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Abstract. We prove that in the chiral limit of the Bistritzer-MacDonald Hamil-

tonian, there exist magic angles at which the Hamiltonian exhibits flat bands of

multiplicity four instead of two. We analyze the structure of the Bloch functions

associated with the four bands, compute the corresponding Chern number, and show

that there exist infinitely many degenerate magic angles for a generic choice of tun-

nelling potentials. Moreover, we demonstrate that the Hamiltonian, when subject to

typical tunnelling potentials, exclusively yields flat bands of either twofold or fourfold

multiplicity at each magic angle.

1. Introduction and statement of results

Twisted bilayer graphene is a material consisting of two stacked graphene lay-

ers which are twisted with respect to each other by an angle θ. It has been pre-

dicted theoretically [BiMa11] that at a certain angle, the bands at zero energy be-

come flat and strongly correlated electron effects dominate. This has then been ex-

perimentally confirmed that at this magic angle, the material exhibits phenomena

such as superconductivity and a quantum Hall effect without external magnetic fields

[Cao18, Ser19, Yan18]. Theoretically [TKV19] more magic angles have been expected.

Perhaps contrary to common beliefs, we show that flat bands of higher multiplicity are

ubiquitous in this model of bilayer graphene. Higher multiplicity bands have recently

also been theoretically observed in models of twisted trilayer graphene [PT23, De23].

We verify numerically that the presence of higher degenerate (almost flat) bands close

to zero energy is also valid for the full (not just chiral) model, see Figure 8.

The model we consider is based on the Bistritzer MacDonald Hamiltonian [BiMa11,

CGG22, Wa∗22] and its chiral limit of Tarnopolsky–Kruchkov–Vishwanath [TKV19]:

H(α) =

(
0 D(α)∗

D(α) 0

)
with D(α) =

(
2Dz̄ αU+(z)

αU−(z) 2Dz̄

)
(1.1)

where the parameter α is proportional to the inverse relative twisting angle. With

ω = e2πi/3 and a = 4πi(a1ω + a2ω̄), aj ∈ Z, we assume that

U±(z + a) = ω∓(a1+a2)U(z), U±(ωz) = ωU±(z). (1.2)

The most important case is given by

U+(z) = U(z), U−(z) = U(−z), U(z̄) = U(z), (1.3)
1
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see (1.8) for concrete examples.

Floquet theory for the Hamiltonian (1.1) is based on moiré translations:

Lau :=

(
ω−(a1+a2) 0

0 ωa1+a2

)
u(z + a), a = 4πi(a1ω + a2ω̄). (1.4)

The action is extended diagonally to C4 = C2×C2-valued functions and we LaH(α) =

H(α)La.

The Floquet spectrum is given by

H(α)u = Eu, u ∈ H1
k Hs

k := L2
k ∩Hs

loc,

L2
k := {u = L2

loc(C;C4) : Lau = ei⟨k,a⟩u}, ⟨z, w⟩ := Re(zw̄).
(1.5)

The spectrum is discrete and symmetric with respect to the origin and we index it as

follows (with Z∗ := Z \ {0})
{Ej(α, k)}j∈Z∗ , Ej(α, k) = −E−j(α, k),

0 ≤ E1(α, k) ≤ E2(α, k) ≤ · · · , E1(α,K) = E1(α,−K) = 0,
(1.6)

see [BHZ22b, §2] for more details. The points K,−K, K = i, are called the Dirac

points and are typically denoted by K and K ′ in the physics literature.

Definition (Magic angles and their multiplicities). A value of α in (1.1) is called

magical if H(α) has a flat band at zero

E1(α, k) ≡ 0, k ∈ C.

The set of magic α’s is denoted by A or A(U) if we specify the dependence on the

potential. The multiplicity of a magic α is defined as

m(α) = mU(α) = min{j > 0 : max
k
Ej+1(α, k) > 0}. (1.7)

Magic angles are (up to physical constants) reciprocals of α ∈ A.

Because of the symmetry of the spectrum (1.6) simple α’s correspond flat bands of

multiplicity 2 and double α’s, to flat bands of multiplicity 4.

Examples of U ’s satisfying (1.2) and (1.3) are given by

U1(z) =
2∑

ℓ=0

ωℓe
1
2
(zω̄ℓ−z̄ωℓ) and U2(z) =

1√
2

(
U1(z)−

2∑
ℓ=0

ωℓe−(zω̄ℓ−z̄ωℓ)
)
. (1.8)

Numerical experiments suggest that these two potentials exhibit flat bands of different

multiplicities:

mUj
(α) = j, α ∈ AUj

∩ R, j = 1, 2, (1.9)

see Figure 1. We show (see Theorem 2 below) that the potential U1 (the Bistritzer–

MacDonald potential) has infinitely many (complex) degenerate magic α’s. While in

case of U1 all magic angles on the real axis appear to be simple, the two-fold degenerate
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Figure 1. Magic angles α derived from potentials U = U1 (left) and

U = U2 (right) in (1.1). The multiplicity of the flat bands u of

(D(α) + k)uk = 0 is illustrated by the numbers (no number → sim-

ple magic angle, 2 → two-fold degenerate magic angle) in the figure.

The movie https://math.berkeley.edu/~zworski/Interpolation.

mp4 shows the magic angles for interpolation between these potentials:

U(z) = (cos θ − sin θ)U1(z) + sin θU2(z); multiplicity one magic angles

are coded by ∗ and multiplicity two by ∗.

magic angles, with non-zero imaginary part, become real when a suitable magnetic field

is added [Le22].

k αk αk − αk−1

1 0.585663

2 2.221182 1.6355

3 3.751406 1.5302

4 5.276498 1.5251

5 6.794785 1.5183

6 8.312999 1.5182

7 9.829067 1.5161

8 11.345340 1.5163

9 12.860608 1.5153

10 14.376072 1.5155

11 15.890964 1.5149

k αk αk − αk−1

1 0.853799

2 2.691433 1.8376

3 4.507960 1.8165

4 6.332311 1.8244

5 8.157130 1.8248

6 9.983510 1.8264

7 11.809376 1.8259

8 13.635446 1.8261

9 15.460894 1.8255

10 17.286231 1.8253

11 19.111041 1.8248

Table 1. First 11 real magic angles, rounded to 6 digits, for U = U1

(left) and U = U2 (right). The α’s for U1 are simple and the ones on the

right are double.

https://math.berkeley.edu/~zworski/Interpolation.mp4
https://math.berkeley.edu/~zworski/Interpolation.mp4
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Figure 2. Let α ≈ 0.853799 as in Table 1, lowest two Bloch band with

positive energy close to the first magic angle with U = U2. We plot

E1(k) (left) and E2(k) (right).

Figure 3. Let α ≈ 0.9628 + 0.9873i the first complex magic angle for

U = U1, lowest two Bloch band with positive energy close to the first

degenerate magic angle. We plot E1(k) (left) and E2(k) (right).

The first theorem is a rigidity result stating that two-fold degenerate α’s have to

appear in certain representations:

Theorem 1 (Rigidity). Using (1.5), define L2
0,p := {u ∈ L2

0 : u(ωz) = ω̄pu(z)},
p ∈ Z3. Assume that the Hamiltonian (1.1) satisfies (1.2) and (1.3).

Then, with the definition of multiplicity (1.7) ,

m(α) = 1 =⇒ dimkerL2
0,2
D(α) = 1,

m(α) = 2 =⇒ dimkerL2
0,0
D(α) = dimkerL2

0,1
D(α) = 1.

(1.10)
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The first implication in (1.10) is included in [BHZ22b, Theorem 2]. The location of

the zeros of the elements of kerL2
0,j
D(α) in (1.10) is is described in Theorem 8, see also

[BHZ22b, Theorem 3] for the case of simple magic angles.

To prove existence of magic α’s of higher multiplicities we use trace computations

first used to show that A is non-empty [Be*22] and then that |A| = ∞ [BHZ22a]. The

traces here refer to trT 2p
k where Tk is a Birman–Schwinger operator with spectrum

given by {1/α : α ∈ A} - see §2, [Be*22, Theorem 3], [BHZ22a, Theorem 1].

Theorem 1 shows that to show existence of degenerate α’s we need to show that

tr((T0|L2
0,j
)2p) ̸= 0, j = 0, 1 (as explained in §3 we are allowed to take k = 0).

Theorem 2 (Degenerate magic angles). For the Bistritzer–MacDonald potential, U0 =

U1, defined in (1.8), there exist infinitely many α ∈ A which are not simple.

Theorem 7 in §4 states this for for a larger class of potentials satisfying the as-

sumptions of [BHZ22a, Theorem 5] with an additional non-degeneracy condition, see

Theorem 6.

It is natural to ask if multiplicities always occur and if multiplicities of higher degree

are also ubiquitous. If we do not demand that (1.3) holds, then, generically in the sense

of Baire, magic angles are either simple or two-fold degenerate:

Theorem 3 (Generic simplicity). For Hamiltonians (1.1) satisfying (1.2), there exists

a generic subset (an intersection of open dense sets), V0 ⊂ V , where the space of

matrix valued potentials, V , is defined in (6.3), such that if V ∈ V0 then (see (1.7))

m(α) ≤ 2.

More precisely, when α is simple then

dimkerL2
0,2
(D(α)) = 1 and dimkerL2

0,0
(D(α)) = dimkerL2

0,1
(D(α)) = 0 (1.11)

and when it is double,

dimkerL2
0,2
(D(α)) = 0 and dimkerL2

0,0
(D(α)) = dimkerL2

0,1
(D(α)) = 1. (1.12)

Remark. It may seem at first the conclusions (1.11),(1.12) follow from Theorem

1. However, in that theorem we assumed also (1.3) which does not need to hold for

potentials in V0.

We also have an analogue of [BHZ22b, Theorem 2]: we show that two-fold degenerate

flat bands are gapped from the rest of the spectrum.
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Theorem 4 (Spectral gap). Suppose that D(α) is given by (1.1) with U± satisfying

(1.2). If α ∈ A then

∀j > 2,k ∈ C Ej(α, k) > 0 and E1(α, k) = E2(α, k) = 0

⇐⇒ ∀k ∈ C : dim kerL2
0
(D(α) + k) = 2

⇐⇒ ∃p ∈ C : dim kerL2
0
(D(α) + p) = 2.

The Chern number and Berry curvature associated to the doubly degenerate flat

band have similar properties to the case of simple flat bands. In particular, we have

the following result proved in 9.

Theorem 5 (Flat band topology). Let α ∈ A be two-fold degenerate. The Chern

number of the rank 2 vector bundle E associated to kerL2
0
(D(α) + k) (see (9.18)) is

c1(E) = −1. (1.13)

In addition, the trace of the curvature, H, is non-negative and satisfies H(k) = H(ωk),

H(k) = H(−k).

In Section 10, we collect numerical observations on the possibility of having eigenval-

ues of Tk of algebraic multiplicity 2 but geometric multiplicity 1 and thus corresponding

to simple magic angles. We also discuss features of the Berry curvature for two-fold

degenerate magic angles.

Acknowledgements. We would like to thank Mengxuan Yang for helpful discussions.

TH and MZ were partially supported by the National Science Foundation under the

grant DMS-1901462 and by the Simons Foundation under a “Moiré Materials Magic”

grant.

2. Properties of the Hamiltonian

In this article we will follow the equivalent, but mathematically simpler, notation

introduced in [BZ23] and based on the more natural lattice Λ = ωZ⊕Z. To do so, we

perform the following change of variables znew = 4
3
πzold - see [BHZ22b, Appendix A].

Thus we work now with (1.1) but now we assume

U±(z + γ) = e±i⟨γ,K⟩U±(z), γ ∈ Λ, U±(ωz) = ωU±(z). (2.1)

Here and elsewhere, ⟨z, w⟩ := Re(zw̄), ±K are the nonzero points of high symmetry,

ωK ≡ K modΛ∗, K = 4
3
π.

The analogue of (1.3) is given by

U+(z) = U(z), U−(z) = U(−z), U(z̄) = −U(−z), (2.2)

and the Bistritzer–MacDonald potential is now U(z) = −4
3
πiU1(

4
3
πiz), where U1 is

given in (1.8).
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Figure 4. Let α ≈ 0.853799 as in Table 1, lowest two Bloch band with

positive energy close to the first magic angle with U = U2. We plot

E1(k) (left) and E2(k) (right).

The off-diagonal operator D(α) is

D(α) =

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, U(z) := −4

3
πiU0

(
4
3
πiz

)
. (2.3)

We then define

ρ(z) := diag(χkj(γ)), k2 = −k1 = K, ∈ C/Λ∗, χk(γ) := ei⟨γ,k⟩,

so that

V (z + γ) = ρ(γ)V (z)ρ(γ)−1, V (z) :=

(
0 U+(z)

U−(z) 0

)
.

The modified potential, Vρ(z) := ρ(z)V (z)ρ(z)−1, is Λ-periodic and thus

ρ(z)D(α)ρ(z)−1 = Dρ(α), Dρ(α) := diag((2Dz̄ − kj)
2
j=1) + Vρ(z).

Using the rotation operator Ωu(z) = u(ωz) satisfying ΩD(α) = ωD(α)Ω we can

define C = diag(1, ω̄)Ω such that CH = HC and translation operator Lγu(z) :=

ρ(γ)u(z + γ). By using the translation Lγ, we can define, for k ∈ C, the spaces

Hs
k := Hs

k(C/Λ,Cn) := {u ∈ Hs
loc(C;Cn) : Lγu = ei⟨k,γ⟩u, γ ∈ Λ}, with L2

k := H0
k ,

where n = 1 corresponds to the first, n = 2 to the upper two, and n = 4 to all

components of Lγ.

When k ∈ K := {K,−K, 0}+ Λ∗ we also define

L2
k,p = L2

k,p(C/Γ;Cn) := {u ∈ L2
k : u(ωz) = ω̄pu(z)}, L2

k =
⊕
p∈Z3

L2
k,p.
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We can then define a generalized Bloch transform

Bu(z, k) :=
∑
γ∈Λ

ei⟨z+γ,k⟩Lγu(z), Bu(z, k + p) = ei⟨z,p⟩Bu(z, k), p ∈ Λ∗, u ∈ S (C),

LαBu(•, k) =
∑
γ

ei⟨z+α+γ,k⟩Lα+γu(z) = Bu(•, k), α ∈ Λ

such that

BD(α) = (D(α)− k)B, D(α)− k = ei⟨z,k⟩D(α)e−i⟨z,k⟩,

BH(α) = Hk(α)B, Hk(α) := ei⟨z,k⟩H(α)e−i⟨z,k⟩ =

(
0 D(α)∗ − k̄

D(α)− k 0

)
.

(2.4)

In particular, we say H(α) exhibits a flat band at energy zero if and only if 0 ∈⋂
k∈C Spec(Hk(α)). To study the set of α at which H(α) exhibits a flat band at zero,

we define the set of Dirac points K0 := {K,−K} + Λ∗ such that for k /∈ K0 we can

define the compact Birman-Schwinger operator

Tk = R(k)V (z) : L2
0 → L2

0, R(k) = (2Dz̄ − k)−1. (2.5)

This operator then characterizes the set of magic angles in the sense stated in the

next Proposition

Proposition 2.1 ([Be*22, Theorem 2],[BHZ22b, Proposition 2.2]). There exists a

discrete set A such that

SpecL2
0
D(α) =

{
K0 α /∈ A,
C α ∈ A. (2.6)

Moreover,

α ∈ A ⇐⇒ ∃ k /∈ K0, α
−1 ∈ SpecL2

0
Tk ⇐⇒ ∀ k ∈ K0, α

−1 ∈ SpecL2
0
Tk, (2.7)

where Tk is a compact operator given by

Tk := R(k)V (z) : L2
0 → L2

0, R(k) := (2Dz̄ − k)−1 (2.8)

In particular, the spectrum of Tk0 is independent of k0 /∈ K0 and characterizes

parameters α ∈ C at which the Hamiltonian exhibits a flat band at zero energy. Since

the parameter α is inherently connected with the twisting angle, we shall refer to α’s

at which (2.7) occurs as magic and denote their set by A ⊂ C. We then square the

operator T 2
k0

= diag(Ak0 , Bk0) where Ak0 = R(k0)U(z)R(k0)U(−z). Setting k0 = 0, we

notice that T0 leaves the subspaces L2
0,j invariant. By projecting the spaces L2

0,j onto

the first component, we can define A0 on spaces L2
0,j.

Remark. If α ∈ A be simple, then 1/α is an eigenvalue of T0 with eigenvalue of

geometric multiplicity 1 and the Hamiltonian exhibits a two-fold degenerate flat band

at energy zero. If α ∈ A is two-fold degenerate, then 1/α is an eigenvalue of T0
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with eigenvalue of geometric multiplicity 2 and the Hamiltonian exhibits a four-fold

degenerate flat band at energy zero. It follows from [BHZ22b, Theorem2] and Theorem

4 that we can drop the minima in the above definition.

Suppose that the potential U(z) satisfies the symmetries given in (2.1), namely

U(z + γ) = ei⟨γ,K⟩U(z), U(ωz) = ωU(z).

Since U is then periodic with respect to 3Λ (3K ≡ 0 modΛ∗), expanding in Fourier

series gives

U =
∑

p∈Λ∗/3

ape
i⟨z,p⟩

. The translational symmetry now writes:

∀p ∈ Λ∗/3, ∀γ ∈ Λ, ape
i⟨γ,p⟩ = ape

i⟨γ,K⟩.

Identifying the Fourier coefficients now gives that for all p ∈ Λ∗/3,

ap ̸= 0 =⇒ ∀ γ ∈ Λ, ⟨γ, p⟩ = ⟨γ,K⟩ =⇒ p ≡ K mod Λ∗.

In other words, we see that (changing notation)

U(z) =
∑
p∈Λ∗

ape
i⟨p+K,z⟩. (2.9)

We now investigate the rotational symmetry: it is equivalent to∑
p∈Λ∗

ape
i⟨ω̄p+ω̄K,z⟩ = f(ωz) = ωf(z) =

∑
p∈Λ∗

ωape
i⟨p+K,z⟩.

Now, ω̄p+ ω̄K = ω̄p− z−1(ω) +K, where we defined the rescaling map

z : Λ∗ → Λ, z(k) :=
√
3k/4πi. (2.10)

Hence, the right hand side of the equality previous equality rewrites

f(ωz) =
∑
p∈Λ∗

aωp+z−1(ω̄)e
i⟨p+K,z⟩,

that is ap = ωaωp+z−1(ω̄). The previous discussion justified the following characterization

of potentials U(z) satisfying the symmetries given in (2.1)

U(z) satisfies (2.1) ⇐⇒ U(z) =
∑
p∈Λ∗

ape
i⟨p+K,z⟩ and ∀p ∈ Λ∗, ap = ωaωp+z−1(ω̄).

(2.11)

In other words, the values of ap are determined on the orbits of

κ : Λ∗ ∈ p 7→ ωp+ z−1(ω̄), Orb(p) = {p, ωp+ z−1(ω̄), ω̄p− z−1(ω)}, aκ(p) = ω̄ap.

So, for instance, the BM potential, up to a factor, comes from the orbit of p = 0.
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In addition there exist a number of further anti-linear symmetries of the chiral

Hamiltonian

Qv(z) = v(−z), Qu(z) =

(
0 Q

Q 0

)
u(z),

satisfying QD(α)Q = D(α)∗ with Q : L2
k,p(C/Λ;C2) → L2

k,−p(C/Λ;C2) with Q :

L2
k,p(C/Λ;C4) → L2

k,−p+1(C/Λ;C4) satisfying H(α)Q = QH(α) and

E v(z) := Jv(−z), J :=

(
0 1

−1 0

)
with E : L2

±K,ℓ(C/Λ;C2) → L2
∓K,ℓ(C/Λ;C2) and

E : L2
0,ℓ(C/Λ;C2) → L2

0,ℓ(C/Λ;C2) satisfying ED(α)E ∗ = −D(α). (2.12)

Finally, we also introduce their composition A : L2
k,p(C/Λ;C2) → L2

k,−p(C/Λ;C2)

A := EQ, with A v(z) :=

(
0 1

−1 0

)
v(z) (2.13)

with AD(α)A = −D(α)∗.

Using the above symmetries, we observe that

Proposition 2.2. The spectrum of RV satisfies SpecL2
0,p
(RV ) = SpecL2

0,−p+1
(RV ). In

particular, for m ≥ 2 we find trL2
0,p
(RV )2m = trL2

0,−p+1
(RV )2m.

Proof. Let v ∈ L2
0,p satisfy RV v = −λv then by multiplying by 2Dz̄ we find D(1/λ)v =

0. Thus, D(1/λ)∗Qv = 0 with Qv ∈ L2
0,−p. We thus have

0 = D(1/λ)∗Qv = D(1/λ)∗R∗(2Dz)Qv.

We conclude that (2Dz)Qv ∈ L2
0,−p+1 is an eigenvector to (RV )∗ with eigenvalue

−λ̄. □

3. Trace computations

To prove the existence of degenerate magic angles (Theorem 2) we argue by con-

tradiction using the Birman–Schwinger operator Tk defined in (2.5). From theorem 1,

we see that in the case if all the α’s were all simple then the traces of T 2p
k restricted

to L2
0,0 or L2

0,1 would have to vanish. For a general k, the operator Tk does not pre-

serve the rotational invariant subspaces L2
0,j. To achieve that we set k = 0 so that

the proof reduces to showing that tr((T0)
2ℓ
L2
0,0
) ̸= 0 for some value of ℓ. That is done

using the previous rationality condition tr((T0)
2ℓ
L2
0,0
) = qℓπ/

√
3 for qℓ ∈ Q obtained

before by the authors [BHZ22a][Theorem 1] and some elementary arguments involving

transcendental numbers.
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3.1. Traces on rotationally invariant subspaces. We recall that an orthonormal

basis of L2
0(C/3Λ;C) is given by setting

eν(z) := ei⟨ν,z⟩/
√
Vol(C/3Λ), ν ∈ Λ∗ +K, ⟨ν, z⟩ := Re(z̄ν).

We see that Ωeν = eω̄ν . This means that an orthonormal basis of L2
0,j is given by

e[ν](z) =
1√
3

(
eν(z) + ωjeων(z) + ω̄jeω̄ν(z)

)
, ν ∈ Λ∗ +K, [ν] = {ν, ων, ω̄ν}.

Following our approach developed in [BHZ22a], we compute the sum of powers of magic

angles by computing traces of the operator Tk defined in (2.8). Since odd powers of Tk
have vanishing traces it suffices to compute the traces of powers of the Hilbert-Schmidt

operator

Ak := R(k)U(z)R(k)U(−z) : L2
0 → L2

0, k /∈ (K + Λ∗) ∪ (−K + Λ∗) = K0. (3.1)

Due to the relation

∀k /∈ K0, Ω−1AkΩ = Aωk,

we see that subspaces L2
0,j are not in general invariant by Ak. This makes a direct

application of the strategy of [BHZ22a] impossible. However, we see that the operator

A0 does preserve this smaller subspace. From now on, we therefore specialize to k = 0.

For ℓ ≥ 2, one can compute the trace on L2
0,j:

tr
(
(A0)

ℓ
|L2

0,j

)
=

∑
[ν],ν∈Λ∗+K

⟨Aℓ
0e[ν], e[ν]⟩.

Now, we write that, using bilinearity of the scalar product

3⟨Aℓ
0e[ν], e[ν]⟩ =

2∑
h=0

⟨Aℓ
0eωhν , eωhν⟩+

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩.

Thus, when summing on [ν], the first term gives a third of the trace on L2
0, (which was

computed in [Be*22] for ℓ = 2 and U0 = U1 and shown to be equal to 4π/
√
3)

tr((A0)
ℓ
|L2

0,j
) = 1

3
tr(Aℓ

0) +
1
3

∑
[ν],ν∈Λ∗+K

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩

=: 1
3
tr(A2

0) +
1
3
Rℓ,j.

(3.2)

3.2. Existence of degenerate magic angles. Our strategy now consists in using

[BHZ22a, Theorem1] and the fact that π/
√
3 is transcendental to contradict the con-

clusion of theorem 1. More explicitly, we will prove the following statement:

Theorem 6. Let U ∈ C∞(C/3Λ) satisfying the first two symmetries of (2.1) with only

finitely many non-zero Fourier modes ap ∈ πQ(ω/
√
3), appearing in the decomposition

(2.11). Then, if we denote A(U) the set of (complex) magic angles for the potential U
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and if A(U) ̸= ∅, there exists α ∈ A(U) which is not simple. This is, in particular

true for the the Bistritzer–MacDonald potential U1 defined in (1.8).

Proof. We start by noticing that the existence of a magic angle is equivalent to the

existence of a non-vanishing trace

∃ℓ ≥ 2, tr((A0)
ℓ
|L2

0
) ̸= 0.

This follows from the properties of the regularized Fredholm determinant, cf. [BHZ22a].

We fix such an ℓ. Using [BHZ22a, Theorem 5], and the hypothesis on the potential, this

implies that tr(Aℓ
0) ∈ πQ(ω). Since the trace is non-zero by assumption, this proves

that tr(Aℓ
0) is transcendental. The idea is to prove that the sum defining the remainder

Rℓ,j is always a finite sum, under the assumption that the potential has only finitely

many non-zero Fourier mode. We then prove that, by assuming that ap ∈ πQ(ω/
√
3),

each term in the sum defining Rℓ,j is in Q(ω) so that Rℓ,j ∈ Q(ω) is algebraic. This

will prove that tr((A0)
ℓ
|L2

0,j
) ̸= 0 by (3.2) and contradict the conclusion of theorem 1;

thus proving the existence of non-simple magic angle for the potential U . We start

with the formula defining the remainder

Rℓ,j :=
∑

[ν],ν∈Λ∗+K

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩.

The summand ⟨Aℓ
0eωhν , eωkν⟩ is non-zero only if Aℓ

0eωhν has a non-vanishing Fourier

mode corresponding to eωkν . Now, if we look at the definition of A0 (see 3.1), we see

that the R(k) part acts diagonally (with coefficients in (iπ)−1Q(ω) as we chose k = 0)

on the Fourier basis, on the other hand, the U(z) and U(−z) parts act as a finite

sum of weighted shifts on this basis (it is here where we use the assumption of having

finitely many non-vanishing Fourier modes). Moreover, by assumption, the weights

are elements of (iπ)Q(ω).This means that there exists a finite subset F ℓ
U ⊂ 3Γ∗ such

that

∀ν ∈ Λ∗ +K, Aℓ
0eν =

∑
η∈Fℓ

U

aηeν+η, aη ∈ Q(ω). (3.3)

But this means that there exists a constant R > 0 such that for any η ∈ F ℓ
U , we have

|η| ≤ R. In particular, if ⟨Aℓ
0eωhν , eωkν⟩ is non-zero, then |ωhν − ωkν| ≤ R. Now,

because h ̸= j, this inequality is false outside a compact set for ν. But because ν is on

a lattice, which is discrete, we conclude that the above inequality is true for at most a

finite number of ν. Thus, the sum defining Rℓ,j is finite.

Finally, for the non-zero terms of the sum, we use (3.3) again to conclude that

⟨Aℓ
0eωhν , eωkν⟩ = aη ∈ Q(ω). This proves the existence of a non-simple magic angle

for the potential U . □
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4. Infinite number of degenerate magic angles

We now adapt the argument, already used in [BHZ22a, Theorem 6], to prove that

the number of non-simple magic angles is actually infinite. This actually refines the

previous theorem by showing there is an infinite number of non-simple magic angles.

In the next theorem we use the same notation and assumptions as in Theorem 6.

The definition of multiplicity is given in (1.9).

Theorem 7. Let

Am(U) := {α ∈ A(U) : mU(α) ≥ 2}

be the set of non-simple magic angles. Then

|A(U)| > 0 =⇒ |Am(U)| = +∞. (4.1)

In particular, the set of magic angles for the Bistritzer–MacDonald potential U = U1

(see (1.8)) is infinite.

In addition, if for N ≥ 0, and a = (ap){p∈Λ∗;∥p∥∞≤N}, Ua is given by (2.11) with

coefficients a, then (4.1) holds for a generic (in the sense of Baire) set of coefficients

a = (ap){p∈Λ∗;∥p∥∞≤N} ∈ C(2N+1)2 which contains (πQ(ω/
√
3))(2N+1)2 . Here, we used

the notation ∥p∥∞ = ∥4πi√
3
(p1 + p2ω)∥∞ := max(p1, p2).

Proof. We start by observing that since π is transcendental on Q, it is also transcenden-

tal in Q(ω/
√
3). Now, we shall assume that there exist only finitely many non-simple

eigenvalues of A2
0 on L2

0. This implies, by theorem 1 that (A0)
ℓ
|L2

0,1
has only finitely

many eigenvalues, we denote them by λi ∈ C for i = 1, .., N . Then we define the n-th

symmetric polynomial

en(λ1, . . . , λN) =
∑

1≤j1<j2<···<jn≤N

λj1 · · ·λjn .

Newton identities show that this polynomial can be expressed as

en(λ1, . . . , λN) = (−1)n
∑

m1+2m2+···+nmn=n
m1≥0,...,mn≥0

n∏
i=1

(− tr(A0)
2i
|L2

0,1
)mi

mi!imi
(4.2)

where en = 0 for n > N. The fact that A(U) ̸= ∅ implies, by theorem 6 that Am(U) ̸=
∅. Now, this means that there is a non-vanishing trace of (A0)

ℓ
|L2

0,2
. Choose m0 to be

the minimal power for which the trace is non-zero. Choose n = m0 ×K where K is

a large integer, and using the fact that en = 0, we deduce that π is the root of the
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polynomial of degree K with coefficients in Q
(

ω√
3

)
given by

∑
m1+2m2+···+nmn=n

m1≥0,...,mn≥0

m0×K∏
i=1

(tr(A0)
2i
|L2

0,1
)mi =

∑
m1+2m2+···+nmn=n

m1≥0,...,mn≥0

m0×K∏
i=1

(
1

3
tr(A0)

2i
|L2

0︸ ︷︷ ︸
∈Q

(
ω√
3

)
π

− Ri,1︸︷︷︸
∈Q

(
ω√
3

))
mi

= 0.

The power m1 · · ·mn of π is maximized, among the tuples we sum by the unique

choice mi = δi,m0K. By choice of m0, this gives that the above polynomial has a

non-zero leading coefficient and is therefore non-zero. This contradicts the fact that π

is transcendental and concludes the proof.

Now, let a = (ap){p∈Λ∗;∥p∥∞≤N} ∈ C(2N+1)2 ∈ C(2N+1)2 and assume that A(Ua) ̸= ∅.
Then, we can find an open neighborhood of a, Ωa ∋ a, such that for coefficients

b = (bp){p∈Λ∗;∥p∥∞≤N} ∈ Ωa we have A(Ub) ̸= ∅. Take q = (qp){p∈Λ∗;∥p∥∞≤N} ∈
(πQ(ω/

√
3))(2N+1)2 ∩Ωa for which we then have |A(Uq)| = ∞. Continuity of eigenval-

ues of Tk as the potential U changes shows that the Vm,a := {b ∈ Ωa : |A(Ub)| ≥ m}
is open and dense in Ωa. Hence, the set coefficients for which 0 < |A(Ub)| < ∞
is given by

⋃
m∈N

⋃
q∈(Q+iQ)2N+1 Ωq \ Vm,q. It is then meagre and does not contain

(πQ(ω/
√
3))(2N+1)2 . □

5. Numerical evaluation of the trace and existence of non-real magic

angle

In this section the potential U will be taken to be equal to U1 defined in (1.8). In

the last section, we have proven that the traces on the rotational-invariant subspaces

can be written as

tr((A0)
ℓ
|L2

0,j
) = 1

3
tr(Aℓ

0) +
1
3
Rℓ,j, (5.1)

where the remainder was shown to be a finite sum. Although the first term tr(Aℓ
0) is

a priori an infinite sum, the authors provided in [BHZ22a, Theo. 7] a semi-explicit

formula which can be evaluated rigorously with computer assistance for U = U1 and

small values of ℓ. From [BHZ22a, Table 1]1, we see that

tr((A2
0)|L2

0
) =

4π√
3
, tr((A3

0)|L2
0
) =

96π

7
√
3
, tr((A4

0)|L2
0
) =

40π√
3
.

We can read off from the above tr(A2
0) tr(A

4
0) < tr(A3

0)
2. If all magic angles were real,

then by ℓp-interpolation tr(A2
0) tr(A

4
0) ≥ tr(A3

0)
2, which is a contradiction. In other

words, we have proven that

1The traces tr(A2
0) and tr(A4

0) were explicitly computed ”by hand” in [Be*22] and strictly speaking,

the following argument relies on computer assistance only for obtaining the exact value of tr(A3
0).
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Proposition 5.1. Let U = U1 be the potential defined in (1.8), then A ∩ C \ R ̸= ∅.

Our goal here is to mimic this argument on rotational-invariant subspace by com-

puting the finite remainders Rℓ,j using computer assistance to find the exact results.

From doing so, we obtain the following result.

Proposition 5.2. For the Bistritzer-MacDonald potential U1 defined in (1.8), we have

tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) =

4π

3
√
3
− 3 ≈ −0.581601 < 0

and tr((A2
0)|L2

0,2
) = 4π√

3
+ 6 ≈ 8.4184. For the higher powers, we find

tr((A3
0)|L2

0,2
) =

32π

7
√
3
+

810

49
≈ 24.8223 and tr((A4

0)|L2
0,2
) =

40π

3
√
3
+

4374

91
≈ 72.2499.

This implies the inequality

tr((A2
0)|L2

0,2
) tr((A4

0)|L2
0,2
) < tr((A3

0)|L2
0,2
)2.

We conclude that for any j ∈ Z3, there is a non-real magic angle αj ∈ C \ R with

corresponding eigenfunction u ∈ L2
0,j of Tk. By Theorem 1, we conclude the existence

of non-real and non-simple magic angles.

We note that as the traces depend continuously on the potential U , the inequalities

tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) < 0 and tr((A2

0)|L2
0,2
) tr((A4

0)|L2
0,2
) < tr((A3

0)|L2
0,2
)2

remain true for small perturbations of U and so does the existence of a non-real and

non-simple magic angle. As stated in the introduction, the potential U2, defined in

(1.8), leads to real and doubly-degenerate magic angles. We then see numerically

that tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) > 0, see Figure 5. To interpolate between these two

opposite behaviors, we introduce the potentials

Uθ(z) := U(z) = (cos θ − sin θ)U1(z) + sin θU2(z), (5.2)

see https://math.berkeley.edu/~zworski/Interpolation.mp4 for a movie show-

ing the dependence of the set of magic angle when θ varies.

In Figure 5 we show tr((A2
0)|L2

0,0
), tr((A2

0)|L2
0,2
) as a function of θ, verifying that the

inequality tr((A2
0)|L2

0,0
) < 0 holds for a large range of values θ.

Remark. This previous computation could be made rigorous at the cost of adapting

the algorithm used in [BHZ22a, Theo. 7] to the potential Uθ in order to compute the

first term in (5.1).

https://math.berkeley.edu/~zworski/Interpolation.mp4
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Figure 5. tr((A2
0)|L2

0,1
) and tr((A2

0)|L2
0,2
) for potentials Uθ(z) in (5.2).

While for θ = 0, Uθ=0 = U1 we see that tr((A2
0)|L2

0,2
) > 0 and

tr((A2
0)|L2

0,1
) < 0. For θ = 2π7/8 ≈ 5.5 and Uθ=2π7/8 = U2 we have

tr((A2
0)|L2

0,2
) < 0 and tr((A2

0)|L2
0,1
) > 0, instead.

6. Generic simplicity in each representation

6.1. Generalized potentials. We now consider the general class of potentials U±(z)

satisfying

U±(ωz) = ωU±(z), U±(z + γ) = e∓2i⟨γ,K⟩U±(z), γ ∈ Γ. (6.1)

We do not however assume U±(z̄) = −U±(z) and then define

V (z) :=

(
0 U+(z)

U−(z) 0

)
such that DV (α) = 2Dz̄ + αV (z).

It is convenient to use the following Hilbert space of real analytic potentials defined

using the following norm: for fixed δ > 0,

∥V ∥2δ :=
∑
±

∑
k∈Λ∗/3

|a±k |
2e2|k|δ, U±(z) =

∑
k∈K+Λ∗

a±k e
±i⟨z,k⟩. (6.2)

Then we define V = Vδ by

V ∈ V ⇐⇒ V satisfies (6.1), ∥V ∥δ <∞. (6.3)

We note that we have as before,

LaDV (α) = DV (α)La, ΩDV (α) = DV (α)Ω.



DEGENERATE FLAT BANDS IN TWISTED BILAYER GRAPHENE 17

We also recall the antilinear symmetry A : L2
k,j → L2

k,−j defined by

A :=

(
0 Γ

−Γ 0

)
, Γv(z) = v(z), ADV (α)A = −DV (α)

∗. (6.4)

6.2. Proof of generic simplicity. Our proof of Theorem 3 is an adaptation of the

argument for generic simplicity of resonances by Klopp–Zworski [KZ95] – see also

[DyZw19, §4.5.5].

We then use the decomposition

L2
0 =

2⊕
j=0

L2
0,j, L2

0,j ≃ L2(F ),

where F is a fixed fundamental domain of G3. For V ∈ V and R = (2Dz̄)
−1

V : L2
0,j → L2

0,j−1, R : L2
0,j−1 → L2

0,j =⇒ RV : L2
0,j → L2

0,j.

Before proceeding we record the following regularity result:

Lemma 6.1. Suppose that for some λ ∈ C and k ∈ N and w ∈ L2(C/3Λ;C), (RV −
λ)kw = 0. Then w ∈ Cω(C/3Λ;C), that is, w is real analytic. The same conclusion

holds if (V ∗R∗ − λ)kw = 0.

Proof. We prove a slightly more general statement that (RV−λ)kw = f ∈ Cω(C/3Λ;C2)

implies that w ∈ Cω(C/3Λ;C2). We proceed by induction on k. For k = 0, w = f . If

k > 0, we put w̃ := (RV − λ)k−1w and note that (the case of λ = 0 is even simpler)

DV (−1/λ)w̃ = 2λ−1Dz̄(RV − λ)w̃ = 2λ−1Dz̄f ∈ Cω.

This means that w̃ is a solution of an elliptic equation with analytic coefficients, hence

it is analytic [HöI, Theorem 9.5.1]. The inductive hypothesis now shows that w is

analytic.

In the case of (V ∗R∗ − λ)kw = 0, we proceed similarly but put w̃ := R∗(V ∗R∗ −
λ)k−1w, so that

DV (−1/λ̄)∗w̃ = 2λ̄−1DzR
∗(V ∗R∗ − λ)(V ∗R∗ − λ)k−1w = 2λ̄−1DzR

∗f ∈ Cω.

Since (V ∗R∗ − λ)k−1w = 2Dzw̃ the inductive argument proceeds as before. □

The next lemma shows that we have generic simplicity for operators restricted to

the three representations:

Lemma 6.2. There exists a generic subset of Vj of V such that for V ∈ Vj, the

eigenvalues of RV |L2
0,j

are simple.



18 SIMON BECKER, TRISTAN HUMBERT, AND MACIEJ ZWORSKI

Proof. We follow the presentation in the proof of [DyZw19, Theorem 4.39] with modifi-

cations needed for our case. We fix j and consider all operators as acting on H := L2
0,j.

The eigenvalue multiplicity is defined using the resolvent:

mV (λ) :=
1

2πi
tr

∮
λ

(ζ −RV )−1dζ,

where the integral is over a sufficiently small positively oriented circle around λ. We

then define

Er := {W ∈ V : mW (λ) ≤ 1, λ ∈ C \D(0, r)}. (6.5)

We want to show that for r > 0, Er is open and dense. That will show that the set

E := {W ∈ V : ∀λ, mW (λ) ≤ 1} =
⋂
n∈N

E 1
n

is generic (and in particular, by the Baire category theorem, it has a nowhere dense

complement).

Suppose thatRW has exactly one eigenvalue λ0 inD(λ, r) and Spec(RW )∩D(λ, 2r) =

{λ0}. Putting Ω := D(λ, r) we then define

ΠW (Ω) :=
1

2πi

∫
∂Ω

(ζ −RW )−1dζ, mW (Ω) := trΠW (Ω). (6.6)

If V ∈ V and ∥V ∥δ is sufficiently small then for ζ ∈ ∂Ω,

(R(W + V )− ζ)−1 = (RW − ζ)−1(I +RV (RW − ζ)−1)−1,

exists and we can define ΠW+V (Ω) as in (6.6). This also shows that if ∥V ∥δ < ε for

sufficiently small ε then for ζ ∈ ∂Ω,

(RW − ζ)−1 − (R(W + V )− ζ)−1 = Oε(∥V ∥δ)H →H .

It follows that ∥ΠW (Ω)−ΠW+V (Ω)∥H →H ≤ Cε∥V ∥δ. In particular, if we take ∥V ∥δ <
1/Cε, then ΠW (Ω) and ΠW+V (Ω) have the same rank

mW+V (Ω) is constant for ∥V ∥δ sufficiently small. (6.7)

This immediately implies that Er is open: if λ is a simple eigenvalue of RW then

mW (Ω) = 1 this values does not change under small perturbations.

Now we want to show that Er is dense. This follows from the following statement

∀ W ∈ V , ε > 0 ∃ V ∈ V W + V ∈ Er, ∥V ∥δ < ε. (6.8)

As the number of eigenvalues of RW outside D(0, r) is finite, it is enough to prove a

local statement as it can be applied successively to obtain (6.8) (once an eigenvalue

is simple it stays simple for sufficiently small perturbations). That is, it is enough to

show that
∀ W ∈ V , ε > 0 ∃ V ∈ V ∀λ ∈ Ω

mW+V (λ) ≤ 1, ∥V ∥δ < ε.
(6.9)
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As in [KZ95] we proceed by induction and start by noting that one of two cases has

to occur:

∀ ε > 0 ∃V ∈ V , λ ∈ Ω 1 ≤ mW+V (λ) < mW+V (Ω), ∥V ∥δ < ε, (6.10)

or

∃ ε > 0 ∀V ∈ V , ∥V ∥δ < ε ∃λ = λ(V ) ∈ Ω mW+V (λ) = mW+V (Ω). (6.11)

The first case implies that adding an arbitrarily small V to W produces at least

two distinct eigenvalues of R(V + W ). The second case implies that for any small

perturbation preserves maximal multiplicity.

We will now show that (6.11) cannot occur. For that assume that mW (λ) =M and

that (6.11) holds. For V ∈ V , ∥V ∥δ < ε, put, in the notation of (6.6),

k(V ) := min{k : (R(W + V )− λ(V ))kΠW+V (Ω) = 0}.

Then 1 ≤ k(V ) ≤M and V ∋ V 7→ k(V ) is a lower semi-continuous function. In fact,

if ∥Vj−V ∥V → 0 and then, from (6.6), we see that (R(W+Vj)−λ(Vj))kΠW+Vj
(Ω) = 0,

then (R(W + V )− λ(V ))kΠW+V (Ω) = 0.

We also define

k0 := max{k(V ) : V ∈ V , ∥V ∥δ < ε/2}.

It follows that if k(V ′) = k0 then k(V + V ′) = k0 for ∥V ∥δ < ρ, with a sufficiently

small ρ. Hence we can replace W by W + V ′, decrease ε and assume that

(R(W + V )− λ(V ))k0ΠV+W (Ω) = 0,

(R(W + V )− λ(V ))k0−1ΠV+W (Ω) ̸= 0,

mW+V (λ(V )) = trΠV+W =M > 1, ∀V, ∥V ∥δ < ε.

(6.12)

To see that (6.12) is impossible we first assume that k0 > 1. Take V = V (t) = W + tV ,

∥V ∥CM < ε, t ∈ [−1, 1]. For h, g ∈ H we define (dropping Ω in Π•(Ω))

w(t) := (R(W + tV )− λ(t))k0−1ΠW+tV h,

w̃(t) := ((W ∗ + tV ∗)R∗ − λ(t))k0−1Π∗
W+tV g.

By our assumption (6.12) we can choose g and h so that w := w(0) ̸≡ 0 and w̃ :=

w̃(0) ̸≡ 0. Lemma 6.1 then implies that

suppw = supp w̃ = C/3Λ. (6.13)

Since λ(t) is assumed to be the only eigenvalue of RV (t) in Ω and since it has fixed

algebraic and geometric multiplicity, the functions t 7→ λ(tV ),ΠW+tV , w(t) depend



20 SIMON BECKER, TRISTAN HUMBERT, AND MACIEJ ZWORSKI

smoothly on t. Hence, we can differentiate:

0 =
d

dt
(R(W + tV )− λ(t))k0ΠW+tV h

=

k0−1∑
ℓ=0

(R(W + tV )− λ(t))ℓRV (R(W + tV )− λ(t))k0−1−ℓΠW+tV h

+ (R(W + tV )− λ(t))H(t)

where H(t) ∈ H . We now put t = 0 and take the H inner product with w̃: the

term with H(0) disappears as (RW − λ(0))k0Π∗
W ≡ 0 as do all the terms with ℓ > 0.

Consequently, we obtain

∀V ∈ V ⟨V w,R∗w̃⟩ = 0.

Since V ∈ L2
0,1, w ∈ L2

0,j, R
∗w̃ ∈ L2

0,j+1, we conclude that (with ◦j denoting components

of • = w, w̃)

⟨U+w2, R
∗w̃1⟩L2(F ) + ⟨U−w1, R

∗w̃2⟩L2(F ) = 0, (6.14)

where F is a fundamental domain of the joint group action defined by L and C . Since

V is arbitrary on F , this implies that w̄(z)(R∗w̃)(z) ≡ 0, which in turn contradicts

(6.13).

It remains to consider the case of k0 = 1 in (6.12). In that case the finite rank

projection ΠW can be written as (with the notation, (f ⊗ g)(u) := f⟨u, g⟩)

ΠW =
M∑
j=1

wj⊗ w̃j, ⟨wj, w̃k⟩ = δjk, (RW −λ0)wj = 0, (W ∗R∗− λ̄0)w̃k = 0. (6.15)

Then,

0 =
d

dt
[(λ(t)−R(W + tV ))ΠW+tV ]

= λ′(t)ΠW+tV −RVΠW+tV + (λ(t)−R(W + tV ))
d

dt
ΠW+tV

Applied to wj and paired with w̃k we get at t = 0,

0 = λ′(0)δjk − ⟨RV wj, w̃k⟩.

Hence we need to show that for j ̸= k

⟨RV wj, w̃k⟩ = 0, ∀V ∈ V =⇒ wj = w̃k = 0. (6.16)

But that is done as in the discussion after (6.14).

We have now proved that (6.10) holds and we use it now to prove (6.9) by induction

on mW (λ0) where λ0 is the unique eigenvalues of RW in D(λ0, 2r), Ω := D(λ0, r). If

mW (λ0) = 1 there is nothing to prove. Assuming that we proved (6.9) formW (λ0) < M

assume that mW (λ0) = M . From (6.10) we see that we can find V , ∥V0∥δ < ε/2 such
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that mW+V0(Ω) = mW (Ω) (see (6.7)) and such that all eigenvalues in Ω, λ1, · · · , λk,
satisfy mW+V0(λj) < M . We now find rj such that,

D(λj, 2rj) ⊂ Ω, D(λj, 2rj) ∩D(λk, 2rk) = ∅, j ̸= k,

{λj} = D(λj, 2rj) ∩ Spec(R(W + V0)).

We put Ωj := D(λj, rj) and apply (6.9) successively to W +V0+ · · ·Vj−1, j = 1, · · · , k,
in Ωj with ∥Vj∥δ < ε/2j+1. That gives the desired V =

∑k
j=0 Vj. □

7. Zeros and generic simplicity

In this section we recall the theta functions, discuss zeros of the elements of the

kernel in the case of higher multiplicities. We then use these facts to complete the

proof of Theorem 3.

The zeros always fall into three point characterized by high symmetry: ωz ≡ z

mod Λ. That determines them (up to Λ) as 0, ±zS, where

zS = i/
√
3, ωzS = zS − (1 + ω),

is known as the stacking point.

7.1. Transformation between invariant subspaces. We use the following notation

θ(z) = θ1(ζ|ω) := −
∑
n∈Z

exp(πi(n+ 1
2
)2ω + 2πi(n+ 1

2
)(ζ + 1

2
)), (7.1)

θ(ζ +m) = (−1)mθ(ζ), θ(ζ + nω) = (−1)ne−πin2ω−2πiζnθ(ζ),

and the fact that θ has simple zeros at Λ (and not other zeros) – see [Mu83]. We can

then define

Fk(z) = e
i
2
(z−z̄)k θ(z − z(k))

θ(z)
, z(k) :=

√
3k

4πi
, z : Λ∗ → Λ. (7.2)

In particular, we have then

Fk(z +m+ nω) = e−nk Imωe2πinz(k)Fk(z) = Fk(z),

(2Dz̄ + k)Fk(z) = c(k)δ0(z), c(k) := 2πiθ(z(k))/θ′(0).
(7.3)

One then has that for u ∈ kerL2
0
(D(α)) vanishing at a point w one has

(D(α) + k)Fk(z − w)u(z) = 0. (7.4)
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Figure 6. Modulus of flat band wavefunctions of kerX(D(α)) at first

magic angle α = 0.853799 with X = L2
i,j with i = K(top), i = −K

(bottom), j = 0 (left), j = 1 (right) for potential U2 in (1.8).

7.2. Zeros. We start with a simple Lemma

Lemma 7.1. Let u ∈ kerL2
0,0(C/Λ;C2)(D(α)) and zS := i/

√
3 then

u(z) = (z − zS)w1(z) and u(z) = (z + zS)w2(z) with w1, w2 ∈ C∞(C;C2).

Let u ∈ kerL2
0,1(C/Λ;C2)(D(α)) then

u(z) = z2w(z), with w ∈ C∞(C;C2).

Proof. Let u ∈ kerL2
0,0(C/Λ;C2)(D(α)), zS = i/

√
3 and ωzS = zS − (1 + ω). Thus

u(±zS) = u(±ωzS) = u(±zS ∓ (1 + ω)) = diag(e−i⟨∓(1+ω),K⟩, ei⟨∓(1+ω),K⟩)L∓(1+ω)u(±zS)
= diag(ω±1, ω∓1)u(±zS).
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Figure 7. Flat band wavefunctions of kerX(D(α)) at first magic angle

α = 0.853799 with X = L2
0,0 (left) and X = L2

0,1 (right) for potential U2

in (1.8) upper component, top and lower component, bottom.

This implies that u(±zS) = 0. Due to [BHZ22b, Lemma 3.2], we conclude that

u(z) = (z − zS)w1(z) and u(z) = (z + zS)w2(z)

with w1, w2 ∈ C∞(C;C2).

Let u ∈ kerL2
0,1(C/Λ;C2)(D(α)), then since u(ωz) = ω̄u(z) we conclude that u(0) = 0.

Again by [BHZ22b, Lemma 3.2], we have u(z) = zw̃(z) with w ∈ Cω(C;C2). Using

that

ω̄u(z) = u(ωz) = ωzw̃(ωz)

we conclude that ωzw̃(z) = ωu(z) = zw̃(ωz) which implies that ωw̃(z) = w̃(ωz). If

the zero of w̃ is of order one, then this implies that

u(z) = z2w(z), with w ∈ Cω(C;C2).
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□

Theorem 8. Let dimkerL2
0,j
(D(α)) ≤ 1 for all j ∈ Z3, then the zeros exhibited in

Lemma 7.1 are the only ones counting multiplicity.

Proof. We first show that the zeros occur only at the points specified in Lemma 7.1,

i.e. {0,±zS}. Suppose otherwise and that in addition z0 /∈ {0,±zS}. This way, ωjz0
describe three distinct points C/Γ3. Thus, there exists a meromorphic function gz0 with

poles of order one at points ωjz0 + Λ and satisfying both translational and rotational

symmetry

gz0(z + γ) = gz0(z), γ ∈ Λ, gz0(ωz) = gz0(z).

One can then choose (see [Mu83, §I.6])

gz0(z) = c
2∏

j=0

θ(zωj−1 + z0)

θ(zωj−1 − z0)
.

This way, the newly defined function ũ(z) := gz0(z)u(z) satisfies D(α)ũ = 0 with

ũ ∈ L2
0,j(C/Λ) for u ∈ L2

0,j(C/Λ). Uniqueness of u in representations L2
0,j implies that

there is no such zero.

We now exclude further zeros at 0. We recall that if u ∈ kerL2
0,j(C/Λ;C2)(D(α)) with

j ∈ {0, 1} has further zeros at 0, then they have to be at least of the form u(z) = z3w(z)

for w smooth by rotational symmetry and by successively applying [BHZ22b, Lemma

3.2]. From this it follows that

ũ(z) := ℘′(z;ω, 1)u ∈ L2
0,0(C/Λ), (7.5)

with D(α)ũ = 0. Since the elements of the nullspace of D(α), u, are assumed to be

unique up to a multiplicative constant, we conclude that this is impossible. (Here

℘(z;ω1, ω2) is the Weierstrass ℘-function – see [Mu83, §I.6]. It is periodic with respect

to Zω1 + Zω2 and its derivative has a pole of order 3 at z = 0.)

Finally, we may now turn to ±zS. We start by showing that u ∈ kerL2
0,j(C/Λ;C2)(D(α))

does not have a zero of second order at ±zS. Indeed, if we assume that z0 = ±zS is a

zero of order 2, then since E leaves L2
0,0 invariant, the zero at z0 = ∓zS is of second

order as well. This is impossible as this implies the existence of four zeros which by the

usual theta function argument, cf. [BHZ22b, Lemma 4.1], allows us to construct four

linearly independent elements of the nullspace of D(α). The same argument, using the

symmetry E , shows that u ∈ kerL2
0,1(C/Λ)(D(α)) cannot vanish at ±zS. □

We record the following immediate consequence which will be useful later:

Lemma 7.2. If dimkerL2
0,j
(D(α)) ≤ 1, for then j ∈ Z3,

℘(z;ω1, ω2) kerL2
0,1(C/Λ;C2)(D(α)) = kerL2

0,0(C/Λ;C2)(D(α)).
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7.3. Generic magic angles. We already showed in Proposition 2.22 that SpecL2
0,0
(RW ) =

SpecL2
0,1
(RW ) and know from the previous Lemma that we can ensure simplicity of

spectra of RW in each representation L2
0,j. We shall now see that we can split spectra

of RW in L2
0,0, L

2
0,1 from the one in L2

0,2.

Lemma 7.3. Suppose that

SpecL2
0,j
(RW ) ∩D(λ0, 2r) = {λ0}, j ∈ Z3, r > 0,

and λ0 is a simple eigenvalue of RW |L2
0,j
. Then, for every ε > 0 there exists V ∈ V ,

∥V ∥δ < ε, such that for some λ1 ̸= λ2

SpecL2
0,2
(R(W + V )) ∩D(λ0, r) = {λ2},

SpecL2
0,j
(R(W + V )) ∩D(λ0, r) = {λ1}, j ∈ {0, 1}.

(7.6)

Proof. As in (6.15) we have wk, w̃k ∈ L2
0,jk

, such that ⟨wk, w̃k⟩ = 1, and

(2λ0Dz̄ −W )wk = 0, (2λ̄0Dz −W ∗)R∗w̃k = 0.

Since the eigenvalue λ0 is assumed to be simple, (6.4) gives

R∗w̃p = γ1−pA w1−p = γ1−p

(
w̄(1−p)2

−w̄(1−p)1

)
, wp =

(
wp1

wp2

)
, γp ∈ C∗. (7.7)

We can split an eigenvalue with eigenvectors wk, if we can find V such that (see (6.14)

for the notation)

⟨V w2, R
∗w̃2⟩L2(F ) ̸= ⟨V w0, R

∗w̃0⟩L2(F ), with

⟨V w2, R
∗w̃2⟩ = γ̄2

∫
F

(
U+(z)w

2
22(z)− U−(z)w

2
21(z)

)
dm(z) and

⟨V w0, R
∗w̃0⟩ = γ̄1⟨V w0,A w1⟩ = γ̄1

∫
F

(U+(z)w02(z)w12(z)− U−(z)w01(z)w11(z)) dm(z)

where we used (7.7) to obtain the last equality. If for all (analytic) U± the terms

were equal it would follow that γ̄2w
2
2ℓ = γ̄1w0ℓw1ℓ for ℓ ∈ {1, 2}. This implies that w2ℓ

vanishes at 0,±zS. However, the zeros at ±zS have to be at least of order 2 since by

rotational and translational symmetry

w2(z ± zS) = ω̄w2(ω(z ± zS)) = ω̄w2(ωz ± zS ∓ (1 + ω))

= ω̄ diag(ω±1, ω∓1)w(ωz ± zS).
(7.8)

This means that for instance at zS we have w2(z ± zS) = diag(1, ω)w(ωz ± zS) which

means that the first component has to vanish at least to third order and the second

component at least to second order. This implies that w2 has at least 5 zeros counting

2We stated Proposition 2.2 for a smaller class of potentials than the generalized tunnelling potentials

considered here, see (6.1), but the proof only uses only translational and rotational symmetries which

are still satisfied for generalized tunnelling potentials
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Figure 8. Bands of Hamiltonian at α = 0.5 (left) and α = 0.8538

(right) with potential U2 (1.8). Bands of full continuum Bistritzer-

MacDonald Hamiltonian with same α and β = 0.7α with potential U2

(1.8) and anti-chiral potential V (z) := 2∂zU2(z).

multiplicities and this is impossible by the usual theta function argument [BHZ22b,

Lemma 4.1]. □

We can now finish

Proof of Theorem 3. Lemma 6.2 (strictly speaking its proof) and Lemma 7.3 now show

that for every r > 0, the set

Vr := {V : RV |L2
0,1⊕L2

0,2
has simple eigenvalues in C \D(0, r)}

is open and dense. We then obtain V0 by taking the intersection of V1/n. □

8. Spectral gap and Rigidity

In this section we prove Theorems 1 and 4, the two-fold degenerate magic angle

rigidity and spectral gap between the flat bands and the rest of the spectrum.
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Proof of Theorem 1. From [BHZ22b, Theorem 2] we know that if dim kerL2
0
(D(α) +

p) = 2 then dimkerL2
0
D(α) ≥ 2. To obtain a contradiction, we suppose kerL2

0,1
D(α) =

{0}.
From Lemma 7.2 we conclude that V := kerL2

0,2
D(α) ≥ 2. In fact, dimV = 2 or else

the theta function argument, see [BHZ22b, Lemma 4.1], gives dimkerL2
0
(D(α)+p) > 2.

We decompose V into the eigenspaces of E . In particular we have a basis

uj(z) =

(
fj(z)

εjifj(−z)

)
, εj ∈ {±1}, j ∈ {1, 2}.

We conclude that uj can only vanish at 0: otherwise there would be three zeros:

uj(z0) = 0 then uj(−z0) = 0. And that is again impossible, see [BHZ22b, Lemma 4.1].

So, we are in the situation of having two independent elements of kerL2
0,2
D(α) each

with a simple zero at 0. We want to show that

kerL2
0
(D(α) + k) = Yk := {Gk,λ(z) := Fk(z)(λ1u1(z) + λ2u2(z)) : λ ∈ C2}.

We claim that Gk,λ(z) vanishes only at z(k)+Λ∗ where z(k) :=
√
3k/4πi. Otherwise

for some λ ∈ C2 \ {0} and z1 /∈ Λ∗, λ1u1(z1) + λ2u2(z1) = 0, and that would mean

that W (u1, u2) ≡ 0 and consequently u1(z) = g(z)u2(z), where g is a meromorphic

function. But this leads to a contradiction as follows: uj(z) vanish simply at z = 0 so

g(0) ̸= 0 and it has to vanish at at least two points (or have a double zero) - but that

contradicts the uniqueness of the zero of uj.

Now, suppose that vk ∈ kerL2
0
(D(α) + k) we again conclude by the Wronskian

argument (using the fact that Gk,λ(z(k)) = 0)

vk(z) = gλ(z)Gk,λ(z),

and gλ is nontrivial if we assume that vk is not in Yk. But as vk was arbitrary that

means that u1 and u2 have to be dependent. Hence, dimV = 1 which is the desired

contradiction □

Proof of Theorem 4. We need to show that there exists p such that dimkerL2
0
(D(α) +

p) = 2 then this implies that for all k ∈ C we have dimkerL2
0
(D(α) + k) = 2. As in

the proof of Theorem 1, [BHZ22b, Theorem 2] shows that dimkerL2
0
D(α) ≥ 2 and

consequently Theorem 1 shows that there exists u ∈ kerL2
0,1
(D(α)). The rotational

symmetry forces u to vanish a second order at 0, see Lemma 7.1. Hence, we can

construct at least two linearly independent solution in kerL2
0
(D(α) + k) of the form

Gk,r(z) := Fk+r(z)F−r(z)u(z) = θ(z − z(k + r))θ(z + z(r))e
i
2
k(z−z̄) u(z)

θ(z)2
, (8.1)

by taking two suitable choices of r. This is possible since the function Gk,r has zeros at

z(k+r) and z(−r) with z(r) :=
√
3r/4πi. We note that θ(z−z(k+r))θ(z+z(r)) ∈ Gk,
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where
Gk = {G ∈ O(C) : G(z + γ) = eγ(z)G(z), γ ∈ Λ},
e1 = 1, eω(z) = eiβ−4πiz, β = −2πiω2 + 4πiz(k),

(8.2)

and eγ is a multiplier in the sense of [BHZ22b, (B.2)]. We have, dimGk = 2 and

Gk = span{θ(z − z(k + r))θ(z + z(r)), r ∈ C} – see [TaZw23, Proposition 7.9] for an

elementary argument or use the Riemann–Roch theorem.

Thus, it suffices to show that dimkerL2
0
(D(α) + k) = 2. We shall do this by showing

that the space, defined using (8.1) or equivalently (8.2),

Xk := span{Gk,r : r ∈ C} = Gk · w

⊂ kerL2
0
(D(α) + k), w(z) := e

i
2
(z−z̄)u(z)/θ(z)2

(8.3)

coincides with kerL2
0
(D(α) + k). Since its dimension is 2 that will prove the claim.

Let vk ∈ L2
0 be such that (D(α) + k)v = 0. Our goal is to show that vk and Gk,r

are linearly dependent for some suitable r. Writing vk = (φ1, φ2) and Gk,r = (ψ1, ψ2),

then the Wronskian W := φ1ψ2 − φ2ψ1 satisfies

(2Dz̄ + k)W ≡ 0, W (z + γ) = W (z), γ ∈ Λ,

see [BHZ22b, (4.2)]. From Lγu = u, we find that φ1(z + γ) = e−i⟨γ,K⟩φ1(z) and

φ2(z + γ) = ei⟨γ,K⟩φ2(z). Similar reasoning for ψ1 and ψ2 shows periodicity of W .

Since Gk,r has roots, it follows that W vanishes at some z0 and therefore W ≡ 0.

Indeed, if k /∈ Λ∗, W ≡ 0 since 2Dz̄ + k is invertible. For k ∈ Λ∗ we have W (z) =

e−i⟨k,z−z1⟩W (z0) = 0. This implies that

vk(z) = gr(z)Gk,r(z), gr(z + γ) = gr(z), z ∈ Λ (8.4)

where gr(z) = φ1/ψ1 = φ2/ψ2 is a non-trivial meromorphic function if we assume that

vk and Gk,r are linearly independent. To see that the function is meromorphic, we

notice that

2Dz̄gr(z) =
(ψ12Dz̄φ1 − φ12Dz̄ψ1)(z)

ψ1(z)2
= −k (ψ1φ1 − φ1ψ1)(z)

ψ1(z)2
+
U(z)W (z)

ψ1(z)2
= 0

showing holomorphy away from ψ−1
1 (0) ∩ ψ−1

2 (0). To see the meromorphic behaviour

of gr at the set, see the argument in the paragraph after [BHZ22b, (4.4)]. In particular

gr has at most 2 poles.

If this was not the case then Gk,r has at least three zeros. Let w1 be one of the

zeros, then z 7→ F−k(z − w1)Gk,r(z) has also three zeros for p as in our assumption.

But then [BHZ22b, Lemma 4.1] provides a contradiction.

We also recall that, as a consequence of periodicity and the argument principle, the

number of zeros of gr per fundamental cell coincides with the number of poles there.

But then (8.4) shows that vk has to vanish at two points, say, z1, z2. Put

vp := Fp−k(z − z1)vk ∈ kerL2
0
(D(α) + p). (8.5)
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In the notation of (8.3), Xp ⊂ kerL2
0
(D(α) + p) and as both vector spaces have the

same dimension, they are equal. Thus, it follows that vp ∈ Xp := span{Gp,r, r ∈ C}
with zeros z2, z3, where z3 satisfies Fp−k(z3 − z1) = 0.

Then, we can choose r such that z(−r) = z3 and define z4 := z(p+r) such that both

z(−r′), z(p + r′) /∈ {z3, z4}. This ensures that Gp,r and Gp,r′ are linearly independent

elements in Xp and form a basis. We conclude that vp = λ1Gp,r + λ2Gp,r′ , for some

λ1, λ2. Since vp(z3) = Gp,r(z3) = 0 and Gp,r′(z3) ̸= 0, this implies that λ2 = 0 and thus

vp = λ1Gp,r. By inverting (8.5), we find

vk =
vp

Fp−k(• − z1)
= λ1

Gp,r

Fp−k(• − z1)
= λ̃1Gk,s,

where λ̃1 = e−i(p−k)(z1−z̄1)λ1 and s = p+ r. Hence an arbitrary vk ∈ kerL2
0,1
(D(α) + k)

is in Xk, that is Xk = kerL2
0,1
(D(α) + k) as claimed. □

9. The Chern number of a 2-degenerate flat band

In this section we compute the Chern number of the flat band in the case of 2-fold

degeneracy. We start by a general discussion of of the Chern connection and the Berry

connection in the case holomorphic vector bundles. Although we stress our case of the

two torus, §§9.1 and 9.2 apply to vector bundles over more general manifolds.

9.1. The Chern connection. Suppose that π : E 7→ X is a holomorphic vector

bundle over a torus X = C/Λ∗ (see [TaZw23, §2.7] for a quick introduction sufficient

for our purposes or [We07] for an in-depth treatment), and that E is a sub-bundle

of a trivial Hilbert bundle over X, X × H , where H is a Hilbert space. This gives

a hermitian structure on E: for k ∈ X, we introduce an inner product on the fibers

Ek := π−1(k), using Ek ⊂ H :

⟨ζ, ζ ′⟩k := ⟨ζ, ζ ′⟩H , ζ, ζ ′ ∈ Ek.

We then have two natural connections on E, the Chern connection, available when

the bundle is holomorphic and equipped with hermitian structure, and a hermitian

connection3, available for any smooth vector bundle embedded in a Hilbert bundle. In

the context of vector bundles of eigenfunctions, the latter is called the Berry connection

and we adopt this terminology for the general case as well.

We first define the Chern connection. For that we choose a local holomorphic trivi-

alization U ⊂ X, π−1(U) ≃ U × Cn, for which the hermitian metric is given by

⟨ζ, ζ⟩k = ⟨G(k)ζ, ζ⟩ =
n∑

i,j=1

Gij(k)ζiζ̄j ζ ∈ Cn, k ∈ U. (9.1)

3D : C∞(X,E) → C∞(X,E ⊗ T ∗X) is a connection if for any f ∈ C∞(X), D(fs) = fDs + sdf .

A connection D is hermitian if d⟨s(k), s′(k)⟩k = ⟨Ds(k), s′(k)⟩k + ⟨s(k), Ds′(k)⟩.
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We note that if {u1(k), . . . , un(k)} ⊂ H is a basis of Ek for k ∈ U , and U ∋ k → uj(k)

are holomorphic, then G(k) is the Gramian matrix:

G(k) := (⟨ui(k), uj(k)⟩H )1≤i,j≤n . (9.2)

If s : X → E is a section, then the Chern connection DC : C∞(X;E) → C∞(X;E ⊗
T ∗X), over U is given by (using only the local trivialization and (9.1))

DCs(k) := ds(k) + ηC(k)s(k),

ηC(k) := G(k)−1∂kG(k) dk ∈ C∞(U,Hom(Cn,Cn)⊗ (T ∗U)1,0).
(9.3)

Here ∂k denotes the holomorphic derivative and the notation (T ∗U)1,0 indicates that

only dk and not dk̄ appear in the matrix valued 1-form ηC , ηC = η1,0C . We also recall

that DC is the unique hermitian connection with this property – see [We07, Theorem

2.1].

For the definition of the Berry connection we only require that E → X is a smooth

vector bundle which is a subbundle ofX×H , where H is a Hilbert space. That means

for k ∈ X we have a well defined orthogonal projection Π(k) : H → Ek := π−1(k)

and an inclusion map ι : E ↪→ X × H . The formula for the Berry connection is then

given by

DBs(k) := Π(k)(d(ι ◦ s)(k)). (9.4)

To find a local expression similar to (9.3) we use the Gramian (9.2). If s(k) =∑n
j=1 s

U
j (k)uj(k) =: A(k)sU(k), A(k) : Cn → H (so that A(k) provides a local trivi-

alization) then Π(k) = A(k)G(k)−1A(k)∗ and

DBs(k) = Π(k)
n∑

j=1

(
dsUj (k)uj(k) + sUj (k)duj(k)

)
= A(k)(dsU(k) + ηB(k)s

U(k)),

ηB(k) = G(k)−1B(k) ∈ C∞(U,Hom(Cn,Cn)⊗ T ∗U),

B(k)ℓj := ⟨duj(k), uℓ(k)⟩H ∈ C∞(U, T ∗U).

(9.5)

These formulas hold for choices of uj which are not necessarily holomorphic. However

if, as in (9.2), k 7→ uj(k) are holomorphic, then

(∂kG(k))ijdk = ⟨∂kui(k), uj(k)⟩H dk + ⟨ui(k), ∂k̄uj(k)⟩H dk

= ⟨∂kui(k), uj(k)⟩H dk

= ⟨dui(k), uj(k)⟩ = B(k)ij,

(9.6)

since ∂k̄uj(k) = 0 and dw = ∂kw dk + ∂k̄w dk̄. In particular, that means that in the

notation of (9.3) and (9.4)

U ∋ k 7→ uℓ(k) holomorphic =⇒ ηC(k) = ηB(k), k ∈ U

=⇒ DC = DB,
(9.7)
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We record this standard fact as

Proposition 9.1. Suppose that X is a complex manifold and E 7→ X is a holomorphic

vector bundle with a holomorphic embedding ι : E → X × H into a trivial Hilbert

bundle. Then the Berry connection (9.4) and the Chern connection (9.3) defined using

the hermitian structure on H are equal.

Remark. As was pointed out to us by Michael Singer, the conclusion (9.7) could be

deduced directly from the uniqueness of the Chern connection mentioned after (9.3):

using (9.4) we have D
(0,1)
B s(k) = Π(k)(d(0,1)(ι ◦ s)(k)). But as the embedding ι (an

inclusion, in our case) is holomorphic this implies that D
(0,1)
B s(k) = 0 for holomorphic

sections. This and being hermitian characterize the Chern connection. We should

also stress that the discussion above does not depend on the fact that X has complex

dimension one.

The curvature of a connection D is given by

Θ := D ◦D, (9.8)

which is a globally defined two form with values in Hom(E,E). In a local trivialization

in which D = d+ η, we have Θ = dη + η ∧ η. For the Chern connection, for X of any

dimension Θ = ∂̄∂ηC since (9.3) shows that ∂ηC = −ηC ∧ ηC (when X has a complex

dimension one, this is obvious as dk ∧ dk = 0). It is then immediate from (9.7) that

Θ := DC ◦DC = DB ◦DB, (9.9)

that is, in the holomorphic case, the curvatures defined using the Chern curvature or

the Berry curvature agree for holomorphic vector bundles embedded in trivial Hilbert

bundles.

The Chern class (a Chern number in the case of C/Λ∗) is given by

c1(E) :=
i

2π

∫
C/Λ∗

trΘ ∈ Z,

where we note that over U ⊂ C/Λ∗ for which we defined (9.2),

trΘ = ∂k̄ trG(k)
−1∂kG(k) dk̄ ∧ dk

= ∂k̄∂k log g(k) dk̄ ∧ dk, g(k) := detG(k),
(9.10)

where we used Jacobi’s formula [DyZw19, (B.5.14)]. In particular,

H(k) := ∂k̄∂k log g(k) = g(k)−2(g(k)∂k̄∂kg(k)− |∂kg(k)|2).

For any holomorphic hermitian vector bundle the trace of the curvature of the Chern

connection, trΘ can be interpreted as a curvature of a line bundle. If π : E → X has

rank n, we obtain a line bundle π : L := ∧nE → X. It inherits hermitian structure

from E. If we define the Chern connection on ∧nE as in (9.3) (using only holomorphy
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and the hermitian structure) we obtain a new curvature ΘL which is a differential two

form on X, and

ΘL = trΘ.

In case when E embeds holomorphically in X × H we can then take, as in (9.2),

k 7→ uj(k) ∈ H , j = 1, · · · , n, a local holomorphic basis of E. Then for

Φ(k) := ∧n
j=1uj(k) ∈ ∧nEk ⊂ ∧nH , (9.11)

we have

∥Φ(k)∥2∧nH = det ((⟨uj(k), uℓ(k)⟩H )1≤j,ℓ≤n) = detG(k) = g(k).

In particular when X = C/Λ∗, we obtain, as in [BHZ22b, (5.10)], ΘL = H(k)dk̄ ∧ dk
with

H(k) = ∥Φ(k)∥−4
(
∥Φ(k)∥2∥∂kΦ(k)∥2 − |⟨∂kΦ(k),Φ(k)⟩|2

)
≥ 0, (9.12)

where ∥ • ∥ = ∥ • ∥∧nH .

Remark. From a physics perspective the construction of the line bundle ∧nE, in the

case of E ⊂ X × H can be interpreted as the Slater determinant of the individual

Bloch functions on the fermionic n-particle Hilbert space. We thus find that the trace

of the curvature of the rank n vector bundle coincides with the curvature of the line

bundle described by the n-particle wavefunction.

9.2. The Berry curvature. For completeness we derive the standard formula for the

curvature of the Berry connection (9.4):

Proposition 9.2. Suppose that π : E → X is a complex vector bundle over a manifold

X and that there exists an embedding ι : E → X × H into a trivial Hilbert bundle.

Then the curvature of the connection (9.4) is given in terms of the orthogonal projection

Π(k) : H → Ek := π−1(k), as

Θ = Π dΠ ∧ dΠ|E, (9.13)

and is a differential two form with values in Hom(E,E).

Proof. This is a local computation so for some U ⊂ X we can choose a smoothly

varying orthonormal basis {uj(k)}nj=1, k ∈ U . Then in the notation of (9.5) (we drop

the dependence on k in A(k), Π(k) and Ek)

A : Cn → H , A∗ : H → Cn, AA∗ = Π, A∗A = ICn . (9.14)

With the trivialization given by A, we have (using (9.14))

Ds = A∗(Π(d(As)) = A∗ΠAds+ A∗ΠdAs = ds+ A∗dAs =: ds+ ηds.
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Hence, in this trivialization, the curvature is a differential two form with values in

Hom(Cn,Cn):

A∗ΘA = dη + η ∧ η = d(A∗dA) + A∗dA ∧ A∗dA

= dA∗ ∧ dA+ A∗dA ∧ A∗dA.

The curvature Θ = DB ◦DB which is a differential form with values in Hom(E,E), is

then given by

Θ = ΠΘΠ = A(dA∗ ∧ dA+ A∗dA ∧ A∗dA)A∗

= AdA∗ ∧ dAA∗ + AA∗dA ∧ A∗dAA∗

= AdA∗ ∧ dAA∗ + AdA∗A ∧ dA∗AA∗,

(9.15)

where we used d(A∗A) = 0.

The right hand side in (9.13) is given by

AA∗d(AA∗) ∧ d(AA∗) = AA∗((dAA∗ + AdA∗) ∧ (dAA∗ + AdA∗)

= AA∗ (dA ∧ (A∗dA)A∗ + dA ∧ (A∗A)dA∗

+AdA∗ ∧ dAA∗ + AdA∗ ∧ dAA∗) .

From (9.14) we see that A∗A = ICn and that A∗dA = −dA∗A. Hence,

ΠdΠ ∧ dΠ = AA∗ (−dA ∧ dA∗AA∗ + dA ∧ dA∗

+ AdA∗ ∧ dAA∗ + AdA∗ ∧ AdA∗) .

Acting on E, AA∗ = IE and hence the first two terms in the bracket cancel:

ΠdΠ ∧ dΠ|E = AdA∗ ∧ dAA∗|E + AdA∗ ∧ AdA∗|E.

But from (9.15) that is the same as the action of Θ on E.

□

9.3. Flat bands of multiplicity 2 and proof of Theorem 5. We now consider

V (k) := kerH1
0
(D(α) + k) ⊂ L2

0. (9.16)

This defines a (trivial) vector bundle Ẽ → C:

Ẽ := {(k, v) : v ∈ V (k)} ⊂ C× L2
0(C/Λ;C2).

To define a vector bundle over the torus C/Λ∗ we define an equivalence relation on

C× L2
0(C/Λ;C2):

∃ p ∈ Λ∗ (k, u) ∼τ (k + p, τ(p)−1u), [τ(p)u](z) = ei⟨z,k⟩v(z), (9.17)

and notice that τ(p)−1V (k) = V (k + p). Using this (see [TaZw23, Lemma 8.4] or

[BHZ22b, Lemma 5.1]),

E := Ẽ / ∼τ → C/Λ∗. (9.18)

is a holomorphic vector bundle over C/Λ∗.
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Since Π(k + p) = τ(p)−1Π(k)τ(p), the Berry connection defined by (9.4) on Ẽ,

satisfies

(DBs)(k + p) = Π(k + p)(d(ι ◦ s)(k + p)) = τ−1(p)Π(k)d(ι ◦ τ(p)s(k + p)).

Hence, if for k ∈ U ⊂ X, (k, s(k)) ∼τ (k′, s′(k′)) then k′ = k+p, s′(k+p) = τ(p)−1s(k),

for some p ∈ Λ∗ and

(k,DBs(k)) ∼τ (k′, DBs
′(k′)).

This means that DB is a well defined connection on Ẽ. Since the Chern connec-

tion is intrinsically defined on Ẽ using holomorphic and hermitian structures, the two

connections are equal.

We now assume that dimV (k) = 2. Theorem 8 then shows that there exists u0 ∈ L2
0,0

with simple zeros at ±zS +Λ∗. This allows us a characterization of V (k) when k /∈ Λ∗:

V (k) = {ζ1Fk(z + zS)u0(z) + ζ2Fk(z − zS)u0(z), ζ = (ζ1, ζ2) ∈ C2}, k /∈ Λ∗. (9.19)

Remark. The space V (k) could have been constructed equally well using u1 ∈
kerL2

0,1
D(α) even though the spaces appear to be different. Instead of (9.19) we could

have taken

W (k) := {ζ1Fk(z + zS)u0(z) + ζ2Fk(z)u1(z), ζ ∈ C2}, k /∈ −K + Λ∗. (9.20)

We can take u1(z) = FK(z)
−1F−K(z)

−1u0(z) (giving the condition on k in (9.20)).

That the spaces have to coincide follows from the properties (8.2) in the proof of

Theorem 4. An explicit map between the spaces V (k) and W (k) can be constructed

using a theta function identity [KhZa15, (3.4)].

Returning to (9.19) we recall [BHZ22b, Lemma 3.3] for p ∈ Λ∗,

Fk+p(z) = ep(k)
−1τ(p)Fk(z),

ep(k) :=
θ(z(k))

θ(z(k + p))
= (−1)n(−1)meiπn

2ω+2πinz(k),
(9.21)

where z(p) = m+ nω, n,m ∈ Z. We define the Gramian (9.2) using

uj(k)(z) := u0(z)Fk(z − (−1)jzS), j = 1, 2, k /∈ Λ∗,

so that, for p ∈ Λ∗,

Gℓm(k + p) = ⟨Fk+p(• − (−1)ℓzS)u0, Fk+p(• − (−1)m(z − (−1)mzS)u0⟩

= ⟨ep(k)−1ei⟨•−(−1)ℓzS ,p⟩uℓ, ep(k)
−1ei⟨•−(−1)mzS ,p⟩um⟩

= ei((−1)m−(−1)ℓ)⟨zS ,p⟩|ep(k)|−2Gℓm(k).

This shows that

|ep(k)|4g(k + p) = g(k), k /∈ Λ∗. (9.22)
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We should stress that even though log g(k) is not well defined at k ∈ Λ∗,

H(k) := ∂k̄∂k log g(k) ∈ C∞(C \ Λ∗), H(k + p) = H(k), k /∈ Λ∗, p ∈ Λ∗ (9.23)

extends to a smooth function in C. That follows from the fact that trΘ = d(g−1dg) =

Hdk̄∧dk is a well defined 2-form on C/Λ∗. We now choose an interior of a fundamental

domain of Λ∗, F := {t+ sω : −2π/
√
3 < t, s,< 2π/

√
3} so that

c1(E) =
i

2π

∫
F

trΘ =
i

2π
lim
ε→0

∫
F\D(0,ε)

∂k̄∂k log g(k)dk̄ ∧ dk

=
i

2π

∫
∂F

∂k log g(k)dk −
i

2π
lim
ε→0

∫
∂D(0,ε)

∂k log g(k)dk.

(9.24)

Using (9.22) we see that
i

2π

∫
∂F

∂k log g(k)dk = −2.

(See [BHZ22b, (5.9),(B.8)] for a similar calculation.)

It remains to evaluate the limit on the right hand side of (9.24). We note that

g(k) ≥ 0 and g(k) = 0 for k ∈ Λ∗ only. We write Fj = Fj(k, z) = Fk(z − (−1)jzS),

F ′
j = ∂kFj. We then use (9.11) with n = 2, and Φ(k) = F1(k)u0 ∧F2(k)u0, which gives

(using ∥u0∥ = 1, Fj(0, z) = 1),

∂k̄∂kg(k)|k=0 = ⟨∂kΦ(k), ∂kΦ(k)⟩∧2L2
0
|k=0 = ∥F ′

1u0 ∧ u0 + u0 ∧ F ′
2u0∥∧2L2

0
> 0 (9.25)

unless F ′
1u0 ∧ u0 = F ′

2u0 ∧ u0. Since

F ′
1(0, z)− F ′

2(0, z) = i(zS − z̄S) +

√
3

4πi

(
θ′(z − zS)

θ(z − zS)
− θ′(z + zS)

θ(z + zS)

)
∼ ±

√
3

4πi(z ∓ zS)
, z ∼ ±zS,

this is clear impossible. Since Φ(0) = g(0) = 0, ∂2kg(k)|k=0 = ⟨∂2kΦ(0),Φ(0)⟩ = 0, and

hence, g(k) = g0|k|2+O(|k|3), g0 > 0. It is now easy to evaluate the limit on the right

hand side of (9.24):

− i

2π
lim
ε→0

∫
∂D(0,ε)

∂k log g(k)dk = − i

2π
lim
ε→0

∫
∂D(0,ε)

∂k log(g0|k|2 +O(|k|3)dk

= − i

2π
lim
ε→0

∫
∂D(0,ε)

g0k̄ +O(|k|2)
g0|k|2 +O(|k|3)

dk

= − i

2π
lim
ε→0

∫
∂D(0,ε)

(k−1 +O(1))dk

= − i

2π
lim
ε→0

(2πi+O(ε)) = 1.

.

Returning to (9.24) we have proved that c1(E) = −1.



36 SIMON BECKER, TRISTAN HUMBERT, AND MACIEJ ZWORSKI

Finally, we observe that for Ω : L2
0(C/Λ;C) → L2

0(C/Λ;C), Ωu(z) := u(ωz),

kerH1
0
(D(α) + ω̄k) = ΩkerH1

0
(D(α) + k) (see [BHZ22b, §2.1]). Hence, in the nota-

tion of (9.4). ΩΠ(k)Ω∗ = Π(ω̄k). Hence, if Rk := ω̄k, this means that R∗Π = ΩΠΩ∗.

Also the pull back of Θ by R is well defined and, using (9.13) we see that

R∗Θ = R∗(ΠdΠ ∧ dΠ) = R∗Πd(R∗Π) ∧ d(R∗)Π = Ω(ΠdΠ ∧ dΠ)Ω∗ = ΩΘΩ∗.

In particular, in the notation of (9.23), we have

trR∗Θ = trΘ =⇒ H(ω̄k) = H(k).

Strictly speaking we should, just as we did at the end of (9.18), justify passing to the

quotient. That is again easy by noting that Ωτ(p)Ω∗ = τ(ω̄p). This completes the

proof of Theorem 5.

X = L2
0,2 X = L2

0,0 X = L2
0,1

1.2400 – 0.0000i 1.6002 + 0.0000i 1.6002 + 0.0000i

1.2400 – 0.0000i 1.2583 – 1.1836i 1.2583 – 1.1836i

1.3424 + 1.6788i 1.2583 + 1.1836i 1.2583 + 1.1836i

1.3424 – 1.6788i 1.4019 – 2.2763i 1.4019 – 2.2763i

2.9543 + 0.0000i 1.4019 + 2.2763i 1.4019 + 2.2763i

1.4575 + 2.7610i 1.5001 + 3.3130i 1.5001 + 3.3130i

1.4575 – 2.7610i 1.5001 – 3.3130i 1.5001 – 3.3130i

3.5878 + 1.9298i 3.4078 + 1.3122i 3.4078 + 1.3122i

3.5878 – 1.9298i 3.4078 – 1.3122i 3.4078 – 1.3122i

Table 2. Magic angles for θ = 2.808850897 and U0(ζ) = cos(θ)U1(ζ)+

sin(θ)
∑2

i=0 ω
ie−(ζω̄i−ζ̄ωi) such that 1/α ∈ SpecX(T0) (counting algebraic

multiplicity). The magic angle with algebraic multiplicity 2 and geomet-

ric multiplicity 1 is highlighted in blue.

10. Numerical observations

Here we present two numerical observations related to our mathematical results.

10.1. Algebraic multiplicities in the spectral characterization. Theorem 1 im-

plies that it is impossible to have

dimkerL2
0
(D(α)) = dimkerL2

0,2
(D(α)) = 2

which is equivalent to having eigenvalues of geometric multiplicity 2 for T0, i.e.

dim kerL2
0
(T0 − 1/α) = dimkerL2

0,2
(T0 − 1/α) = 2,
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Figure 9. The first two singular values of D(α) are 2.804e − 15 and

3.990 suggesting the existence of only one flat band at α = 1.2400 for

θ = 2.808850 and U0(ζ) = cos(θ)U1(ζ) + sin(θ)
∑2

i=0 ω
ie−(ζω̄i−ζ̄ωi). The

eigenvector of T0 with eigenvalue 1/α is shown on top and the generalized

one at the bottom.

we can indeed have that 1/α is an eigenvalue of algebraic multiplicity 2 and geometric

multiplicity 1 on L2
0 and L

2
0,2. This is illustrated in Table 2 and Figure 9. In particular,

it implies that Tk in general is not diagonalizable. Since the algebraic multiplicity of Tk
is independent of k, it follows by Theorem 4 and its analogue in [BHZ22b] for simple

and two-fold degenerate magic angles, that the geometric multiplicity is independent

of k. Examples of this are exhibited in Table 2 and Figures 9 and 10.
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Figure 10. One flat band for α = 5.3811 for θ = 2.7672151 and

U0(ζ) = cos(θ)U1(ζ) + sin(θ)
∑2

i=0 ω
ie−(ζω̄i−ζ̄ωi). The eigenvector of T0

with eigenvalue 1/α is shown on top and the generalized one at the bot-

tom.

10.2. Behaviour of the curvature. Since we established in Theorem 5 thatH(ωz) =

H(z) where H is the scalar curvature. We conclude that 0 and ±zS are critical points

of H. In addition, the symmetry E defined in (2.12) and the formula (7.4) imply that

the Gramian matrix satisfies for simple or two-fold degenerate magic angles

G(k) = G(−k).

This implies the symmetries in Figure 11.

However, while it seems that the maximum is attained at Γ and the minima at

K,K ′, we do not have an analytical argument for this at the moment.
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Figure 11. The plot of the curvature of the holomorphic line bundle

corresponding to the first two-fold generate magic angle, defined in (9.23)

with potential U2, as in (1.8). The extrema at K,Γ, K ′ follow from

Theorem 5.

-1.5 -1 -0.5 0 0.5 1 1.5

KK'

Figure 12. Cross-section of curvature for kx = 0 for the first seven

magic angles with potential U2, as in (1.8), in increasing order. The

extrema at K,Γ, K ′ follow from Theorem 5.
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Figure 12 shows that the standard deviation of the Berry curvature, for the potential

U2 with only two-fold degenerate real magic angles, increases monotonically for the real

magic angles. This is in contrast to the case of simple magic angles in [BHZ22b, Figure

7].
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