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Abstract. We prove that in the chiral limit of the Bistritzer–MacDonald Hamil-

tonian, there exist magic angles at which the Hamiltonian exhibits flat bands of

multiplicity four instead of two. We analyse the structure of Bloch functions asso-

ciated with the bands of arbitrary multiplicity, compute the corresponding Chern

number to be −1, and show that there exist infinitely many degenerate magic angles

for a generic choice of tunnelling potential, including the Bistritzer–MacDonald po-

tential. Moreover, we demonstrate for generic tunnelling potentials flat bands have

only twofold or fourfold multiplicities.

1. Introduction and statement of results

Twisted bilayer graphene is a material consisting of two stacked graphene lay-

ers which are twisted with respect to each other by an angle θ. It has been pre-

dicted theoretically [BiMa11] that at a certain angle, the bands at zero energy be-

come flat and strongly correlated electron effects dominate. This has then been ex-

perimentally confirmed that at this magic angle, the material exhibits phenomena

such as superconductivity and a quantum Hall effect without external magnetic fields

[Cao18, Ser19, Yan18]. Theoretically [TKV19] more magic angles have been expected.

Contrary to common beliefs, we demonstrate that flat bands of higher multiplicity are

common in this model of bilayer graphene. Higher multiplicity bands have recently

also been theoretically observed in models of twisted trilayer graphene [PT23, De23].

We verify numerically that the presence of higher degenerate (almost flat) bands close

to zero energy is also valid for the full (not just chiral) model, see Figure 6.

The model we consider is based on the Bistritzer-MacDonald Hamiltonian [BiMa11,

CGG22, Wa∗22] and its chiral limit of Tarnopolsky–Kruchkov–Vishwanath [TKV19]:

H(α) =

(
0 D(α)∗

D(α) 0

)
with D(α) =

(
2Dz̄ αU+(z)

αU−(z) 2Dz̄

)
(1.1)

where we use complex coordinates z ∈ C and the parameter α is proportional to the

inverse relative twisting angle. Here, we write z = x+iy for real x, y then ∂z := 1/2(∂x−
i∂y), where ∂x denotes differentiation with respect to x, and Dz = −i∂z. Similarly,

∂z̄ :=
1
2
(∂x + i∂y) and Dz̄ = −i∂z̄. Clearly, H(α) : H1(C;C4) ⊂ L2(C;C4) → L2(C;C4)

is self-adjoint and D(α) : H1(C;C2) ⊂ L2(C;C2) → L2(C;C2). With ω = e2πi/3 and
1
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a = 4πi(a1ω + a2ω̄), aj ∈ Z, we assume that

U±(z + a) = ω∓(a1+a2)U(z), U±(ωz) = ωU±(z). (1.2)

In the physics literature, the following choice is made [BiMa11, TKV19]

U+(z) = U(z), U−(z) = U(−z), U(z̄) = U(z), (1.3)

see (1.12) for concrete examples.

Floquet theory for the Hamiltonian (1.1) is based on moiré translations:

Lau(z) :=

(
ω−(a1+a2) 0

0 ωa1+a2

)
u(z + a), a = 4πi(a1ω + a2ω̄). (1.4)

The action is extended diagonally to C4 = C2×C2-valued functions and we LaH(α) =

H(α)La.

The Floquet spectrum is given by

H(α)u = Eu, u ∈ H1
k Hs

k := L2
k ∩Hs

loc,

L2
k := {u = L2

loc(C;C4) : Lau = ei⟨k,a⟩u}, ⟨z, w⟩ := Re(zw̄), and k ∈ C.
(1.5)

The spectrum is discrete and symmetric with respect to the origin and we index it as

follows (with Z∗ := Z \ {0})
{Ej(α, k)}j∈Z∗ , Ej(α, k) = −E−j(α, k),

0 ≤ E1(α, k) ≤ E2(α, k) ≤ · · · , E1(α,K) = E1(α,−K) = 0,
(1.6)

see [BHZ24, §2] for more details. The points K,−K, K = i, are called the Dirac points

and are typically denoted by K and K ′ in the physics literature.

Using the conjugation,

Hk(α) := ei⟨z,k⟩H(α)e−i⟨z,k⟩,

we can equivalently study operators Hk(α) on L2
0.

Definition (Magic angles and their multiplicities). A value of α in (1.1) is called

magical if H(α) has a flat band at zero

E1(α, k) ≡ 0, k ∈ C.

The set of magic α’s is denoted by A or A(U) if we specify the dependence on the

potential. The multiplicity of a magic α is defined as

m(α) = mU(α) = min{j > 0 : max
k

Ej+1(α, k) > 0}. (1.7)

Magic angles are (up to physical constants) reciprocals of α ∈ A.

To formulate our first result on the multiplicity of flat bands, we need the following

definition of multiplicity of zeros for u ∈ ker(D(α) +K):

Mu(z0) := max{m : [∂m−1
z u](z0) = 0}, (1.8)
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with the convention that Mu(z0) = 0 if u(z0) ̸= 0. As in [BHZ24, Lemma 3.2] we

easily see that this is equivalent to u(z) = (z− z0)
mu0(z), where u0 is smooth near z0.

Theorem 1 (Zeros and multiplicities). For the Hamiltonian (1.1) with potentials sat-

isfying (1.2) and (1.3), let u(α) := uK(α) ∈ kerH1
0
(D(α) +K) be a family of protected

states (see [Zw24, Theorem 1] and references given there). Then for α ∈ C∑
z∈C/Λ

Mu(α)(z) = m(α). (1.9)

For α ∈ A and k ∈ C/Λ∗,

dimkerH1
0
Hk(α) = 2 dimkerH1

0
(D(α) + k) = 2m(α).

In particular, the zero-energy flat bands of the Hamiltonian are always spectrally gapped

from the rest of the spectrum. Moreover, (1.9) holds for any u(α) ∈ kerH1
0
(D(α)+ k) \

{0}, k ∈ C/Λ∗.

To formulate the next result we define

L2
0,p := {u ∈ L2

0 : u(ωz) = ω̄pu(z)}, p ∈ Z3.

Using these spaces we have the following rigidity result for simple and double-degenerate

magic angles:

Theorem 2 (Rigidity). Under the assumptions of Theorem 1 and with the definition

of multiplicity (1.7),

m(α) = 1 =⇒ dimkerL2
0,2

D(α) = 1,

m(α) = 2 =⇒ dimkerL2
0,0

D(α) = dimkerL2
0,1

D(α) = 1.
(1.10)

Moreover, for all α ∈ A,

m(α) ̸≡ 0 mod 3. (1.11)

The first implication in (1.10) is included in [BHZ24, Theorem 2]. The multiplicity

statement (1.11) which is a consequence of the proof of (1.10) was added because of a

recent paper of Iugov–Nekrasov [IN25] where it was obtained using different methods.

To prove the existence of magic α’s of higher multiplicities, we perform trace compu-

tations first used to show that A is non-empty [Be*22] and then that |A| = ∞ [BHZ23].

The traces here refer to trT 2p
k where Tk is a Birman–Schwinger operator with spectrum

given by {1/α : α ∈ A} - see §2, [Be*22, Theorem 3], [BHZ23, Theorem 1].

Theorem 2 shows that to show the existence of degenerate α’s we need to show that

tr((T0|L2
0,j
)2p) ̸= 0, j = 0, 1 (as explained in §4 we are allowed to take k = 0).

Because of the symmetry of the spectrum (1.6) simple α’s correspond flat bands of

multiplicity 2 and double α’s, to flat bands of multiplicity 4. In Figures 2 and 3, we see

that the band structure for complex and real double magic angles behaves similarly
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Figure 1. Magic angles α derived from potentials U± = U1(±•) (left)
and U± = U2(±•) (right) in (1.1). The multiplicity of the flat bands u

of (D(α) + k)uk = 0 is illustrated by the numbers (no number → sim-

ple magic angle, 2 → two-fold degenerate magic angle) in the figure.

The movie https://math.berkeley.edu/~zworski/Interpolation.

mp4 shows the magic angles for interpolation between these potentials:

U(z) = (cos θ − sin θ)U1(z) + sin θU2(z); multiplicity one magic angles

are coded by ∗ and multiplicity two by ∗.

close to the magic angle. The two bands are closest at the Γ point and are stacked on

top of each other.

Examples of U ’s satisfying (1.2) and (1.3) are given by

U1(z) =
2∑

ℓ=0

ωℓe
1
2
(zω̄ℓ−z̄ωℓ) and U2(z) =

1√
2

(
U1(z)−

2∑
ℓ=0

ωℓe−(zω̄ℓ−z̄ωℓ)
)
. (1.12)

Numerical experiments suggest that these two potentials exhibit flat bands of different

multiplicities:

mUj
(α) = j, α ∈ AUj

∩ R, j = 1, 2, (1.13)

see Figure 1. We show (see Theorem 3 below) that the potential U1 (the Bistritzer–

MacDonald potential) has infinitely many (complex) degenerate magic α’s. While in

the case of U1 all magic angles on the real axis appear to be simple, the two-fold

degenerate magic angles, with non-zero imaginary parts, become real when a suitable

magnetic field is added [Le22].

Theorem 3 (Degenerate magic angles). For the Bistritzer–MacDonald potential, U+ =

U1 and U− = U1(−•), defined in (1.12), there exist infinitely many α ∈ A which are

not simple.

https://math.berkeley.edu/~zworski/Interpolation.mp4
https://math.berkeley.edu/~zworski/Interpolation.mp4
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k αk αk − αk−1

1 0.585663

2 2.221182 1.6355

3 3.751406 1.5302

4 5.276498 1.5251

5 6.794785 1.5183

6 8.312999 1.5182

7 9.829067 1.5161

8 11.345340 1.5163

9 12.860608 1.5153

10 14.376072 1.5155

11 15.890964 1.5149

k αk αk − αk−1

1 0.853799

2 2.691433 1.8376

3 4.507960 1.8165

4 6.332311 1.8244

5 8.157130 1.8248

6 9.983510 1.8264

7 11.809376 1.8259

8 13.635446 1.8261

9 15.460894 1.8255

10 17.286231 1.8253

11 19.111041 1.8248

Table 1. First 11 real magic angles, rounded to 6 digits, for U± =

U1(±•) (left) and U± = U2(±•) (right). The α’s for U1 are simple and

the ones on the right are double.

Figure 2. Let α ≈ 0.853799 as in Table 1, lowest two Bloch band

with positive energy close to the first magic angle with U± = U2(±•).
We plot E1(k) (left) and E2(k) (right).

Theorem 7 in §5 states this for a larger class of potentials satisfying the assumptions

of [BHZ23, Theorem 5] with an additional non-degeneracy condition, see Theorem 6.

It is natural to ask if multiplicities always occur and if multiplicities of higher degree

are also ubiquitous. If we do not demand that (1.3) holds, then, generically in the sense

of Baire, magic angles are either simple or two-fold degenerate:

Theorem 4 (Generic simplicity). For Hamiltonians (1.1) satisfying (1.2), there exists

a generic subset (an intersection of open dense sets), V0 ⊂ V , where the space of
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Figure 3. Let α ≈ 0.9628 + 0.9873i the first complex magic angle for

U± = U1(±•), lowest two Bloch band with positive energy close to the

first degenerate magic angle. We plot E1(k) (left) and E2(k) (right).

matrix-valued potentials, V , is defined in (7.3), such that if V ∈ V0 then (see (1.7))

m(α) ≤ 2.

More precisely, when α is simple then

dimkerL2
0,2
(D(α)) = 1 and dimkerL2

0,0
(D(α)) = dimkerL2

0,1
(D(α)) = 0 (1.14)

and when it is double,

dimkerL2
0,2
(D(α)) = 0 and dimkerL2

0,0
(D(α)) = dimkerL2

0,1
(D(α)) = 1. (1.15)

Remark. It may seem at first the conclusions (1.14),(1.15) follow from Theorem 2.

However, in that theorem, we assumed also (1.3), which does not necessarily hold for

potentials in V0.

The Chern number and Berry curvature associated to the degenerate flat band have

similar properties to the case of simple flat bands. In particular, we have the following

result proved in 9. More specifically, we prove that the Bloch vector bundle decomposes

into a trivial bundle of rank m(α)− 1 and a line bundle isomorphic to that of a simple

band.

Theorem 5 (Flat band topology). For α ∈ A, the Chern number of the rank m(α)

vector bundle E associated to kerL2
0
(D(α) + k) (see (9.19)) is

c1(E) = −1. (1.16)

In addition, the trace of the curvature, H, is non-negative and satisfies H(k) = H(ωk),

H(k) = H(−k).

In Section 10, we collect numerical observations on the possibility of having eigenval-

ues of Tk of algebraic multiplicity 2 but geometric multiplicity 1 and thus corresponding



DEGENERATE FLAT BANDS IN TWISTED BILAYER GRAPHENE 7

to simple magic angles. We also discuss features of the Berry curvature for two-fold

degenerate magic angles. That motivates the presentation of the properties of the

curvature in Theorem 5.
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2. Properties of the Hamiltonian

In Section 1 the moiré lattice is given by 4πi(Zω ⊕ Zω̄) which is consistent with

the notation in the physics literature [BiMa11, TKV19]. We followed it to make the

article accessible to a broader audience. From Section 2 onwards, we introduce a simple

change of variables znew = 4
3
πizold so that the lattice becomes Λ := Z⊕ ωZ with dual

lattice Λ∗ := 4πi√
3
Λ. In doing so, we simplify mathematical expressions involving, for

instance, Jacobi theta functions. This new coordinate system has been introduced in

[BZ23], see also [BHZ24, Appendix A].

Thus we work now with (1.1) but now we assume

U±(z + γ) = e±i⟨γ,K⟩U±(z), γ ∈ Λ, U±(ωz) = ωU±(z). (2.1)

Here and elsewhere, ⟨z, w⟩ := Re(zw̄), ±K are the nonzero points of high symmetry,

ωK ≡ K modΛ∗, K = 4
3
π.

The analogue of (1.3) is given by

U+(z) = U(z), U−(z) = U(−z), U(z̄) = −U(−z), (2.2)

and the Bistritzer–MacDonald potential is now U(z) = −4
3
πiU1(

4
3
πiz), where U1 is

given in (1.12).

The Hamiltonian is still of the form

H(α) :=

(
0 D(α)∗

D(α) 0

)
with D(α) :=

(
2Dz̄ αU+(z)

αU−(z) 2Dz̄

)
. (2.3)

We then define

ρ(z) := diag(χkj(z)), k2 = −k1 = K, ∈ C/Λ∗, χk(z) := ei⟨z,k⟩,
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so that for γ ∈ Λ

V (z + γ) = ρ(γ)−1V (z)ρ(γ), V (z) :=

(
0 U+(z)

U−(z) 0

)
.

The modified potential, Vρ(z) := ρ(z)V (z)ρ(z)−1, is Λ-periodic and thus

ρ(z)D(α)ρ(z)−1 = Dρ(α), Dρ(α) := diag((2Dz̄ − kj)
2
j=1) + Vρ(z).

Using the rotation operator Ωu(z) = u(ωz), rotating by 2π/3, satisfying ΩD(α) =

ωD(α)Ω, we can define C = diag(1, ω̄)Ω such that CH = HC and translation operator

Lγu(z) := ρ(γ)u(z + γ). By using the translation Lγ, we can define, for k ∈ C, the
spaces

Hs
k := Hs

k(C/Λ,Cn) := {u ∈ Hs
loc(C;Cn) : Lγu = ei⟨k,γ⟩u, γ ∈ Λ}, with L2

k := H0
k ,

where n = 1 corresponds to the first, n = 2 to the upper two, and n = 4 to all

components of Lγ.

When k ∈ K := {K,−K, 0}+ Λ∗ we also define

L2
k,p = L2

k,p(C/Γ;Cn) := {u ∈ L2
k : u(ωz) = ω̄pu(z)}, L2

k =
⊕
p∈Z3

L2
k,p.

We can then define a generalized Bloch transform

Bu(z, k) :=
∑
γ∈Λ

ei⟨z+γ,k⟩Lγu(z), Bu(z, k + p) = ei⟨z,p⟩Bu(z, k), p ∈ Λ∗, u ∈ S (C),

LαBu(•, k) =
∑
γ

ei⟨z+α+γ,k⟩Lα+γu(z) = Bu(•, k), α ∈ Λ

such that

BD(α) = (D(α)− k)B, D(α)− k = ei⟨z,k⟩D(α)e−i⟨z,k⟩,

BH(α) = Hk(α)B, Hk(α) := ei⟨z,k⟩H(α)e−i⟨z,k⟩ =

(
0 D(α)∗ − k̄

D(α)− k 0

)
.

(2.4)

In particular, we say H(α) exhibits a flat band at energy zero if and only if 0 ∈⋂
k∈C Spec(Hk(α)). To study the set of α at which H(α) exhibits a flat band at zero,

we define the set of Dirac points K0 := {K,−K} + Λ∗ such that for k /∈ K0 we can

define the compact Birman-Schwinger operator

Tk = R(k)V (z) : L2
0 → L2

0, R(k) = (2Dz̄ − k)−1. (2.5)

This operator then characterizes the set of magic angles in the sense stated in the

next Proposition.
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Proposition 2.1 ([Be*22, Theorem 2],[BHZ24, Proposition 2.2]). There exists a dis-

crete set A such that

SpecL2
0
D(α) =

{
K0 α /∈ A,

C α ∈ A.
(2.6)

Moreover,

α ∈ A ⇐⇒ ∃ k /∈ K0, α−1 ∈ SpecL2
0
Tk ⇐⇒ ∀ k ∈ K0, α

−1 ∈ SpecL2
0
Tk, (2.7)

where Tk is a compact operator given by

Tk := R(k)V (z) : L2
0 → L2

0, R(k) := (2Dz̄ − k)−1 (2.8)

In particular, the spectrum of Tk0 is independent of k0 /∈ K0 and characterizes

parameters α ∈ C at which the Hamiltonian exhibits a flat band at zero energy. Since

the parameter α is inherently connected with the twisting angle, we shall refer to α’s

at which (2.7) occurs as magic and denote their set by A ⊂ C. We then square the

operator T 2
k0

= diag(Ak0 , Bk0) where Ak0 = R(k0)U(z)R(k0)U(−z). Setting k0 = 0, we

notice that T0 leaves the subspaces L2
0,j invariant. By projecting the spaces L2

0,j onto

the first component, we can define A0 on spaces L2
0,j.

Remark. If α ∈ A is simple, then 1/α is an eigenvalue of T0 with eigenvalue of

geometric multiplicity 1 and the Hamiltonian exhibits a two-fold degenerate flat band

at energy zero. If α ∈ A is two-fold degenerate, then 1/α is an eigenvalue of T0

with eigenvalue of geometric multiplicity 2 and the Hamiltonian exhibits a four-fold

degenerate flat band at energy zero. It follows from Theorem 1 that we can drop the

minima in the above definition.

Suppose that the potential U(z) satisfies the symmetries given in (2.1), namely

U(z + γ) = ei⟨γ,K⟩U(z), U(ωz) = ωU(z).

Since U is then periodic with respect to 3Λ (3K ≡ 0 modΛ∗), expanding in Fourier

series gives

U =
∑

p∈Λ∗/3

ape
i⟨z,p⟩

. The translational symmetry now writes:

∀p ∈ Λ∗/3, ∀γ ∈ Λ, ape
i⟨γ,p⟩ = ape

i⟨γ,K⟩.

Identifying the Fourier coefficients now gives that for all p ∈ Λ∗/3,

ap ̸= 0 =⇒ ∀ γ ∈ Λ, ⟨γ, p⟩ = ⟨γ,K⟩ =⇒ p ≡ K mod Λ∗.

In other words, we see that (changing notation)

U(z) =
∑
p∈Λ∗

ape
i⟨p+K,z⟩. (2.9)
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We now investigate the rotational symmetry: it is equivalent to∑
p∈Λ∗

ape
i⟨ω̄p+ω̄K,z⟩ = f(ωz) = ωf(z) =

∑
p∈Λ∗

ωape
i⟨p+K,z⟩.

Now, ω̄p+ ω̄K = ω̄p− r−1(ω) +K, where we defined the rescaling map

z : Λ∗ → Λ, z(k) :=
√
3k/4πi. (2.10)

(Although z is a complex variable, the notation is justified as it is a map from k-space

to z-space.) Hence, the right hand side of the previous equality rewrites

f(ωz) =
∑
p∈Λ∗

aωp+r−1(ω̄)e
i⟨p+K,z⟩,

that is ap = ωaωp+r−1(ω̄). The previous discussion justified the following characterization

of potentials U(z) satisfying the symmetries given in (2.1)

U(z) satisfies (2.1) ⇐⇒ U(z) =
∑
p∈Λ∗

ape
i⟨p+K,z⟩ and ∀p ∈ Λ∗, ap = ωaωp+r−1(ω̄).

(2.11)

In other words, the values of ap are determined on the orbits of

κ : Λ∗ ∈ p 7→ ωp+ r−1(ω̄), Orb(p) = {p, ωp+ r−1(ω̄), ω̄p− r−1(ω)}, aκ(p) = ω̄ap.

So, for instance, the BM potential, up to a factor, comes from the orbit of p = 0.

In addition, there exist a number of further anti-linear symmetries of the chiral

Hamiltonian

Qv(z) = v(−z), Qu(z) =

(
0 Q

Q 0

)
u(z),

satisfying QD(α)Q = D(α)∗ with Q : L2
k,p(C/Λ;C2) → L2

k,−p(C/Λ;C2) with Q :

L2
k,p(C/Λ;C4) → L2

k,−p+1(C/Λ;C4) satisfying H(α)Q = QH(α) and

E v(z) := Jv(−z), J :=

(
0 1

−1 0

)
with E : L2

±K,ℓ(C/Λ;C2) → L2
∓K,ℓ(C/Λ;C2) and

E : L2
0,ℓ(C/Λ;C2) → L2

0,ℓ(C/Λ;C2) satisfying ED(α)E ∗ = −D(α). (2.12)

Finally, we also introduce their composition A : L2
k,p(C/Λ;C2) → L2

k,−p(C/Λ;C2)

A := EQ, with A v(z) :=

(
0 1

−1 0

)
v(z) (2.13)

with A D(α)A = −D(α)∗.

Using the above symmetries, we observe that

Proposition 2.2. The spectrum of T0 satisfies SpecL2
0,p
(T0) = SpecL2

0,−p+1
(T0). In par-

ticular, for m ≥ 2 we find trL2
0,p

T 2m
0 = trL2

0,−p+1
T 2m
0 .
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Proof. Let v ∈ L2
0,p satisfy T0v = −λv then by multiplying by 2Dz̄ we findD(1/λ)v = 0.

Thus, D(1/λ)∗Qv = 0 with Qv ∈ L2
0,−p. We thus have

0 = D(1/λ)∗Qv = D(1/λ)∗R(0)∗(2Dz)Qv.

We conclude that (2Dz)Qv ∈ L2
0,−p+1 is an eigenvector to T ∗

0 with eigenvalue −λ̄. □

3. Zeros, spectral gap, and rigidity

The zeros always fall into three point characterized by high symmetry: ωz ≡ z

mod Λ. That determines them (up to Λ) as 0, ±zS, where

zS = i/
√
3, ωzS = zS − (1 + ω),

is known as the stacking point.

3.1. Theta function argument. We use the following notation

θ(z) = θ1(ζ|ω) := −
∑
n∈Z

exp(πi(n+ 1
2
)2ω + 2πi(n+ 1

2
)(ζ + 1

2
)), (3.1)

θ(ζ +m) = (−1)mθ(ζ), θ(ζ + nω) = (−1)ne−πin2ω−2πiζnθ(ζ),

and the fact that θ has simple zeros at Λ (and not other zeros) – see [Mu83]. We can

then define

Fk(z) = e
i
2
(z−z̄)k θ(z − z(k))

θ(z)
, z(k) :=

√
3k

4πi
, z : Λ∗ → Λ. (3.2)

In particular, we have then

Fk(z +m+ nω) = e−nk Imωe2πinz(k)Fk(z) = Fk(z),

(2Dz̄ + k)Fk(z) = c(k)δ0(z), c(k) := 2πiθ(z(k))/θ′(0).
(3.3)

One then has that for u ∈ kerL2
0
(D(α)) vanishing at a point w one has

(D(α) + k)Fk(z − w)u(z) = 0. (3.4)

In particular this means that vanishing of the vector valued function u at some point,

implies existence of a flat band at 0: every k is an eigenvalue of D(α). Presented in a

slightly different way, this observation was the basis of the analysis in [TKV19].



12 SIMON BECKER, TRISTAN HUMBERT, AND MACIEJ ZWORSKI

3.2. Zeros. We first formalise the theta function argument of [TKV19] in a slightly

different way than in [Be*22]. (Where we used the fact that a non-zero Wronskian

between shifted protected states implies existence of (D(α)+k)−1 – see [Be*22, Propo-

sition 3.3].)

Proposition 3.1. Suppose that uK(α) ∈ kerH1
0
(D(α) + K) is a family of protected

stated of the chiral model (see [Zw24, Theorem 1] and references given there). Then

α ∈ A ⇐⇒ ∃ z0 ∈ C/Λ such that uK(α, z0) = 0. (3.5)

Proof. The proof of ⇐= is given in §3.1, see also [Zw24, §6]. On the other hand if

α ∈ A then for every k (or equivalently some k /∈ {K,−K} + Λ∗) there exists vk ̸= 0

such that (D(α) + k)vk = 0, where we drop the subscript of u and v in the following.

Then the Wronskian,

W = W (u,v) = u1v2 − u2v1, u =

(
u1

u2

)
, v =

(
v1
v2

)
, (3.6)

satisfies 2Dz̄W = −(K + k)W :

2Dz̄W = (2Dz̄u1)v2 + u1(2Dz̄v2)− (2Dz̄u2)v1 − u2(2Dz̄v1)

= (−αU(z)u2 −Ku1)v2 + u1(−αU(−z)v1 − kv2)

− v1(−αU(−z)u1 −Ku2)− u2(−αU(z)v2 − kv1)

= −(k +K)(u1v2 − u2v1) = −(k +K)W.

Putting k0 := −(k +K) /∈ Λ∗, the general solution of this equation is given by

W (z, z̄) = e
i
2
(k0z̄+k̄0z)w(z), w ∈ O(C).

Since W is periodic and z 7→ e−
i
2
(k0z̄+k̄0z) is a bounded function, w has to be constant,

and for k0 /∈ Λ∗, that constant has to vanish. If follows that for z ∈ Ω := ∁u−1(0),

an open dense set as u ̸≡ 0 is real analytic (this follows from the ellipticity of the

equation and analyticity of U – see [HöI, Theorem 8.6.1]), v(z, z̄) = F (z, z̄)u(z, z̄),

F ∈ C∞(Ω). By applying 2Dz̄ to both sides we see that Dz̄F = (K − k)F . Hence for

some f ∈ C∞(Ω),

v(z, z̄) = e−
i
2
(k1z̄+k̄1z)f(z)u(z, z̄), ∂z̄f |Ω = 0, k1 := K − k. (3.7)

As in the proof of [BHZ23, (4.4)] we see that f is in fact meromorphic. In fact, for a

fixed z1 we put

G0(ζ, ζ̄) := v1(z, z̄)|z=z1+ζ , G1(ζ, ζ̄) := e−
i
2
(k1z̄+k̄1z)u1(z, z̄)|z=z1+ζ .

As already remarked u and v are real analytic and hence Gj ∈ O(BC2(0, δ)). With

g(ζ) := f(z1 + ζ), we have

G0(ζ, ξ) = g(ζ)G1(ζ, ξ), z1 + ζ ∈ Ω.
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Now choose ξ0 ∈ BC(0, δ/2) such that ζ 7→ G1(ζ, ξ0) is not identically zero (if no

such ξ0 existed, G1 ≡ 0, and hence, from the equation, u ≡ 0). But then ζ 7→
g(ζ) := G1(ζ, ξ0)/G2(ζ, ξ0) is meromorphic near ζ = 0 and, as z1 was arbitrary f is

meromorphic everywhere.

For v to be periodic f cannot be constant and hence it has to have poles. But that

means that u has to have zeros. □

We are now ready to proof Theorem 1 which is a refinement of Proposition 1.

Proof of Theo. 1. Fix k ∈ C/Λ∗ and assume α is magic. Then there exists a nonzero

function uk(α) ∈ ker(D(α)+k) that vanishes somewhere. Let u := uk(α), and suppose

that u has m distinct zeros z0, . . . , zm−1, each of multiplicity one. This can be assumed

without loss of generality as we can multiply u by a periodic meromorphic function

with poles the zeros of u and simple zeros.

We first show that dimker(D(α) + k) ≥ m. Assume m ≥ 2 (the case m = 1 is

trivial). Choose points wj /∈ {z0, . . . , zm−1} such that

w0 + wj ≡ z0 + zj for j = 1, . . . ,m− 1,

and define, for j = 1, . . . ,m− 1,

uj(z, z̄) :=
θ(z − w0)θ(z − wj)

θ(z − z0)θ(z − zj)
· u(z, z̄).

The prefactor is a meromorphic function with simple poles at z0 and zj (see [BHZ24,

§3.1] for properties of θ), but the structure of the zeros of u ensures that uj ∈
ker(D(α) + k). These functions are linearly independent: if

c0 +
m−1∑
j=1

cj
θ(z − w0)θ(z − wj)

θ(z − z0)θ(z − zj)
≡ 0,

then evaluating at z = zj for j > 0 shows cj = 0, hence all cj = 0. Thus, we obtain m

linearly independent functions in ker(D(α) + k).

Now for the reverse inequality. Suppose u,v1, . . . ,vM−1 span ker(D(α) + k), where

M := dimker(D(α)+k). Then the Wronskians W (u,vj) vanish identically, since they

are constant and vanish at the zeros of u. As in [BHZ24, Eq. (4.1)], this implies that

each vj(z, z̄) = fj(z)u(z, z̄) for some meromorphic function fj(z), with f0 ≡ 1, and

the set {fj}M−1
j=0 linearly independent.

The functions fj, 0 ≤ j ≤ M − 1 lie in the space L(D) of meromorphic functions1

where D is the divisor defined by the zeros on u. Therefore,

M = dimker(D(α) + k) ≤ deg(D) = m.

1See Terry Tao’s blog for a quick introduction; formula (7) there for the version of the Rie-

mann–Roch Theorem used here.

https://terrytao.wordpress.com/2018/03/28/246c-notes-1-meromorphic-functions-on-riemann-surfaces-and-the-riemann-roch-theorem/
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Combining with the previous inequality, we conclude

dimker(D(α) + k) = m.

Moreover, since every nonzero element of the kernel has exactly m zeros (counted

with multiplicity), and the multiplicity is independent of k by the theta function ar-

gument (see §3.1 and [BHZ24, Lemma 4.1]), the dimension of the kernel is constant

over k ∈ C/Λ∗. By continuity of the spectrum of Hk(α) and compactness of C/Λ∗, it

follows that the flat bands at energy zero are isolated from the rest of the spectrum

by a nonzero gap. □

Remarks. 1. This quickly settles [Zw24, Problem 14].

2. Although we invoked a basic version of the Riemann–Roch theorem, the proof that

the number of poles of fj’s has to be greater than M is explicit. If the poles are all

simple then

fj(z) =

K(j)∑
k=1

λk(j)
θ′(z − ak(j))

θ(z − ak(j))
+ c(j),

K(j)∑
k=1

λk(j) = 0.

For f0 ≡ 1, f1, · · · , fM−1 to be linearly independent we need
∑M−1

j=1 K(j) ≥ M . It is

not difficult to modify this construction to the case of poles of higher order.

3.3. Rigidity. In this subsection we provide

Proof of Theorem 2. If Ωu(z) := u(ωz) then

ΩD(α) = ωD(α)Ω, kerL2
0
(D(α)) =

⊕
p∈Z3

kerL2
0,p
(D(α)). (3.8)

Theorem 1 shows that all non-zero elements of kerL2
0
(D(α)) have m(α) zeros counting

multiplicities. That allows us to consider the invariant subspaces L2
0,p, separately.

Let u ∈ kerL2
0,0
(D(α)). Since ωzS = zS − (1 + ω), we find

u(±zS + ζ) = u(±ωzS + ωζ) = u(±zS ∓ (1 + ω) + ωζ)

= diag(e−i⟨∓(1+ω),K⟩, ei⟨∓(1+ω),K⟩)L∓(1+ω)u(±zS + ωζ),

= diag(ω±1, ω∓1)u(±zS + ωζ)

that, is u(±zS + ωζ) = diag(ω∓1, ω±1)u(±zS + ζ). This shows that

Mu(±zS) ̸≡ 0 mod 3.

We now recall the symmetry E : L2
0,p(C/Λ;C2) → L2

0,p(C/Λ;C2) (valid under the

assumption (1.3)):

ED(α)E ∗ = −D(α), E v(z) := Jv(−z), J :=

(
0 1

−1 0

)
. (3.9)
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Figure 4. Modulus of flat band wavefunctions of kerX(D(α)) at first

magic angle α = 0.853799 with X = L2
i,j with i = K(top), i = −K

(bottom), j = 0 (left), j = 1 (right) for potential U± = U2(±•) in

(1.12).

It follows that Mu(zS) = Mu(−zS). In particular, any element of kerL2
0,0
(D(α)) has

zeros at z = ±zS (for both signs). Zeros at any other point are three-fold degenerate

by rotational symmetry (3.8) and that shows that∑
z∈C/Λ

Mu(z) mod 3 ∈ {1, 2}. (3.10)

The same conclusion holds for the subspace kerL2
0,1
(D(α)) as can been seen using

the properties of the Weierstraß ℘-function, ℘(z) := ℘(z;ω, 1) [Mu83, §I.6]:

℘(ωz) = ω℘(z) and ℘(z) = 0 =⇒ z = ±zS + Λ, ℘′(±zS) ̸= 0.
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Figure 5. Flat band wavefunctions of kerX(D(α)) at first magic angle

α = 0.853799 with X = L2
0,0 (left) and X = L2

0,1 (right) for potential

U± = U2(±•) in (1.12) upper component, top and lower component,

bottom.

This shows that

℘(z) kerL2
0,1(C/Λ;C2)(D(α)) = kerL2

0,0(C/Λ;C2)(D(α)) (3.11)

and hence (3.10) holds for elements of kerL2
0,1
(D(α)) as well.

Finally, suppose that u ∈ kerL2
0,2
(D(α)). Since then u(ωz) = ωu(z) (see (3.8)) we

see that Mu(0) ≡ 1 mod 3. As above, we find

u(±zS + ζ) = ω̄u(±ωzS + ωζ) = ω̄u(±zS ∓ (1 + ω) + ωζ)

= ω̄ diag(e−i⟨∓(1+ω),K⟩, ei⟨∓(1+ω),K⟩)L∓(1+ω)u(±zS + ωζ)

= ω̄ diag(ω±1, ω∓1)u(±zS + ωζ)

= diag(ω
1
2
(1∓1), ω

1
2
(1±1))u(±zS + ωζ),
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Figure 6. Bands of Hamiltonian (2.3) at α = 0.5 (left) and α = 0.8538

(right) with potential U± := U2(±•) (1.12). Bands of full continuum

Bistritzer-MacDonald Hamiltonian [Be*21, (1)] with same α and β =

0.7α with potential U± = U2(±•) (1.12) and anti-chiral potential V (z) :=

2∂zU2(z).

that is u(±zS + ωζ) = diag(ω
1
2
(±1−1), ω

1
2
(∓1−1))u(±zS + ζ). Hence if u(zS + ζ) =

(u1(ζ), u2(ζ))
t then u1(ωζ) = u1(ζ) and u2(ωζ) = ω̄u2(ζ) and the order of the zero of

u1 is 0 mod 3 and that of u2 is 2 mod 3. This shows that Mu(±zS) mod 3 ∈ {0, 2}.
Using the E symmetry (3.9), we conclude that

Mu(zS) +Mu(−zS) ̸≡ 2 mod 3. (3.12)

Other points z /∈ {0,±zS} satisfy Mu(z) = Mu(ωz) = Mu(ω
2z) by rotational symme-

try. Combining this observation with the fact that the multiplicity as 0 is 1 mod 3 and

(3.12) we obtain ∑
z∈C/Λ

Mu(z) ̸≡ 0 mod 3.
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In all three cases, the total multiplicity of zeros is not divisible by 3, ruling out the

case m(α) ≡ 0 mod 3.

We also see that ifm(α) = 1 then dimkerL2
0,2

D(α) = 1, as otherwise (3.11) would im-

plym(α) > 1. Ifm(α) = 2 the only possibility is dim kerL2
0,0

D(α) = dimkerL2
0,1

D(α) =

1. □

The location of zeros for flat band Bloch functions at a degenerate magic angle are

illustrated in Figures 4 and 5.

4. Trace computations

To prove the existence of degenerate magic angles (Theorem 3) we argue by contra-

diction using the Birman–Schwinger operator Tk defined in (2.5). From Theorem 2,

we see that in the case if all the α’s were all simple then the traces of T 2p
k restricted to

L2
0,0 or L2

0,1 would have to vanish. For a general k, the operator Tk does not preserve

the rotational invariant subspaces L2
0,j. To achieve that we set k = 0 so that the proof

reduces to showing that tr((T0)
2ℓ
L2
0,0
) ̸= 0 for some value of ℓ. That is done using the

previous rationality condition tr((T0)
2ℓ
L2
0,0
) = qℓπ/

√
3 for qℓ ∈ Q obtained before by the

authors [BHZ23, Theorem 1] and some elementary arguments involving transcendental

numbers.

4.1. Traces on rotationally invariant subspaces. We recall that an orthonormal

basis of L2
0(C/3Λ;C) is given by setting

eν(z) := ei⟨ν,z⟩/
√
Vol(C/3Λ), ν ∈ Λ∗ +K, ⟨ν, z⟩ := Re(z̄ν).

We see that Ωeν = eω̄ν . This means that an orthonormal basis of L2
0,j is given by

e[ν](z) =
1√
3

(
eν(z) + ωjeων(z) + ω̄jeω̄ν(z)

)
, ν ∈ Λ∗ +K, [ν] = {ν, ων, ω̄ν}.

Following our approach developed in [BHZ23], we compute the sum of powers of magic

angles by computing traces of the operator Tk defined in (2.8). Since odd powers of Tk

have vanishing traces it suffices to compute the traces of powers of the Hilbert-Schmidt

operator

Ak := R(k)U(z)R(k)U(−z) : L2
0 → L2

0, k /∈ (K + Λ∗) ∪ (−K + Λ∗) = K0. (4.1)

Due to the relation

∀k /∈ K0, Ω−1AkΩ = Aωk,

we see that subspaces L2
0,j are not in general invariant by Ak. This makes a direct

application of the strategy of [BHZ23] impossible. However, we see that the operator
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A0 does preserve this smaller subspace. From now on, we therefore specialize to k = 0.

For ℓ ≥ 2, one can compute the trace on L2
0,j:

tr
(
(A0)

ℓ
|L2

0,j

)
=

∑
[ν],ν∈Λ∗+K

⟨Aℓ
0e[ν], e[ν]⟩.

Now, we write that, using bilinearity of the scalar product

3⟨Aℓ
0e[ν], e[ν]⟩ =

2∑
h=0

⟨Aℓ
0eωhν , eωhν⟩+

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩.

Thus, when summing on [ν], the first term gives a third of the trace on L2
0, (which was

computed in [Be*22] for ℓ = 2 and U0 = U1 and shown to be equal to 4π/
√
3)

tr((A0)
ℓ
|L2

0,j
) = 1

3
tr(Aℓ

0) +
1
3

∑
[ν],ν∈Λ∗+K

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩

=: 1
3
tr(A2

0) +
1
3
Rℓ,j.

(4.2)

4.2. Existence of degenerate magic angles. Our strategy now consists in using

[BHZ23, Theorem1] and the fact that π/
√
3 is transcendental to contradict the con-

clusion of Theorem 2. More explicitly, we will prove the following statement:

Theorem 6. We consider the Hamiltonian (2.3) with a potential U ∈ C∞(C/3Λ) and
U+ := U and U− := U(−•) satisfying the first two symmetries of (2.1) with only

finitely many non-zero Fourier modes ap ∈ πQ(ω/
√
3), appearing in the decomposition

(2.11). Then, if we denote A(U) the set of (complex) magic angles for the potential U

and if A(U) ̸= ∅, there exists α ∈ A(U) which is not simple. This also applies to the

Bistritzer–MacDonald potential U+ := U1 defined in (1.12).

Proof. Step 1 (Existence of non-zero trace): We start by noticing that the existence of

a magic angle is equivalent to the existence of a non-vanishing trace

∃ℓ ≥ 2, tr((A0)
ℓ
|L2

0
) ̸= 0.

This follows from the properties of the regularized Fredholm determinant, cf. [BHZ23].

Step 2 (Trace is transcendental): We fix such an ℓ for which tr((A0)
ℓ
|L2

0
) ̸= 0. Using

[BHZ23, Theorem 5], and the hypothesis on the potential, this implies that tr(Aℓ
0) ∈

πQ(ω). Since the trace is non-zero by assumption, this proves that tr(Aℓ
0) is transcen-

dental.

Step 3 (Rℓ,j is a finite sum): We now show that the sum defining the remainder Rℓ,j in

(4.2) is always a finite sum, under the assumption that the potential has only finitely

many non-zero Fourier mode. We start with the formula defining the remainder

Rℓ,j :=
∑

[ν],ν∈Λ∗+K

∑
k ̸=h

ωj(k−h)⟨Aℓ
0eωhν , eωkν⟩.
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The summand ⟨Aℓ
0eωhν , eωkν⟩ is non-zero only if Aℓ

0eωhν has a non-vanishing Fourier

mode corresponding to eωkν . Now, if we look at the definition of A0 (see 4.1), we see

that the R(k) part acts diagonally (with coefficients in (iπ)−1Q(ω) as we chose k = 0)

on the Fourier basis, on the other hand, the U(z) and U(−z) parts act as a finite

sum of weighted shifts on this basis (it is here where we use the assumption of having

finitely many non-vanishing Fourier modes). Moreover, by assumption, the weights

are elements of (iπ)Q(ω).This means that there exists a finite subset F ℓ
U ⊂ 3Γ∗ such

that

∀ν ∈ Λ∗ +K, Aℓ
0eν =

∑
η∈Fℓ

U

aηeν+η, aη ∈ Q(ω). (4.3)

But this means that there exists a constant R > 0 such that for any η ∈ F ℓ
U , we have

|η| ≤ R. In particular, if ⟨Aℓ
0eωhν , eωkν⟩ is non-zero, then |ωhν − ωkν| ≤ R. Now,

because h ̸= j, this inequality is false outside a compact set for ν. But because ν is on

a lattice, which is discrete, we conclude that the above inequality is true for at most a

finite number of ν. Thus, the sum defining Rℓ,j is finite.

Step 4 Rℓ,j ∈ Q(ω): Finally, for the non-zero terms of the sum, we use (4.3) again to

conclude that ⟨Aℓ
0eωhν , eωkν⟩ = aη ∈ Q(ω). This proves that Rℓ,j ∈ Q(ω).

Step 5 (Proof by contradiction): SinceRℓ,j ∈ Q(ω) is algebraic and thus tr((A0)
ℓ
|L2

0,j
) ̸=

0 by (4.2). This contradicts the conclusion of Theorem 2; thus proving the existence

of non-simple magic angle for the potential U . □

5. Infinite number of degenerate magic angles

We now adapt the argument, already used in [BHZ23, Theorem 6], to prove that

the number of non-simple magic angles is actually infinite. This actually refines the

previous theorem by showing there is an infinite number of non-simple magic angles.

In the next theorem we use the same notation and assumptions as in Theorem 6.

The definition of multiplicity is given in (1.13).

Theorem 7. Let

Am(U) := {α ∈ A(U) : mU(α) ≥ 2}
be the set of non-simple magic angles. Then

|A(U)| > 0 =⇒ |Am(U)| = +∞. (5.1)

In particular, the set of magic angles for the Bistritzer–MacDonald potential U = U1

(see (1.12)) is infinite.

In addition, if for N ≥ 0, and a = (ap){p∈Λ∗;∥p∥∞≤N}, Ua is given by (2.11) with

coefficients a, then (5.1) holds for a generic (in the sense of Baire) set of coefficients

a = (ap){p∈Λ∗;∥p∥∞≤N} ∈ C(2N+1)2 which contains (πQ(ω/
√
3))(2N+1)2 . Here, we used

the notation ∥p∥∞ = ∥4πi√
3
(p1 + p2ω)∥∞ := max(p1, p2).



DEGENERATE FLAT BANDS IN TWISTED BILAYER GRAPHENE 21

Proof. We start by observing that since π is transcendental on Q, it is also transcenden-

tal in Q(ω/
√
3). Now, we shall assume that there exist only finitely many non-simple

eigenvalues of A2
0 on L2

0. This implies, by Theorem 2 that (A0)
ℓ
|L2

0,1
has only finitely

many eigenvalues, we denote them by λi ∈ C for i = 1, .., N . Then we define the n-th

symmetric polynomial

en(λ1, . . . , λN) =
∑

1≤j1<j2<···<jn≤N

λj1 · · ·λjn .

Newton identities show that this polynomial can be expressed as

en(λ1, . . . , λN) = (−1)n
∑

m1+2m2+···+nmn=n
m1≥0,...,mn≥0

n∏
i=1

(− tr(A0)
2i
|L2

0,1
)mi

mi!imi
(5.2)

where en = 0 for n > N. The fact that A(U) ̸= ∅ implies, by Theorem 6 that

Am(U) ̸= ∅. Now, this means that there is a non-vanishing trace of (A0)
ℓ
|L2

0,2
. Choose

m0 to be the minimal power for which the trace is non-zero. Choose n = m0 × K

where K is a large integer, and using the fact that en = 0, we deduce that π is the

root of the polynomial of degree K with coefficients in Q
(

ω√
3

)
given by

∑
m1+2m2+···+nmn=n

m1≥0,...,mn≥0

m0×K∏
i=1

(tr(A0)
2i
|L2

0,1
)mi =

∑
m1+2m2+···+nmn=n

m1≥0,...,mn≥0

m0×K∏
i=1

(
1

3
tr(A0)

2i
|L2

0︸ ︷︷ ︸
∈Q

(
ω√
3

)
π

− Ri,1︸︷︷︸
∈Q

(
ω√
3

))
mi

= 0.

The power m1 · · ·mn of π is maximized, among the tuples we sum by the unique

choice mi = δi,m0K. By choice of m0, this gives that the above polynomial has a

non-zero leading coefficient and is therefore non-zero. This contradicts the fact that π

is transcendental and concludes the proof.

Now, let a = (ap){p∈Λ∗;∥p∥∞≤N} ∈ C(2N+1)2 ∈ C(2N+1)2 and assume that A(Ua) ̸= ∅.
Then, we can find an open neighborhood of a, Ωa ∋ a, such that for coefficients

b = (bp){p∈Λ∗;∥p∥∞≤N} ∈ Ωa we have A(Ub) ̸= ∅. Take q = (qp){p∈Λ∗;∥p∥∞≤N} ∈
(πQ(ω/

√
3))(2N+1)2 ∩Ωa for which we then have |A(Uq)| = ∞. Continuity of eigenval-

ues of Tk as the potential U changes shows that the Vm,a := {b ∈ Ωa : |A(Ub)| ≥ m}
is open and dense in Ωa. Hence, the set coefficients for which 0 < |A(Ub)| < ∞
is given by

⋃
m∈N

⋃
q∈(Q+iQ)2N+1 Ωq \ Vm,q. It is then meagre and does not contain

(πQ(ω/
√
3))(2N+1)2 . □
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6. Numerical evaluation of the trace and existence of non-real magic

angle

In this section the potential U± will be taken to be equal to U1(±•) defined in (1.12).

In (4.2), we have proven that the traces on the rotational-invariant subspaces can be

written as

tr((A0)
ℓ
|L2

0,j
) = 1

3
tr(Aℓ

0) +
1
3
Rℓ,j, (6.1)

where the remainder was shown to be a finite sum. Although the first term tr(Aℓ
0)

is a priori an infinite sum, the authors provided in [BHZ23, Theo. 7] a semi-explicit

formula which can be evaluated rigorously with computer assistance for U = U1 and

small values of ℓ. From [BHZ23, Table 1]2, we see that

tr((A2
0)|L2

0
) =

4π√
3
, tr((A3

0)|L2
0
) =

96π

7
√
3
, tr((A4

0)|L2
0
) =

40π√
3
.

We can read off from the above tr(A2
0) tr(A

4
0) < tr(A3

0)
2. If all magic angles were real,

then by ℓp-interpolation tr(A2
0) tr(A

4
0) ≥ tr(A3

0)
2, which is a contradiction. In other

words, we have proven that

Proposition 6.1. Let U = U1 be the potential defined in (1.12), then A ∩ C \ R ̸= ∅.

Our goal here is to mimic this argument on rotational-invariant subspace by com-

puting the finite remainders Rℓ,j using computer assistance to find the exact results.

From doing so, we obtain the following result.

Proposition 6.2. For the Bistritzer-MacDonald potential U1 defined in (1.12), we

have

tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) =

4π

3
√
3
− 3 ≈ −0.581601 < 0

and tr((A2
0)|L2

0,2
) = 4π√

3
+ 6 ≈ 8.4184. For the higher powers, we find

tr((A3
0)|L2

0,2
) =

32π

7
√
3
+

810

49
≈ 24.8223 and tr((A4

0)|L2
0,2
) =

40π

3
√
3
+

4374

91
≈ 72.2499.

This implies the inequality

tr((A2
0)|L2

0,2
) tr((A4

0)|L2
0,2
) < tr((A3

0)|L2
0,2
)2.

We conclude that for any j ∈ Z3, there is a non-real magic angle αj ∈ C \ R with

corresponding eigenfunction u ∈ L2
0,j of Tk. By Theorem 2, we conclude the existence

of non-real and non-simple magic angles.

2The traces tr(A2
0) and tr(A4

0) were explicitly computed ”by hand” in [Be*22] and strictly speaking,

the following argument relies on computer assistance only for obtaining the exact value of tr(A3
0).
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Figure 7. tr((A2
0)|L2

0,1
) and tr((A2

0)|L2
0,2
) for potentials U±(z) := Uθ(±z)

in (6.2). While for θ = 0, Uθ=0 = U1 we see that tr((A2
0)|L2

0,2
) > 0 and

tr((A2
0)|L2

0,1
) < 0. For θ = 2π7/8 ≈ 5.5 and Uθ=2π7/8 = U2 we have

tr((A2
0)|L2

0,2
) < 0 and tr((A2

0)|L2
0,1
) > 0, instead.

We note that as the traces depend continuously on the potential U , the inequalities

tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) < 0 and tr((A2

0)|L2
0,2
) tr((A4

0)|L2
0,2
) < tr((A3

0)|L2
0,2
)2

remain true for small perturbations of U and so does the existence of a non-real and

non-simple magic angle. As stated in the introduction, the potential U2, defined in

(1.12), leads to real and doubly-degenerate magic angles. We then see numerically

that tr((A2
0)|L2

0,1
) = tr((A2

0)|L2
0,0
) > 0, see Figure 7. To interpolate between these two

opposite behaviors, we introduce the potentials

Uθ(z) := U(z) = (cos θ − sin θ)U1(z) + sin θU2(z), (6.2)

see https://math.berkeley.edu/~zworski/Interpolation.mp4 for a movie show-

ing the dependence of the set of magic angle when θ varies.

In Figure 7 we show tr((A2
0)|L2

0,0
), tr((A2

0)|L2
0,2
) as a function of θ, verifying that the

inequality tr((A2
0)|L2

0,0
) < 0 holds for a large range of values θ.

Remark. This previous computation could be made rigorous at the cost of adapting

the algorithm used in [BHZ23, Theo. 7] to the potential Uθ in order to compute the

first term in (6.1).

https://math.berkeley.edu/~zworski/Interpolation.mp4
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7. Generic simplicity in each representation

7.1. Generalized potentials. We now consider the general class of potentials U±(z)

satisfying

U±(ωz) = ωU±(z), U±(z + γ) = e∓2i⟨γ,K⟩U±(z), γ ∈ Γ. (7.1)

We do not however assume U±(z̄) = −U±(z) and then define

V (z) :=

(
0 U+(z)

U−(z) 0

)
such that DV (α) = 2Dz̄ + αV (z).

It is convenient to use the following Hilbert space of real analytic potentials defined

using the following norm: for fixed δ > 0,

∥V ∥2δ :=
∑
±

∑
k∈Λ∗/3

|a±k |
2e2|k|δ, U±(z) =

∑
k∈K+Λ∗

a±k e
±i⟨z,k⟩. (7.2)

Then we define V = Vδ by

V ∈ V ⇐⇒ V satisfies (7.1), ∥V ∥δ < ∞. (7.3)

We note that we have as before,

LaDV (α) = DV (α)La, ΩDV (α) = DV (α)Ω.

We also recall the antilinear symmetry A : L2
k,j → L2

k,−j defined by

A :=

(
0 Γ

−Γ 0

)
, Γv(z) = v(z), A DV (α)A = −DV (α)

∗. (7.4)

7.2. Proof of generic simplicity. Our proof of Theorem 4 is an adaptation of the

argument for generic simplicity of resonances by Klopp–Zworski [KZ95] – see also

[DyZw19, §4.5.5].

We then use the decomposition

L2
0 =

2⊕
j=0

L2
0,j, L2

0,j ≃ L2(F ),

where F is a fixed fundamental domain of G3. For V ∈ V and R = (2Dz̄)
−1

V : L2
0,j → L2

0,j−1, R : L2
0,j−1 → L2

0,j =⇒ RV : L2
0,j → L2

0,j.

Before proceeding we record the following regularity result:

Lemma 7.1. Suppose that for some λ ∈ C and k ∈ N and w ∈ L2(C/3Λ;C), (RV −
λ)kw = 0. Then w ∈ Cω(C/3Λ;C), that is, w is real analytic. The same conclusion

holds if (V ∗R∗ − λ)kw = 0.
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Proof. We prove a slightly more general statement that (RV−λ)kw = f ∈ Cω(C/3Λ;C2)

implies that w ∈ Cω(C/3Λ;C2). We proceed by induction on k. For k = 0, w = f . If

k > 0, we put w̃ := (RV − λ)k−1w and note that (the case of λ = 0 is even simpler)

DV (−1/λ)w̃ = 2λ−1Dz̄(RV − λ)w̃ = 2λ−1Dz̄f ∈ Cω.

This means that w̃ is a solution of an elliptic equation with analytic coefficients, hence

it is analytic [HöI, Theorem 9.5.1]. The inductive hypothesis now shows that w is

analytic.

In the case of (V ∗R∗ − λ)kw = 0, we proceed similarly but put w̃ := R∗(V ∗R∗ −
λ)k−1w, so that

DV (−1/λ̄)∗w̃ = 2λ̄−1DzR
∗(V ∗R∗ − λ)(V ∗R∗ − λ)k−1w = 2λ̄−1DzR

∗f ∈ Cω.

Since (V ∗R∗ − λ)k−1w = 2Dzw̃ the inductive argument proceeds as before. □

The next lemma shows that we have generic simplicity for operators restricted to

the three representations:

Lemma 7.2. There exists a generic subset of Vj of V such that for V ∈ Vj, the

eigenvalues of RV |L2
0,j

are simple.

Proof. We follow the presentation in the proof of [DyZw19, Theorem 4.39] with modifi-

cations needed for our case. We fix j and consider all operators as acting on H := L2
0,j.

The eigenvalue multiplicity is defined using the resolvent:

mV (λ) :=
1

2πi
tr

∮
λ

(ζ −RV )−1dζ,

where the integral is over a sufficiently small positively oriented circle around λ. We

then define

Er := {W ∈ V : mW (λ) ≤ 1, λ ∈ C \D(0, r)}. (7.5)

We want to show that for r > 0, Er is open and dense. That will show that the set

E := {W ∈ V : ∀λ, mW (λ) ≤ 1} =
⋂
n∈N

E 1
n

is generic (and in particular, by the Baire category theorem, it has a nowhere dense

complement).

Suppose thatRW has exactly one eigenvalue λ0 inD(λ, r) and Spec(RW )∩D(λ, 2r) =

{λ0}. Putting Ω := D(λ, r) we then define

ΠW (Ω) :=
1

2πi

∫
∂Ω

(ζ −RW )−1dζ, mW (Ω) := trΠW (Ω). (7.6)

If V ∈ V and ∥V ∥δ is sufficiently small then for ζ ∈ ∂Ω,

(R(W + V )− ζ)−1 = (RW − ζ)−1(I +RV (RW − ζ)−1)−1,
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exists and we can define ΠW+V (Ω) as in (7.6). This also shows that if ∥V ∥δ < ε for

sufficiently small ε then for ζ ∈ ∂Ω,

(RW − ζ)−1 − (R(W + V )− ζ)−1 = Oε(∥V ∥δ)H →H .

It follows that ∥ΠW (Ω)−ΠW+V (Ω)∥H →H ≤ Cε∥V ∥δ. In particular, if we take ∥V ∥δ <
1/Cε, then ΠW (Ω) and ΠW+V (Ω) have the same rank

mW+V (Ω) is constant for ∥V ∥δ sufficiently small. (7.7)

This immediately implies that Er is open: if λ is a simple eigenvalue of RW then

mW (Ω) = 1 this values does not change under small perturbations.

Now we want to show that Er is dense. This follows from the following statement

∀ W ∈ V , ε > 0 ∃ V ∈ V W + V ∈ Er, ∥V ∥δ < ε. (7.8)

As the number of eigenvalues of RW outside D(0, r) is finite, it is enough to prove a

local statement as it can be applied successively to obtain (7.8) (once an eigenvalue

is simple it stays simple for sufficiently small perturbations). That is, it is enough to

show that
∀ W ∈ V , ε > 0 ∃ V ∈ V ∀λ ∈ Ω

mW+V (λ) ≤ 1, ∥V ∥δ < ε.
(7.9)

As in [KZ95] we proceed by induction and start by noting that one of two cases has

to occur:

∀ ε > 0 ∃V ∈ V , λ ∈ Ω 1 ≤ mW+V (λ) < mW+V (Ω), ∥V ∥δ < ε, (7.10)

or

∃ ε > 0 ∀V ∈ V , ∥V ∥δ < ε ∃λ = λ(V ) ∈ Ω mW+V (λ) = mW+V (Ω). (7.11)

The first case implies that adding an arbitrarily small V to W produces at least

two distinct eigenvalues of R(V + W ). The second case implies that for any small

perturbation preserves maximal multiplicity.

We will now show that (7.11) cannot occur. For that assume that mW (λ) = M and

that (7.11) holds. For V ∈ V , ∥V ∥δ < ε, put, in the notation of (7.6),

k(V ) := min{k : (R(W + V )− λ(V ))kΠW+V (Ω) = 0}.

Then 1 ≤ k(V ) ≤ M and V ∋ V 7→ k(V ) is a lower semi-continuous function. In fact,

if ∥Vj−V ∥V → 0 and then, from (7.6), we see that (R(W+Vj)−λ(Vj))
kΠW+Vj

(Ω) = 0,

then (R(W + V )− λ(V ))kΠW+V (Ω) = 0.

We also define

k0 := max{k(V ) : V ∈ V , ∥V ∥δ < ε/2}.
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It follows that if k(V ′) = k0 then k(V + V ′) = k0 for ∥V ∥δ < ρ, with a sufficiently

small ρ. Hence we can replace W by W + V ′, decrease ε and assume that

(R(W + V )− λ(V ))k0ΠV+W (Ω) = 0,

(R(W + V )− λ(V ))k0−1ΠV+W (Ω) ̸= 0,

mW+V (λ(V )) = trΠV+W = M > 1, ∀V, ∥V ∥δ < ε.

(7.12)

To see that (7.12) is impossible we first assume that k0 > 1. Take V = V (t) = W + tV ,

∥V ∥CM < ε, t ∈ [−1, 1]. For h, g ∈ H we define (dropping Ω in Π•(Ω))

w(t) := (R(W + tV )− λ(t))k0−1ΠW+tV h,

w̃(t) := ((W ∗ + tV ∗)R∗ − λ(t))k0−1Π∗
W+tV g.

By our assumption (7.12) we can choose g and h so that w := w(0) ̸≡ 0 and w̃ :=

w̃(0) ̸≡ 0. Lemma 7.1 then implies that

suppw = supp w̃ = C/3Λ. (7.13)

Since λ(t) is assumed to be the only eigenvalue of RV (t) in Ω and since it has fixed

algebraic and geometric multiplicity, the functions t 7→ λ(tV ),ΠW+tV , w(t) depend

smoothly on t. Hence, we can differentiate:

0 =
d

dt
(R(W + tV )− λ(t))k0ΠW+tV h

=

k0−1∑
ℓ=0

(R(W + tV )− λ(t))ℓRV (R(W + tV )− λ(t))k0−1−ℓΠW+tV h

+ (R(W + tV )− λ(t))H(t)

where H(t) ∈ H . We now put t = 0 and take the H inner product with w̃: the

term with H(0) disappears as (RW − λ(0))k0Π∗
W ≡ 0 as do all the terms with ℓ > 0.

Consequently, we obtain

∀V ∈ V ⟨V w,R∗w̃⟩ = 0.

Since V ∈ L2
0,1, w ∈ L2

0,j, R
∗w̃ ∈ L2

0,j+1, we conclude that (with ◦j denoting components

of • = w, w̃)

⟨U+w2, R
∗w̃1⟩L2(F ) + ⟨U−w1, R

∗w̃2⟩L2(F ) = 0, (7.14)

where F is a fundamental domain of the joint group action defined by L and C . Since

V is arbitrary on F , this implies that w̄(z)(R∗w̃)(z) ≡ 0, which in turn contradicts

(7.13).

It remains to consider the case of k0 = 1 in (7.12). In that case the finite rank

projection ΠW can be written as (with the notation, (f ⊗ g)(u) := f⟨u, g⟩)

ΠW =
M∑
j=1

wj⊗ w̃j, ⟨wj, w̃k⟩ = δjk, (RW −λ0)wj = 0, (W ∗R∗− λ̄0)w̃k = 0. (7.15)
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Then,

0 =
d

dt
[(λ(t)−R(W + tV ))ΠW+tV ]

= λ′(t)ΠW+tV −RVΠW+tV + (λ(t)−R(W + tV ))
d

dt
ΠW+tV

Applied to wj and paired with w̃k we get at t = 0,

0 = λ′(0)δjk − ⟨RV wj, w̃k⟩.

Hence we need to show that for j ̸= k

⟨RV wj, w̃k⟩ = 0, ∀V ∈ V =⇒ wj = w̃k = 0. (7.16)

But that is done as in the discussion after (7.14).

We have now proved that (7.10) holds and we use it now to prove (7.9) by induction

on mW (λ0) where λ0 is the unique eigenvalues of RW in D(λ0, 2r), Ω := D(λ0, r). If

mW (λ0) = 1 there is nothing to prove. Assuming that we proved (7.9) formW (λ0) < M

assume that mW (λ0) = M . From (7.10) we see that we can find V , ∥V0∥δ < ε/2 such

that mW+V0(Ω) = mW (Ω) (see (7.7)) and such that all eigenvalues in Ω, λ1, · · · , λk,

satisfy mW+V0(λj) < M . We now find rj such that,

D(λj, 2rj) ⊂ Ω, D(λj, 2rj) ∩D(λk, 2rk) = ∅, j ̸= k,

{λj} = D(λj, 2rj) ∩ Spec(R(W + V0)).

We put Ωj := D(λj, rj) and apply (7.9) successively to W +V0+ · · ·Vj−1, j = 1, · · · , k,
in Ωj with ∥Vj∥δ < ε/2j+1. That gives the desired V =

∑k
j=0 Vj. □

8. Generic simplicity

In this section we complete the proof of Theorem 4.

We already showed in Proposition 2.23 that SpecL2
0,0
(RW ) = SpecL2

0,1
(RW ) and

know from the previous Lemma that we can ensure simplicity of spectra of RW in

each representation L2
0,j. We shall now see that we can split spectra of RW in L2

0,0, L
2
0,1

from the one in L2
0,2.

Lemma 8.1. Suppose that

SpecL2
0,j
(RW ) ∩D(λ0, 2r) = {λ0}, j ∈ Z3, r > 0,

3We stated Proposition 2.2 for a smaller class of potentials than the generalized tunnelling potentials

considered here, see (7.1), but the proof only uses only translational and rotational symmetries which

are still satisfied for generalized tunnelling potentials
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and λ0 is a simple eigenvalue of RW |L2
0,j
. Then, for every ε > 0 there exists V ∈ V ,

∥V ∥δ < ε, such that for some λ1 ̸= λ2

SpecL2
0,2
(R(W + V )) ∩D(λ0, r) = {λ2},

SpecL2
0,j
(R(W + V )) ∩D(λ0, r) = {λ1}, j ∈ {0, 1}.

(8.1)

Proof. As in (7.15) we have wk, w̃k ∈ L2
0,jk

, such that ⟨wk, w̃k⟩ = 1, and

(2λ0Dz̄ −W )wk = 0, (2λ̄0Dz −W ∗)R∗w̃k = 0.

Since the eigenvalue λ0 is assumed to be simple, (7.4) gives

R∗w̃p = γ1−pA w1−p = γ1−p

(
w̄(1−p)2

−w̄(1−p)1

)
, wp =

(
wp1

wp2

)
, γp ∈ C∗. (8.2)

We can split an eigenvalue with eigenvectors wk, if we can find V such that (see (7.14)

for the notation)

⟨V w2, R
∗w̃2⟩L2(F ) ̸= ⟨V w0, R

∗w̃0⟩L2(F ), with

⟨V w2, R
∗w̃2⟩ = γ̄2

∫
F

(
U+(z)w

2
22(z)− U−(z)w

2
21(z)

)
dm(z) and

⟨V w0, R
∗w̃0⟩ = γ̄1⟨V w0,A w1⟩ = γ̄1

∫
F

(U+(z)w02(z)w12(z)− U−(z)w01(z)w11(z)) dm(z)

where we used (8.2) to obtain the last equality. If for all (analytic) U± the terms

were equal it would follow that γ̄2w
2
2ℓ = γ̄1w0ℓw1ℓ for ℓ ∈ {1, 2}. This implies that w2ℓ

vanishes at 0,±zS. However, the zeros at ±zS have to be at least of order 2 since by

rotational and translational symmetry

w2(z ± zS) = ω̄w2(ω(z ± zS)) = ω̄w2(ωz ± zS ∓ (1 + ω))

= ω̄ diag(ω±1, ω∓1)w(ωz ± zS).
(8.3)

This means that for instance at zS we have w2(z ± zS) = diag(1, ω)w(ωz ± zS) which

means that the first component has to vanish at least to third order and the second

component at least to second order. This implies that w2 has at least 5 zeros counting

multiplicities and this is impossible by the usual theta function argument [BHZ24,

Lemma 4.1]. □

We can now finish

Proof of Theorem 4. Lemma 7.2 (strictly speaking its proof) and Lemma 8.1 now show

that for every r > 0, the set

Vr := {V : RV |L2
0,1⊕L2

0,2
has simple eigenvalues in C \D(0, r)}

is open and dense. We then obtain V0 by taking the intersection of V1/n. □
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9. The Chern number of a two-fold degenerate flat band

In this section we compute the Chern number of the flat band in the case of 2-fold

degeneracy. We start by a general discussion of of the Chern connection and the Berry

connection in the case holomorphic vector bundles. Although we stress our case of the

two torus, §§9.1 and 9.2 apply to vector bundles over more general manifolds.

9.1. The Chern connection. Suppose that π : E 7→ X is a holomorphic vector

bundle over a torus X = C/Λ∗ (see [TaZw23, §2.7] for a quick introduction sufficient

for our purposes or [We07] for an in-depth treatment), and that E is a sub-bundle

of a trivial Hilbert bundle over X, X × H , where H is a Hilbert space. This gives

a hermitian structure on E: for k ∈ X, we introduce an inner product on the fibers

Ek := π−1(k), using Ek ⊂ H :

⟨ζ, ζ ′⟩k := ⟨ζ, ζ ′⟩H , ζ, ζ ′ ∈ Ek.

We then have two natural connections on E, the Chern connection, available when

the bundle is holomorphic and equipped with hermitian structure, and a hermitian

connection4, available for any smooth vector bundle embedded in a Hilbert bundle. In

the context of vector bundles of eigenfunctions, the latter is called the Berry connection

and we adopt this terminology for the general case as well.

We first define the Chern connection. For that we choose a local holomorphic trivi-

alization U ⊂ X, π−1(U) ≃ U × Cn, for which the hermitian metric is given by

⟨ζ, ζ⟩k = ⟨G(k)ζ, ζ⟩ =
n∑

i,j=1

Gij(k)ζiζ̄j ζ ∈ Cn, k ∈ U. (9.1)

We note that if {u1(k), . . . , un(k)} ⊂ H is a basis of Ek for k ∈ U , and U ∋ k → uj(k)

are holomorphic, then G(k) is the Gramian matrix:

G(k) := (⟨ui(k), uj(k)⟩H )1≤i,j≤n . (9.2)

If s : X → E is a section, then the Chern connection DC : C∞(X;E) → C∞(X;E ⊗
T ∗X), over U is given by (using only the local trivialization and (9.1))

DCs(k) := ds(k) + ηC(k)s(k),

ηC(k) := G(k)−1∂kG(k) dk ∈ C∞(U,Hom(Cn,Cn)⊗ (T ∗U)1,0).
(9.3)

Here ∂k denotes the holomorphic derivative and the notation (T ∗U)1,0 indicates that

only dk and not dk̄ appear in the matrix valued 1-form ηC , ηC = η1,0C . We also recall

that DC is the unique hermitian connection with this property – see [We07, Theorem

2.1].

4D : C∞(X,E) → C∞(X,E ⊗ T ∗X) is a connection if for any f ∈ C∞(X), D(fs) = fDs + sdf .

A connection D is hermitian if d⟨s(k), s′(k)⟩k = ⟨Ds(k), s′(k)⟩k + ⟨s(k), Ds′(k)⟩.
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For the definition of the Berry connection we only require that E → X is a smooth

vector bundle which is a subbundle ofX×H , where H is a Hilbert space. That means

for k ∈ X we have a well defined orthogonal projection Π(k) : H → Ek := π−1(k)

and an inclusion map ι : E ↪→ X × H . The formula for the Berry connection is then

given by

DBs(k) := Π(k)(d(ι ◦ s)(k)). (9.4)

To find a local expression similar to (9.3) we use the Gramian (9.2). If s(k) =∑n
j=1 s

U
j (k)uj(k) =: A(k)sU(k), A(k) : Cn → H (so that A(k) provides a local trivi-

alization) then Π(k) = A(k)G(k)−1A(k)∗ and

DBs(k) = Π(k)
n∑

j=1

(
dsUj (k)uj(k) + sUj (k)duj(k)

)
= A(k)(dsU(k) + ηB(k)s

U(k)),

ηB(k) = G(k)−1B(k) ∈ C∞(U,Hom(Cn,Cn)⊗ T ∗U),

B(k)ℓj := ⟨duj(k), uℓ(k)⟩H ∈ C∞(U, T ∗U).

(9.5)

These formulas hold for choices of uj which are not necessarily holomorphic. However

if, as in (9.2), k 7→ uj(k) are holomorphic, then

(∂kG(k))ijdk = ⟨∂kui(k), uj(k)⟩H dk + ⟨ui(k), ∂k̄uj(k)⟩H dk

= ⟨∂kui(k), uj(k)⟩H dk

= ⟨dui(k), uj(k)⟩ = B(k)ij,

(9.6)

since ∂k̄uj(k) = 0 and dw = ∂kw dk + ∂k̄w dk̄. In particular, that means that in the

notation of (9.3) and (9.4)

U ∋ k 7→ uℓ(k) holomorphic =⇒ ηC(k) = ηB(k), k ∈ U

=⇒ DC = DB,
(9.7)

We record this standard fact as

Proposition 9.1. Suppose that X is a complex manifold and E 7→ X is a holomorphic

vector bundle with a holomorphic embedding ι : E → X × H into a trivial Hilbert

bundle. Then the Berry connection (9.4) and the Chern connection (9.3) defined using

the hermitian structure on H are equal.

Remark. As was pointed out to us by Michael Singer, the conclusion (9.7) could be

deduced directly from the uniqueness of the Chern connection mentioned after (9.3):

using (9.4) we have D
(0,1)
B s(k) = Π(k)(d(0,1)(ι ◦ s)(k)). But as the embedding ι (an

inclusion, in our case) is holomorphic this implies that D
(0,1)
B s(k) = 0 for holomorphic

sections. This and being hermitian characterize the Chern connection. We should

also stress that the discussion above does not depend on the fact that X has complex

dimension one.
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The curvature of a connection D is given by

Θ := D ◦D, (9.8)

which is a globally defined two form with values in Hom(E,E). In a local trivialization

in which D = d+ η, we have Θ = dη + η ∧ η. For the Chern connection, for X of any

dimension Θ = ∂̄∂ηC since (9.3) shows that ∂ηC = −ηC ∧ ηC (when X has a complex

dimension one, this is obvious as dk ∧ dk = 0). It is then immediate from (9.7) that

Θ := DC ◦DC = DB ◦DB, (9.9)

that is, in the holomorphic case, the curvatures defined using the Chern curvature or

the Berry curvature agree for holomorphic vector bundles embedded in trivial Hilbert

bundles.

The Chern class (a Chern number in the case of C/Λ∗) is given by

c1(E) :=
i

2π

∫
C/Λ∗

trΘ ∈ Z,

where we note that over U ⊂ C/Λ∗ for which we defined (9.2),

trΘ = ∂k̄ trG(k)−1∂kG(k) dk̄ ∧ dk

= ∂k̄∂k log g(k) dk̄ ∧ dk, g(k) := detG(k),
(9.10)

where we used Jacobi’s formula [DyZw19, (B.5.14)]. In particular,

H(k) := ∂k̄∂k log g(k) = g(k)−2(g(k)∂k̄∂kg(k)− |∂kg(k)|2).

For any holomorphic hermitian vector bundle the trace of the curvature of the Chern

connection, trΘ can be interpreted as a curvature of a line bundle. If π : E → X has

rank n, we obtain a line bundle π : L := ∧nE → X. It inherits hermitian structure

from E. If we define the Chern connection on ∧nE as in (9.3) (using only holomorphy

and the hermitian structure) we obtain a new curvature ΘL which is a differential two

form on X, and

ΘL = trΘ.

In case when E embeds holomorphically in X × H we can then take, as in (9.2),

k 7→ uj(k) ∈ H , j = 1, · · · , n, a local holomorphic basis of E. Then for

Φ(k) := ∧n
j=1uj(k) ∈ ∧nEk ⊂ ∧nH , (9.11)

we have

∥Φ(k)∥2∧nH = det ((⟨uj(k), uℓ(k)⟩H )1≤j,ℓ≤n) = detG(k) = g(k).

In particular when X = C/Λ∗, we obtain, as in [BHZ24, (5.10)],

ΘL = H(k) dk̄ ∧ dk, (9.12)
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where H is given by

H(k) = ∥Φ(k)∥−4
(
∥Φ(k)∥2∥∂kΦ(k)∥2 − |⟨∂kΦ(k),Φ(k)⟩|2

)
≥ 0, (9.13)

where ∥ • ∥ = ∥ • ∥∧nH .

Remark. From a physics perspective the construction of the line bundle ∧nE, in the

case of E ⊂ X × H can be interpreted as the Slater determinant of the individual

Bloch functions on the fermionic n-particle Hilbert space. We thus find that the trace

of the curvature of the rank n vector bundle coincides with the curvature of the line

bundle described by the n-particle wavefunction.

9.2. The Berry curvature. For completeness we derive the standard formula for the

curvature of the Berry connection (9.4):

Proposition 9.2. Suppose that π : E → X is a complex vector bundle over a manifold

X and that there exists an embedding ι : E → X × H into a trivial Hilbert bundle.

Then the curvature of the connection (9.4) is given in terms of the orthogonal projection

Π(k) : H → Ek := π−1(k), as

Θ = Π dΠ ∧ dΠ|E, (9.14)

and is a differential two form with values in Hom(E,E).

Proof. This is a local computation so for some U ⊂ X we can choose a smoothly

varying orthonormal basis {uj(k)}nj=1, k ∈ U . Then in the notation of (9.5) (we drop

the dependence on k in A(k), Π(k) and Ek)

A : Cn → H , A∗ : H → Cn, AA∗ = Π, A∗A = ICn . (9.15)

With the trivialization given by A, we have (using (9.15))

Ds = A∗(Π(d(As)) = A∗ΠAds+ A∗ΠdAs = ds+ A∗dAs =: ds+ ηds.

Hence, in this trivialization, the curvature is a differential two form with values in

Hom(Cn,Cn):

A∗ΘA = dη + η ∧ η = d(A∗dA) + A∗dA ∧ A∗dA

= dA∗ ∧ dA+ A∗dA ∧ A∗dA.

The curvature Θ = DB ◦DB which is a differential form with values in Hom(E,E), is

then given by

Θ = ΠΘΠ = A(dA∗ ∧ dA+ A∗dA ∧ A∗dA)A∗

= AdA∗ ∧ dAA∗ + AA∗dA ∧ A∗dAA∗

= AdA∗ ∧ dAA∗ + AdA∗A ∧ dA∗AA∗,

(9.16)

where we used d(A∗A) = 0.
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The right hand side in (9.14) is given by

AA∗d(AA∗) ∧ d(AA∗) = AA∗((dAA∗ + AdA∗) ∧ (dAA∗ + AdA∗)

= AA∗ (dA ∧ (A∗dA)A∗ + dA ∧ (A∗A)dA∗

+AdA∗ ∧ dAA∗ + AdA∗ ∧ dAA∗) .

From (9.15) we see that A∗A = ICn and that A∗dA = −dA∗A. Hence,

ΠdΠ ∧ dΠ = AA∗ (−dA ∧ dA∗AA∗ + dA ∧ dA∗

+ AdA∗ ∧ dAA∗ + AdA∗ ∧ AdA∗) .

Acting on E, AA∗ = IE and hence the first two terms in the bracket cancel:

ΠdΠ ∧ dΠ|E = AdA∗ ∧ dAA∗|E + AdA∗ ∧ AdA∗|E.

But from (9.16) that is the same as the action of Θ on E.

□

9.3. Proof of Theorem 5. We now consider

V (k) := kerH1
0
(D(α) + k) ⊂ L2

0. (9.17)

This defines a (trivial) vector bundle Ẽ → C:

Ẽ := {(k, v) : v ∈ V (k)} ⊂ C× L2
0(C/Λ;C2).

To define a vector bundle over the torus C/Λ∗ we define an equivalence relation on

C× L2
0(C/Λ;C2):

∃ p ∈ Λ∗ (k, u) ∼τ (k + p, τ(p)−1u), [τ(p)u](z) = ei⟨z,k⟩v(z), (9.18)

and notice that τ(p)−1V (k) = V (k + p). Using this (see [TaZw23, Lemma 8.4] or

[BHZ24, Lemma 5.1]),

E := Ẽ / ∼τ → C/Λ∗. (9.19)

is a holomorphic vector bundle over C/Λ∗.

Since Π(k + p) = τ(p)−1Π(k)τ(p), the Berry connection defined by (9.4) on Ẽ,

satisfies

(DBs)(k + p) = Π(k + p)(d(ι ◦ s)(k + p)) = τ−1(p)Π(k)d(ι ◦ τ(p)s(k + p)).

Hence, if for k ∈ U ⊂ X, (k, s(k)) ∼τ (k′, s′(k′)) then k′ = k+p, s′(k+p) = τ(p)−1s(k),

for some p ∈ Λ∗ and

(k,DBs(k)) ∼τ (k′, DBs
′(k′)).

This means that DB is a well defined connection on Ẽ. Since the Chern connec-

tion is intrinsically defined on Ẽ using holomorphic and hermitian structures, the two

connections are equal.
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If m(α) = m then by Theorem 1 u ∈ kerH1
0
D(α) has exactly m zeros and let us

first assume that they are simple (this can always be arranged by multiplication by a

meromorphic function). Let us denote them by z1, · · · , zm. Then

V (k) =

{
m∑
ℓ=0

ζℓFk(z − zℓ)u0(z), ζ ∈ Cm

}
, k /∈ Λ∗, (9.20)

where Fk’s were defined in (3.2). When p ∈ Λ∗ we have

V (p) = {ei⟨p,z⟩u0(z)f(z) : f ∈ L(D)}, (9.21)

where D is the divisor defined by the zeros of u0. We can write elements of L(D) as

follows (see [Mu83, §I.6]):

f(z) = µ0 +
m∑
ℓ=1

µℓ
θ′(z − zℓ)

θ(z − zℓ)
,

m∑
ℓ=1

µℓ = 0. (9.22)

We now consider

Gk(z) := e−i⟨k,z⟩Fk(z), Gp(z) = ep(0)
−1, p ∈ Λ∗.

We recall from [BHZ24, Lemma 3.3] that for p ∈ Λ∗,

Fk+p(z) = ep(k)
−1τ(p)Fk(z), τ(p)v(z) := ei⟨p,z⟩v(z)

ep(k) :=
θ(z(k))

θ(z(k + p))
= (−1)n(−1)meiπn

2ω+2πinz(k), z(p) = m+ nω.

Hence, for p ∈ Λ∗,

θ(z(k + p))−1Gk+p(z) =
θ(z(k)

θ(z(k + p))
e−i⟨(k+p),z⟩θ(z(k))−1Fk+p(z)

= ep(k)e
−i⟨(k+p),zep(k)

−1ei⟨p,z−zℓ⟩Fk(z)

= e−i⟨k,z−zℓ⟩θ(z(k))−1Fk(z)

= θ(z(k))−1Gk(z),

that is, k 7→ θ(z(k))−1Gk(z − zℓ) is periodic with respect to Λ∗. If λ = (λ1, · · · , λm) ∈
Cm,

∑m
j=1 λj = 0, then

Gk(z, λ) :=
m∑
j=1

λjθ(z(k))
−1(Gk(z − zj)− ek(0)

−1), (9.23)
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is also periodic and smooth in k at Λ∗: for p ∈ Λ∗ we have

Gp(z, λ) = G0(z, λ) =
m∑
j=1

λj(z
′(0)θ′(0))−1∂k

(
e−i⟨z,k⟩Fk(z − zj)

)
|k=0

=
m∑
j=1

λj(z
′(0)θ′(0))−1

(
i
2
(z − zj)− z′(0)

θ′(z − zj)

θ(z − zj)

)

= µ0 +
m∑
j=1

µj
θ′(z − zj)

θ(z − zj)
,

m∑
j=1

µj = 0.

Hence in view of (9.21) and (9.22) we can extend (9.20) to all k ∈ C as follows:

V (k) =

{
ei⟨z,k⟩Gk(z, λ)u0(z) + λ0Fk(z − z1)u0(z) : λ0 ∈ C, λ = (λ1, · · · , λm) ∈ Cm,

m∑
ℓ=1

λℓ = 0

}

We now introduce

W (k) :=

{
ei⟨z,k⟩Gk(z, λ)u0(z) : λ = (λ1, · · · , λm),

m∑
ℓ=1

λℓ = 0

}
, k ∈ C.

As in (9.19) this family of subspaces of L2
0 defines a rank m − 1 vector bundle, F →

C/Λ∗. Since k 7→ Gk(z, λ) is periodic, F is trivial. If E1 → C/Λ∗ is the line bundle

coming from the family of subspaces of L2
0,

V1(k) := CFk(z − z1)u0(z), k ∈ C,

(again, in the sense of (9.19)) we see as in [Le*20] and [BHZ24, (5.9),(B.8)] that

c1(E1) = −1. Since E = F ⊕ E1, we obtain c1(E) = −1.

Finally, we observe that for Ω : L2
0(C/Λ;C) → L2

0(C/Λ;C), Ωu(z) := u(ωz),

kerH1
0
(D(α) + ω̄k) = ΩkerH1

0
(D(α) + k) (see [BHZ24, §2.1]). Hence, in the nota-

tion of (9.4). ΩΠ(k)Ω∗ = Π(ω̄k). If Rk := ω̄k, this means that R∗Π = ΩΠΩ∗. Also

the pull back of Θ by R is well defined and, using (9.14) we see that

R∗Θ = R∗(ΠdΠ ∧ dΠ) = R∗Πd(R∗Π) ∧ d(R∗)Π = Ω(ΠdΠ ∧ dΠ)Ω∗ = ΩΘΩ∗.

In particular, in the notation of (9.12), we have

trR∗Θ = trΘ =⇒ H(ω̄k) = H(k).

Strictly speaking we should, just as we did at the end of (9.19), justify passing to the

quotient. That is again easy by noting that Ωτ(p)Ω∗ = τ(ω̄p). This completes the

proof of Theorem 5.



DEGENERATE FLAT BANDS IN TWISTED BILAYER GRAPHENE 37

X = L2
0,2 X = L2

0,0 X = L2
0,1

1.2400 – 0.0000i 1.6002 + 0.0000i 1.6002 + 0.0000i

1.2400 – 0.0000i 1.2583 – 1.1836i 1.2583 – 1.1836i

1.3424 + 1.6788i 1.2583 + 1.1836i 1.2583 + 1.1836i

1.3424 – 1.6788i 1.4019 – 2.2763i 1.4019 – 2.2763i

2.9543 + 0.0000i 1.4019 + 2.2763i 1.4019 + 2.2763i

1.4575 + 2.7610i 1.5001 + 3.3130i 1.5001 + 3.3130i

1.4575 – 2.7610i 1.5001 – 3.3130i 1.5001 – 3.3130i

3.5878 + 1.9298i 3.4078 + 1.3122i 3.4078 + 1.3122i

3.5878 – 1.9298i 3.4078 – 1.3122i 3.4078 – 1.3122i

Table 2. Magic angles for θ = 2.808850897 and U± := U0(±•)
with U0(ζ) = cos(θ)U1(ζ) + sin(θ)

∑2
i=0 ω

ie−(ζω̄i−ζ̄ωi) such that 1/α ∈
SpecX(T0) (counting algebraic multiplicity). The magic angle with alge-

braic multiplicity 2 and geometric multiplicity 1 is highlighted in blue.

10. Numerical observations

Here we present two numerical observations related to our mathematical results. For

all our numerics, we used a Fourier discretization of the operators, see [Be*21, Sec.5.1]

for an explanation, with N = 101 Fourier coefficients per spatial dimension.

10.1. Algebraic multiplicities in the spectral characterization. Theorem 2 im-

plies that it is impossible to have

dimkerL2
0
(D(α)) = dimkerL2

0,2
(D(α)) = 2

which is equivalent to having eigenvalues of geometric multiplicity 2 for T0, i.e.

dim kerL2
0
(T0 − 1/α) = dimkerL2

0,2
(T0 − 1/α) = 2,

we can indeed have that 1/α is an eigenvalue of algebraic multiplicity 2 and geometric

multiplicity 1 on L2
0 and L2

0,2. This is illustrated in Table 2 and Figure 8. In particular,

it implies that Tk in general is not diagonalizable. Since the algebraic multiplicity

of Tk is independent of k, it follows by Theorem 1 that the geometric multiplicity is

independent of k. Examples of this are exhibited in Table 2 and Figures 8 and 9.

10.2. Behaviour of the curvature. Since we established in Theorem 5 thatH(ωz) =

H(z) where H is the scalar curvature. We conclude that 0 and ±zS are critical points
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Figure 8. The first two singular values of D(α) are 2.804e − 15 and

3.990 suggesting the existence of only one flat band at α = 1.2400

for θ = 2.808850 and U± := U0(±•) with U0(ζ) = cos(θ)U1(ζ) +

sin(θ)
∑2

i=0 ω
ie−(ζω̄i−ζ̄ωi). The eigenvector of T0 with eigenvalue 1/α is

shown on top and the generalized one at the bottom.

of H. In addition, the symmetry E defined in (2.12) and the formula (3.4) imply that

the Gramian matrix satisfies for simple or two-fold degenerate magic angles

G(k) = G(−k).

This implies the symmetries in Figure 10.

However, while it seems that the maximum is attained at Γ and the minima at

K,K ′, we do not have an analytical argument for this at the moment.

Figure 11 shows that the standard deviation of the Berry curvature, for the potential

U2 with only two-fold degenerate real magic angles, increases monotonically for the real
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Figure 9. One flat band for α = 5.3811 for θ = 2.7672151 and

U± := U0(±•) with U0(ζ) = cos(θ)U1(ζ)+sin(θ)
∑2

i=0 ω
ie−(ζω̄i−ζ̄ωi). The

eigenvector of T0 with eigenvalue 1/α is shown on top and the general-

ized one at the bottom.

magic angles. This is in contrast to the case of simple magic angles in [BHZ24, Figure

7].
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