 below, noting that the argument is simpler in our

situation.

We focus on the case of u+(ω), with regularity of u−(ω) proved by replacing P, ω

with −P, −ω, respectively. By Lemma 3.4 we have for every k ≥ 0

u+(ω) ∈ Ck
ω([−δ, δ];H−k−

1
2
−(M)), WF(∂kωu

+(ω)) ⊂ Λ+ (4.9)

where the wavefront set statement is uniform in ω.

To upgrade (4.9) to Lagrangian regularity, we use the criterion (4.2), applying first

order operators W and Dω −Q to u+(ω) (see Lemma 4.3 below). Here,

W,Q ∈ Ψ1(M), σ(W ) = G+, σ(Q)|Λ+ = Φ+ (4.10)

where G+ is the defining function of Λ+ constructed in Lemma 2.4 and Φ+ is defined

in (2.3). The operator Dω−Q, where Dω := 1
i
∂ω, is used to establish smoothness in ω.

Our proof uses the following corollary of (3.3):

if Z ∈ Ψ−1(M), σ(Z)|Λ+ = 0, s < −1
2

then

v ∈ D′(M), WF(v) ⊂ Λ+, (P + Z − ω)v ∈ Hs+1 =⇒ v ∈ Hs.
(4.11)

The addition of Z does not change the validity of (3.3) since it is a subprincipal term

whose symbol vanishes on Λ+, see [DyZw, Theorem E.54].
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We also use the following identity valid for any operators A,B on D′(M):

BmA =
m∑
j=0

(
m

j

)
(adjB A)Bm−j, adB A := [B,A]. (4.12)

The first step of the proof is to establish regularity with respect to powers of W :

Lemma 4.2. Assume that v ∈ D′(M) satisfies for some ` ≥ 0 and s < −1
2

WF(v) ⊂ Λ+, W j(P − ω)v ∈ Hs+1 for j = 0, . . . , `. (4.13)

Then W `v ∈ Hs, where W is defined in (4.10).

Proof. We argue by induction on `. For ` = 0 the lemma follows immediately from (4.11).

We thus assume that ` > 0 and the lemma is true for all smaller values of `, in particular

W kv ∈ Hs for 0 ≤ k ≤ `− 1. Using (4.12) we write

W `(P − ω) = (P − ω)W ` +
∑̀
j=1

(
`

j

)
(adjW P )W `−j. (4.14)

We recall from Lemma 2.4 that near Λ+ we have HG+p = −a+G+ where a+ is homoge-

neous of order −1 and a+|Λ+ = 0. Therefore for j ≥ 1 we have Hj
G+
p = −(Hj−1

G+
a+)G+

near Λ+. Motivated by this we take

Bj ∈ Ψ−1(M), σ(Bj) = (−1)j−1ijHj−1
G+

a+, 1 ≤ j ≤ `.

Then, for 1 ≤ j ≤ `

adjW P = BjW +Rj, Rj ∈ Ψ−1 microlocally near Λ+. (4.15)

Combining (4.14) and (4.15) we get

(P − ω)W ` = W `(P − ω)−
∑̀
j=1

(
`

j

)
(BjW

`+1−j +RjW
`−j). (4.16)

Applying both sides of (4.16) to v and using that W kv ∈ Hs for 0 ≤ k ≤ ` − 1 and

that W `(P − ω)v ∈ Hs+1 we get

(P + `B1 − ω)W `v ∈ Hs+1.

Since σ(B1) = ia+ vanishes on Λ+, we apply (4.11) to conclude that W `v ∈ Hs as

needed. �

Since (P − ω)u+(ω) = f ∈ C∞(M), Lemma 4.2 implies that

W `u+(ω) ∈ H−
1
2
−(M) for all ` ≥ 0. (4.17)

This can be generalized as follows:

A1 . . . A`u
+(ω) ∈ H−

1
2
−(M) for all A1, . . . , A` ∈ Ψ1(M), σ(Aj)|Λ+ = 0. (4.18)
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To see (4.18), we argue by induction on `. We have σ(Aj) = ãjG+ near WF(u+(ω)) ⊂
Λ+ for some ãj which is homogeneous of order 0. Taking Ãj ∈ Ψ0(M) with σ(Ãj) = ãj
we have

Aj = ÃjW + R̃j where R̃j ∈ Ψ0(M) microlocally near WF(u+(ω)).

Then we can write A1 . . . A`u
+(ω) as the sum of two kinds of terms (plus a C∞ re-

mainder):

• the term Ã1 . . . Ã`W
`u+(ω), which lies in H−

1
2
−(M) by (4.17), and

• terms of the form A′1 . . . A
′
mu

+(ω) where 0 ≤ m ≤ ` − 1, A′j ∈ Ψ1(M), and

σ(A′j)|Λ+ = 0, which lie in H−
1
2
−(M) by the inductive hypothesis.

The next statement generalizes (4.17) by additionally applying powers of Dω −Q:

Lemma 4.3. For all integers `,m ≥ 0 we have

W `(Dω −Q)mu+(ω) ∈ H−
1
2
−(M), |ω| ≤ δ, (4.19)

and the corresponding norms are bounded uniformly in ω.

Proof. We argue by induction on m, with the case m = 0 following from (4.17). Put

uj(ω) := (Dω −Q)ju+(ω) ∈ D′(M), 0 ≤ j ≤ m.

By (4.9) we have WF(uj(ω)) ⊂ Λ+ for all j. Moreover, by the inductive hypothesis

W `uj(ω) ∈ H−
1
2
−(M) for all `, 0 ≤ j ≤ m− 1. (4.20)

Put

Y := [P − ω,Dω −Q] = −i− [P,Q] ∈ Ψ0(M)

and note that since σ(Q)|Λ+ = Φ+ and HpΦ+ ≡ 1 on Λ+ by (2.4),

σ(Y )|Λ+ = 0. (4.21)

Moreover, by (2.4) we have HG+Φ+ ≡ 0 on Λ+, thus the Hamiltonian vector field HΦ+

is tangent to Λ+. This implies that

σ(adjQ Y ) = (−i)jHj
Φ+
σ(Y ) ≡ 0 on Λ+ for all j ≥ 0. (4.22)

Applying (4.12) with A := P − ω and B := Dω −Q to u+(ω) we get

(P − ω)um(ω) = (Dω −Q)mf +
m∑
j=1

(−1)j−1

(
m

j

)
(adj−1

Q Y )um−j(ω). (4.23)

Since f ∈ C∞ does not depend on ω, we have (Dω − Q)mf ∈ C∞. Next, by the

inductive hypothesis (4.20) we have W `um−j(ω) ∈ H− 1
2
− for all ` ≥ 0 and 1 ≤ j ≤ m.

Arguing similarly to (4.18) and using (4.22) we see that W `(adj−1
Q Y )um−j(ω) ∈ H 1

2
−
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as well (here adj−1
Q Y ∈ Ψ0(M) which explains the stronger regularity). Thus (4.23)

implies

W `(P − ω)um(ω) ∈ H
1
2
−(M) for all ` ≥ 0.

Now Lemma 4.2 gives W `um(ω) ∈ H− 1
2
− for all ` ≥ 0 as needed.

Finally, uniformity of (4.19) in ω follows immediately from the proof since the esti-

mates (4.9) and (3.3) that we used are uniform in ω. �

We now deduce from Lemma 4.3 that u+(ω) has microlocal oscillatory integral rep-

resentations (4.4) with symbols depending smoothly on ω. This shows the weaker

version of (4.8) with I0 replaced by I0+.

Lemma 4.4. Assume that U ⊂ T ∗M \ 0 is an open conic set such that Λ+
ω ∩ U are

given in the form (2.5) in some local coordinate system on M :

Λ+
ω ∩ U = {(x, ξ) : x = ∂ξF (ω, ξ), ξ ∈ Γ0}, |ω| ≤ δ (4.24)

where ξ 7→ F (ω, ξ) is homogeneous of order 1 and Γ0 ⊂ R2 \ 0 is an open cone. Let

A ∈ Ψ0(M), WF(A) ⊂ U . Then,

Au+(ω, x) =

∫
Γ0

ei(〈x,ξ〉−F (ω,ξ))a(ω, ξ) dξ + C∞ω,x, |ω| ≤ δ (4.25)

where a(ω, ξ) is a smooth in ω family of symbols of order −1
2
+ in ξ supported in a

closed cone inside Γ0, see (4.5).

Remarks. 1. The statement (4.25) means that u+(ω) can be represented as (4.4),

microlocally in every closed cone contained in U .

2. When (4.25) holds for every choice of parametrization (4.24) we write

u+(ω) ∈ C∞ω
(
[−δ, δ]; I0+(M ; Λ+

ω )
)
,

with the analogous notation in the case of u−(ω). That explains the statement of

Lemma 4.1.

Proof. Since (P − ω)u+(ω) = f ∈ C∞(M), it follows from Lemma 4.3 that for all

m, `, r ≥ 0

(Dω −Q)mW `(P − ω)ru+(ω) ∈ H−
1
2
−(M)

This can be generalized as follows:

(Dω −Q(ω))mA1(ω) . . . A`(ω)u+(ω) ∈ H−
1
2
−(M) (4.26)

for all m and all A1(ω), . . . , A`(ω), Q(ω) ∈ Ψ1(M) depending smoothly on ω ∈ [−δ, δ]
and such that σ(Aj(ω))|Λ+

ω
= 0, σ(Q(ω))|Λ+

ω
= Φ+. The proof is similar to the proof

of (4.18), using the decomposition

Aj(ω) = A′j(ω)W + A′′j (ω)(P − ω) +Rj(ω)

where Rj(ω) ∈ Ψ0 microlocally near WF(u+(ω))
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for some A′j(ω), A′′j (ω) ∈ Ψ0(M) depending smoothly on ω ∈ [−δ, δ].
Since WF(A∂kωu

+(ω)) ⊂ Λ+ ∩ p−1([−δ, δ]) ∩ U for all k, by the Fourier inversion

formula we can write Au+(ω) in the form (4.25) for some a(ω, ξ) which is smooth in

ω, ξ and supported in ξ ∈ Γ1 where Γ1 ⊂ Γ0 is some closed cone. It remains to show

the following growth bounds as ξ →∞: for every ε > 0

〈ξ〉−
1
2

+|α|−ε∂mω ∂
α
ξ a(ω, ξ) ∈ L∞ω ([−δ, δ];L2

ξ(R2)). (4.27)

(From (4.27) one can get L∞ξ bounds using Sobolev embedding as in the proof of [HöIV,

Proposition 25.1.3].)

Denote by I(a) the integral on the right-hand side of (4.25). By Lemma 2.2 we have

∂ωF (ω, ξ) = −Φ+(∂ξF (ω, ξ), ξ), therefore we may take Q(ω) := −∂ωF (ω,Dx) to be a

Fourier multiplier. The operators

Ajk(ω) := Dxk

(
(∂ξjF )(ω,Dx)− xj

)
, j, k ∈ {1, 2},

lie in Ψ1 and satisfy σ(Ajk(ω))|Λ+
ω

= 0. We have

(Dω −Q(ω))I(a) = I(Dωa), Ajk(ω)I(a) = I(ξkDξja).

Also, if I(a) ∈ H− 1
2
− uniformly in ω, then 〈ξ〉− 1

2
−εa(ω, ξ) ∈ L∞ω ([−δ, δ];L2

ξ(R2)). Ap-

plying (4.26) with the operators Dω − Q(ω) and Ajk(ω) we get (4.27), finishing the

proof. �

We finally show the stronger statement of Lemma 4.1 (with I0 instead of I0+) using

the transport equation satisfied by the principal symbol:

Lemma 4.5. We have

u+(ω) ∈ C∞ω
(
[−δ, δ]; I0(M ; Λ+

ω )
)
,

that is (4.25) holds where a(ω, ξ) is a symbol of order −1
2

in ξ.

Proof. In our setting P ∈ Ψ0(M) is self-adjoint with respect to a smooth density

on M – see (1.5). Using that density to trivialize the half-density bundle we obtain a

self-adjoint operator P ∈ Ψ0(M ; Ω
1
2
M).

Let a+ ∈ S 1
2

+(Λ+
ω ;MΛ+

ω
⊗Ω

1
2

Λ+
ω

) be a representative of σ(u+(ω)). Using the transport

equation (4.6) and (P − ω)u+(ω) = f ∈ C∞(M), we have

b+ := La+ ∈ S−
3
2

+(Λ+
ω ;MΛ+

ω
⊗ Ω

1
2

Λ+
ω

), (4.28)

where L is a first-order differential operator on C∞(Λ+
ω ;MΛ+

ω
⊗ Ω

1
2

Λ+
ω

) with principal

part given by Hp and L∗ = −L by (4.7).

We trivialize Ω
1
2

Λ+
ω

using the density ν+
ω constructed in Lemma 2.5 and write

a+ = ã+
√
ν+
ω , b+ = b̃+

√
ν+
ω .
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where ã+ ∈ S0+(Λ+
ω ;MΛ+

ω
), b̃+ ∈ S−2+(Λ+

ω ;MΛ+
ω

). By (4.28) we have

(Hp + V )ã+ = b̃+ (4.29)

where Hp naturally acts on sections of the locally constant bundle MΛ+
ω

and V ∈
C∞(Λ+

ω ) is homogeneous of order −1. Moreover, since L∗ = −L we have

ReV = 1
2
(LHpν+

ω )/ν+
ω = 0

using Lemma 2.5.

By (4.29) for all (x, ξ) ∈ Λ+
ω and t ≥ 0 we have

ã+(x, ξ) = e−t(Hp+V )ã+(x, ξ) +

∫ t

0

e−s(Hp+V )b̃+(x, ξ) ds. (4.30)

Since ReV = 0 we have |e−t(Hp+V )ã+(x, ξ)| = |ã+(e−tHp(x, ξ))| and same is true for b̃+.

Take (x, ξ) ∈ Λ+
ω with |ξ| large. As in (2.10) choose t ≥ 0, t ∼ |ξ|, such that

e−tHp(x, ξ) ∈ S∗M ; we next apply (4.30). The first term on the right-hand side is

bounded uniformly as ξ → ∞. Same is true for the second term since the function

under the integral is O((t− s)−2+). It follows that ã+(x, ξ) is bounded as ξ →∞.

Since [ξ∂ξ, Hp + V ] = −Hp − V , we have for all j

(Hp + V )(ξ∂ξ)
j ã+ = (ξ∂ξ + 1)j b̃+ ∈ S−2+(Λ+

ω ;MΛ+
ω

). (4.31)

It follows that (Hp + V )`(ξ∂ξ)
j ã+ = O(〈ξ〉−`) for all j, `: the case ` = 0 follows

from (4.30) applied to (4.31) and the case ` ≥ 1 follows directly from (4.31). Since

ξ∂ξ and Hp form a frame on Λ+
ω , we have ã+ ∈ S0(Λ+

ω ;MΛ+
ω

) which implies that

u+
ω ∈ I0(M ; Λ+

ω ). �

Remark. It is instructive to consider the transport equation (4.29) in the microlocal

model used in [CS18]: near a model sink Λ+
ω = {(−ω, x2; ξ1, 0) : ξ1 > 0} ⊂ T ∗(Rx1 ×

S1
x2

) ⊂ 0 (see the global examples in §1.3) we consider p(x, ξ) := ξ−1
1 ξ2 − x1. We

are then solving (p(x,D)− ω)u+(ω) ≡ 0 microlocally near Λ+
ω (see [DyZw, Definition

E.29]) and for that we expand the symbol on u+
ω into Fourier modes in x2,

u+
ω (x) =

1

2π

∫
R

∑
n∈Z

â+
ω (n, ξ1)ei(x1+ω)ξ1einx2 dξ1, a+

ω =
∑
n∈Z

â+
ω (n, ξ1)einx2 |dξ1dx2|

1
2 .

The Fourier coefficients should satisfy (ξ−1
1 n + Dξ1)ã

+
ω (n, ξ1) = 0 for ξ1 > 1 and

ãω+(n, ξ1) = 0 for ξ1 < −1. Hence the symbol is given by

a+
ω = ã+(ω)|dx2dξ1|

1
2 , ã+(x2, ξ1) =

∑
n∈Z

ξ−in1 an(ω)einx2 , an(ω) = O(〈n〉−∞).

Hence, the symbol is very “non-classical” in the sense that it does not have an expan-

sion in powers of ξ1. In the general case it follows from the structure of (4.29).
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5. An asymptotic result

We now place ourselves in the setting of Lemma 4.1 and assume that u(ω) ∈
C∞ω ([−δ, δ]; I0(M ; Λω)) in the sense described in Lemma 4.5, where Λω = Λ+

ω or

Λω = Λ−ω . We are interested in the asymptotic behaviour as t→∞ of

I(t) :=

∫ t

0

∫
R
e−isωϕ(ω)u(ω) dωds ∈ D′(M), ϕ ∈ C∞c ((−δ, δ)). (5.1)

We have the following local asymptotic result.

Lemma 5.1. Suppose that u(ω) ∈ D′(R2) is given by

u(ω) = u(ω, x) =
1

(2π)2

∫
Γ0

ei(〈x,ξ〉−F (ω,ξ))a(ω, ξ)dξ, (5.2)

where Γ0, F , and a satisfy the general conditions in (4.25). Suppose also that

ε∂ωF (ω, ξ) < 0, ε = ±, ξ ∈ Γ0, |ω| ≤ δ. (5.3)

Then as t→∞,

I(t) = u∞ + b(t) + v(t), ‖b(t)‖
H

1
2−
≤ C, v(t)→ 0 in H−

1
2
−(R2),

u∞ =

{
2πϕ(0)u(0), ε = +;

0, ε = −.
(5.4)

Proof. We start by remarking that we can assume that the amplitude a is supported

away from ξ = 0. The remaining contribution can be absorbed into b(t): if a =

a(ω, ξ) = 0 for |ξ| > C then

ŵ(t, ξ) :=

∫ t

0

∫
R
e−isωe−iF (ω,ξ)a(ω, ξ)ϕ(ω)dωds

=

∫ t

0

∫
R

[
(1 + s2)−1(1 +D2

ω)e−isω
]
e−iF (ω,ξ)a(ω, ξ)ϕ(ω)dωds,

which by integration by parts in ω is bounded in t and compactly supported in ξ.

We next consider the Fourier transform of x 7→ I(t)(x), J(t, ξ) := Fx→ξI(t), where

J(t, ξ) =
1

h

∫ ht

0

∫
R
e−

i
h

(F (ω,η)+rω)a(ω, η/h)ϕ(ω) dωdr, ξ =
η

h
, η ∈ S1. (5.5)

From the assumptions on a we have J(t, ξ) = 0 unless η ∈ Γ1, where Γ1 ⊂ Γ0 is a

closed cone. The phase in J(t) is stationary when

ω = 0, r = r(η) := −∂ωF (0, η). (5.6)

From (5.3), ∂ωF (ω, η) 6= 0 and this means that for some γ > 0,

|r + ∂ωF (ω, η)| > c〈r〉, η ∈ S1 ∩ Γ1, |ω| ≤ δ, |r| /∈ (γ, 1/γ). (5.7)
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Let χ ∈ C∞c ((γ/2, 2/γ); [0, 1]) be equal to 1 on (γ, 1/γ). Using integration by parts

based on (
−(r + ∂ωF (ω, η))−1Dω

)N
e−

i
h

(F (ω,η)+rω) = hNe−
i
h

(F (ω,η)+rω),

and (5.7) we see that, by taking N ≥ 2,

1

h

∫ ht

0

∫
R
(1− χ(r))e−

i
h

(F (ω,η)+rω)a(ω, η/h)ϕ(ω) dωdr = O(hN−1),

uniformly in t ≥ 0. Hence, for all N

J(t) = J̃(t) + Fx 7→ξu0(t), sup
t≥0
‖u0(t)‖HN ≤ CN ,

J̃(t, ξ) :=
1

h

∫ ht

0

∫
R
χ(r)e−

i
h

(F (ω,η)+rω)a(ω, η/h)ϕ(ω) dωdr, ξ =
η

h
, η ∈ S1.

When ht ≥ 2/γ, we have J̃(t, ξ) = J̃(∞, ξ) due to the support property of χ. In

particular this implies that J̃(t, ξ)→ J̃(∞, ξ) as t→∞ pointwise in ξ. We apply the

standard method of stationary phase to J̃(∞) noting that

−∂2
ω,r(F (ω, η) + rω) =

[
−∂2

ωF −1

−1 0

]
, sgn ∂2

ω,r(F (ω, η)− rω) = 0.

Therefore

J̃(∞, ξ) =

{
2πa(0, ξ)ϕ(0)e−iF (0,ξ) +O(〈ξ〉− 3

2
+), ∂ωF (0, ξ) < 0,

O(〈ξ〉−∞), ∂ωF (0, ξ) > 0.
(5.8)

Hence to obtain (5.4) all we need to show is that J̃(t, ξ) = O(〈ξ〉− 1
2

+) uniformly in t

as then by dominated convergence,

〈ξ〉−
1
2
−J̃(t)

L2(R2,dξ)−−−−−→ 〈ξ〉−
1
2
−J̃(∞), t→ +∞,

that is,

Ĩ(t) := F−1
ξ→xJ̃(t)

H−
1
2−(R2)−−−−−−→ F−1

ξ→xJ̃∞(t), t→ +∞.

Here the O(〈ξ〉− 3
2

+) remainder in (5.8) can be put into b(t) in (5.4).

The uniform boundedness of J̃(t, ξ) follows from the following simple lemma:

Lemma 5.2. Suppose that A = A(s, ω) ∈ C∞c (R2) and G ∈ C∞(R;R). Then as h→ 0

L(h) :=

∫ ∞
0

∫
R
e
i
h

(G(ω)+sω)A(s, ω) dωds = O(h log(1/h)). (5.9)

Proof. We define

B(σ, ω) :=

∫ ∞
0

eisσA(s, ω) ds, B(σ, ω) = iσ−1A(0, ω) +O(σ−2), |σ| → ∞.
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Hence,

L(h) =

∫
R
e
i
h
G(ω)B

(ω
h
, ω
)
dω = h

∫
R
e
i
h
G(hw)B(w, hw) dw

= O(h)

∫
|w|≤C/h

dw

1 + |w|
= O(h log(1/h)),

proving (5.9). (In fact we see that the estimate is sharp: if we take G ≡ 0 and A which

is odd in ω one does have logarithmic growth.) �

To use the lemma to show the bound J̃(t, ξ) = O(〈ξ〉− 1
2

+), uniformly in t ≥ 0, it

suffices to consider the case ht ≤ 2/γ, since otherwise J̃(t, ξ) = J̃(∞, ξ). As before,

we write ξ = η/h where η ∈ S1. Then

J̃(t, ξ) =
1

h

∫ ∞
0

∫
R
e
i
h

(sω−htω−F (ω,η))χ(ht− s)a(ω, η/h)ϕ(ω) dωds.

We now apply Lemma 5.2 with A(s, ω) := hα−
1
2χ(ht − s)a(ω, η/h)ϕ(ω), α > 0

(and arbitrary) and G(ω) = −htω − F (ω, η) to obtain, J̃(t) = O(h
1
2
−α log(1/h)) =

O(〈ξ〉− 1
2

+2α) which concludes the proof. �

6. Proof of the Main Theorem

In the approach of [CS18] the decomposition of u(t) is obtained using (1.2) and

proving that for ϕ supported in a neighbourhood of 0,

P−1(e−itP − 1)ϕ(P )f
H−

1
2−(M)−−−−−−→ −(P − i0)−1ϕ(P )f, t −→∞, (6.1)

which makes formal sense if we think in terms of distributions. The rigorous argument

requires finer aspects of Mourre theory developed by Jensen–Mourre–Perry [JMP84].

Here we take a more geometric approach and use Lemma 3.3 and 4.1 to study the

behaviour of u(t). Fix δ > 0 small enough so that the results of §2.1, as well as (3.10),

hold. Fix ϕ ∈ C∞c ((−δ, δ)) such that ϕ = 1 near 0. By (1.2), the spectral theorem,

and Stone’s formula (see for instance [DyZw, Theorem B.8]) we have

u(t) = −i
∫ t

0

e−isPϕ(P )f ds+ P−1(e−itP − 1)(1− ϕ(P ))f

=
1

2π

∫ t

0

∫
R
e−isωϕ(ω)(u−(ω)− u+(ω)) dωds+ b1(t),

(6.2)

where ‖b1(t)‖L2 ≤ C for all t ≥ 0 and u±(ω) := (P − ω ∓ i0)−1f ∈ H−1/2−(M) are

defined in Lemma 3.3.

By Lemma 4.1 we have u±(ω) ∈ C∞ω ([−δ, δ]; I0(M ; Λ±ω )). The main result (1.3),

(1.4) then follows from Lemma 5.1. Here we use a pseudodifferential partition of

unity to write u±(ω) as a finite sum of oscillatory integrals (5.2) and the geometric
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condition (5.3) follows from Lemmas 2.2 and 2.3. We obtain u∞ = −u+(0) which is

consistent with (6.1).
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