
The Key Topics in a Successful Math Curriculum

R. James Milgram
Department of Mathematics
Stanford University
Stanford, CA

Hung-Hsi Wu
Department of Mathematics
University of California, Berkeley
Berkeley, CA

Analysis of the results from TIMSS suggests that the U.S. school mathematics cur-
riculum is a mile wide and an inch deep.1 It covers too many topics and each topic is
treated superficially. By contrast, the structure of mathematics instruction in countries
which outperformed the U.S. follows a strikingly different pattern. In all cases, only a
few carefully selected focus topics are taught and learned to mastery by students in the
early grades. At the fourth grade level, since the students in these countries have not been
exposed to as broad a curriculum as U.S. students, it sometimes appears on standardized
tests such as TIMSS that they perform at a comparable level to U.S. students, but by
grade eight the students in the leading countries are far outperforming our students. In
fact, key test items already show serious weaknesses in our fourth grade student perfor-
mances.2 This difference becomes even greater by the end of high school, where even our
top students do not match up well with the average achievement levels of students in these
countries.3

It seems reasonable that some effort be devoted to revising our mile-wide-inch-deep
curriculum. The following material is a description of the requirements for an intervention
program in K - 7 mathematics that the state of California requested of us. It is based on
the structure of the programs in the early grades in the high achieving countries where,
in fact, remediation is seldom necessary. Thus, the course structure indicated here, an
intense focus on six key topics, can also serve as the foundation courses for all students in
the early grades - perhaps through grade 7 in this country.

It is worth noting that the NCTM intends to roll out a discussion of focus topics early
in 2006, with a strong suggestion that these topics become the main part of instruction
in grades Pre K - 8. It is too early to predict what the final list of NCTM recommended
focus topics will be, but preliminary lists are very similar to the list that we discuss here.

Having said all this, there is more to successfully teaching mathematics than the
mathematical topics that comprise the curriculum. In the high achieving countries there

1 W. Schmidt, C. McKnight, S. Raizen, A Splintered Vision, Kluwer Academic Publishers, 1997
2 A. Ginsburg, G. Cook, S. Leinwand, J. Noell, E. Pollock, Reassessing U.S. International Mathe-

matics Performance: New Results from the 2003 TIMSS and PISA, American Institutes for Research,

2005
3 “Thus, the most advanced mathematics students in the United States, about 5 percent of the total

age cohort, performed similarly to 10 to 20 percent of the age cohort in most of the other countries.”

S. Takahira, P. Gonzales, M. Frase, L.H. Salganik, Pursuing Excellence: A Study of U.S. Twlelfth-
Grade Mathematics and Science Achievement in Internation Context, U.S. Dept. of Ed., 1998, p.44
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is, from the beginning, an intense focus on (1) definitions and precision, and (2) abstract
reasoning. In our discussion of the focus topics we constantly ask for definitions and
precision in setting things up. This is even more crucial for at risk students than it is
for other students, since these are the students who have a greater need for precise and
accurate definitions to guide their learning than others. Beyond this, definitions and
precision are a critical component of successful mathematics instruction because correct
mathematical reasoning is literally impossible without them. We are less insistent on
abstract reasoning, given the focus on intervention. But a careful study of how abstraction
is built into these top programs would be of benefit to everyone who needs to develop
mathematics curricula for our schools. In further work we intend to discuss this issue in
detail.
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Intervention Program

This article addresses the needs of students in grades 4 to 7 whose mathematical
achievements are below grade level. The common approach to the intervention program
consists of offering courses which have half the content of the regular courses but use twice
the instruction time. The fact that such an approach is not effective not only can be
argued on theoretical grounds, but is borne out by ample empirical evidence. Here we
propose a completely different solution by offering an intensive, accelerated program
for these students, with the sole purpose of bringing them up to grade level in the shortest
time possible so that they will be ready for algebra in grade eight. The implementation
of such a program requires the cooperation and support of schools, school districts, and
textbook publishers.

Schools and school districts will have to make a serious commitment of effort and time
to such an accelerated program. We suggest two hours of mathematics instruction every
day, using the special instructional materials to be discussed below. In most cases, we
also suggest supplementing the regular hours with after-school programs as well as special
mathematics sessions in the summer. We emphasize that, far from recommending slow
classes for these students with special needs, we are asking for the creation of more intense
and more demanding classes, to be taught by mathematically well-informed teachers. (In
point of fact, the volumes for the intervention program should also be effective as references
for regular classes as well as professional development materials.) More needs to be done
for these students.

In general terms, two aspects of the proposed instruction stand out:

(1) Diagnostic assessment should be given frequently to determine students’ progress. The
special instructional materials below will provide assistance on this issue.

(2) There should an abundance of exercises for both in-class practice and homework.
No acceleration will be possible if students are not intensely immersed in the doing of
mathematics.

The heart of this proposed program is the creation of six volumes of special instruc-
tional materials, each volume devoted to one of the following six topics:

Place Value and Basic Number Skills
Fractions and Decimals
Ratios, Rates, Percents, and Proportion
The Core Processes of Mathematics
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Functions and Equations
Measurement

The rest of this article is devoted to a detailed description of the content of these individual
volumes. Let us first give an overview.

These six volumes will be made available as needed to each and every student in this
program, regardless of grade level. The main purpose of creating these six volumes is to
provide maximum flexibility to the teachers in this program. Depending on the special
needs of the students in a given class, the teacher can use the diagnostic tests provided
with each volume (see below) to determine the appropriate starting point for the class. For
example, an intervention program in grade 5 may start with the chapter on the addition
algorithm (second grade level) or the chapter on the long division algorithm instead (fourth
grade level). Or, it can happen that three quarters of the students in the class are ready
for the long division algorithm but the remaining one quarter of the students are behind
and require help with the addition algorithm. In that case, one strategy would be to start
the whole class on long division but give separate after-school instruction to the quarter of
the class on the addition algorithm. This example may also help to explain why we want
all six volumes to be available to students in this program no matter what their grades
may be.

Because we are asking that these six volumes replace the textbooks of grades 4 to 7
for students in this program, we call attention to several special features. We ask that:

(1) Emphasis be given to the clarity of the exposition and mathemati-
cal reasoning in the mathematics. Clarity is a sine qua non in the
present context because one may assume that indecipherable mathe-
matics textbooks in students’ past contributed to these students’ un-
derachievement. Moreover, the absence of reasoning in mathemat-
ics textbooks and mathematics instruction makes learning-by-rote the
only way to learn the material. Our obligation to these students de-
mands that we do better.

(2) The grade level of each section and each chapter in these volumes be
clearly specified in the Teacher’s Edition so that students’ progress can
be accurately gauged. (For the sake of definiteness, we have made Cal-
ifornia’s Mathematics Content Standards as our basic reference
in this article, but other states can make suitable modifications.)

(3) Abundant exercises of varying degrees of difficulty be given at the
end of each section so that students will be constantly challenged to
improve.

(4) Summative and diagnostic assessment be made an integral part of each
section to allow students to determine their level of achievement at each
stage.
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(5) The expository level be age appropriate in the following sense: because
these volumes will be used by students in grades 4 to 7, even the
sections addressing mathematics standards of grades 1 to 3 should
reflect the awareness of the age of the readership. For example, instead
of “counting cookies” in teaching the important topic of counting whole
numbers, “counting musical CD’s” would likely get a better reception.

(6) The exposition be kept to a “no frills” level: multi-color pictures or
references to extraneous topics such as rock concerts are distractions.
The focus should be on the mathematics instead. Because these six
volumes will be used in all four grades (4 to 7), it is imperative that
the number of pages be kept to a minimum. Keeping things at a “no
frills” level is one way to achieve this goal.

In the remainder of this article, we give a detailed guideline of what we consider to be
truly essential in the content of each of these six volumes. Emphases have been placed on
topics that are traditionally slighted or misunderstood in standard textbooks. We believe
that this guideline will also serve well as a guideline for the writing of regular textbooks in
grades 4 to 7.
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Place Value and Basic Number Skills

Many students misunderstand place value, and without a solid understanding of this
topic they will be unable to handle the basic algorithms and develop basic skills with
numbers, let alone develop them to automaticity. Consequently, we start with the basic
place value standards.

Of course counting starts with grade 1, but because we are addressing students in
grade 4 and beyond, counting can be approached from a more sophisticated level. One
can begin by explaining why, with the use of only ten symbols 0, 1, 2, ... , 9, counting can
proceed beyond the ones place only by creating the tens place (to the left, by convention),
so that after 9, one starts the counting all over again from 10, 11, 12, etc. Likewise,
counting can proceed beyond the tens place (after 99) only by creating the hundreds place
(to the left), etc. Observe that each new place has a value 10 times the preceding one.
The reasoning here can be given as follows.

Consider how we go from the hundreds place to the thousands place. In the same
way that one goes from 99 to 100, one goes to 200 upon reaching 199. Then another 100
later it is 300, and then 400, ... , 900 and therefore (after 999) it has to be 1000. So we
see that 1000 is 10 steps from 0, i.e., 0, 100, 200, ... , 1000 if we skip count by 100, and
therefore 1000 is 10 times the value of 100. This knowledge about counting also gives a
clearer picture of addition because the latter is nothing but “iterated counting”, in the
sense that 12 + 5 is the number one arrives at by counting 5 more starting at 12. Perhaps
the crucial thing here is that students should clearly understand that place value is an
additiive representation of the counting numbers. They should know, for example, that
7301 is a shorthand way of writing the number

7× 1000 + 3× 100 + 0× 10 + 1.

(See the detailed discussion below.)

Counting

In terms of the California Mathematics Content Standards, the key standards here
are

Grade 1

1.1 Count, read, and write whole numbers to 100.

1.2 Compare and order whole numbers to 100 by using the symbols for less than,
equal to, or greater than (<, =, >).

1.3 Represent equivalent forms of the same number through the use of physical mod-
els, diagrams, and number expressions (to 20) (e.g., 8 may be represented as 4
+ 4, 5 + 3, 2 + 2 + 2 + 2, 10 - 2, 11 - 3).
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1.4 Count and group objects in ones and tens (e.g., three groups of 10 and 4 equals
34, or 30 + 4).

2.1 Know the addition facts (sums to 20) and the corresponding subtraction facts
and commit them to memory.

2.5 Show the meaning of addition (putting together, increasing) and subtraction
(taking away, comparing, finding the difference).

The concept of multiplication among whole numbers is a shorthand for counting groups
of the same size. 7× 5 means the number of objects in 7 groups of objects with 5 in each
group. Therefore the meaning of 7× 5 is 5 + 5 + · · · 5 (7 times). This is a point worth
emphasizing in the book.

Grade 2

3.1 Use repeated addition, arrays, and counting by multiples to do multiplication.

3.3 Know the multiplication tables of 2s, 5s, and 10s (to “times 10”) and commit
them to memory.

Students should understand that 10 × 10 = 100, because 10 × 10 = 10 + 10 + · · · 10
(10 times), and 10 × 100 = 1000 because 10 × 100 = 100 + 100 + · · · 100 (10 times).
As remarked above, these are consequences of the way we count in this numeral system.
Students should also see an area model comparing the relative sizes of 1, 10, 100, and
10003
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as well as construct similar models for 10, 000 to get a clear idea of the magnitude of these
numbers.

It follows from the method of counting that, for example, 3×100 = 100+100+100 =
300, that 7× 1000 = 1000 + 1000 + 1000 + 1000 + 1000 + 1000 + 1000 = 7000, etc. Similar
facts are also true for the multiplication of the numbers 1, 10, 100, 1, 000, and even 10, 000
by 1, 2, 3, . . ., 9. Students should construct these numbers, particularly for multiples of 1
and 10, and place them on the number line.

We strongly recommend the introduction of the number line as early as possible
(in high achieving countries, it is done as early as grade 2). For a discussion of some

3 Illustrations that give 1000 as a 10×10×10 cube while illustrating 100 by a 10×10 square are not

helpful in understanding the relative magnitude of numbers.
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instructional issues related to the teaching of the number line at early grades, see the
opening paragraphs of the chapter on Measurement.

A number such as 37 is said to be bigger than 23, because 37 comes after 23 in our
way of counting. On the number line, 37 is to the right of 23. In terms of the number
line, “bigger than” is synonymous with “to the right of”. Thus 1000 is bigger than 100 in
this sense. These facts are connected with the key grade 2 standard:

1.3 Order and compare whole numbers to 1,000 by using the symbols <, =, >.

With these preliminaries, students should be ready to understand place value. Here
are the key place value standards.

Grade 2

1.1 Count, read, and write whole numbers to 1,000 and identify the place value for
each digit.

1.2 Use words, models, and expanded forms (e.g., 45 = 4 tens + 5) to represent
numbers (to 1,000).

Grade 3

1.3 Identify the place value for each digit in numbers to 10,000.

1.5 Use expanded notation to represent numbers (e.g., 3, 206 = 3, 000 + 200 + 6).

Grade 4

1.1 Read and write whole numbers in the millions.

1.2 Order and compare whole numbers and decimals to two decimal places.

1.3 Round whole numbers through the millions to the nearest ten, hundred, thou-
sand, ten thousand, or hundred thousand.

Remark The grade 4 standard

1.6 Write tenths and hundredths in decimal and fraction notations and know the
fraction and decimal equivalents for halves and fourths (e.g., 1

2 = 0.5 or .50;
7
4 = 1 3

4 = 1.75).

represents a significant increase in sophistication, and should be deferred till fractions are
introduced and there is a firm foundation for the discussion of decimals.
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A key objective at this point is that students understand that the place value repre-
sentation of a number such as 10, 703 signifies the full sum

1× 10, 000 + 0× 1, 000 + 7× 100 + 0× 10 + 3× 1.

In other words, each number is the addition of successive products of a single digit number
multiplied by a power of 10. This is the so-called expanded form of 10, 703. Notice the
representation in the expanded form of the first 0 from the left in 10, 703 as 0 × 1, 000.
People often talk of the special role of 0 as a place-holder, but this emphasizes the form
of the written number, as in 10, 703, and not the number itself. Students should clearly
understand that 0× a power of 10 is always 0, such as 0×1, 000 above. Same for 0×10,
of course. They should understand that when we write the number 10, 703 as

1× 10, 000 + 7× 100 + 3× 1,

where the 0’s are suppressed, we are abbreviating. (Often, in instruction, there is a ten-
dency to teach only the abbreviated form from the beginning, and not the full expansion.
This can be result in core confusion for at risk students, who will often not distinguish a
number such as 2643000012 from 264300012, since they fail to fully comprehend the role
of the zeros.) Such abbreviations should be used only when students are already secure in
their understanding of the unabbreviated form.

Addition and Subtraction

A main justification of place value lies in the ease of computation with numbers as
embodied in the standard algorithms. First the addition and subtraction algorithms.

Grade 1

2.1 Know the addition facts (sums to 20) and the corresponding subtraction facts
and commit them to memory.

2.6 Solve addition and subtraction problems with one- and two-digit numbers (e.g.,
5+58 = ).

2.7 Find the sum of three one-digit numbers.

Grade 2

2.2 Find the sum or difference of two whole numbers up to three digits long.

2.3 Use mental arithmetic to find the sum or difference of two two-digit numbers.

Grade 3

2.1 Find the sum or difference of two whole numbers between 0 and 10,000.
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Grade 4

3.1 Demonstrate an understanding of, and the ability to use, standard algorithms
for the addition and subtraction of multi-digit numbers.

A main point of the addition algorithm is that when applied to, for instance, 259+671
is that it replaces the cumbersome counting of 671 times starting with 259. Likewise, the
subtraction algorithm makes it unnecessary to count backward 259 times from 671 before
finding out what 671−259 is. These simple fact ought to be pointed out to students. The
following discussion will concetrate on the addition algorithm; the subtraction algorithm
can be dealt with in like manner.

Students first learn to acquire fluency in the use of the addition algorithm with only
an informal explanation. Consider the addition of two numbers. For example, the column
by column addition of 14 + 23 in the usual format

1 4
+ 2 3

3 7

can be explained in terms of money. Think of 14 as represented by 1 ten-dollar bill and 4
one-dollar bills, and 23 as 2 ten-dollar bills and 3 one-dollar bills. Then 14 + 23 becomes
the counting of the total number of dollars, which can be done by counting the total
number of ten-dollar bills (3 = 1 + 2) and the total number of one-dollar bills (7 = 4 + 3).
This explains the separate additions of the digits in the tens place and those in the ones
place.

The careful introduction of place value, however, enables students to revisit the al-
gorithm with greater understanding. They get to see how place value together with the
commutative and associative properties of addition lead to a full explanation of the addi-
tion algorithm for any two numbers. For the particular case of 14 + 23, one can reason
as follows:

14 + 23 = (10 + 4) + (20 + 3)
= 10 + (4 + 20) + 3 (associative property)
= 10 + (20 + 4) + 3 (commutative property)
= (10 + 20) + (4 + 3) (associative property)

and the last line is the precise explanation of why the addition of 14+23 can be carried out
column by column. This is the essence of the addition algorithm. Once this is understood
(but not before), students would be in a position to acquire the skill of carrying, as in

1 7
2 9

+ 1

4 6
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This is nothing more than another application of the associative property of addition: We
have just seen that 17 + 29 = (10 + 20) + (7 + 9), but now 7 + 9 = 16 = 10 + 6, so

17 + 29 = (10 + 20) + (10 + 6)
= {(10 + 20) + 10}+ (4 + 3) (associative property)

The last line expresses precisely the carrying of the 1 into the tens place.

Discussion of the addition algorithm should include at least the following two points:
(a) it simplifies the addition of any two numbers, no matter how large, to a sequence of
additions of two one-digit numbers, and (b) the key idea of the algorithm is not the skill
of carrying, but the possibility of changing the addition of any two numbers to column-
by-column additions of one-digit numbers.

The addition algorithm of more than two numbers is entirely analogous. For example,
the addition of any five numbers is reduced to the addition of a sequence of additions of
five one-digit numbers.

Multiplication

Next one can turn to multiplication. The following is the foundational standard for
the multiplication algorithm.

Grade 3

2.2 Memorize to automaticity the multiplication table for numbers between 1 and
10.

Knowing the multiplication table before any discussion of the multiplication of two
arbitrary numbers is entirely analogous to knowing the alphabet before any discussion of
reading and writing. The next step is for students to develop proficiency with the grade
3 standard

2.4 Solve simple problems involving multiplication of multi-digit numbers by one-
digit numbers (3, 671× 3 = )

Let us first consider a simple example 213× 3. As with the addition algorithm, the
most important point of the instruction at this stage is to give students a sense of power by
letting them see how the multiplication algorithm replaces the tedious process of adding
3 to itself 213 times (recall: this is exactly the meaning of 213× 3) by the simple process
of performing three one-digit multiplications: 2× 3, 1× 3, 3× 3, as in

2 1 3
× 3

6 3 9
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The explanation is simple: it is the distributive property at work, as in

213× 3 = (200 + 10 + 3)× 3
= (200× 3) + (10× 3) + (3× 3) (distributive property)
= (600) + (30) + (9)

Note that the distributive property is taken up only in the grade 5 algebra and
function standard

1.3 Know and use the distributive property in equations and expressions with vari-
ables.

What this means in terms of the present volume is that, as usual, the detailed expla-
nation of the multiplication algorithm can be delayed until students have achieved mastery
of the procedures of the algorithm.

At this point, a parallel with the addition algorithm can be drawn: once the basic
idea of the algorithm has been explained in a simple case, the more complicated issue of
carrying is next. Consider the example in standard 2.4 above, 3, 671× 3. The algorithm
yields the result as follows:

3 6 7 1
3

× 2 2

1 1 0 1 3

The reasoning is entirely similar to the case of carrying in addition:

3671× 3 = (3000 + 600 + 70 + 1)× 3
= 9000 + 1800 + 210 + 3 (distributive property)
= 9000 + 1800 + (200 + 10) + 3
= 9000 + (1800 + 200) + 10 + 3 (associative property)
= 9000 + 2000 + 10 + 3
= 11000 + 10 + 3
= 10000 + 1000 + 10 + 3

The fourth line explains the carrying of the 2 into the hundreds place, and the fifth line
explains the carrying of the 2 into the thousands place. Incidentally, this is the first,
but hardly the last illustration of the point made above, that it is important to know
the multiplication table: multiplication between one-digit numbers is the foundation of the
algorithm.

We should call students’ attention to the special case of multiplication by 1 and
observe that, from both the definition of multiplication and the algorithm, multiplication
by 1 does not change the number being multiplied. This is related to the grade 3 standard

2.6 Understand the special properties of 0 and 1 in multiplication and division.
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We will stay with multiplication for the moment and delay the consideration of division
to later. When multiplication by 0 is discussed, (see, for example, the discussion of the role
of 0 in place value notation that we gave above), it should not be treated as a curiosity
but, rather, as a logical consequence of the definition of multiplication (if there are no
groups, then there are no elements), and the result is also consistent with the rules for
multiplication.

Finally, we come to the general multiplication algorithm for multi-digit numbers. This
is contained in the grade 4 number sense standard

3.2 Demonstrate an understanding of, and the ability to use, standard algorithms
for multiplying a multi-digit number by a two-digit number and for dividing a
multi-digit number by a one-digit number; use relationships between them to
simplify computations and to check results.

Again, delaying the discussion of division, we concentrate on the multi-digit multipli-
cation algorithm. The key idea of the algorithm is to reduce the multiplication between
multi-digit numbers to a sequence of multiplications of a multi-digit number by a one-digit
number. However, this algorithm for even a simple product such as 43 × 25 cannot be
taught by rote, because while this product is broken up into the two products of 43 by
each of the digits of 25, thus 43× 2 (= 86) and 43× 5 (= 215), it is the way these two
numbers 86 and 215 are added together that mystifies most beginners:

4 3
× 2 5

2 1 5
+ 8 6

1 0 7 5

The obvious question is: why is 86 shifted one place to the left? The explanation comes
from place value:

43× 25 = 43× (20 + 5)
= (43× 20) + (43× 5) (distributive property)
= 860 + 215

This shows why 86 is shifted to the left, because it is really not 86 but 860 that is added to
215. In turn, this is so because the “43× 2” in the algorithm is actually 43× 20 (= 860)
on account of the fact that the 2 in 25 has the value of 20. If in the following addition of

2 1 5
+ 8 6 0

1 0 7 5

we suppress the 0 in 860, then we would get exactly the same addition as in the multipli-
cation algorithm of 43× 25.
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In summary, the product of two multi-digit numbers x and y is obtained by adding
the products of the multi-digit number x by the (single) digits of y. But we have seen that
the product of a multi-digit number by a single digit number is the sum of a sequence of
products between single digit numbers, and for the latter, one has to call on the multipli-
cation table. Again, we see why knowing the multiplication table is so fundamental. Be
sure to convey this message well.

Division

Division has always been difficult for students, especially the division of fractions and
decimals. A central part of the reason has to be that the concept of division is almost never
clearly defined. With a view to easing this difficulty, at the fourth grade level we introduce
the key idea that division is an alternative but equivalent way of writing multiplication.
Thus the division statement that c equals b divided by a or, sometimes, a divides b
equals c is to be taught as nothing but an alternative but equivalent way of expressing
b = c × a for whole numbers a, b, c (with a > 0). In symbols, we write: b ÷ a = c.
Thus the two statements

b = c× a and b÷ a = c

are the same statement; they go hand-in-hand. This more general way of looking at
division turns out to be valid in all of mathematics, in particular, for fractions and decimals.

Students need many concrete examples to be convinced that this definition of division
is consistent with their previous understanding of b ÷ a = c as meaning “b objects can
be partitioned into c equal groups, each containing a objects.” Indeed, since b÷ a = c is
the same as b = c × a, which equals a + a + · · · + a (c times), we see the the preceding
interpretation is valid.4 This should of course be explained using specific values of a, b,
and c. For example, how do we teach a third grader how to find 36÷ 4? We teach them
to find the number so that when it multiplies 4 we get 36. In other words, the meaning
of 36 ÷ 4 = 9 is that 9 × 4 = 36. Similarly, the meaning of 78 ÷ 3 = 26 is precisely that
3 × 26 = 78. And so on. Moreover, since c × a = a × c (the commutative property!),
b ÷ a = c is also the same as b = a × c, which equals c + c + · · · + c (a times). Thus
b÷ a = c also has the meaning of “if b objects are partitioned into a equal groups, then
the number of objects in each group is c .”5

It is also important to thoroughly discuss the fact that, with this definition, some
divisions cannot be carried out (if we are rstricted to the use of whole numbers only). For
example, we cannot write 7 ÷ 3 = c for any whole number c for the simple reason that
there is no corresponding multiplicative statement 7 = c×3 (remember: c must be a whole
number). This for division among whole numbers, the division 7÷ 3 has no meaning. In
general, if a and b are whole numbers and a is not a multiple of b, we cannot write a÷ b
in the context of whole numbers.

4 This is usually called the measurement interpretation of division.
5 This is usually called the partitive interpretation of division.
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Still with this definition of division, we can now explain why it is impossible to define
division by 0. Let b be any nonzero whole number. Is it possible to define b ÷ 0 to be
equal to some whole number c? So suppose b ÷ 0 = c, then by the definition of division,
we have b = 0 × c. But 0 × c is always 0 regardless of what c is, whereas b is nonzero.
Therefore it is impossible that b = 0× c for any c, and we see that b÷0 cannot be defined.
Now of course, this reasoning depends on b being nonzero, and it may be that one can at
least define 0 ÷ 0. Observe, however, that from 0 = 0 × 1 one would conclude 0 ÷ 0 = 1
by the definition of division, from 0 = 0× 2 one would similarly conclude 0÷ 0 = 1, and
in general, no matter what c is, from 0 = 0× c one would always conclude that 0÷ 0 = c.
This means it is impossible to assign a fixed value to 0÷0, so that 0÷0 is also undefinable.

Central to the long division algorithm is the concept of division with remainder which
should be understood from the perspective of “getting close” to an answer. For example,
the fact that “38 divided by 5 has quotient 7 and remainder 3” is expressed symbolically
as 38 = 7 × 5 + 3. (The usual symbolic expression of 38 ÷ 5 = 7 R 3 is obscure and
should be avoided.) Then the quotient 7 is by definition the largest possible multiple of
5 which does not exceed 38, and the remainder 3 is by definition the difference between
38 and the largest possible multiple of 5 which does not exceed 38. Observe that the
quotient is therefore intuitively “the closest that a multiple of 5 can come to 38 without
exceeding it”, and the remainder will always be a whole number smaller than 5. These two
concepts need to be clearly defined as above. Significant time should be taken here, using
the number line, for students to learn the geometric meaning of division-with-remainder.
For example, with 93 fixed, let them plot the multiples of 8 one by one on the number line
until they get to the 12th multiple which exceeds 93, i.e., it is the first multiple of 8 that
lands to the right of 93 (this multiple is of course equal to 96). Then they have to back
up to the 11th multiple, which is 88; this is the last multiple of 8 to the left of 93. Thus
the quotient is 11. Since 88 is 5 short of 93, the remainder is 5, and students should verify
that 5 is the length of the segment between 88 and 93 on the number line. They should
also know that, unless the remainder is 0, division-with-remainder is not a “division” in
the sense defined above.

The long division algorithm becomes accessible to students once division with remain-
der is clearly understood. For large numbers, such as 41548 divided by 29, it is not obvious
what the quotient or the remainder ought to be. The long division algorithm provides a
step-by-step procedure to approximate the quotient of a division-with-remainder one digit
at a time. (Once the quotient is known, getting the remainder is of course straightfor-
ward.) It is not necessary to spend a lot of time drilling students on long divisions with
multi-digit divisors. If they understand the reasoning behind the case of one-digit divisors
very well, that should be enough for them to go forward. As illustration, we consider the
case of 371 divided by 8.

We are looking for whole numbers q and r so that 371 = q×8+r, where r is less than
8. First, can q be a 3-digit number? No, because if it were, then q × 8 would be at
least 800, which is larger than 371 whereas the equality 371 = q× 8 + r implies that
q × 8 is at most 371. However, q must have two digits because if q is a single-digit
number, then q would be at most 9 and therefore q×8+r would be at most 9×8+r,
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which is at most 72 + 7 because the remainder r is at most 7. Therefore q× 8 + r is
at most 79, whereas it should be 371. So q is a two-digit number. The first digit of
q has place value 10, so that if it is 1, q × 8 would be at least 80, and if it is 2, then
q×8 would be at least 20×8 = 160, etc. Now 40×8 = 320 < 371, while 50×8 = 400
which is larger than 371. We conclude that the leading digit of q is 4. Remembering
that q is a 2-digit number, we may write q as q = 40+q′, where q′ is a 1-digit number.

At this point, from 371 = q × 8 + r, we obtain 371 = (40 + q′)× 8 + r, and by the
distributive property, this becomes 371 = {(40×8)+(q′×8)}+r. By the associative
property of addition, we get

371 = (40× 8) + {(q′ × 8) + r}

But 371 − (40 × 8) = 51, so we may rewrite the preceding equality as two separate
equalities:

371 = 40× 8 + 51
51 = q′ × 8 + r

where r is a whole number less than 8. In terms of the usual representation of the
long division algorithm, we have:

.....................................................................................................

.....................................................................................................

........
........
........
........
........
.

8 371
320

4

51

Now look at 51 = q′×8+r. This is the division-with-remainder of 51 divided by 8 with
q′ as quotient and r as remainder. We repeat the reasoning above and search for q′.
This is an easy search and we conclude that q′ must be 6 and r is 3. Thus 51 = 6×8+3.
Combined with 371 = 40×8+51, this gives 371 = 40×8+6×8+3 = (40+6)×8+3,
by the distributive property again. Thus 371 = 46× 8 + 3, which expresses the fact
that 371 divided by 8 has quotient 46 and remainder 3.

The steps of the reasoning given in the preceding paragraphs corresponds exactly to
the usual procedures in the long division of 371÷ 8:

.....................................................................................................

.....................................................................................................

..................................................................

........
........
........
........
........
.

8 371
320

46

51
48
3
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Fractions and Decimals

In terms of the California Mathematics Content Standards, the study of fractions
starts with the grade 2 number sense standards

4.0 Students understand that fractions and decimals may refer to parts of a set and parts
of a whole:

4.1 Recognize, name, and compare unit fractions from 1
12 to 1

2 .

4.3 Know that when all fractional parts are included, such as four-fourths, the result
is equal to the whole and to one.

5.1 Solve problems using combinations of coins and bills.

5.2 Know and use the decimal notation and the dollar and cent symbols for money.

Fractions are best introduced to students in this program using dollars and cents, since
these are objects of intense interest. This leads naturally to the first model for fractions,
what might be called the set model, which describes a fraction as a decomposition (or
partition) of a collection of objects into equal groups. Thus a dime is decomposed into
10 pennies, a nickel into 5 pennies, a quarter into five nickels, and a dollar into 10 dimes.
In these examples, depending on whether the whole, i.e., the number 1, is a nickel or a
dime, the penny represents a different fraction: it is 1

5 in case of the nickel, and 1
10 in case

of the dime. Thus the importance of knowing what the whole stands for, i.e., what the
number 1 represents, comes naturally to the forefront. As another example, if the whole is
a collection of eight objects, 1

4 would represent two objects, and if the whole is a collection
of four objects, the same fraction would then represent only one object.

Students should next be introduced to the area model for fractions, again paying
careful attention to the relation between the fractional part and the whole.

It is important that certain standard kinds of errors in understanding be checked here.
In both models it often happens that students can become confused about the whole. The
meaning of the whole in the area model, for example, has to be carefully explained. It is
the total area represented by the unit square (the square each of whose sides has length
1), so that with this “whole” (i.e., the number 1) understood, the number 2 represents the
area of any figure that has twice the total area of the unit square. Likewise, one-third is
the area of any region which has the property that three such regions together would have
area equal to 1, i.e., equal to the area of the unit square.

Here is an error that some students make that indicates a lack of understanding of
the basic assumptions underlying the area model for fractions. Upon being told that the
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whole is “the circle”, they consider the following to be an equal division into thirds:

............................................................................................................................................................................................................................................................................................................................................................................................................
..................

..............
............
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..........
..........
.........
.........
.........
........
........
........
........
........
........
........
........
.........
.........
.........
.........
..........

...........
............

..............
.................

.............................
................ .....................................................................................................................................................................................................................

.....................................................................................................................................................................................................................

Such an error is understandable when the whole is presented to them as “the circle” and
not “the area of the circle”, and when 1

3 is explained to them as “one part when the circle
is divided into three equal parts”. Without a clear understanding that it is the area of the
circle that they have to divide equally into three parts, they may legitimately interpret
“three equal parts” as “three parts of equal width”. The preceding error is the inevitable
outcome of faulty instruction. We have to be explicit about dividing the circle into three
parts of equal area.

Another thing to note about the area model is that it is difficult for students to equally
divide pie-shaped regions into regions of equal area. Rectangular regions are easier to work
with for the most common fractions. In the picture below, the dotted region represents 1

4
if the whole is the area of the square.
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Incidentally, if students do not have a clear understanding that the whole in this case
is the area of the unit square (for example, they may think of the whole as the shape of
the square), they will not be able to see that the dotted area represents 1

4 .

The grade 3 standards for fractions are a bit more challenging:

3.1 Compare fractions represented by drawings or concrete materials to show equiv-
alency and to add and subtract simple fractions in context (e.g., 1

2 of a pizza
is the same amount as 2

4 of another pizza that is the same size; show that 3
8 is

larger than 1
4 ).
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3.2 Add and subtract simple fractions (e.g., determine that 1
8 + 3

8 is the same as 1
2 ).

Here we come into contact with two substantive concepts: the equivalence and the addition
of fractions. It should emphatically not be assumed that these concepts are either natural
or self-evident; rather, they should be clearly explained to students. Here is a classic
example of a common misconception of the addition of fractions:

Frank says that 2
3 + 2

3 = 4
6 and uses the picture below to justify his assertion.

Many misconceptions are probably involved here, but one of them would have to
be that, since the addition of whole numbers is achieved by counting the union of
two groups of objects, one should add fractions in the same way by counting the
combination of “part-wholes”, by brute force if necessary, even if nobody knows how
“part-wholes” should be counted. In the above situation, the thinking must have been
that, if we just count everything in sight, then there are 4 colored squares among the
six squares, so the sum 2

3 + 2
3 “must be” 4

6 .

This example points to the weaknesses in the usual exposition on fractions: the precise
meaning of a fraction is never explicated and reasoning based on the fuzzy notions of part-
whole, quotient, etc. inevitably leads to error; the fact that the precise meaning of the
addition of fractions must be explicitly given is usually ignored. Moreover, the addition
of fractions is a delicate issue because not only must it be precisely defined, but it must
also retain the basic intuition one gains from the addition of whole numbers as “putting
things together.”

The Number Line

What is usually done in high achieving countries at this point is to place fractions on
the number line and develop the whole theory of fractions. In this setting, a fraction such
as 5

3 is the following point on the number line: divide all the segments from 0 to 1, 1 to 2,
2 to 3, etc., into 3 segments of equal length, so that the number line is now divided into
an infinite number of points to the right of 0, any two adjacent points being of length 1

3

apart. The first such point to the right of 0 is the fraction 1
3 , the second 2

3 , etc., so that the
fifth such point is the fraction 5

3 . Equivalently, 5
3 is the length of the segment obtained by

joining 5 segments end-to-end, each segment being of length 1
3 . Now introduce the concept

that any two fractions which are placed at the same point on the number line (e.g., 2
4 and

19



1
2 , or 3 and 15

5 ) are said to be equivalent or equal. Likewise, if a fraction on the number
line is to the right of another fraction, then the first fraction is said to be larger than the
second. Notice that this definition of “larger than” is consistent with the same concept
among whole numbers. Also, addition of fractions is now defined by putting the fractions
on the number line and then adding the lengths of the segments from 0 to the respective
fractions. Again notice that the addition of whole numbers can be phrased in exactly the
same way and that this concept of fraction addition literally embodies the intuitive idea
of “putting things together.” These definitions are quite natural once they are explained,
but it should not be assumed that students will automatically know them.

A fundamental fact that underlies the development of fractions, usually referred to
as equivalent fractions is this: two fractions are equivalent (i.e., represented by the same
point on the number line) if one is obtained from the other by multiplying top and bottom
by the same non-zero whole number. This is the fundamental fact that underlies the
development of fractions. It is contained in the grade 4 number sense standard

1.5 Explain different interpretations of fractions, for example, parts of a whole, parts
of a set, and division of whole numbers by whole numbers; explain equivalence
of fractions.

How this works on the number line can be illustrated with, for example, the fractions
4
5 and 8

10 = 2×4
2×5 .

To get 4
5 , we divide the segment from 0 to 1 into 5 segments of equal length and,

counting the division points to the right of 0 from left to right, the fourth is 4
5 . For

8
10 , we do likewise by dividing the segment from 0 to 1 into 10 segments of equal
length. Since 10 = 2×5, the 2nd, 4th, 6th, 8th division points to the right of 0 divide
the segment from 0 to 1 into 5 segments of equal length. They are, as a result, the
same as the first set of division points. In particular, the 8th division point is 4

5 , i.e.,
4
5 = 8

10 , as the following picture shows.
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Another part of standard 1.5 asserts that a fraction, e.g., 5
3 , can be interpreted as a

division. The meaning of this statement is that, 5
3 is the size of one part when something

of size 5 is partitioned into 3 parts of the same size. More precisely, in terms of the
number line, the statement means that the fraction 5

3 , which is by definition the length
of 5 segments each of which has length 1

3 , is also the length of a part when a segment of
length 5 is divided into 3 parts of equal length. This is an important fact in the study of
fractions.
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The explanation of this division interpretation is as follows. Think of this segment
of length 5 as the joining of 5 sub-segments each of length 1. If each of these sub-
segments of length 1 is divided into 3 parts of equal length (so that by the definition
of a fraction each part has length 1

3 ), then the given segment of length 5 is divided
into 15 (= 5×3) of these parts of length 1

3 . If we want to divide this segment of length
5 into 3 sub-segments of equal length, it suffices to take the 5th and 10th division
points of the original division into 15 sub-segments. But the length of the segment
from one end to the 5th division point is the joining of 5 sub-segments each of length
1
3 , and therefore this segment has length 5

3 , which explains the division interpretation
of 5

3 .

Notice that the preceding reasoning involves only the numbers 3 and 5, and that these
are the numerator and denominator of the fraction 5

3 in question. This is why the same
reasoning also suffices to show that a fraction a

b is also the length of a part when a segment
of length a is divided into b parts of equal length. Usually one paraphrases this fact as “a

b
is one part when a wholes are divided into b equal parts.” If a = mb for some whole number
m, then we get back the fact that a

b = mb
b = m, which then coincides with (mb)÷ b = m.

This explains the phrase “division interpretation”, and for the same reason, the division
symbol ÷ is retired at this point and a÷ b will henceforth be denoted by a

b .

Adding Fractions

Students are now ready to review and further study the addition of fractions with
the same denominator as illustrated by the third grade number sense standard 3.2 above.
They should add such fractions on the number line, and be able to understand why the
following formula

a

b
+

c

b
=

a + c

b

for any whole numbers a, b, and c is correct. This is because a
b is by our definition of a

fraction a copies of 1
b , and similarly c

b is c copies of 1
b . Since adding fractions is nothing

but getting the combined length of these segments joined together end-to-end, we have
to get the length of a copies of 1

b together with c segments of 1
b . Clearly this length is

a + c copies of 1
b , which is to say, a+c

b according to the definition of a fraction. One may
paraphrase this reasoning as follows: putting a copies of 1

b and c copies of 1
b together,

we get a + c copies of 1
b , which is exactly a+c

b . Notice how the addition of fractions is
now seen to be the iterated counting of the number of segments of length 1

b . In this sense,
adding fractions is no different from adding whole numbers.

Once students understand fractions on the number line including

- how to place them on the number line

- how to add fractions with the same denominator on the number line

- the fundamental fact of equivalent fractions
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- how to interpret a fraction as a division

- the formula for the addition of two fractions with the same denominator

they are ready to be exposed to, and to make use of further formulas. The first key formula
that they need to learn is the fundamental fact of equivalent fractions:

a

b
=

ca

cb
for c any whole number,

where, by convention, we write ca for c× a, cb for c× b. The reasoning for this formula
is the same as that given above for 2

5 = 4
10 . Next, they should be given the formula for

the addition of two fractions a
b and c

d :

a

b
+

c

d
=

ad + bc

bd
.

This is true because by equivalent fractions, we can write the given fractions as two
fractions with equal denominator: a

b = ad
bd and c

d = bc
bd . Therefore the addition a

b + c
d now

becomes the addition of two fractions with equal denominator, ad
bd + bc

bd , which we already
know how to do. The preceding formula is the result.

Notice that no mention in this entire discussion of adding fractions was made of the
need to look for the LCM of the two denominators b and d. The use of LCM is detrimental
to the understanding of the meaning of the sum of two fractions. What is true is that the
addition of fractions is sometimes simplified by the use of the LCM of the denominators,
e.g. 1

8 + 5
12 = 3

24 + 10
24 = 13

24 , so that it makes sense for students to acquire this skill after
they have thoroughly mastered the correct way to add fractions, as above. However, this
specialized skill has nothing to do with the meaning of the sum of two arbitrary fractions.

Considerable practice should be given in using both formulas.

In grade 5, embedding fractions on the number line becomes a key part of the number
sense standard

1.5 Identify and represent on a number line decimals, fractions, mixed numbers, and
positive and negative integers.

In grade 6, this extends to the emphasis number sense standard

1.1 Compare and order positive and negative fractions, decimals, and mixed numbers
and place them on a number line.

Some comments on ordering fractions and mixed numbers are appropriate at this
point.

• First, given two fractions a
b and c

d , because a
b = ad

bd and c
d = bc

bd , it follows that a
b

is to the left of c
d on the number line exactly when ad < bc. By the definition of
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larger than, c
d is larger than a

b exactly when bc > ad. The same reasoning also shows
that a

b = c
d exactly when bc = ad. This is sometimes called the cross-multiplication

algorithm and deserves to be included in the book.6

• Next, it is important to demystify the concept of a mixed number, normally introduced
in grade 4. A mixed number such as 3 2

5 is nothing more than a shorthand notation
for 3 + 2

5 . Since we now know how to add fractions, we have

3
2
5

= 3 +
2
5

=
3
1

+
2
5

=
3× 5 + 2

5
=

17
5

Notice that while we end up with the usual “formula for converting a mixed number
to a fraction”, the difference (and it is an important one) is that here 32

5 is clearly
defined to be 3+ 2

5 , and since we know how to add fractions at this point, the formula
is a logical consequence of the definition rather than some unsubstantiated facts.
Do not introduce mixed numbers before the addition of two fractions is defined and
understood!

Multiplying and Dividing Fractions

In grade 5 students are expected to be able to multiply and divide with sufficiently
simple fractions:

2.5 Compute and perform simple multiplication and division of fractions and apply
these procedures to solving problems.

In grade 6 this is extended to the number sense standard

2.1 Solve problems involving addition, subtraction, multiplication, and division of
positive fractions and explain why a particular operation was used for a given
situation.

But once more, it is essential that the procedures for multiplication and division be care-
fully justified and explained. We first deal with multiplication. There are several ways
to introduce the multiplication of fractions, but perhaps the simplest is to use the area
model (where the unit 1 stands for the area of the unit square) and define the product
a
b × c

d to be the area of the rectangle with sides of length a
b and c

d . A word should be said
about this definition, which undoubtedly seems strange at first sight. We all “know” that
the area of such a rectangle is ac

bd , so why not just say a
b × c

d is ac
bd? One reason for not

doing that is because we shall in fact prove, strictly on the basis of the above definition of
a
b × c

d and on the basis of the definition of a fraction, that the area of this rectangle is ac
bd .

Furthermore, this definition of a
b × c

d in terms of the area of a rectangle is concrete and
is also what we have come to expect intuitively of such a product. On the other hand, if

6 Cross-multiplication is subject to many misinterpretations and has to be handled with care. For

example if one has a
b = c

d +e, it often happens that students will replace this expression by ad = bc+e.
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we simply define a
b × c

d as ac
bd , this would always beg the question of why not also define

a
b + c

d as (a+c)
(b+d) .

The main objective here is therefore to show that the product a
b × c

d is equal to as ac
bd .

For example, let us see why 1
5 × 1

3 = 1
5×3 . By our definition, 1

5 × 1
3 is the area of the

purple rectangle in the lower left corner of the unit square in the picture below. Since this
purple rectangle has area which is 1

3×5 of the area of the unit square (which is 1), the area
of the purple rectangle is therefore 1

3×5 by the definition of a fraction. Thus 1
5 × 1

3 = 1
5×3 .

Similar reasoning shows why 1
b × 1

d = 1
bd for any nonzero whole numbers b and d. The

reasoning for the general formula a
b × c

d = ac
bd is now relatively straightforward. For

example, the picture below gives the simple idea of why 3
7 × 6

11 = 3×6
7×11 .

Once students understand the product formula a
b × c

d = ac
bd , we can explain why

if we divide an object of size c
d into b equal parts, then the total size of a of

these parts is equal to a
b × c

d .

One comment before we give the reasoning. This interpretation of the product of
fractions is important for solving word problems, and is a precise formulation of the usual
linguistic usage of the preposition “of.” For example, when we say we cut off 1

3 (by weight)
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of a piece of ham weighing 1 3
4 pounds, we mean, implicitly, that we will divide the piece

of ham into 3 equal parts (by weight) and take 1 of the parts. Moreover, we automatically
assume that the weight of this cut-off piece would be 1

3 × 1 3
4 . What the preceding

assertion about the meaning of a
b × c

d does is to give a firm mathematical foundation
for this everyday linguistic usage. Thus in the future, we can confidently reformulate
the common expression of “ 3

5 of a certain amount” as a precise statement of “ 3
5× that

amount.” Or, more generally, the size of “a
b of an object of size c

d” is just a
b × c

d .

Now the reasoning. It is a good illustration of the power of the product formula. We
place the assertion in the context of the number line, so that we divide the segment
from 0 to c

d into b sub-segments of equal length, and we have to show that the total
length of a of these sub-segments is a

b × c
d . The idea of the proof becomes most

clear if we use concrete numbers, say, c = 12, d = 5, a = 3 and b = 7. Thus we must
show that if we divide the segment from 0 to 12

5 into 7 sub-segments of equal length,
then the combined length of 3 of these sub-segments is 3

7 × 12
5 . First observe that

the length of one of these sub-segments is 1
7 × 12

5 because if we combine 7 copies of a
segment of length 1

7 × 12
5 , we get a segment of length 12

5 . Indeed, the length of 7 such
segments is

7×
{

1
7
× 12

5

}
=

7× 12
7× 5

=
12
5

where we have used the product formula twice. This proves our claim. Now, the
length of 3 of these sub-segments is, by the product formula once more,

3×
{

1
7
× 12

5

}
=

3
7
× 12

5

We have reached our desired conclusion.

Next, the concept of dividing fractions is, as we have already mentioned in connection
with the division of whole numbers, qualitatively the same as the same concept between
whole numbers. Recall that for whole numbers a, b, c, with a 6= 0,

b÷ a = c is the same as b = c× a

For fractions we follow this lead and define: for fractions A, B, C, with A 6= 0,

B ÷A = C is the same as B = C ×A.

If B = a
b and A = c

d , then it is immediately verified that the fraction C = ad
bc satisfies

B = C×A. Rewriting this multiplication statement as a division statement according
to the preceding definition, we get

a
b
c
d

=
ad

bc
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This is the famous invert-and-multiply rule. It is important that every student knows
why it is true: it is a consequence of the meaning of dividing fractions.

Another thing to note is that in the above discussion of fractions, there is no mention
of simplifying fractions. Simplifying fractions is a topic that is terribly confusing to many
students, and is not, mathematically speaking, necessary. As long as students understand
equivalent fractions and have experience in recognizing equivalent fractions, the very in-
volved procedures of finding greatest common divisors and putting fractions into reduced
form can safely be avoided.

Finite Decimals

Among fractions, a special class stands out for historical as well as mathematical
reasons. These are the decimal fractions, more commonly known as (finite or terminating)
decimals. Precisely, they are fractions whose denominators are a power of 10, e.g., 427

105 ;
such a decimal is traditionally abbreviated to 0.00427, where the decimal point is placed
5 places (corresponding to the 5 in 105) to the left of the last (rightmost) digit of the
numerator. In like manner, 87

104 is abbreviated to 0.0087, the decimal point being placed
4 places to the left of the last digit 7 of the numerator. By the same token,

1200
106

= 0.001200.

In this case, the last two 0’s in 0.001200 are usually omitted so that the decimal is simplified
to 0.0012; this is because

0.001200 =
1200
106

=
12× 102

104 × 102
=

12
104

= 0.0012,

where we have made use of equivalent fractions.

It is worth repeating that a decimal, usually understood to be finite unless specified
to the contrary, is nothing but a shorthand notation for a fraction whose denominator is
a power of 10.

We indicated earlier that money is a very good place to begin the discussion of frac-
tions, but money is especially effective for the instruction on decimals in the early grades.
For example, there is the grade 2 number sense standard

5.2 Know and use the decimal notation and the dollar and cent symbols for money.

Children are taught that there are 100 cents in a dollar, and 32 cents can be written as
0.32 dollars. The explanation for the notation can wait. The study of decimals takes a
sophisticated turn when it comes to the grade 4 number sense standard

2.0 Students extend their use and understanding of whole numbers to the addition
and subtraction of simple decimals
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as well as the more sophisticated grade 5 number sense standard

2.0 Students perform calculations and solve problems involving addition, subtraction,
and simple multiplication and division of fractions and decimals

and the grade 6 number sense standard

1.1 Compare and order positive and negative fractions, decimals, and mixed numbers,
and place them on the number line.

We will deal with negative fractions presently. For the moment, let us concentrate on
decimals. One cannot make sense of these three standards unless one makes use of the
definition of a decimal as a fraction. The refusal in most textbooks to present decimals
as a special class of fractions is likely the reason for students’ well-documented confusion
over how to compute or order decimals. Consider the grade 4 standard 2.0 above, which
calls for an understanding of the role of whole-number additions in decimal additions. The
usual instruction on adding 0.12 to 0.063, for example, is to “line up the decimal point”
and then “add the decimals as if they are whole numbers”; no explanation is given for the
algorithm. In terms of the definition of decimals as fractions, the reason for the algorithm
is clear:

0.12 + 0.063 =
12
100

+
63

1000
=

120
1000

+
63

1000
=

120 + 63
1000

,

which is of course 183
1000 = 0.183.

Similarly, the algorithm of computing 0.00009×2.67 = 0.0002403 is to first compute
the whole-number multiplication 9 × 267 = 2403 and then count the total number of
decimal places in each factor (5 + 2 = 7) to determine where to put the decimal point in
2403. The explanation of this general algorithm can be given only by using the definition
of a decimal:

0.00009× 2.67 =
9

105
× 257

102
=

2403
102+5

,

which then yields the correct answer 0.0002403.

The ordering of decimals called for in the above grade 6 standard 1.0 becomes the
ordering of whole numbers when the definition of a decimal is used. For example, to
explain why 0.1 > 0.097, one recalls that 0.1 = 1

10 and 0.097 = 97
1000 . To compare

the fractions 1
10 and 97

1000 , we follow the usual procedure of rewriting these fractions as
fractions with the same denominator:

1
10

=
100
1000

and
97

1000

Since obviously 100
1000 > 97

1000 , we have 1
10 > 97

1000 . In other words, 0.1 > 0.097.

This discussion points to the inescapable conclusion that, the teaching of decimals
requires that we give students a thorough grounding in fractions before embarking on any
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extended discussion of the arithmetic operations concerning decimals. The usual practice
of discussing the arithmetic of decimals as if decimals and fractions are unrelated must be
avoided at all costs, especially in an intervention program.

Another aspect of decimals that should be brought out is that they provide a natural
extension of the place value concept for whole numbers. Again the precise definition of a
decimal plays a critical role. For example, since 3.14 is by definition the fraction 314

102 ,

3.14 =
314
102

=
300 + 10 + 4

102
=

300
102

+
10
102

+
4

102
= 3 +

1
10

+
4

102

Thus, for instance, the 2nd decimal digit 4 has place value 4
102 and the 1st decimal digit

1 has place value 1
101 . In terms of money, if the unit 1 is a dollar (= 100 cents), then

five dollars and 23 cents is 5 + 23
100 = 5 + 2

10 + 3
102 dollars which, on the one hand, is by

definition 5.23 dollars and, on another, displays the amount clearly as 5 dollars, 2 dimes
and 3 cents. This is the explanation for the usual notation of money. It also clarifies the
grade 3 number sense standard

3.4 Know and understand that fractions and decimals are two different represen-
tations of the same concept (e.g., 50 cents is 1

2 of a dollar, 75 cents is 3
4 of a

dollar).

The following grade 4 number sense standards are related:

1.6 Write tenths and hundredths in decimal and fraction notations and know the
fraction and decimal equivalents for halves and fourths (e.g., 1

2 = 0.5 or .50;
7
4 = 1 3

4 = 1.75).

1.7 Write the fraction represented by a drawing of parts of a figure; represent a given
fraction by using drawings; and relate a fraction to a simple decimal on a number
line.

But note the appearance of improper fractions vs. mixed numbers in grade 4, number
sense 1.6. This is another source of confusion for students. In particular they struggle
with things like writing a fraction such as 7

4 in the form 1 3
4 or 1.75, and the terminology

of “improper fraction” makes them believe that a fraction greater than 1 is wrong. It is
crucial, at this point that these students be taught that these different notations all mean
the same thing, and that the default method of handling these numbers is to always write
them as ordinary fractions.

Negative Numbers

Once students have a firm grasp of positive fractions, they are ready to tackle negative
fractions. Beginning with grade 4, negative whole numbers are taught as in number sense
standard
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1.8 Use concept of negative numbers (e.g., on a number line, in counting, in temper-
ature, in “owing”).

In the grade 5 number sense standard

2.1 Add subtract, multiply, and divide with decimals; add with negative integers;
subtract positive integers from negative integers; and verify the reasonableness
of the results.

students are asked to add and subtract integers, which are by definition the collection
of all positive and negative whole numbers together with 0. For the purpose of doing
arithmetic, the number −2, for example, should be clearly defined as the number so that
2 + (−2) = 0. We have already alluded to the need to place the integers on the number
line in the grade 5 number sense standard 1.5. Briefly, if we reflect the whole numbers on
the number line with respect to 0, we obtain a new collection of numbers to the left of
0. The mirror image of 1 is −1, of 2 is −2, etc. This gives the placement of the negative
numbers on the number line. An integer x to the left of another integer y is said to be
smaller than y. Thus −5 < −3.

Arithmetic operations with integers are called for more comprehensively in the grade
6 number standard

2.3 Solve addition, subtraction, multiplication, and division problems, including those
arising in concrete situations that use positive and negative integers and combi-
nations of these operations.

A parallel development takes place with fractions. The fraction − 2
5 , for example, is

by definition the number satisfying 2
5 + (− 2

5 ) = 0. On the number line, − 2
5 is the mirror

images of 2
5 with respect to 0 and the mirror image of 8

3 is − 8
3 , etc. The collection

of positive and negative fractions together with 0 is called the rational numbers. The
comparison among rational numbers is defined exactly as in the case of integers: x < y
if x is to the left of y. The call for placing rational numbers on the number line is in the
previously quoted grade 6 number sense standard 1.1. Arithmetic operations with rational
numbers are part of the grade 6 number sense standard

1.2 Add, subtract, multiply and divide rational numbers (integers, fractions, and ter-
minating decimals) and take positive rational numbers to whole-number powers.

We now indicate how to approach the arithmetic of integers. Note that, except
for the slight complications in the notation, the discussion is essentially the same for
rational numbers. Recall, for every integer x, we have x + (−x) = 0, by definition of
−x. The simplest way to do arithmetic with the integers may be to take for granted that
the integers can be added, subtracted, multiplied, and divided (by a nonzero integer),
and that the associative, commutative, and distributive properties continue to hold. If
students are familiar with these properties for whole numbers and fractions, they would
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be well-disposed towards such an extension.

On this basis, we can show why 8 − 5 is the same as 8 + (−5). Observe that there
is only one integer x that can satisfy the equation x + 5 = 8, namely the integer 3. But
{8 + (−5)} + 5 = 8 + {(−5) + 5} = 8 + 0 = 8, so 8 + (−5) = 3, and consequently
8 + (−5) = 8− 5 because 8− 5 is also 3. For the same reason, x + (−y) = x− y if x, y are
whole numbers and x > y. Reading the equality backwards, this says x − y = x + (−y)
if x > y. Thus we know how to do the subtraction x− y if x and y are whole numbers
and x > y. This fact leads us to adopt as a the definition that, for any two integers z,
w, the subtraction z − w means z + (−w). So once we introduce the integers, subtraction
becomes addition in disguise.

For multiplication, perhaps the most striking fact that needs confirmation is why is
(for example) (−2) × (−5) equal to 2 × 5? The reason is very similar to the preceding
argument: again observe that if we denote (−2)× 5 by A, then there is only one rational
number x that satisfies x + A = 0, namely −A. We now show that both (−2)× (−5)
and 2 × 5 solve x + A = 0, and therefore must be equal since both will be equal to
−A. To this end, we compute twice:

{(−2)× (−5)}+ A = {(−2)× (−5)}+ {(−2)× 5}
= (−2)× {(−5) + 5} (distributive property)

= (−2)× 0

= 0,

and also
{2× 5}+ A = {2× 5}+ {(−2)× 5}

= {2 + (−2)} × 5 (distributive property)

= 0× 5

= 0.

By a previous remark, this shows (−2)× (−5) = 2× 5.

The same reasoning justifies the general statement that if x and y are rational num-
bers, then (−x)(−y) = xy. Similarly, (−x)y = −(xy) and x(−y) = −(xy).

The meaning of the division of rational numbers is qualitatively exactly the same as
the division of fractions, namely, if A, B, C are rational numbers and A 6= 0, then

B ÷A = C has the same meaning as B = C ×A.

If B and A are fractions, i.e., positive rational numbers, then this definition offers nothing
new. The interesting thing is to observe what this definition says when one or both of
B and A is negative. Let us prove the assertion that “negative divided by negative is
positive”, as this is almost never explained in school mathematics.
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Let us show, for example, why −5
−2 = 5

2 . For the sake of clarity, denote 5
2 by C. By

the above definition, to show −5
−2 = C is the same as showing −5 = C×(−2). But by

what we know about the multiplication of rational numbers, the latter is true because

C × (−2) =
5
2
× (−2) = −(

5
2
× 2) = −5

Therefore −5
−2 = C, i.e., −5

−2 = 5
2 .

In general, for any rational numbers x, y with y 6= 0, the exact same reasoning shows
that −x

−y
=

x

y
,

−x

y
= − x

y
,

x

−y
= − x

y

In a sixth or seventh grade classroom, it may not be necessary, having proved some special
cases such as −5

−2 = 5
2 or 15

−3 = −5, to give the proofs of these general assertions, but it
would not be a good idea to decree −5

−2 = 5
2 or 15

−3 = −5 with no explanation whatsoever.

One consequence of this discussion is that every rational number is a quotient (i.e.,
division) of integers. For example, − 13

19 = −13
19 . Recall that up to this point, rational

numbers are just positive and negative fractions. The fact that rational numbers have
an equivalent characterization as a quotient is extremely useful, as we shall see in the
following discussion of ratios and rates.
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Ratios, Rates, Percents and Proportion

The first serious applications of student’s growing skills with numbers, and partic-
ularly fractions, appear in the area of ratios, proportions, and percents. These include
constant velocity and multiple rate problems, determining the height of a vertical pole
given the length of its shadow and the length of the shadow at the same time of a nearby
pole of known height, and many other types of problems that are interesting to students
and provide crucial foundations for more advanced mathematics.

Unfortunately, when the difficulties that students often have with fractions are com-
bined with the confusion surrounding ratios, proportions, and percents, the majority of
U.S. students develop severe difficulties at this point. On the other hand, students in
most of the high achieving countries solve very sophisticated problems in these areas from
about grade three on. To give some idea of the level of these problems in high achieving
countries, here is a sixth grade problem from a Japanese exam:

The 132 meter long train travels at 87 kilometers per hour and the 118 meter
long train travels at 93 kilometers per hour. Both trains are traveling in the same
direction on parallel tracks. How many seconds does it take from the time the
front of the locomotive for the faster train reaches the end of the slower train to
the time that the end of the faster train reaches the front of the locomotive on the
slower one? 7

It is important that all of these topics are seen by students as closely related, in fact
aspects of just a very few basic concepts. Consequently, we present them is this way here.

Students first need to know what a ratio is: the ratio of the quantity A to the quantity
B is the quotient (division) A

B . Thus ratio is an alternative language for talking about
division. If A and B are quantities of different types, then the ratio A

B retains the units
of A (in the numerator) and B (in the denominator), and in this case, it is called a rate.
We will discuss rates specifically later on.

Because the use of the word “ratio” in everyday language is imprecise, the same
imprecise usage in a mathematical setting, if left unchecked, can lead to serious errors.
We illustrate this with an example. Suppose there are two classrooms A and B in a
building. In classroom A, there are 10 boys and 20 girls, and in classroom B, 7 boys and
14 girls. Then the {ratio of boys to girls in clasroom A} is 10

20 , and the {ratio of boys to
girls in clasroom B} is 7

14 . Now suppose the students of the two classrooms come together
for a joint discussion of a school event, then in the combined class, there are 10 + 7 = 17
boys and 20 + 14 = 34 girls, so that the {ratio of boys to girls in the class combining
classroom A and classroom B} is 17

34 . However, it is tempting to assume that the ratio
of boys to girls in the combined class is the sum of the two ratios, i.e., 10

20 + 7
14 = 1

2 + 1
2 .

If so, then we are led to a contradiction, to the effect that 17
34 = 1

2 + 1
2 , i.e., 1

2 = 1. Let

7 We discuss this problem at the end of the section on rates.
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us spell out the details of this seeming contradiction. In words, the equality 17
34 = 1

2 + 1
2

is the symbolic expression of the statement that

(the ratio of boys to girls in the class combining classroom A and classroom B)
= (the ratio of boys to girls in clasroom A) +

(the ratio of boys to girls in clasroom B).

The misconception that led to this equality is the assumption that these three ratios,
which are completely different entities, are related by the operation of addition. Such a
misconception is most likely the result of the conditoned reflex, sometimes instilled in the
primary grades, which automatically associates the word “combine” and the word “and”
with “addition.” Students should be taught to unlearn this bad practice, and this example
about ratio is a good starting point for this purpose.

Although ratios may first be encountered as quotients of whole numbers, eventually
students will have to deal with situations where A and B are arbitrary numbers. In other
words, students must in principle learn to divide , for example, the (length of the) diagonal
of a square by the (length of the) side, or the circumference of a circle by its diameter.
At this point, it is necessary to bring out one aspect of school mathematics that has been
suppressed in the literature thus far, and it is that while we expect students to do such
divisions, we do not teach them the meaning of these divisions. Instead, we restrict the
teaching to rational numbers, and let them extrapolate all the concepts and computations
from rational numbers to arbitrary real numbers. This is what is called The Fundamental
Assumption of School Mathematics.8 There is nothing wrong with this Assumption per se,
because numbers which are not rational are too advanced for school mathematics. What
should have been done, however, is to make this Assumption explicit, as it is done here,
so that students understand that, in the following, although we only deal with rational
numbers, they are expect to extrapolate everything to arbitrary numbers.

For the rest of the discussion, we will restrict A and B to be rational numbers, i.e.,
quotients of integers. Then ratio A

B is a quotient of fractions. Thus, to be successful
with ratios, students will need to be comfortable with rational arithmetic.9 They should
understand that if A and B are fractions, then A

B is again a fraction; and specifically, that
if A = c

d and B = e
f , then

A

B
=

c
d
e
f

=
cf

de
.

A quotient of two fractions is called a complex fraction in school mathematics. Although
a quotient of fraction is just a fraction, as we have just seen , the importance of isolating
the concept of a complex fraction lies in the fact that it is convenient to treat complex

8 For a fuller discussion of this issue, see H. Wu, Chapter 2: Fractions (Draft), Section 11, http:
//math.berkeley.edu/∼wu/.

9 Unfortunately, this topic is usually slighted in the upper elementary and middle school curriculum,

resulting in glaring gaps in mathematical reasoning in school mathematics. An intervention program must

fill in these gaps to promote learning.
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fractions as if they were fractions. For example, to add

3
5
2
7

+
3
4
11
6

obviously we can first convert each complex fraction to an ordinary fraction and then add
them as fractions, thus:

3
5
2
7

+
3
4
11
6

=
3× 7
5× 2

+
3× 6
4× 11

However, it is usually simpler to just treat each of the fractions 3
5 , 2

7 , 3
4 , and 11

6 as if
it were a whole number and then use the usual formula for adding fractions to get

3
5
2
7

+
3
4
11
6

=
( 3
5 × 11

6 ) + ( 2
7 × 3

4 )
2
7 × 11

6

The question is: is this legitimate? The answer is yes: in general, if A, B, C, D are
rational numbers (i.e., positive or negative fractions, or 0), and B 6= 0, D 6= 0, etc., then

A

B
+

C

D
=

AD + BC

BD

The cancellation property also holds for complex fractions:

AB

AC
=

B

C
when A 6= 0 and C 6= 0

In addition, the cross-multiplication algorithm carries over to complex fractions,

A

B
=

C

D
is equivalent to AD = BC.

and the product formula continues to hold for complex fractions:

A

B
× C

D
=

AC

BD

These assertions about complex fractions are routine (if a bit tedious) to verify. Take the
last one, for instance. Suppose A = a

a′ , B = b
b′ , C = c

c′ , and D = d
d′ . Then

A

B
× C

D
=

a
a′
b
b′

×
c
c′
d
d′

=
ab′

a′b
× cd′

c′d
=

ab′cd′

a′bc′d

while
AC

BD
=

a
a′ × c

c′
b
b′ × d

d′
=

ac
a′c′
bd

b′d′
=

acb′d′

a′c′bd
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Therefore A
B × C

D = AC
BD . These formulas for complex fractions will be used routinely in

subsequent discussions.

Ratios appear as early as third grade in some state standards and in a number of
the successful foreign programs. In the California Mathematics Content Standards, ratios
first appear in the grade 3 number sense standard:

2.7 Determine the unit cost when given the total cost and number of units.

As mentioned above, when taking ratios, the order of the two numbers matters, and
the ratio of B to A, which is B

A , is the reciprocal of the ratio of A to B. Ratios are
almost always fractions, but one usually contrives to make the ratio come out to be a
whole number for third grade. Thus one may have a problem such as:

If 15 items cost $4.50, what is the unit cost?

It should be made clear to students that the meaning of unit cost is the ratio of the total
cost to the number of units. So, in this case, if 15 items cost $4.50, which is 450 cents.
Thus the unit cost is 450÷ 15 = 30 cents. Of course, what is written as 450÷ 15 for third
graders is just the ratio 450

15 . This illustrates the fact that students’ first contact with
ratios can come before they have studied fractions.

Once students have learned about fractions, ratios should be revisited and the above
procedure explained. For example, if 15 items cost 4.5 dollars, then the cost of a single
item would be (the value of) one part when 450 cents (i.e., four and a half dollars) is
divided into 15 equal parts. By the division interpretation of a fraction, the size of one
part when 450 is divided into 15 equal parts is exactly 450

15 . So it is 30 cents. In general, if
n items cost x dollars, then the cost of one item is x

n dollars for exactly the same reason.

Ratios appear in grade six (number sense 1.2) and grade seven (algebra and functions
2.3) of the California Mathematics Content Standards; see the discussion below. By grade
six, it would be reasonable for students to consider problems such as the following: if 2.5
pounds of beef costs $22.25, what is the cost of beef per pound? The unit cost is the ratio
22.25
2.5 , and one recognizes this as a quotient of two fractions, 2225

100 divided by 25
10 .

Dimensions and Unit Conversions

Ratios of units of measurement – feet to inches, meters to kilometers, kilometers to
miles, ounces to gallons, hours to seconds – are involved whenever a quantity measured
using one unit must be expressed in terms of a different unit. Such ratios are called unit
conversions, and the units involved are called dimensions. Unit conversions usually first
appear in the context of money. We will discuss unit conversions in more depth in the
section on rates.
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Dimensions sometimes appear by grade three in state standards, and sometimes ap-
pear even earlier in successful foreign programs. But it is worth noting that, as indicated
in the discussion above, they should have already appeared in the study of money. Stu-
dents should get considerable practice with determining ratios, and with unit conversions.
But care should be taken that proportional relationships not be introduced until students
are comfortable with the basic concepts of ratio and unit conversion.

1.4 Express simple unit conversions in symbolic form (e.g., inches = feet ×12).

and in the grade 3 measurement and geometry standard

1.4 Carry out simple unit conversions within a system of measurement (e.g., cen-
timeters and meters, hours and minutes).

But it is worth noting that, as indicated in the discussion above, they have already ap-
peared in the study of money. Students should get considerable practice with determining
ratios, and with unit conversions. But care should be taken that proportional relationships
not be introduced until students are comfortable with the basic concepts of ratio and unit
conversion.

Many problems of the following type (taken from a Russian third grade textbook) are
appropriate at this grade level:

1. A train traveled for 3 hours and cov-
ered a total of 180 km. Each hour
it traveled the same distance. How
many kilometers did the train cover
each hour?
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2. In 10 minutes a plane flew 150 km. covering the same
distance each minute. How many kilometers did it fly
each minute?

Students should see many such problems, and become accustomed to the reasoning
used in solving them. For example, in problem 1, since the train travels the same distance
each hour, the distance it travels in an hour (no matter what it is) when repeated three
times will fill up 180 km. Therefore the distance it travels in an hour is 180÷ 3, because
the meaning of “dividing by 3” is finding that number m so that 3 × m = 180. So the
answer is 60 km. Problem 2 is similar: the distance the plane flies in a minute, when
repeated 10 times, would fill up all of 150 km. So this distance is 150÷ 10 = 15 km.

Percents

To some, percent is a function that takes numbers to new numbers. However, this
is difficult for students to grasp before taking algebra. Consequently, it is not productive
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to pursue this line of thought. We suggest instead the following definition. A percent is
by definition a complex fraction whose denominator is 100. If the percent is x

100 for some
fraction x, then it is customary to call it x percent and denote it by x%. Thus percents
are simply a special kind of complex fraction, in the same way that finite decimals are a
special kind of fraction. Percent is used frequently for expressing ratios and proportional
relationships, as with the interest on a loan for a given time period.

Percents first appear around grade 5 in the number sense standard 1.0 and its sub-
standard

1.2 Interpret percents as a part of a hundred; find decimal and percent equivalents
for common fractions and explain why they represent the same value; compute
a given percent of a whole number. They also appear in the fifth grade data
analysis and probability standard

1.3 Use fractions and percentages to compare data sets of different sizes.

At the grade 5 level, one should limit the percents that appear in problems to be
ordinary fractions, i.e., only those x% where x is a whole number. Thus we can give
problems such as

What percent of 20 is 7?

We follow the definition to do this and any other problem about percents. So if a% of 20
is 7 for some fraction a, then by the interpretation of fraction multiplication in terms of
the proposition “of”, a

100 × 20 = 7. We want to know what the number a is. Cancelling
20 from 100 on the left side, we have a

5 = 7, and if we multiply both sides again by 5, we
get a = 35. Thus 35 percent of 20 is 7.

What percent is 7 of 20?

This problem is a linguistic trap, and the linguistic difficulty should be brought to the
forefront. Explain clearly that the meaning of the question is to express 7

20 as a percent.
In a mathematics textbook, it is important to separate the linguistic difficulties from
genuine mathematical difficulties.

That said, suppose 7
20 is a percent, for some fraction a. Then 7

20 = a% = a
100 (so

far we have only used the definition of percent). Thus we have 7
20 = a

100 , so that (after
multiplying both sides by 20) 7 = a

100 × 20. This shows that this is the same problem as
the preceding one! So a = 35.

The following grade 6 number sense standards cover percent and ratio:

1.2 Interpret and use ratios in different contexts (e.g., batting averages, miles per
hour) to show the relative sizes of two quantities, using appropriate notations
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(a/b, a to b, a:b).

1.4 Calculate given percentages of quantities and solve problems involving discounts
at sales, interest earned, and tips.

By grade 6, students’ skills with fractions are more advanced, and more complicated
problems can be given. The following problems, which illustrate the preceding standards,
are typical of those related to precents that tend to confuse students. However, when
students recognize that percents are just complex fractions with 100 as denominator, and
learn to make use of this precise definition, they should be able to sort out these problems
with ease.

What is 211% of 13?

By the interpretation of the preposition “of” in terms of fraction multiplication, 211% of
13 equals 211%× 13. The answer is therefore 2743

100 , which is 27.43.

What percent of 125 is 24? (What percent is 24 of 125?)

Let us say, x% of 125 is 24, where x is a fraction. As in the problems above, we know from
fraction multiplication that this means, precisely, that x% × 125 = 24. In other words,

x
100 × 125 = 24, or, x

4 × 5 = 24. Multiplying both sides by 4
5 , we get x = 96

5 = 19.2. So
the answer is 19.2% of 125 is 24. Note that 19.2% is a complex fraction.

32 is what percent of 27?

Let us say 32 is x% of 27, where x is a fraction. Then we are given that 32 = x%×27, i.e.,
32 = x

100 × 27. As usual, multiplying both sides by 100
27 gives x = 3200

27 , or x = 118 14
27 .

Therefore, 12 is 118 14
27% of 27.

25 is 12 percent of which number?

Let us say 25 is 12 percent of some number y. This means, literally, 25 = 12
100 × y.

Multiplying both sides by 100
12 gives 2500

12 = y, and therefore y = 208 1
3 .

The above sequence of problems are among the most feared in elementary and middle
school as well as among the most confusing to students. But the one feature common
to all the preceding solutions is how matter-of-fact they are once the precise definition of
a percent is followed literally. One cannot emphasize the importance of having a precise
definition of percent as a complex fraction with 100 as denominator. Without such a
definition, the instruction on percent is commonly reduced to the drawing of pictures.
Since picture-drawing is unlikely to provide answers to questions such as “25 is 12 percent
of which number?”, one can see why the instructional strategy of teaching percents solely
by drawing pictures is inadequate. Drawing pictures can provide a few illustrations of the
concept of percent, but they cannot replace teaching the general concept precisely. In the
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final analysis, the only way to help students in the intervention program is to teach them
correct mathematics, clearly and precisely. Always emphasizing definitions in the teaching
would be a good start.

Rates

As noted at the outset, rates are ratios with units attached. It is vital to respect the
units when doing arithmetic with rates.

Unit conversion. In grade 6, the algebra and function standards

2.1 Convert one unit of measurement to another (e.g., from feet to miles, from cen-
timeters to inches).

2.2 Demonstrate an understanding that rate is a measure of one quantity per unit
value of another quantity.

address the issue of units explicitly. For example, we know that 1 yard = 3 feet. In terms
of the number line, this means if the unit 1 is one foot, then we call the number 3 on
this number line 1 yard. The equality 1 yd. = 3 ft. is usually written also as 1 = 3 ft.

yd. .
Observe that 1 sq. yd., written also as 1 yd.2, is by definition the area of a square whose
side has length 1 yd. Simliarly, 1 ft.2 is by definition the area of the square with a side of
length equal to 1 ft. Since 1 yard is 3 feet, the square with a side of length 1 yard, to be
called the big square, is paved by 3× 3 = 9 squares each with a side of length equal to 1
ft., in the sense that these 9 identical squares fill up the big square and overlap each other
at most on the edges. Therefore the area of the big square is 9 ft.2, i.e., 1 yd.2 = 9 ft.2.
Sometimes this is written as 1 = 9 ft.2

yd.2
.

How many feet are in 2.3 yd.? Recall that the meaning of 2.3 yd. is the number on
the number line whose unit is 1 yd. So

2.3 yd. = 2 yd. + 0.3 yd. = 2 yd. +
3
10

yd.

Now 3
10 yd. is the length of 3 parts when 1 yard is divided into 10 parts of equal length (by

definition of 3
10 ), and therefore 3

10 yd. = 3
10 × 1 yd. = 3

10 × 3 ft., using the interpretation
of fraction multiplication. Of course 2 yd. = 2× 3 ft.. Altogether,

2.3 yd. = {(2× 3) + (
3
10
× 3)} ft. = (2.3× 3) ft.

Exactly the same reasoning shows that

y yd. = 3y ft.

which is of course the same as
y ft. =

y

3
yd.
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These are the so-called conversion formulas for yards and feet, and the seemingly over-
pedantic explanation of these formulas above is meant to correct the usual presentation
of mnemonic devices for such conversion using so-called dimension analysis. For example,
since have agreed to write 1 = 3 ft.

1 yd. , the dimenson analysis would have

2.3 yd. = (2.3× 1) yd. = (2.3× 3 ft.
1 yd.

) yd.

Upon “cancelling” the yd. from top and bottom, we get

2.3 yd. = (2.3× 3) ft.

The above pedantic explanation shows why this entirely mechanical process also yields
the correct answer.

In like manner, 14.2 yd.2 is

14.2× 9 ft.2 = 127.8 ft.2

Speed As another illustration, the common notion of speed has units miles/hour, or mph.
Suppose a car travels (in whatever fashion) a total distance of 30, 000 ft. in 5 minutes,
then by definition, the average speed of the car in this time interval is the total distance
traveled in the time interval divided by the length of the time interval, i.e., the average
speed in this particular case is

30, 000 ft.
5 min.

= 6, 000 ft./min.

Suppose we want to express this average speed as mph. Then, because 1 m. = 5280 ft.,
the conversion formula in this case gives

30, 000 ft. =
30, 000
5280

m. = 5
15
22

m.

Also 5 min. = 5
60 hr., so

30, 000 ft.
5 min.

=
5 15

22 m.
5
60 hr.

=
125
22

× 60
5

mph = 68
2
11

mph

Or, one could have done it by considering

1 ft./min. =
1

5280m.
1
60 hr.

=
1
88

mph,

so that
60, 000 ft./min. = 60, 000× 1

88
mph =

750
11

mph = 68
2
11

mph
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Again, once the mathematical reasoning is understood, one can see why the method of
dimension analysis applied to this case is valid:

60, 000 ft.
1 min.

=
60, 000 ft.

1 min.
× 1 m.

5280 ft.
× 60 min.

1hr.

which (after “cancelling” the ft. and min. from top and bottom) works out to be 68 2
11 mph

again.

Motion at constant speed

The grade 6 algebra and functions standard

2.3 Solve problems involving rates, average speed, distance and time

and the grade 7 algebra and function standard

4.2 Solve multi-step problems involving rate, average speed, distance, and time or a
direct variation.

implicitly bring up the general concept of motion with constant speed. This is the key
example of rates in school mathematics. The meaning of this kind of motion is that
distance traveled in any time interval is equal to the length of the time interval multiplied
by a fixed number v. In other words, using the definition of division as an alternate way
of writing multiplication, so that b

c = a is the same as b = ac, we see that if speed is
assumed to be constant, then the average speed over any time interval is always equal to
v. This number v is called the (constant) speed of the motion, and the preceding statement
is usually abbreviated to “distance is speed multiplied by time” or the self-explanatory
formula

d = v · t.
Emphasize to students that in this kind of motion, the number v remains the same no
matter what the time interval (whose length is t) may be, and that the validity of this
equality for any time interval is the definition of constant speed.

The concept of constant speed is a subtle one. Understanding why the formula d = vt
describes correctly our intuitive idea of “constant speed” requires careful reasoning that
is not obvious to most students. The intuitive meaning of “constant speed” is that equal
distances are traversed in equal times. We now sketch the multi-step argument that
provides the link between this intuitive idea and the above formula. This argument is
actually needed in several places in K-12 mathematics, but is usually ignored.10

For beginning students, let the time t be a whole number multiple of a fixed unit,
e.g., hour, minute, etc. Then this formula is easy seen to be correct, as follows.

10 We will give another example of this basic argument later in this article when we discuss proportion

and scaling.
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If the speed v is 55 miles an hour, then the distance traveled after 2 hours is 55+55 =
2×55 miles, after 3 hours is 55+55+55 = 3×55, after 4 hours is 55+55+55+55 = 4×55
miles, etc. After n hours (with n a whole number), the distance traveled d is then
55 + 55 + · · · + 55 (n times) = n × 55 = 55n. Since v = 55 and t = n, the formula
d = vt is correct in this case. Clearly the speed can be any whole number v instead of
55 and the reasoning remains unchanged. So the formula is correct in general when t
is a whole number.

Next, we take up a special case where v is a fractional multiple of the unit time.

Let the distance traveled in unit time be v (miles, feet, etc.). Intuitively, the distance
traveled in a time interval of length 1

m , where m is a positive integer, should be v
m , and

we can see this as follows. If m = 3, then whatever the distance traveled in 1
3 of unit

time, we know that 3 times that distance would be the distance traveled in unit time,
i.e., v. Therefore the distance traveled in 1

3 of unit time is v
3 . If m = 7, then whatever

the distance traveled in 1
7 of unit time, we know that 7 times that distance would be

the distance traveled in unit time, which is again v. So the distance traveled in 1
7

of unit time must be v
7 . Thus for a general positive integer m, the distance traveled

in 1
m of unit time must be v

m . Thus with a motion at a constant speed of v (miles,
feet, etc.) per unit time, and d = v

m , t = 1
m , we have verified that the formula

d = vt again holds. Next, consider a fractional value of t such as t = 5
3 . Then the

time interval consists of 5 sub-intervals of length 1
3 each. Since we already know the

distance traveled is v
3 in each of these sub-intervals, the total distance traveled in the

interval of length 5
3 is v

3 + · · · + v
3 (5 times), which is 5v

3 = 5
3 × v. Thus with t = 5

3 ,
d = 5

3 ×v, the formula d = vt again has been shown to be correct. The case of t equal
to an arbitrary fraction n

m is similar. Knowing the validity of the formula for rational
values of t is sufficient for most purposes.

An informal presentation of this argument in the classroom, at least for some concrete
values of t, would serve the useful purpose of making the formula more accessible to
students. In any case, the formula should be stated clearly as the correct description of
motion at constant speed.

As a simple illustration of the formula and the grade 6 standard 2.3 quoted above,
consider the following problem

A passenger traveled 120 km by bus. The speed of the bus was a constant 45 km per
hour. How long did the passenger travel by bus?

Thus d = 120 km and v = 45 km per hour. According to the formula, 120 = 45× t, where
t is the total time duration of the passenger in the bus. Multiply both sides by 1

45 and we
get 120

45 = t and so t = 2 30
45 = 2 2

3 hours, or 2 hours and 40 minutes.

The other issue of substance is that many ratio problems are accessible without exten-
sive symbolic computations. In particular, the fictitious skill of “setting up proportions.”
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should be avoided, as we proceed to demonstrate. Consider the problem:

A train travels with constant speed and gets from Town A to Town B in 42
3 hours.

These two towns are 224 miles apart. At the same speed, how long would it take the
train to cover 300 miles?

We first do this the clumsy way. Let v be the (constant) speed of the train. Since the
train travles 224 miles in 4 2

3 in 4 2
3 hours, we have (according to d = vt) 224 = v × 42

3 .
Therefore

v =
224
42

3

Now suppose it takes the train t hours to travel 300 miles. Then also 300 = vt for the
same number v. This gives

v =
300
t

Comparing the two equations gives

224
4 2

3

=
300
t

From this, the usual procedure (e.g., cross-multiply) yields t = 6 1
4 hours.

The last displayed equation is one that students using the method of “setting up the
correct proportions” would obtain by the procedure of “writing a proportion for the rate
of distance divided by time”. What is gained by the above reasoning over this standard
procedure is that we derived this equation strictly using the precise definition of constant
speed, because the equality of 224

4 2
3

and 300
t is due to the fact that the average speeds over

the respective time intervals stay the same.

This kind of detailed explanation is needed for beginners as it puts them on a solid
mathematical footing. After they have gotten used to this reasoning, then they can be
exposed to the normal way of doing such problems, such as the following.

From the data, the speed is 224
4 2

3
miles per hour, or 48 miles per hour. Therefore to

travel 300 miles, it would take 300
48 = 6 1

4 hours, or 6 hours and 15 minutes.

Another example of this kind is:

I spent 36 dollars to purchase 9 cans of Peefle. How much do I have to spend to
purchase 16 cans?

The price per can is 36
9 = 4 dollars, so to buy 16 cans, I would have to pay 16 × 4 = 64

dollars.

We emphasize once again that no “setting up a proportion” is necessary.
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We are now in a position to consider the constant speed problem in the introduction:

The 132 meter long train travels at 87 kilometers per hour and the 118 meter
long train travels at 93 kilometers per hour. Both trains are traveling in the same
direction on parallel tracks. How many seconds does it take from the time the
front of the locomotive for the faster train reaches the end of the slower train to
the time that the end of the faster train reaches the front of the locomotive on the
slower one?

In this case what matters is that the faster train must travel the distance equal to the sum
of the lengths of the two trains further than the other train in the given time interval. This
extra distance is 132 + 118 = 250 meters or 1

4 km. We now apply the defining property
of constant speed motion, namely, d = vt. Suppose it take t hours for the faster train to
travel 1

4 km. Then in these t hours, the faster train travels 93t km and the slow train 87t
km, so that the faster train has traveled (93t− 87t) km more than the slower train at the
end of the t 93t− 87t = 1

4 or 6t = 1
4 and t = 1

24 hours which is 2 1
2 minutes or 150 seconds.

hours. But this difference is equal to 1
4 km. Therefore,

Finally, we point out that the grade 6 statistics, data analysis and probability stan-
dard

3.3 Represent probabilities as ratios, proportions, decimals between 0 and 1, and
percentages between 0 and 100 and verify that the probabilities computed are
reasonable; know that if P is the probability of an event, 1-P is the probability
of an event not occurring.

pulls together almost everything we have discussed thus far.

Percentage Increase and Decrease Problems

These are represented by the grade 7 number sense standard

1.6 Calculate the percentage of increases and decreases of a quantity.

Percentage increase, percentage decrease problems and related problems can appear
to be quite tricky and somewhat non-intuitive at the beginning. The fact that an x%
increase, followed by the same percentage decrease, is not going to get back to where you
started, is extremely mystifying to students. It is especially important at this point to be
clear about the terminology, emphasize clear definitions, and give illustrative examples.
Part of the problem is that when this topic appears, students generally lack the algebraic
skills to go through the argument. A second difficulty is that students often lack skill and
practice in dividing fractions.

Students should convince themselves, via direct calculation, that a 20% increase,
followed by a 20% decrease does not get one back to where one started. For example,
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suppose a coat costs $200. A 20% increase in price means precisely that the new price is
what one gets by adding to the original price ($200) an amount equal to 20% of this price
($200). The new price is therefore 200 + (20%× 200) = 200 + 40 = 240 dollars. Now at
this price of $240, a 20% decrease in price means precisely that the new price is what one
gets after subtracting from this price an amount equal to 20% of the price ($240). Thus
the new price is now 240− (20%× 240) = 240− 48 = 192 dollars. Notice that 192 is less
than 200, the original price of the coat, and this is because 20% of a higher price ($240)
is bigger than 20% of the lower original price ($200) By looking at further examples, say
10% and 15%, students should come to understand that an y percent increase followed by
the same percent decrease, for any positive rational number y, will always give less than
what they started with, and they should be able to give a heuristic argument to justify
this.

At the seventh grade level we can explain this phenomenon precisely by drawing on
ideas from the section on Symbolic Manipulations in the chapter on The Core Processes
of Mathematics, as follows.

A y% increase in price over a given price of P dollars means that the new price is
P + (y%× P ) = (1 + y%)P , by the distributive property. A y% decrease in price of
a given price Q means, as defined above, that the new price is Q− (y%×Q), which
equals (1 − y%)Q, by the distributive property again. So if we follow a y% increase
by a y% decrease of P dollars, the new price is a y% decrease of (1 + y%)P dollars,
and is therefore

(1− y%){(1 + y%)P} = {(1− y%)(1 + y%)}P = (1− (y%)2)P

dollars, where we have made use of the standard identity (a + b)(a − b) = a2 − b2.
Normally, 0 < y < 100, so 0 < (y%) < 1, and hence also 0 < (y%)2 < 1. It follows
that

0 < (1− (y%)2)P < P

This is the reason that, if 0 < y < 100, a y% increase in price followed by the same
y% decrease always result in a price less than the original one.

Of course the conclusion is the same if we begin with a y% decrease in price (instead of
increase), to be followed by a y% increase in price. Again concrete examples should be
given.

Related to the preceding considerations is the grade 7 standard

1.7 Solve problems that involve discounts, markups, commissions, and profit and
compute simple and compound interest.

Compound interest is likely to be too involved at this stage for our needs and serious
thought should be given as to whether it should be discussed or not.
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Proportions

A proportion is an equality of ratios: four ordered numbers A, B, C and D define a
proportion if

A

B
=

C

D
.

We have already come across an example of a proportion in the problem of a train going
from Town A to Town B in the preceding section. We now approach this topic more
systematically, making implicit use of the idea of a linear function in order to add clarity
to the discussion. Though not strictly necessary, we nevertheless recommend a revisit
of this section after students have learn about linear functions (in the volume on Core
Processes of Mathematics).

Proportions are a major source of difficulty in the K-8 curriculum. Part of the trouble
may come from the fact that they involve division of fractions, which is one of the parts
of arithmetic least understood by students. Beyond that, however, lies another difficulty.
Just as ratios are a way of talking about division without using the term, proportions
are a way of talking about linear functions without really mentioning them. That is,
very often when one is talking about proportions, one has in mind two quantities which
can take different values, but the ratio of the two quantities is a fixed number (or rate).
If the quantities are A and B, then we are given that A

B = k, k is a fixed number,
called the constant of proportionality. Multiply both sides of this equality by B and we
get A = kB. We have come across this kind of equation before, e.g., A is the distance
traveled in a time interval of length B, so that k would be the (constant) speed of this
motion. Other examples of this kind will show up below. When two quantities A and B
are related by A = kB for some fixed number k, we say A and B are in direct proportion.

There is a large class of examples in daily life of two quantities in direct proportion.
If A is the cost of n identical dresses and B = n, then k in this case would be the cost
of one dress; the constant of proportionality is then called the unit cost. If A is the total
number of legs in n identical living creatures (e.g., a crab) and again B = n; then k is the
number of legs in one such creature. If A is the total number of wheels in n tricycles and
B = n; then k is 3. And so on. Such examples share a common characteristic: B can only
be a whole number, so that it is possible to examine the two quantities A and B one by
one. These examples are relatively easy to understand. The more difficult case is where
B can take on arbitrary (positive) values, such as in motion or water flow problems. We
will concentrate our discussion on the more difficult case.

Proportions arise from the equation A = kB by taking two values A1 and A2 of A
and two corresponding values B1 and B2 for B. The equations A1 = kB1 and A2 = kB2

imply that
A1

B1
= k =

A2

B2
.

This just says that A1, B1, A2 and B2 form a proportion. The fact that proportions
are treated in the curriculum before it is commonly thought appropriate to discuss linear
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functions and linear equations means that the heart of what is going on cannot be directly
confronted. The difficulty is compounded by discussions in textbooks of solving problems
about proportions by “setting up a proportion”, such as A1

B1
= A2

B2
above, without being

able to explain what it takes to “set it up” or why the procedure is correct. However, if
students can learn about proportions in a mathematically correct way, as we are suggesting
here, this knowledge can be a tremendous aid when they come to an algebra course.

Basic proportional relationships appear as early as grade 3, in the standard

2.2 Extend and recognize a linear pattern by its rules (e.g., the number of legs on a
given number of horses may be calculated by counting by 4s or by multiplying
the number of horses by 4).

However, standards of this kind should just be regarded as preparation for proportions.
The first major standard that addresses proportions is the grade 6 number sense standard

1.3 Use proportions to solve problems (e.g., determine the value of N if 4
7 = N

21 ,
find the length of a side of a polygon similar to a known polygon). Use cross
multiplication as a method for solving such problems, understanding it as the
multiplication of both sides of an equation by a multiplicative inverse.

Consider the following problem:

If a building at 5:00 PM has a shadow that is 75 feet long, while, at the same time, a
vertical pole that is 6 feet long makes a shadow that is 11 feet long, then how high is
the building?

What is implicitly assumed here, and what must be made explicit when teaching this
material, is the fact that

height of object
length of its shadow

= constant

This comes from considerations of similar triangles which will be taken up in a high school
course. However, since such problems already occur in much lower grades, there should
be some discussion of the concept of similarity already in grade 6. Briefly, what students
need to understand is first that the situation above gives two triangles with pairs of equal
corresponding angles but different lengths for the corresponding sides, as shown below.
The left represents an object and its shadow and the right is a second object with its
shadows, and in each case, the hypotenuse represents the sunlight. On the left, l1 is the
length of the shadow of the object of height l2, and on the right, L1 is the length of the
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shadow of the object of height L2.
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From the theory of similar triangles, we know that these triangles are similar and, therefore,
the ratio li

Li
is a constant k independent of i, so Li = kli, for i = 1, 2, 3. Thus,

L2

L1
=

l2
l1

because both sides are equal to kl2
kl1

. This equality is exactly the above statement about
the ratio of the height of each object to the length of its shadow.

Now we can do the problem. Let A be the height of the object and let B be the
length of its shadow. Then we have A

B = K, where K is a fixed number. If the object
is the building, then A is the height of the building (i.e., what we are trying to find out)
and B is 75 ft. by the given data, and we know A

75 is equal to this constant K. On the
other hand, if the object is the pole, then the ratio 6

11 is also equal to K. Therefore the
two numbers A

75 and 6
11 , being both equal to K, are equal, i.e.,

A

75
=

6
11

The solution of the problem is now straightforward: multiply both sides by 75 to get
A = 75 × 6

11 = 40 10
11 feet. (Or cross-multiply and get 11A = 6 × 75, so A = 450

11 = 40 10
11

feet.)

It would not do to teach the solution of this and similar problems by asking students
to learn the “skill of setting up the correct proportion” of A

75 = 6
11 but without making

explicit the fact that A
B is a fixed number k. We repeat: “Setting up a proportion”,

in the sense it is currently understood in textbooks, is emphatically not a mathematical
concept.

As we have seen, problems of motion at constant speed provide a good illustration of
proportions. From our discussion of such problems we know that the distance d traveled in
a given time t at constant speed v is determined by the equation d

t = v; that is, the ratio
of distance to the length of the time interval of travel is equal to the constant v no matter
what time interval is chosen. An entirely analogous discussion can be given for work or
water flow, two of the staple topics concerning rates in school mathematics. For the case
of water flowing out of a faucet, we say the water flows at a constant rate if the amount of
water, say w gallons, coming out of the faucet during a time interval of t minutes always
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satisfies w
t = a fixed number, say r, no matter what time interval is chosen. Note that r

is called the rate of the water flow, and it has units of gallon
minute . The intuitive reason why

the equation w
t = r correctly translates the concept of “constant rate of water flow” is

identical to the reason given above for “constant speed.”

Here is an illustrative problem:

Water is coming out of a faucet at a constant rate. If it takes 3 minutes to fill
up a container with a capacity of 15.5 gallons, how long will it take for it to fill
a tub of 25 gallons?

Suppose it takes x minutes to fill the tub, then both 25
x and 15.5

3 are equal to r, and
therefore

25
x

=
15.5
3

.

Notice that both are quotients of fractions because 15.5 is really 155
10 and x is expected to

be a fraction and not a whole number. Nevertheless, knowing that the cross-multiplication
algorithm holds also for complex fractions, we cross-multiply to get 15.5x = 75 so x =
75

15.5 = 4 26
31 minutes.

As before, the displayed equation above was not “set up as a proportion.” Rather, it
is a statement about the constancy of the rate of water flow. At the risk of excessive repe-
tition, we want students to understand that all claims about two things being proportional
amount to saying that certain quotients are constants.

Direct and Inverse Variation

The final topics that we mention are

(1) Direct variation: Two quantities that change in such a way that their ratio remains
constant are said to be be directly proportional or to vary directly. Thus this is simply
further vocabulary for proportion

(2) Inverse variation: Two quantities that change in such a way that their product is
constant are said to vary inversely.

As we have already mentioned in the section on proportions, the term direct variation
is the school math vocabulary for saying that one quantity is a linear function (without
constant term!) of another quantity. It applies to constant speed motion: d

t = v, or
d = vt; to constant flow problems: w

t = r, or w = rt; to cost-quantity relationships:
C = pN (where N is the number purchased of some item, C is the total cost of the order,
and p is the unit price); and to many other interesting and important situations.

Inverse variation occurs in problems like the following taken from a sixth grade Rus-
sian text:

49



Three workers can perform a certain task in six hours. How much time will two
workers need to perform this same task if all workers work at the same speed?

Let us first explain in what way this is a problem about inverse variations. Since all
workers work at the same speed, the amount of work done by one worker in each hour,
to be denoted by T , is a constant independent of the worker. The amount of work done
by one worker in h hours is then hT , and the total amount of work done by n workers in
each hour is therefore nhT . Now if it takes n workers to perform a given task in h hours,
then the amount of work done by n workers in h hours is a fixed constant K, which is the
amount of work required to finish the task. So nhT = a constant K. Since T is also a
constant, so is K

T . Thus

nh = a constant
K

T

We see that n varies inversely with h. The given data is that if n = 3, then h = 6. If
n = 2, let the numbers of hours it takes two workers to perform this task be x. Then
3 × 6 = 2x, both being equal to K

T . It follows that x = 9, i.e., it will take two workers 9
hours to perform this task.

Both direct and inverse variation are captured by the same equation, namely c = ab.
The difference between them is which term stays constant. If a remains fixed, then c varies
directly with b. On the other hand, c remains fixed, then a and b vary inversely. Thus,
in the Russian problem above, we had a fixed job, and a variable source of labor, with
consequent variation in the time needed. Time and amount of labor for a given job are
inversely related. On the other hand, the same equation might be used to calculate, with
fixed labor input, the amount of work that can be done in a given amount of time. Then
one would be in a direct variation situation: amount of work done would vary directly
with time allotted.

At present, there is substantial confusion about these concepts in schools. To illustrate
the problem we offer this example of an actual fifth grade state standard referring to direct
and inverse variation in which almost every aspect of the mathematics is incorrect:

Identify and describe relationships between two quantities that vary directly (e.g.,
length of a square and its area), and inversely (e.g., number of children to the size of
a piece of pizza).

(Of course, while the difficulties with the first example are severe, the difficulties with the
second are easily fixed.)

It should be realized that problems like the “three-worker” question above involve
important techniques and problem solving skills. But the tension between vocabulary and
the core concepts that the vocabulary is supposed to summarize must be resolved before
instruction can improve. In the case of direct and inverse variation, it would seem better
to entirely suppress the vocabulary and simply discuss the equation

c = ab,

particularly the special cases where a is a constant or c is constant.

50



The Core Processes of Mathematics

Introduction

Mathematics tends to be taught as sequences of rigid rules in K - 8 instruction in this
country. A typical example is the break-up of solving linear equations into the following
four types:

1. one-step, x + a = b, ax = b, where only one basic operation is needed to replace the
equation by one of the form x = c (called isolating the variable ),

2. two-step, ax + b = c, ax + bx = c, where two basic operations are needed, and

3. three-step, ax = cx + d,

4. four-step, ax + b = cx + d.

Traditionally, each type of equation is taught separately, and typical texts never indicate
the core insight that in all cases there is a common objective, isolating the variable – the
variable being the (as-yet-unknown) number – by using the standard properties of number
operations (distributive property, associative property, etc.). Consequently, general skills
with symbolic manipulation are not developed. Almost uniformly, American students are
taught to multiply binomials of the form (a+ b)(x+ y) by using the memonic FOIL (first,
outer, inner, last). That is the only way they are taught, and the procedure itself is called
“foiling.” Students become adept at foiling, but don’t understand that this is just three
applications of the distributive law. As a result they are unable to generalize foiling and
expand an expression like (a + b)(x + y + z).

This is unfortunate, since it is precisely in this area of symbolic manipulation that
the power of mathematics in general, and algebra in particular, comes to the forefront.
If students cannot handle these processes, they will not be able to use mathematics in
effective ways. Yet, extremely few students manage to become proficient in symbolic
manipulation on their own, and the need for remediation in this area is widespread.

Symbols

It often happens that we want to determine a quantity that satisfies a number of
conditions. A method for doing this which has been extremely fruitful is to let a symbol
stand for the unknown quantity, and to express the conditions via equations involving the
symbol. In many situations these equations can then be manipulated using a small set of
principles to find the value (or values) of the quantity.

Symbolic manipulation begins with the use of symbols. The standards in the Cali-
fornia Mathematics Content Standards that directly address this issue are the following
algebra and functions standards:
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Grade 3

1.0 Students select appropriate symbols, operations, and properties to represent,
describe, simplify, and solve simple number relationships.

Grade 4

1.1 Use letters, boxes, or other symbols to stand for any number in simple expressions
or equations (e.g., demonstrate an understanding and the use of the concept of
a variable).

Grade 5

1.2 Use a letter to represent an unknown number; write and evaluate simple algebraic
expressions in one variable by substitution.

Grade 6

1.2 Write and evaluate an algebraic expression for a given situation, using up to three
variables.

Grade 7

1.1 Use variables and appropriate operations to write an expression, an equation,
an inequality, or a system of equations or inequalities that represents a verbal
description (e.g., three less than a number, half as large as area A).

It will be noticed that all these standards are vaguely similar, and differ from each other
only in the level of sophistication with which the symbols are put to use. For the moment,
we shall ignore the references to “evaluate” expression and concentrate on the use of
symbols instead.

At the outset, a symbol or variable (such as x or a) is just a number, in exactly
the same way that the pronoun “it” in the question “Does it have five letters?” is just a
word (in a guessing game of “What is my word?”) This x or a may be unknown for the
time being, but there is no doubt about the fact that x or a is a number and therefore
can be added, subtracted, multiplied, and divided. For example, it makes perfect sense
to write 3 + x or 5x as soon as we specify that x is a number.11 Third graders should
be taught to use letters to represent numbers instead of using blanks all the time, i.e.,
use 3 + x = 5 sometimes instead of 3 + = 5. Students should be taught the good
habit of always specifying what a symbol means instead of just writing something like
27 − x = 14 without saying what x is. It could be, for instance, “Find the number x so
that 27 − x = 14.” Or, “What number x would satisfy 27 − x = 14?” But a common
mistake one finds in many textbooks is to just thrust something like 27 − x = 14 on

11
5x means “5 times x”, but this symbolism should only be used starting at the fourth grade level.
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students with no explanation. An error of another kind is to legitimize the writing of
things like 27− x = 14 without any explanation of what x is by introducing the concept
of an open sentence, thereby making students learn an unnecessary concept. We can avoid
both types of issues by helping students learn the good habit of specifying each symbol
they use from the beginning.

Third grade is a good starting point for students to learn the use of symbols, but
because the main thrust of these standards is for students to learn to use symbols fluently,
the exact grade level of each standard is not a primary concern. What is important is
that the technical sophistication of the exercises they are asked to do increases gradually.
And it must be said that exercises are the heart of these standards; students must achieve
fluency in the use of symbols through practice. Here are some sample suggestions.

Third grade level problems

1 Write a number sentence for a number y so that 21 minus y is equal to 7.

2 Write a number sentence to express: 21 cars are parked and y cars drive off; only
7 cars remain.

3 Express in symbolic form: a number x when added to 21 is larger than 45.

4 There were 112 birch trees and x aspens in a forest. Explain what the following
expressions denote: 112 + x; 112− x; x− 112.

Fourth grade level problems

1 Paulo reads a number of pages of a 145-page book, then he read 43 pages more
so that only 38 pages remain. If p is the number of pages Paulo read the first
time, write an equation using p to express the above information.

2 I have a number x and when I first subtract 18 and then 9 from it, I get 7. Write
an equation to express this information. What is x?

3 18 meters of wire was cut from a reel, and then another 9 meters of wire was
cut. 7 meters of wire then remained on the reel. If there are w meters of wire on
the reel originally, write an equation that expresses the preceding information.
What is w?

4 Make up an equation for each problem and solve it. (a) Some number is 20
greater than 15. Find the number. (b) 27 is 13 less than some number. What is
the number?
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Fifth grade level problems

1 Starting with a number x, Eva multiplies it by 5 and then subtract 9 from it to
get a new number. If x is 3, what is the new number? If x is 10? If x is 14? If
x = 19?

2 Suppose that y is a number so that when 5 is subtracted from 3 times y, we get
31. Write down an equation for y. What is y?

3 Let x be the number of oranges in a basket. Write a story about the equation
x− 5− 11 = 1

2x.

Sixth grade level problems

1 Johnny has three siblings, two brothers and a sister. His sister is half the age
of his older brother, and three fourths the age of his younger brother. Johnny’s
older brother is four years older than Johnny, and his younger brother is two
years younger than Johnny. Let J be Johnny’s age, A the age of Johnny’s older
brother, and B the age of his younger brother. Express the above information in
terms of only J , A, and B.

2 Helena bought two books. The total cost is 49 dollars, and the difference of the
squares of the prices is 735. If the prices are x and y dollars, express the above
information in terms of x and y.

Seventh grade level problems

1 We look for two whole numbers so that the larger exceeds the the smaller by at
least 10, but that the cube of the smaller exceeds the square of the larger number
by at least 500. If the larger number is x and the smaller number is y, write
expressions relating x to y.

2 Erin has 10 dollars and she wants to buy as many of her two favorite pastries as
possible. She finds that she can buy either 10 of one and 9 of the other, or 13
of one and 6 of the other, and in both cases she will not have enough money left
over to buy more of either pastry. If the prices of the pastries are x dollars and
y dollars, respectively, write down the inequalities satisfied by x and y.

Mathematical Preliminaries to Symbolic Manipulation

Observe that the main emphasis of the above standards (and the included examples)
is on the use of symbols. If a solution is asked for in any of the examples, it can be
obtained by simple arithmetic or even mental math. The next stage of the development
of students’ command of symbolic language is the acquisition of symbolic manipulative
skills to solve the equations or inequalities. Before taking up the latter, we would like to
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point out a very important aspect of the use of symbols: the symbolic representations of
the associative, commutative, and distributive properties, as given in the following algebra
and functions standards

Grade 2

1.1 Use the commutative and associative rules [of addition] to simplify mental cal-
culations and to check results.

Grade 3

1.5 Recognize and use the commutative and associative properties of multiplication
(e.g., if 5 × 7 = 35, then what is 7 × 5? and if 5 × 7 × 3 = 105, then what is
7× 3× 5?)

Grade 5

1.3 Know and use the distributive property in equations and expressions with vari-
ables.

Students should be taught how to express these rules in symbolic form no later than fourth
grade. For example, the associative property of addition can be rephrased symbolically as
follows: for any numbers x, y, z, it is always true that

x + (y + z) = (x + y) + z.

This symbolic representation can be motivated by pointing out that concrete statements
about the associativity of addition in terms of explicit numbers are inadequate, e.g., we
can go on listing equalities like these: (2 + 3) + 13 = 2 + (3 + 13) (both sides equal 18),
(17 + 5) + 43 = 17 + (5 + 43) (both sides equal 65), (8 + 613) + 11 = 8 + (613 + 11) (both
sides equal 632), etc. But no matter how many such equalities are written down, they
still do not completely convey the fact that associativity works for any three numbers.
For this reason, the preceding symbolic representation becomes a necessity if we want to
express the associative property precisely and correctly. We reiterate that this property
says for any three numbers, adding the first to the sum of the second and third is the same
as adding the sum of the first two to the third.

As was mentioned earlier, every symbolic expression must be accompanied by a state-
ment of what the symbols mean. In the case of associativity for addition, the statement for
any numbers x, y, z should be explained with some care to students because this will be
their first encounter with the concept of generality. They have only written out symbolic
statements for specific numbers, e.g., (2 + 3) + 13, or the number x so that x − 17 = 8
to this point. By contrast, the associativity of addition does not make a statement about
one or several triples of numbers, but about all triples x, y, z. When we begin to assert
that something is true for all numbers, we are introducing students to the heart of algebra
and the core of mathematical reasoning. This is why we should be careful here.
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The symbolic representations of the commutativity of addition and multiplication and
the associativity of multiplication should be similarly presented to students no later than
the fourth grade level, and distributivity no later than the fifth grade level.

Students can, and should be shown the power of generality even at this stage. For ex-
ample, the calculation (19, 805+80, 195)+2, 867, 904 = 100, 000+2, 867, 904 = 2, 967, 904,
is simple enough to be done by mental math. What we want to demonstrate is that, if
one knows the commutativity and associativity of addition, then the rather formidable
addition problem of

(80, 195 + 2, 867, 904) + 19, 805

can also be done by mental math. This is because one recognizes that the numbers 19, 805
and 80, 195 “fit together in terms of addition”, so that one mentally maneuvers to bring
them together using commutativity and associativity:

(80, 195 + 2, 867, 904) + 19, 805 = 19, 805 + (80, 195 + 2, 867, 904)
= (19, 805 + 80, 195) + 2, 867, 904
= 100, 000 + 2, 867, 904
= 2, 967, 904

It is necessary to point out to students that, impressive as this example may seem,
it is a rather trivial justification of why they should learn about these general properties.
The real justification comes from applying them to unknown numbers x, y, and z when
we try to solve equations. This is what we do below.

Another noteworthy feature of the symbolic representation of these properties is a
reinforcement of the comment made earlier about the need to form the good habit of
always giving meaning to the symbols. Consider the following two statements:

For any numbers x, y, z, it is true that x + (y + z) = (x + y) + z.

and

There are some numbers x, y, z for which it is true that x+(y +z) = (x+y)+z.

Notice that although both statements contain the same equation, x+(y+z) = (x+y)+z,
they mean completely different things simply because the meaning we give to these symbols
are different in the two statements. We repeat: always make sure students explain the
meaning of the symbols they use.

Finally, students should be aware that the associative, commutative, and distributive
properties remain valid no matter how many numbers are involved. For example, the
validity of the associative property for the addition of four numbers a, b, c, d, states that
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all possible ways of adding these four numbers are equal:

(a + b) + (c + d) = ((a + b) + c) + d

= a + ((b + c) + d)

= (a + (b + c)) + d

= a + (b + (c + d))

The equality
(a + b) + (c + d) = ((a + b) + c) + d,

can be seen to be the application of the original associative property to the three numbers:
(a + b), c, and d. The equality of the others is similar. While reasoning of this kind is
(admittedly) boring, it must be recognized that the more general form of the associative
property is what makes it possible to write a + b + c + d without the use of parentheses
(because the parentheses don’t matter). To push this line of reasoning one step further,
students should at least see why the distributive property for any three numbers, i.e.,
a(b + c) = ab + ac, would imply

a(b + c + d + e) = ab + ac + ad + ae.

This is because

a(b + c + d + e) = a{(b + c) + (d + e)} = a(b + c) + a(d + e) = (ab + ae) + (ad + ae),

and the last is equal to ab + ac + ad + ae because of the associative property for four
numbers.

One should not over-emphasize this kind of generality to students in grades 6 or 7,
but to the extent that they will be seeing expressions such as 12 + 87− 2 + 66 + 54 or
44× 17× (−23)× 91 often (polynomials of high degree, for example), these facts should
be explained to them.

Evaluating Expressions

The grade 7 algebra and functions standard 1.2 introduces a new dimension to
students’ growing proficiency with symbolic expressions

1.2 Use the correct order of operations to evaluate algebraic expressions such as
3(2x + 5)2.

Two comments are in order. First, we have mentioned previously that order of operations
should be de-emphasized. It is now possible to be more precise at this point: with symbolic
expressions of the type 5x2 + 7(2x− 1)2 − 2x3 for a number x, the notation itself almost
suggests the correct order of doing the operations: first do the exponents (i.e., x2, (2x−1)2,
and x3), then do the multiplications (i.e., 5x2, 7(2x − 1)2, and 2x3), and finally the
additions. Because subtraction is just a different way of writing addition (e.g., −2x3 is
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just +(−[2x3])), and because division is expressed in terms of fraction multiplication (e.g.,
2x÷5 is really 1

5 (2x) in disguise), 12 this rule is sufficiently comprehensive. Anything more
complicated should use parentheses for the sake of clarity. For example, monstrosities such
as 2× 5

7÷13÷3+15÷16 should be avoided at all costs. Second, we strongly suggest the
use of numbers which are not integers for the exercises in connection with the evaluation of
algebraic expressions, i.e., the seventh grade standards 1.2 and 1.3 above, and the algebra
and functions standards 1.2 in grade 5 and 1.2 in grade 6 (which were quoted at the
beginning of this section).

Here are some sample problems for the evaluation of expressions. In each case, an
expression involving a number x and sometimes other numbers y and z are given and
students are asked to evaluate the expression for the value of x (and y and z) specified in
each case. Note that some of the exercises are set up in such a way that if the distributive
property or some general property of rational numbers is properly applied, then they
become extremely simple.

Grade 5

1. 8× (x÷ 7)− (x− 2). x = 84.

2. (3x + 5)− 4× (7− x). x = 6.

3. (4 + (2x− (9− x))). x = 5.

4. 3
4 × (x− 1

2 ). x = 2
3 .

5. 5× (x2 + 2
5 )− x. x = 1 1

2 .

Grade 6

1. x(3y − 2z) + x(2z − 3y). x = 213, y = 71, z = 102.

2. 8xy − 5xz + x2. x = 35, y = 1, z = 7.

3. 63x− 49x + 5x− 8x. x = 21.

4. 24x2 − 3x− 21x3 + 6x2. x = 1
2

5. 3
7x2 + 2 1

3x− 5
3x− 2

7x2. x = 21.

12 By the seventh grade, students should know that parentheses stand for multiplication, i.e., 1
5 (2x)

means the product of 1
5 and 2x.
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Grade 7

1. 1
4x2 − 3 1

3x− 3
2x2 + 1

3x. x = 6.

2. 5x2 + 18− 2
3x− ( 1

2 − 5x). x = 1
4

3. 2x(1− 1
2x) + 1

2x(2x + 4). x = 85
4 .

4. x(2− 1
x )− 47 1

x . x = 47
2 .

Symbolic Manipulation

Students learn about rational numbers in the seventh grade. As suggested in the
chapter on Fractions and Decimals, rational numbers are a system of numbers which is
assumed to satisfy the associative, commutative, and distributive properties. Students
need to be reminded of this fact, and in particular, the fact that the distributive property
now includes not just addition but also subtraction, namely, for all rational numbers x, y,
z, the following holds:

x(y − z) = xy − xz

This is a consequence of that fact that y − z is by definition nothing but y + (−z) and
that −xz = x(−z), so that if we appeal to the distributive law for addition, we have:

x(y − z) = x(y + (−z))

= xy + x(−z)

= xy − xz

This and more are part of the following grade 7 algebra and functions standard

1.3 Simplify numerical expressions by applying properties of rational numbers (e.g.,
identity, inverse, distributive, associative, commutative) and justify the process
used.

Here something new and immensely significant has been added to the subject - sim-
plifying expressions. This is one of the two basic components of symbolic manipulation
on the introductory level, to which we may regard the exercises above on evaluation as a
prelude. The topic of simplifying expressions will be taken up at greater length in a course
on algebra, but a few pertinent comments at this point would help to pave the way for
students’ future work. What matters is not just simplifying expressions but manipulating
them, changing a mathematical expression possibly involving variables into an equivalent
expression, or correctly deriving a more useful expression from a given one. Put this way,
this is one of the most important steps students must take in developing mathematical
proficiency. Let us illustrate the most elementary aspect of simplifying expressions, which
is nothing but the application of the distributive property
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Suppose we are given an expression (251× 69)+ (76× 122)+ (32× 251)− (122× 16).
Rather than doing the multiplications 251×69 and 32×251 involving the same number 251
separately, it would save labor to combine the two operations if possible. The distributive
and commutative properties imply that

(251× 69) + (32× 251) = (251× 69) + (251× 32) = 251 (69 + 32) = 251× 101 = 25351

Similarly,
(76× 122)− (122 × 16) = 122 (76− 16) = 122 × 60 = 8640

Thus the original expression equals 25351 + 8640 = 33991. This is one of the instances
where the process is more important than the end result. The key idea of this process is
that the general properties of the number operations should be applied whenever possible
to achieve implifications:

(251× 69) + (76× 122) + (32× 251)− (122 × 16) = 251 (69 + 32) + 122 (76− 16)

If we replace the numbers 251 and 12 by any other numbers, the simplification would be
similar. This means that for any two numbers x and y, we always have:

69x + 76y2 + 32x− 16y2 = (69 + 32)x + (76− 16)y2,

Notice that, as a matter of convention, we have written 69x for x69 and 16y2 for
y216. More generally, given (rational) numbers a, b, c, d, the equality

ax + by2 + cx + dy2 = (a + c)x + (b + d)y2

holds for all numbers x and y. The extension to any sum of this type can be similarly
formulated. This technique is known as “collecting like terms” in algebra and is one of
the rigid rules that is normally emphasized in the teaching of algebra, but students should
understand that so-called “collecting like terms” is no more than a sensible application
of the distributive property to achieve an efficient organization of one’s work. The basic
idea of applying the distributive property whenever possible will also be a key step in the
solution of linear equations below.

We now turn to the other basic component of symbolic manipulation which has to
do, not with expressions, but with equations. It is based on the two basic algebra and
functions standards in grade 4.

2.1 Know and understand that equals added to equals are equal.

2.2 Know and understand that equals multiplied by equals are equal.

Students should know how to express these in symbolic language. Standard 2.1 means
that if a, b, x, y are any four numbers, and a = b, x = y, then a + x = b + y. Similarly,
2.2 means that under the same assumption on a, b, x, y, ax = by. Note that these two
statements remain valid even as the meaning of “numbers” (i.e., a, b, x, y) becomes more

60



inclusive as the grade level progresses: in grade 4, numbers are basically whole numbers,
in grade 5 they include fractions, in grade 6 they include integers, until finally in grade 7
a “number” means any rational number.

What is important about these two statements in the context of symbolic manipu-
lation is that, at the level of grade seven, they give rise to the following basic skills in
manipulating equations. First, suppose a, b, c are rational numbers so that a = b+c, then
a− c = b, and conversely. The passage from a = b + c to a− c = b, or that from a− c = b
to a = b + c, is commonly referred to as transposing c.13

To show that a = b+c implies a−c = b, observe that from −c = −c and a = b+c, we
obtain a + (−c) = (b + c) + (−c). The associative property implies (b + c) + (−c) =
b+(c+(−c)) = b+0 = b and a+(−c) is by definition of a− c. Therefore we obtain
a− c = b.

Conversely, a − c = b implies a = b + c because, from a − c = b and c = c, we get
(a − c) + c = b + c, which is (a + (−c)) + c = b + c. The associative property for
addition shows (a + (−c)) + c = a + ((−c) + c) = a so that we get a = b + c.

Thus the two equations a = b + c and a− c = b are interchangeable in the sense that
knowing either one means knowing the other. It is common to abbreviate this fact by
saying that a = b + c is the same as or is equivalent to a − c = b.14 In more suggestive
language, one can say that the number c in the equation a = b + c may be transposed to
the other side and the equation would remain the same.

For exactly the same reason, if b 6= 0 and ab = c, then by looking at ab = c and
1
b = 1

b , we see that ab = c is equivalent to a = c
b .

These two facts,

a = b + c is equivalent to a− c = b

and
if b 6= 0, then ab = c is equivalent to a =

c

b

are fundamental to the symbolic manipulative aspect of solving equations. Because they
are so important, many concrete examples and exercises on these manipulations should
be given. For example: if a number a satisfies (3125 − 467) = a + 100, what is a + 567?
Or, if b is a number so that 3b + 2345 = 287, what is b?

13 Of course this fact can be taught in grade 4 if a, b, c are restricted to be whole numbers so that

a ≥ c. A similar statement can be made about grade 5 and grade 6, but we want to state the most

general statement possible up to this point for convenience.
14 It would be good practice to suppress the terminology “the same as” and use “equivalent to” exclu-

sively since, in common usage, the word “same” has a different meaning than its usage here.
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Isolating Variables in Simple Linear Equations

We are finally in a position to address the following grade 7 algebra and functions
standard

4.0 Students solve simple linear equations and inequalities over the rational numbers

In the intervention program we concentrate on equations. Once the procedures for solving
equations are understood, students will not have much difficulty with inequalities.

To solve a linear equation such as 12x − 5 = 6x means to find all numbers c that
make 12c− 5 equal to 6c. Such a number c is called a solution.15 Thus 2 is not a solution
of 12x− 5 = 6x because 12× 2− 5 6= 6× 2 as 19 6= 12. However 5

6 is a solution because
12 × 5

6 and 6 × 5
6 both equal to 5. Other examples of linear equations are 2x = 7x + 14,

11−6x = 54x+8, and 85 = 3x+24−25x. For example, a solution c of 11−6x = 54x+8 is
a number so that 11−6c is equal to 54c+8. Notice the relevance of evaluating expressions
to our attempt to determine whether or not a number is a solution of a given equation.

The critical observation is that if the equation is presented as simply 3x = 25, then
we can directly make use of the fact that

if b 6= 0, then ab = c is equivalent to a =
b

c

to conclude that
3x = 25 is equivalent to x =

25
3

.

(Needless to say, one can also directly verify that 3( 25
3 ) = 25.) Therefore, 25

3 is the (one
and only) solution of the equation 3x = 25.

In like manner, the equation 12x = 3 has solution x = 3
12 = 1

4 , the equation 2
5x = 6

has solution x = 6/ 2
5 = 6×5

2 = 15, and, in each case, the solution is the only one. In
general, if c, d are rational numbers, then for c 6= 0,

cx = d has the one and only one solution
d

c
.

To proceed further, define in general two equations to be equivalent if after a finite
number of transpositions and arithmetic operations (i.e., +, −, ×, and ÷), one can trans-
form either equation into the other. For example, 12x − 5 = 6x and 6x = 5 are
equivalent. Equivalent equations clearly have the same solutions.

15 Generally, equations have more than one solution, though linear equations usually have at most one

solution. Since linear equations are so common in school mathematics, one often finds reference to the
solution for general equations. In the case of equations with more than one number in the solution set, it is

also common to call the entire set of solutions “the solution.” These differing usages cause difficulties

for students, and more care must be taken at this point.
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Suppose now we are given an equation 11x + 6 = 3x − 6 where x is some unknown
number. The preceding discussion shows that if we can isolate the variable x in the
sense of getting an equivalent equation with all the x’s on one side and the other numbers
on the other side (e.g., 11x − 3x = −6 − 6), then after an application of the distributive
property, we can get an equation of the form cx = d for some numbers c and d (e.g., since
11x − 3x = (11 − 3)x = 8x, we get 8x = −6 − 6 for the preceding example), and the
determination of the solution set for the equation would follow.

To isolate the variable, it is therefore a matter of transposing all the x’s to one side
and all other numbers to the other side. To this end, we make repeated use of the fact
proven earlier:

a = b + c is equivalent to a− c = b

Here are some examples, in increasing order of difficulty.

1 Solve 7x = 3x− 16. We begin by transposing 3x to the left side: 7x− 3x = −16.
By the distributive property, 7x − 3x = (7 − 3)x = 4x, so that 4x = −16. The
solution is then −16

4 = −4.

2 Solve 5x + 1 = 2x − 11. We first transpose 2x to the left side: (5x + 1) − 2x =
−11, so that 3x + 1 = −11. Now we have to transpose +1 to the right side:
3x = −11− 1, and 3x = −12. Thus the solution is (−12)

3 , which is −4.

3 Solve 3x + 14 = 2 − 8x − 17. As usual, it is convenient to first transpose the
x’s to one side: (3x + 14) − (−8x) = −15 (we have made use of 2 − 8x − 17 =
2− 17− 8x = −15− 8x), so that 3x + 14 + 8x = −15, and 11x + 14 = −15. We
next dispose of 14: 11x = −15 − 14, and therefore 11x = −29. The solution is
then −29

11 = − 29
11 .

However, one must not give students the idea that the x’s must be on the left, so
we will manipulate the symbols differently to get the same solution. We begin by
transposing 3x to the right side: 14 = (2− 8x− 17)− 3x, which is 14 = 2− 17−
8x−3x, i.e., 14 = −15−11x. Now transpose −15 to the left: 14−(−15) = −11x,
so that 14+15 = −11x, or −11x = 29. The solution is then 29

(−11) = − 29
11 , which

is of course the same as before.

4 Solve − 2
3x + 4 = − 1

5x + 5 1
3 . As usual, we collect all the x’s to the left: (− 2

3x +
4)− (− 1

5x) = 5 1
3 . On the left we have − 2

3x+4+ 1
5x = − 2

3x+ 1
5x+4 = −7

15 x+4.
Thus the equation becomes −7

15 x + 4 = 5 1
3 . We next transpose 4 to the right

side: −7
15 x = 5 1

3 − 4, and so −7
15 x = 4

3 . Thus the solution is 4
3/−7

15 = − 20
7 .

It is important to also learn a second way of dealing with equations some of
whose coefficients are fractions: clear the denominators, in the following sense.
The denominators of the fractions in − 2

3x + 4 = − 1
5x + 5 1

3 are 3 and 5, so
if we multiply both sides by 3 × 5 = 15, we get (using the distributive law):
−10x + 60 = −3x + 80. (Notice that 15× 51

3 = 15× 16
3 = 80, or else 15× 5 1

3 =
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(15 × 5) + (15 × 1
3 ) = 75 + 5 = 80.) Thus −10x + 3x = 80 − 60, and we get

−7x = 20, or x = − 20
7 as before.

To summarize, to solve a linear equation, first transpose all the x’s to one side and
all the other numbers to the other side. This would isolate the variable x, obtaining an
equation of the form cx = d, where c, d are rational numbers. If c 6= 0, then the solution
is d

c .

It remains to note that the above method of solving linear equations makes use of the
associative, commutative, and distributive properties in full generality. To see this, let us
examine in detail how we went in Example 3 from (3x + 14) − (−8x) on the left side to
11x + 14. It goes as follows:

(3x + 14)− (−8x) = (3x + 14) + 8x

= 8x + (3x + 14) (commutativity of +)

= (8x + 3x) + 14 (asociativity of +)

= ([8 + 3]x) + 14 (distributivity)

= 11x + 14

The point to be emphasized here is that, in each of the above applications of these proper-
ties, the number x is an unknown number, but the commutative, associative and distribu-
tive properties are applicable to x anyway because they are valid for all numbers. This
harks back to the earlier comment about the importance of the generality that is inherent
in these rules. However, while students should be exposed to this kind of reasoning, per-
haps more than once before they get to grade 8 so that they become aware of the concept
of generality, it would be inappropriate to hold them responsible for it.
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Functions and Equations

We discuss the concept of a function, its graph, and its relation with the study of
equations.

Functions and graphs are much misunderstood by students. Students need to under-
stand functions, not as formulas, but as rules that associate to each object of one kind an
object of another kind. Such an understanding cannot be achieved overnight, but should
be fostered through all the grades. In kindergarten, they encounter the function which
associates to each ball its color. In grade 2, they encounter the function which associates
to a given number of horses the total number of legs. In grade 4, they encounter for the
first time a linear function expressed in symbols in terms of x and y, and with a similar
nonlinear one which associates with each square of side s its area s2. And so on. If a
concerted effort is made to bring these functions to students’ attention, they will begin to
see the central role of functions in mathematics. Gradually, the functions being studied
become increasingly complex and students need aids to understand them. Graphs are
initially introduced for this reason as visual representations of functions. Later on, for
functions which associate a number to another number, their graphs are curves (or lines)
in the plane, and through them, geometric considerations become an integral part of the
study of function.

Functions

A function is a rule that associates to each element in a set one and only one element
in a second set. In the context of the middle grades, most of the time functions associate a
number from one set of numbers to a number in another set. As an example, the equation
2x + y = 1 in terms of two numbers x and y determines one and only one y for each value
of x, namely 1 − 2x, and thus determines a function associating the number 1 − 2x to
each number x. Students have seen functions repeatedly from the earliest grades. In the
California Mathematics Content Standards, the study of functions begins in kindergarten
with the emphasized algebra standard

1.1 Identify, sort, and classify objects by attribute and identify objects that do not
belong to a particular group (e.g., all these balls are green, those are red).

It is again taken up the Statistics, Data Analysis and Probability standards in grade 1:

1.1 Sort objects and data by common attributes and describe the categories.

as well as the emphasized standard

2.1 Describe, extend, and explain ways to get to a next element in simple repeating
patterns (e.g., rhythmic, numeric, color, and shape).

In grade 2, this topic is again taken up, but with more specificity in the Statistics, Data
Analysis, and Probability emphasis standard:
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2.1 Recognize, describe, and extend patterns and determine a next term in linear
patterns (e.g., 4, 8, 12 . . . ; the number of ears on one horse, two horses, three
horses, four horses).

In grade 3, functions move back into the algebra strand with the emphasized standard:

2.1 Solve simple problems involving a functional relationship between two quantities
(e.g., find the total cost of multiple items given the cost per unit).

and the almost as important

2.2 Extend and recognize a linear pattern by its rules (e.g., the number of legs on a
given number of horses may be calculated by counting by 4s or by multiplying
the number of horses by 4).

Then, in the grade 4 algebra standards, a working definition of a function is given as the
emphasis standard:

1.5 Understand that an equation such as y = 3x + 5 is a prescription for determining
a second number when a first number is given.

Students should become familiar with certain basic functions, particularly the func-
tions x, and x2. They should take note of the fact that some functions, such as 1

x are not
defined for every value of x, but there is no need for them to learn the terminology such as
domain and range at this point. Such terminology will be introduced in an algebra course.

Some linear functions occur in daily life, as in the grade 6 algebra and functions
standards

2.1 Convert one unit of measurement to another (e.g., from feet to miles, from cen-
timeters to inches).

Conversion of the type mentioned in standard 2.1 above leads to linear functions. For
example, the conversion of miles to feet is described by the linear function m 7→ 5280m,
and the conversion of Celsius to Fahrenheit in temperature is described by the linear
function C 7→ 9

5C + 32.

Functions and Their Graphs

The graph of a function from numbers to numbers is defined as the set of all pairs of
numbers (a, b) so that b is the number the function associates with a. Graphing, in the
generalized form of representing a function via a picture or diagram first appears in grade
1 in the Statistics, Data Analysis, and Probability standard:

1.2 Represent and compare data (e.g., largest, smallest, most often, least often) by
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using pictures, bar graphs, tally charts, and picture graphs.

Graphing in this generalized sense also appears in the grade 2 Statistics, Data Analysis,
and Probability standards we find the emphasis standards

1.1 Record numerical data in systematic ways, keeping track of what has been
counted.

1.2 Represent the same data set in more than one way (e.g., bar graphs and charts
with tallies).

as well as in the grade 3 Statistics, Data Analysis, and Probability standard

1.3 Summarize and display the results of probability experiments in a clear and
organized way (e.g., use a bar graph or a line plot).

In grade 4, graphing becomes an emphasis topic in the Measurement and Geometry
standards:

2.0 Students use two-dimensional coordinate grids to represent points and graph lines
and simple figures:

2.1 Draw the points corresponding to linear relationships on graph paper (e.g., draw
10 points on the graph of the equation y = 3x and connect them by using a
straight line).

At this point, students must understand the concept of the graph of an equation as the
collection of all the ordered pairs of points (x, y) satisfying the equation. The failure to
come to grips with the quantifier “all” may account for students’ common error of not
recognizing why the graph of y = 5 is a (complete) horizontal line or that the graph of
x = −3 is a (complete) vertical line. For example, let us show that the horizontal line 5
units above the x-axis, to be denoted by H, is (identical to) the graph of y = 5. First, how
to show that H is part of the graph of y = 5? Now a point (a, b) is on H precisely when
b = 5 no matter what a is. So a point being on H means it has coordinates (a, 5), where
a is some number. Since the graph of y = 5 consists of all the points with y-coordinate
equal to 5, every point of the form (a, 5) has to be a point of the graph. Thus H is part
of the graph of y = 5. There remains the possibility that there are points on the graph
of y = 5 which are not part of H. Thus we have to further show that an arbitrary point
on the graph of y = 5 belongs to H. Now such a point is of the form (x, 5) and, since any
point with y coordinate equal to 5 is on H, an arbitrary point of the graph of y = 5 is
also a point on H. This then explains why the graph of y = 5 is the (complete) horizontal
line 5 units above the x-axis, i.e., each point of the former is a point of the latter, and vice
versa.

In the grade 5 Statistics, Data Analysis, and Probability standards the use of coor-
dinates in the plane is the content of the emphasized topics:
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1.4 Identify ordered pairs of data from a graph and interpret the meaning of the data
in terms of the situation depicted by the graph.

1.5 Know how to write ordered pairs correctly; for example, (x, y).

The first time students are asked to plot the graph of a function in the coordinate
plane is in the grade 5 emphasized algebra standard:

1.5 Solve problems involving linear functions with integer values; write the equation;
and graph the resulting ordered pairs of integers on a grid.

In grade 7, graphs of functions are taken more seriously and the relevant standards
are in the algebra-and-functions strand:

3.0 Students graph and interpret linear and some nonlinear functions

3.1 Graph functions of the form y = nx2 and y = nx3 and use in solving problems.

3.3 Graph linear functions, noting that the vertical change (change in y-value) per
unit of horizontal change (change in x-value) is always the same and know that
the ratio (“rise over run”) is called the slope of the graph.

3.4 Plot the values of quantities whose ratios are always the same (e.g., cost to the
number of an item, feet to inches, circumference to diameter of a circle). Fit a
line to the plot and understand that the slope of the line equals the quantities.

The fact that the graph of a linear function is a straight line cannot easily be demonstrated
for students without using properties of similar triangles, so students will have to take it on
faith (for now) that the graph is a straight line. But this fact should be carefully explored
with exercises and concrete examples. For instance, ask students to graph y = 1

2x by
plotting the points on its graph with x-coordinates equal to 1, 2, 4, 8, 16, and ask them to
observe how the y-coordinates also correspondingly grow by a factor of 2. Then the fact
that the graph of y = 1

2x is a straight line becomes at least believable. Then do the same
to y = 1

2x + 3 and other similar examples.

Students should graph functions of the form ax+ by = 0, x2 + a, and 1
x . They should

also explore the graph of a function such as x 7→ its “integer part”, i.e., the largest integer

68



≤ x (e.g., 1.05 7→ 1, 5 7→ 5, −2.1 7→ −3, etc.):
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Students should get lots of practice plotting functions such as y = 2
3x − 5 or y =

x2 − 25x − 18. A very important point that should be impressed on students is that, in
order to develop any feeling for the graphs of functions, they have to learn to visualize a
graph by plotting judiciously chosen points by hand. This mean that they have to get used
to computing the number that the given function associates to a chosen number. There
is no substitute for learning about graphs through plotting points.

Another point worth mentioning is that students should be alerted to the possibility
of viewing a function simply as the collection of all ordered pairs of number {(a, b)} on
its graph, where b is the number the function associates to a. There is no need to over-
emphasize this fact, but they should be aware that in higher mathematics, this collection
of ordered pairs is used as the formal definition of a function.

Solving and Graphing Linear Equations

In the discussion of symbolic manipulation, solving linear equations was the key ex-
ample. When given a linear equation of the form ax + b = cx + d with a 6= c, students
know how to solve it by isolating the variable and obtain x = d−c

a−c .

The linear equation with two variables

ax + by = c

should now be introduced. The study of its graph will be one of the main topics in algebra,
but what needs clarification for students at this point is the relationship between the graph
of this equation and the graph of a linear function that is the subject of the seventh grade
algebra and function standards 3.3 and 3.4 above.

Recall that the graph of a linear equation ax+by = c is the collection of all the points
(x′, y′) which satisfy the equation, in the sense that ax′ + by′ = c. When b 6= 0, then
for each number x′ we can in fact find a number y′ so that (x′, y′) satisfies ax + by = c.
The explicit process of determining the number y′ that makes the equation ax + by = c
true for a given x′ when b 6= 0 will now be developed. Thus given x′, we have to solve
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for a y′ so that ax′ + by′ = c. Remembering that x′ is just a number, we can solve for
y in ax′ + by = c the same way we solve for x in linear equations of a single variable,
as follows. Transpose the number ax′ in ax′ + by = c to the right side to isolate y gives
by = c − ax′. Now c − ax′ is again just a number, so y = c−ax′

b , which is the same as
y = ( 1

b )(c − ax′), so that by the distributive law, y = −a
b x′ + c

b . Thus with x′ given,
if we set y′ = −a

b x′ + c
b , the point (x′, y′) satisfies ax + by = c. Notice in particular that

that c = 0 in ax + by = c is equivalent to the graph of ax + by = c containing the origin
(0, 0). The special case y = c should be discussed as well, and also the special case of
x = c when b = 0.

Now observe that when b 6= 0, the graph of the equation ax + by = c is exactly the
same as the graph of the linear function x 7→ −a

b x + c
b . This means one should check that

every (x′, y′) in the graph of the equation ax + by = c is also a point in the graph of the
linear function x 7→ −a

b x + c
b , and vice versa. The reasoning is as follows:

(x′, y′) being on the graph of ax+by = c means ax′+by′ = c, and this means (x′, y′)
can be rewritten as (x′,−a

b x′ + c
b ). The latter is a point on the graph of the function

which associates to each x the number −a
b x + c

b . Conversely, if (x′, y′) is a point on
the graph of the linear function that associates to each x the number −a

b x + c
b , then

by definition y′ = −a
b x′ + c

b . Since ax′ + b(−a
b x′ + c

b ) = c, we see that (x′, y′) is a
point in the graph of ax + by = c.

Proportions Revisited

In the chapter on Ratios, Rates, Percents and Proportion, we started the discussion
of proportions. We can now clarify exactly what a proportion means using the concept of
a linear function. In general terms, one can say that any problem that can be solved by
setting up a proportion is a problem about a linear function without constant term. The
meaning of the latter is this: if a linear function x 7→ ax + b is given, where a, b are fixed
numbers, then b is called the constant term of the function. To say that this function
has no constant term means that b = 0, i.e., the function is of the form x 7→ ax for some
fixed number a. The most important example of a linear function with no constant term
(in school mathematics) is the function that describes motion with constant speed: the
function t 7→ vt, where v is a fixed number, gives the distance traveled after t units of
time, and v is the (constant) speed.

Suppose a train travels at constant speed can cover a distance of 150 miles in 21
4

hours. How long will it take the train to go 55 miles?

A problem similar to this one has been solved without explicitly using the concept of
a linear function in the chapter on Ratios, Rates, Percents and Proportion. We now solve
it again, this time using the linear function t 7→ vt. In the long run the new method will be
seen to be more widely applicable even though it initially seems more complicated. So we
have a linear function t 7→ vt which gives the distance traveled after t hours. Recall that
v is the (constant) speed. Suppose this function associates to a time t0 the value 55; the
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question is what is t0. For this we need to know v. Since the given data says 2 1
4 7→ 150,

we know v · 2 1
4 = 150 and therefore v = 150

2 1
4

= 66 2
3 . So if t0 7→ 55, we have vt0 = 55 and

t0 = 55
v = 55

66 2
3

= 33
44 hours, or 49 and a half minutes.

The usual solution in terms of “setting up the proportion” is to equate the ratio of
distances to the ratio of corresponding times,

150
55

=
21

4

t
,

in order to solve for t. Such a procedure suppresses entirely the fact that it is the linear
function t 7→ vt that underlies everything. Indeed, the preceding proportion is equivalent
to

150
2 1

4

=
55
t

(cross-multiply both proportions, for instance), which displays more clearly the fact that
the division

distance traveled in t hours
t hours

is always equal to a fixed constant v, the (constant) speed. In giving problems that tradi-
tionally require “setting up proportions” to students, especially those in the intervention
program, an effort therefore must be made to be explicit about the underlying linear-
function-without-constant-term because this is part of the data students must be given in
order to solve the problem in a mathematical manner.

We conclude with another example of how the presence of a linear function without
constant term is camouflaged in a problem. Consider the following:

In a certain movie, the dinosaur was a scale model and so was the sport utility vehicle
overturned by the dinosaur. The vehicle was made to the scale of 1 inch to 8 inches.
The actual vehicle was 14 feet long. What was the length of the model sport utility
vehicle?

The key phrase here is that the “vehicle was made to the scale of 1 inch to 8 inches.”
Unless this phrase is precisely explained, students will not understand the meaning of the
phrase “made to a certain scale”, and will therefore not be able to process the information
correctly. What needs to be made explicit as part of the data of the problem (at least when
this phrase comes up for the first time) is that, if the vehicle is x inches long, then the
model is 1

8x inches. Thus it should be explained at the outset (in a way that is grade level
appropriate) that the problem assumes the existence of a linear function without constant
term which associates to each x inches of a sport vehicle the length of 1

8x inches of the
model, i.e., the function x 7→ 1

8x. With this understood, the problem wants to know what
number would this function associate to x = 168. (14 feet is 168 inches.) The answer is
of course 1

8 × 168 = 21 inches.
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At present, the suggested solution in most books is to “form the proportion” 1
8 = `

168
(where ` is the length of the model). Such a solution is unacceptable because it begs the
question why?
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Measurement

One of the critical areas where mathematics connects with applications is measure-
ment. There are two kinds of measurement that students need to understand. The first
is the measurement of real objects, including length, areas, angles, and volumes. Such
measurements require an appreciation of magnitude and reasonable estimates, an under-
standing that all such measurements have errors, and an understanding of how errors
build up and can affect things. The second comprises the exact measurements of objects
in mathematics. If we have a right triangle with leg lengths l1 and l2 then we know
that the length of the hypotenuse is exactly

√
l21 + l22. Likewise, if we have an equilateral

triangle, then we know that each interior angle is exactly 60 degrees, and if we have a
square with side length 1

4 meter, then we know that the area is exactly 1
16 square meter.

The similarities and distinctions between these two kinds of measurement must be solidly
understood by students if they are to effectively use mathematics.

Before students can work with measurement and the core topics that develop from it,
they must have some idea of the number line and means of making measurements. The
number line is prepared for by sequentially ordering numbers as the following illustration
shows:

Next the method of placing numbers on the number line can be described, first working
perhaps with multiples of 10, as equi-spaced points, as shown:
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then expand out and magnify a single region or two, by further sub-dividing into equi-
spaced points:
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Finally, discuss, briefly the same process but starting with intervals of 100. It is also worth
noting that the same process can be continued for unit intervals:
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Preparation for the number line often begins with using rulers, but it would be advisable
to use only the metric portion, i.e., the portion marked in centimeters and millimeters,
as the portion marked in inches might confuse children with its markings in sixteenths.
Moreover, it appears that many students do not fully understand the conventions used
in measuring with rulers, so care has to be taken here, and it might be good practice to
bring in the number line first and then rulers, or perhaps both at about the same time.
One thing to be particularly careful about is

Some students will not understand how rulers work, confusing tick marks and inter-
vals, for example. Confusion between intervals and tick marks – points and distances
– is a fundamental difficulty.

Once the usage of rulers for measuring and the number line are in place, the discussion of
measurement can begin.

Measurement involves length, weight, capacity, and time, and standards involving
measurements are present from Kindergarten on. The elementary aspects of measurement
involve knowing:
(1) the different systems of units used for measurement,
(2) when it is more appropriate to use one or the other of these systems,
(3) how to translate between these systems.

In the California Mathematics Content Standards, the conversion of measurement
units is the subject of the grade 3 algebra and function standard

1.3 Express simple unite conversions in symbolic form.

and the grade 3 measurement and geometry standard

1.4 Carry out simple unit conversions within a system of measurement (e.g., cen-
timeters and meters, hours and minutes).

Then there is the grade 6 algebra and functions standard

2.1 Convert one unit of measurement to another (e.g., from feet to miles, from cen-
timeters to inches).

The last standard was already discussed in Functions and Equations in connection with
linear functions. Two additional relevant standards are the grade 7 measurement and
geometry standards

1.1 Compare weights, capacities, geometric measures, times, and temperatures with-
in and between measurement systems (e.g., miles per hour and feet per second,
cubic inches to cubic centimeters).
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1.3 Use measures expressed as rates (e.g., speed, density) and measures expressed as
products (e.g., person-days) to solve problems; check the units of the solutions;
and use dimensional analysis to check the reasonableness of the answer.

These standards, while they deserve to be covered with care, should not offer great chal-
lenges for most students.

The next two aspects of measurement are on a higher level: students should know

(4) how to use and make measurements in abstract mathematical situations
(5) how to make measurements in real life situations.

Perhaps the most basic issue here is the distinction between (4) and (5). In abstract,
mathematical situations, measurements are almost always assumed to be exact. However,
actual measurements in the real world always are inaccurate, and the resulting error can
seldom be ignored. (When building a house or even a shed, if we are not aware that our
measurements have errors, the errors will gradually accumulate, and core parts will simply
not fit together.) Real world measurements involve making estimates and keeping track of
the resulting errors. If your measurements are accurate only up to the nearest millimeter,
then adding two such measurements would lead to a possible inaccuracy of one millimeter,
and multiplying two such measurements a mm and b mm would lead to a possible error
of a + b + 1 mm. Estimations are routinely discussed in school without reference to the
attendant errors of estimations. This oversight should be corrected.

Thus, students have to make the distinction between the measurements of types (4)
and (5), but all too often neither (4) nor (5) is done correctly, and the distinction is not
made. The discussion below recommends ways to improve this situation.

Area

The first time measurement is emphasized is in the grade 2 measurement and geom-
etry standard

1.3 Measure the length of an object to the nearest inch and/or centimeter.

Area and perimeter are brought in with the grade 3 emphasis topic

1.2 Estimate or determine the area and volume of solid figures by covering them with
squares or by counting the number of cubes that would fill them.

1.3 Find the perimeter of a polygon with integer sides.

These are, mostly, real-world measurement standards. They do not involve the pre-
cise, formal measurements of geometry. But in developing these standards it is very
important that students understand what area and perimeter are. Perimeter can be read-
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ily understood via direct measurement of the perimeters of some basic figures, but area is
a different matter.

One of the most common errors that students make is to believe that area is
defined by formulas, so that if they see a figure for which they do not know a
formulaic method of determining the area, they will have no idea how to proceed.

Students should know some basic properties of area. They should begin by working
with figures made out of non-overlapping squares, all of the same size; for convenience, we
will say that those squares pave the figures. The area of such a figure should be defined
for students as the the sum of the areas of the individual squares. To go further into the
discussion of area, we have to consider the issue of numerical measurement of area. To
this end, it should be emphasized that, as in the discussion of fractions (see the chapter
Fractions and Decimals), one must fix a unit of area throughout the discussion. The most
common area-unit is a unit square, where “unit” refers to the length of a side and it could
be 1 cm, 1 mm, or 1 of anything. The area of the unit square is traditionally assigned the
value of 1 area-unit. If the side of the unit square is 1 cm, then the area-unit is called 1
sq. cm, or 1 cm2; if the side of the unit square is 1 ft., then the area-unit is called 1 sq. ft.,
or 1 ft.2, etc. It follows that the area of a rectangle with sides 5 units and 7 units has
value 5× 7 area-units because it can be paved by 7 + 7 + 7 + 7 + +7 = 5× 7 unit squares.
In general, if a, b are whole numbers, the same reasoning gives that the area of a rectangle
with sides of lengths a, b is ab area-units.

If two figures overlap, then the area of the resulting figure is less than the sum of the
individual areas. Consider the following example where each of the two big squares is a
unit square and is each paved by nine smaller squares, as shown:16
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The area of the resulting figure is, by the definition above, the sum of the areas of the
resulting smaller squares. There are 17 of the latter, so the area of the figure will be
determined as soon as the area of each small square is. Since the area of either unit square
(which is 1) is the sum of the areas of 9 congruent smaller squares, the area of each smaller

16 We recall the Fundamental Assumption of School Mathematics that, in K-12, we only deal explic-

itly with rational numbers, so that for the purpose of illustration here, care should be taken with the

overlapping squares to ensure that the overlap is a fraction of (the area of) the two squares.
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square is 1
9 of the area-unit. Consequently, the total area of the above figure is 17× 1

9 = 17
9

area-units. When the overlap of two figures is more complicated than a square, then the
numerical determination of the total area would not be easy.

The preceding reasoning leads to the numerical determination of areas of rectangles
whose sides have fractional lengths. Suppose a rectangle has sides of lengths ` and w,
where ` and w are fractions. Then according to the definition of the product of fractions
in the Chapter Fractions and Decimals,

the area of a rectangle with sides of length ` and w is `w

What is important for explicit computations is the fact that if ` = a
b and w = c

d , then
`w = ac

bd . The reasoning for this so-called product formula, a
b × c

d = ac
bd can be found

in the chapter on Fractions. In any case, with the understanding as always that we deal
principally with rational numbers, we have now explained why “area of a rectangle is length
times width.”

Practice with measuring the approximate area of more complex regions can now be
given:

The edge of each square in the figure below is 5cm. Count the number of squares
inside the liver-shaped figure; there are 37. Then count the number of squares which
intersect the liver-shaped figure; there are 72.

It is intuitively clear that the area of the liver-shaped figure is bigger than the area of the
figure consisting of the squares inside the liver-shaped figure, but smaller than the area of
the figure consisting of all the squares which intersect the liver-shaped figure. Therefore
the area of the liver-shaped figure is between 37 × 52 cm2 and 72 × 52 cm2. If we use
smaller squares, that is if the edge of each square is 1 cm or even 0.01 cm instead of 5
cm, it is also intuitively clear that the area of the liver-shaped figure will be approximated
by two numbers closer together than 37 × 52 and 72 × 52. By using smaller and smaller
squares, it is easily believable that the bigger and smaller numbers will get closer and
closer together until at the end they coincide. This common number is formally what is
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called the area of the liver-shaped figure. In other words, the area of the liver-shaped
figure is, by definition, this common number. The same can be said for any figure that
appears in daily life. One consequence of this definition of area is that one gets the area
of a given figure by approximating it with smaller and smaller squares that lie completely
inside the figure without worrying about those squares that merely intersect the figure.
In the classroom, especially in the lower grades of 3 – 5, this may be the more practical
approach and may be the one that should be presented to students.

Exact Measurement in Geometry

The exact measurements of geometry are prepared for in the grade 4 measurement
and geometry standards:

1.1 Measure the area of rectangular shapes by using appropriate units, such as square
centimeter, square meter, square kilometer, square inch, sqrae yard, or square
mile.

2.2 Understand that the length of a horizontal line segment equals the difference of
the x-coordinates.

2.3 Understand that the length of a vertical line segment equals the difference of the
y-coordinates.

Then comes the basic grade 5 measurement and geometry standards

1.1 Derive and use the formula for the area of a triangle and of a parallelogram by
comparing it with the formula for the area of a rectangle (i.e., two of the same
triangles make a parallelogram with twice the area; a parallelogram is compared
with a rectangle of the same area by pasting and cutting a right triangle on the
parallelogram).

1.2 Construct a cube and rectangular box from two-dimensional patterns and use
these patterns to compute the surface area for these objects.

1.3 Understand the concept of volume and use the appropriate units in common
measuring systems (i.e., cubic centimeter [cm3], cubic meter [m3], cubic inch
[in.3], cubic yard [yd.3]) to compute the volume of rectangular solids.

We now demonstrate the area formula for a triangle ( i.e., standard 1.2 above), which
requires a significant advance on the previous exact determination of area in the case of
figures constructed out of squares with restricted overlaps.

We will take as a given the intuitive fact that if two figures intersect only at their
boundaries, then the area of the combined figure is the sum of the respective areas. For
right triangles, we can use this fact to determine their area by observing that if a right

78



triangle is doubled in the usual way to yield a rectangle, then the area of the right triangle
is half the area of the rectangle. Since the “height” and “base” of a right triangle are the
lengths of the legs, and hence the lengths of the sides of the rectangle so produced, the
area of the right triangle is half the product of height and base (because the latter is the
area of the rectangle). This justifies the special case of

the area of a triangle is 1
2 (base × height)

when the triangle is a right triangle. For the general case, let triangle ABC be arbitrary
and let AD be the perpendicular from the vertex A to the line containing BC. Then there
are two cases to consider: D is inside the segment BC, and D is outside the segment BC.
See the figures:
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In either case, AD is called the height with respect to the base BC. By the usual abuse of
language, height and base are also used to signify the lengths of AD and BC, respectively.
With this understood, we shall prove the area formula of a triangle in general. For the
case on the left, the area of triangle ABC is clearly the sum of the areas of triangle ABD
and ADC. Since the latter two triangles are right triangles (whose areas we already know
how to compute), the general formula is easy. Next we observe that the area of triangle
ABC is now the area of triangle ABD minus the area of triangle ACD for the case on
the right hand side above. A similar calculation again yields the general formula.

It is important not to leave out the case on the right, i.e, the case where the per-
pendicular from the top vertex meets the line containing the base at a point outside the
base.

Once we get the area formula of a triangle, one can, in principle, compute the areas
of all polygons in the plane. The fundamental reason behind this assertion is that every
polygon is paved by triangles obtained by joining appropriate vertices of the polygon.
Although the proof of this general fact is too intricate for school mathematics, its validity
in simple cases is quite obvious. For instance, if the polygon is a quadrilateral, then adding
a suitable diagonal would create two triangles that pave the quadrilateral. The area of
the quadrilateral is thus the sum of the areas of these two triangles and the areas of the
latter can be computed using the area formula we have just derived. If the quadrilateral
is a trapezoid or a parallelogram, such a computation actually leads to a simple formula
for the area of the quadrilateral itself, as is well-known. The derivation of these standard
formulas for trapezoids and parallelograms should also be given in detail.

More Advanced Topics

In grade 5, angles are also brought in:
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2.1 Measure, identify, and draw angles, perpendicular and parallel lines, rectangles,
and triangles by using appropriate tools (e.g., straightedge, ruler, compass, pro-
tractor, drawing software).

2.2 Know that the sum of the angles of any triangle is 180 degrees and the sum of
the angles of any quadrilateral is 360 degrees and use this information to solve
problems.

At this stage, students need only do experimental geometry in the sense of verifying
geometric assertions by direct measurements (and it is important that they do). So mea-
suring angles of many triangles should convince them of the likely truth of the fact that
the sum of the angles of any triangle is 180 degrees.

In grade 6, the following two non-emphasized standards can be easily misunderstood:

1.2 Know common estimates of π (3.14, 22
7 ) and use these values to estimate and

calculate the circumference and the area of circles; compare with actual measure-
ments.

1.3 Know and use the formulas for the volume of triangular prisms and cylinders
(area of base times height); compare these formulas and explain the similarity
between them and the formula for the volume of a rectangular solid.

There are two aspects to 1.2. On the one hand, there is a number π so that the area and
circumference of a circle of radius r are πr2 and 2πr, respectively. On the other hand, the
value of this number π cannot be given by a finite decimal and so we are usually forced
to use an approximate value. Consequently, 1.2 asks for experimental geometric activities
such as estimating the area of a circle using grid paper, for instance, and comparing with
πr2 using an approximate value of π.

The volume formulas of 1.3 deserve some comments. First, the concept of volume is
entirely analogous to that of area and should be clearly presented. As in the case of area,
we need to fix a unit for volume, which is usually taken to be the unit cube, i.e., the cube
with sides of length 1 unit (cm, in., mm, ft., etc.) The volume assigned to the unit cube is
1 volume-unit. If the length unit that is used is cm, then the corresponding volume unit
will be called 1 cubic cm, or 1 cm3; if the length unit is ft., then the corresponding volume
unit is 1 cubic ft., or 1 ft.3. And so on.

A figure is said to be paved with a collection of (not necessarily unit) cubes if it is
the union of these cubes and if any two cubes in the collection intersect at most at their
boundaries. The volume of such a figure is by definition the sum of the volumes of these
cubes. It remains to determine what the volume of a cube, or more generally, the volume
of a rectangular prism should be. If we have a rectangular prism whose sides have lengths
equal to whole numbers, e.g., 2, 3, and 5, then it is clearly paved by exactly 2 × 3 × 5
unit cubes and therefore has volume equal to 1 + 1 + · · · + 1 (2 × 3 × 5 times), which
is of course equal to 2 × 3 × 5. Thus the volume of a rectangular prism with sides (of
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length) 2, 3, and 5 is 2× 3× 5 volume-units. The same reasoning shows that if the sides
of a rectangular prism have lengths which are whole numbers a, b, and c, then its volume
is abc volume-units.

If the lengths of the sides of a rectangular prism are fractions a, b, and c, then we
want to show that its volume is again abc volume-units. The idea of the proof can be
seen in the the following simple special case, which is also one that can be safely presented
to students in grade 6.

Suppose a rectangular prism has sides 2, 4, and 1
3 . Think of this prism as having a

rectangular base of 2 by 4, and having a height of 1
3 . Then the base of the prism can

be paved by 2× 4 unit squares, and the prism itself therefore can be paved by 2× 4
small rectangular prisms whose base is a unit square and whose height is 1

3 . Thus each
of these small rectangular prisms has dimensions 1, 1, and 1

3 . Denote such a small
rectangular prism by P. Now three of these P’s stacked on top of each other form
a unit cube. Since the volume of the unit cube is 1, by the definition of a fraction,
the volume of each P is 1

3 volume-unit. Since the original rectangular prism is paved
by 2 × 4 of these P’s, its volume is 1

3 + · · · + 1
3 (2 × 4 times), which is of course

(2× 4)× 1
3 , exactly as claimed.

In general, we have the following theorem about rectangular prisms:

The volume of a rectangular prism whose sides have length a, b, and c is abc.

We have explained the most important special case of this theorem for school math-
ematics, namely, the case where a, b, c are fractions.

There is another way to look at this formula. We can think of such a rectangular
prism as a solid whose (rectangular) base has lengths a and b, and whose height is c. Then
abc = (ab)c = (area of base) × height. We may therefore rewrite the volume formula as

volume of rectangular prism = (area of base) × height

Why this re-writing is important can be explained as follows. Suppose we modify the
foregoing solid by fixing the height but modifying the shape of the base so that, instead
of a rectangle, we now have a geometric figure where S is arbitrary. Then the resulting
solid is called a cylinder over the base S, and the volume of the cylinder will be given by
this same formula, i.e.,

volume of cylinder over base S = (area of S) × height

The reason for the validity of this formula can only be given in more advanced courses. In
particular, if S is a circle of radius r, the cylinder is commonly called a circular cylinder
of radius r. Therefore,

81



volume of circular cylinder of radius r and height h = πr2h

If the base S is a triangle, the cylinder is called a triangular prism. If this triangle has a
base of length b and corresponding height h, its volume is then

volume of triangular prism whose triangular base has base b and height h
= 1

2bh× (height of prism).

Exact properties of the measurement of angles are used in grade 6 measurement and
geometry standard

2.2 Use the properties of complementary and supplementary angles and the sum of
the angles of a triangle to solve problems involving an unknown angle.

In grade 7, further exact properties of measurement are brought forward in the measure-
ment and geometry standards

3.3 Know and understand the Pythagorean theorem and its converse and use it to
find the length of the missing side of a right triangle and the lengths of other line
segments and, in some situations, empirically verify the Pythagorean theorem by
direct measurement.

3.4 Demonstrate an understanding of conditions that indicate two geometrical figures
are congruent and what congruence means about the relationships between the
sides and angles of the two figures.

With the concept of area developed carefully for students, and assuming he fact that
the sum of angles of a triangle is 180 degrees, one can give one of the simplest proofs of
the Pythagorean theorem without having to appeal to any algebraic identities. Given a
right triangle with sides of the legs being a and b and that of the hypotenuse being c,
consider the following picture obtained by placing four identical copies of this triangle at
the corners of a square whose sides have length a + b, as shown:
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Since the straight angle at R1 is 180 degrees, and the sum of the two non-right angles in
each copy of the right triangle is (180 - 90) = 90 degrees, it follows that the interior angle
of the quadrilateral inside the square is 90 degrees at R1. A similar argument holds for
the other vertices - each is 90 degrees - and, since each side of the interior quadrilateral
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has the same length c, it follows that the interior quadrilateral is actually a square. The
area of the big square minus the areas of the four congruent right triangles is then the
area of the inner square, which is c2. Now rearrange the four triangles so that we have
the following decomposition of the original square.
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Observe that the area of the big square minus the areas of the same four congruent right
triangles is now the sum of two smaller squares, one in the upper right and the other in
the lower left, and is therfore a2 + b2. So c2 = a2 + b2.

An example of a problem involving idealized measurements in geometry is the follow-
ing:

We are given an isoceles triangle with height 7 and base length 12. What are the
lengths of the remaining two edges?

Here, one uses the Pythagorean theorem and a symmetry argument with respect to the
angle bisector of the top angle to observe that the answer is

√
72 + 62 =

√
85. This is

an exact answer, and such an answer only occurs in the idealized world of mathematics.
It would be typical to write the decimal approximation of the answer

√
85 as 9.21954, or

more simply 9.22 after rounding, but the latter figures are not exact. If one were to draw
an isoceles triangle with the given height and base, and then measure the length of one
of the remaining edges, the measurement would give an answer of about 9.2 units if one
is truly precise, so people tend to be quite content with the approximation of 9.21954 or
9.22 to the exact value of

√
85.

In summary, we repeat that approximations are characteristic of all real world mea-
surements. They inevitably have errors. In most current texts, there is little if any
attention paid to the distinction between the precise measurements in geometry and the
approximate measurements that result when one actually measures real world objects.
This results in serious confusion on the part of students.
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