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1 Re-examination of standard upper division courses

Upper division courses in college are where math majors learn real mathe-
matics. For the first time they get to examine the foundations of algebra,
geometry and analysis, come face-to-face with the deductive nature of math-
ematics on a consistent basis and, most importantly, learn to do serious
theorem-proving. For reasons not unlike these, most mathematicians enjoy
teaching these courses more than others. While teaching graduate courses
may be professionally more satisfying, it also involves more work, and the
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teaching of lower division courses — calculus and elementary discrete mathe-
matics — is a strenuous exercise in the suppression of one’s basic mathemat-
ical impulses. By contrast, the teaching of upper division courses involves
no more than doing elementary mathematics the usual way: abstract defini-
tions can be offered without apology and theorems are proved as a matter of
principle. This is something we can all do on automatic pilot.

But have we been on automatic pilot for too long?
Mathematicians approach these courses as a training ground for future

mathematicians. Even a casual perusal of the existing textbooks would read-
ily confirm this fact. We look at upper division courses as the first steps of
a journey of ten thousand miles: in order to give students a firm foundation
for future research, we feed them technicality after technicality. If they do
not fully grasp some of the things they are taught, they will when they get
to graduate school or, if necessary, a few years after they start their research.
Then they will put everything together. In short, we build the undergraduate
education program for our majors on the principle of delayed gratification.
Whatever their misgivings for the time being, students will benefit in the
long haul.

However, even the most conservative estimate nation-wide would put no
more than 20% of these majors as potential graduate students in mathemat-
ics. The remaining 80% — the overwhelming majority — look at the last
two years of college as the grand finale of their mathematical experience.
To them, their mathematical future is now. Given this fact, how should we
teach them if we have their welfare in mind? We would want them to un-
derstand better the many things they were imperfectly taught in school. We
also want them to know what mathematics is about and how mathematics
is done. In addition, we owe it to them to give them a sample of the best
that mathematics has to offer: some of the major ideas and great theorems
in the history of mathematics. But an unflinching assessment would show
that, at least for this 80%, we have failed at every step. Take for instance
the standard one semester course on complex functions. At the end of such
a course, it is perfectly feasible to explain the meaning and significance of
the Riemann Mapping theorem, the Dirchlet problem, and the Riemann Hy-
pothesis. Imbedded in these three topics are ideas that have helped shape
the course of mathematics in the past century and a half, and are therefore
ideas which would interest these majors. But how many students in complex
functions know about this piece of history even if on rare occasions the Rie-
mann Mapping Theorem is stated and proved? Instead, such courses spend
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the time on the proofs of the general form of the Cauchy theorem and other
technical facts. Another conspicuous example is the recent proof of Fermat’s
Last Theorem. How many of our majors have the vaguest idea that this
proof is an achievement of “enormous humanistic importance” (words of El-
liott Lieb)? If we are unhappy about the answers to these questions, we have
only ourselves to blame. After all, we are the ones who design this guided
tour of the edifice we call mathematics, a tour that allows these majors to
see only the nuts and bolts in its foundation but never its splendor or even
the raison d’être of some of its interior designs. We have let them down. In
our effort to nurture future mathematicians, which is undoubtedly an essen-
tial goal of mathematics education, we have neglected the education of the
remaining 80% of our majors who put themselves under our care. We forget
that they too are part of our charge.

The usual defense of this philosophy of education would argue that, far
from a case of neglect, this system came about by design. For, by giving
students a firm technical grounding with ample exposure to abstract theo-
rems and rigorous proofs, we also give them the tools to explore on their
own. Eventually, they will acquire the necessary perspective and overall un-
derstanding of the details so that they will look back on all they have learned
and enlightenment ensues. Or so the theory goes.

This is what I call the Intellectual Trickle-down Theory of Learning: aim
the teaching at the best students, and somehow the rest will take care of
themselves. In practice, however, most of the students who do not go on to
graduate school in mathematics are not among those with a strong enough
interest or firm enough mastery of the fundamentals to dig deeper for further
understanding. Consequently, the college education of these students is long
on technical details that they cannot digest but short on the minimal essential
information that would enable them to understand even the elementary facts
from “an advanced standpoint”. They go out into the world impoverished
in both technique and information for the simple reason that we never had
them in mind when we designed our curriculum.

What lends a sense of urgency to this unhappy situation is the presence
of future school mathematics teachers among the 80% in question. When
they go into the classroom so mathematically ill-equipped, they cannot help
but victimize the next generation of students. Some of the latter come back
to the university and the vicious circle continues. We pay a high price for
our neglect indeed.

This particular aspect of our collective failure to educate the majority
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of majors bears on the current mathematics education reform in K-14 (i.e.,
from kindergarten to the sophomore year in college). This reform (cf. [W1]–
[W3]) has by and large ignored the critical issue of the technical inadequacy
of school mathematics teachers1. Not coincidentally, there is a corresponding
de-emphasis of content knowledge in favor of pedagogy in schools of education
across the nation ([K] and [NAR]). For example, it was already explicitly
pointed out back in 1983 that “Half of the newly appointed mathematics,
science, and English teachers are not qualified to teach these subjects...”
([NAR]). To this vitally important area of school education, the most direct
contribution the mathematical community can make would seem to be to
design a better education for prospective school teachers. Our failure to do
this was what gave the original impetus to the writing of this paper.2.

Let me illustrate the various threads of the preceding discussion with
a concrete example. In the spring semester of 1996, I taught a course in
introductory algebra which was attended by math majors who did not intend
to continue with graduate study in mathematics, including a few prospective
school teachers. Before I discussed the field of rational numbers, I asked how
many of them knew why 1/(1/5) = 5. I waited a long time, but not a single
hand was raised while a few shook their heads.3 One cannot understand the
significance of this fact unless one realizes that the subject of fractions is one
of the sore spots in school mathematics education. In the article [C], Herb
Clemens related the following story:

Last August, I began a week of fractions classes at a workshop for
elementary teachers with a graph paper explanation of why 2/7

1/9
=

24
7
. The reaction of my audience astounded me. Several of the

teachers present were simply terrified. None of my protestations
about this being a preview, none of my “Don’t worry” statements
had any effect.

Or, take another statement from p.96 of the NCTM Standards ([NC]):

1 I am referring to the generic case, of course. There are many excellent teachers.
2 In this context, I am obliged to point out that this paper does not do justice to the

complex issue of how best to educate prospective teachers; what it does is merely to suggest
ways to give these prospective teachers a better mathematical training given the existing
requirements of a math major

3 My colleague Ole Hald has suggested to me that one explanation of the lack of response
could be the lack of a proper context for the students to understand such a question.
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This is not to suggest, however, that valuable instruction time
should be devoted to exercises like 17

24
+ 5

18
or 53

4
× 41

4
, which

are much harder to visualize and unlikely to occur in real-life
situations.

This suggestion concerning the teaching of fractions occurs in the Standard
on Estimation and Computation in Grades 5-8 of [NC]. It is difficult for a
mathematician to imagine that students going into high school (9th grade)
would have trouble computing simple products and sums such as above, but
this difficulty evaporates as soon as we look into how fractions are taught in
grades 4-8. Take the standard Addison-Wesley Mathematics for Grades 4-8,
for example ([EI]). There the definition of the addition of fractions unnec-
essarily brings in the LCM of denominators, and the division of fractions is
defined using circular reasoning (for the latter, see p.232 of Grade 6, p.182 of
Grade 7 and p.210 of Grade 8), to name just two problems off-hand. Unfor-
tunately, students do not get to learn substantially more about the rational
number system in high school because, once there, they take algebra which
assumes they know how to compute with rational numbers. Thus by the
time students come to the university, very often their understanding of the
rationals remains in the primitive state reflected in the two quotations above.

In the light of this glaring weakness in our average math major’s math-
ematical arsenal, let us take a look at what he or she is taught about the
rationals in a typical course in introductory algebra. We first introduce the
notion of an integral domain D, and construct out of D its quotient field
by introducing equivalence classes of ordered pairs {(p, q)}, show that addi-
tion and multiplication among these equivalence classes are well defined and
that they form a field F . Then we define the canonical injective homomor-
phism from D to F , identify D with its image, and explain to the students
that henceforth all nonzero elements of D will have multiplicative inverses
in F . After all that, we will mention that if we replace D by the integers,
then the F above would be the field of rational numbers. Whether or not
one would explicitly point out the relationship between the common asser-
tion 1/(1/b) = b and the general fact that (b−1)−1 = b would depend very
much on the instructor, and in any case, even if this is done, it would be a
passing remark and no more. In the meantime, the average math major is
overwhelmed by this onslaught of newly acquired concepts: integral domain,
field, equivalence class, injection, and homomorphism. To most beginners,
these are things at best half understood. Thus expecting them to come to
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grips with the rational numbers by way of the concept of a quotient field
is clearly no more than a forlorn hope. It therefore comes as no surprise
that, in the midst of such uneasiness and uncertainty, the average student
would fail to gain any new insight into such fundamentals as 1/(1/b) = b or
(−p)(−q) = pq. Some of them soon go into school classrooms as teachers
and, things being what they are, their students too can be counted on to fear
such simple tasks as 17

24
+ 5

8
.

2 Some proposed changes

One way to resolve the difficulty concerning the education of our math majors
who do not go on to graduate work in mathematics is to teach them in a
separate track. There are obstacles that stand in the way of such a simple
recommendation, to be sure, but none seems to be more formidable than the
suspicion that it is really infra dig for a “good” department to offer “watered
down” courses to its own majors. Thus even if money is available to teach
two tracks, fighting this prejudice will not be easy. The education of over
80% of our majors is however too serious an issue to be glossed over by
institutional or professional prejudices. It is time that we meet this problem
head on by discussing it in public.

There is perhaps no better explanation of why “different” is not the same
as “watered down” than to list a few of what I believe to be the desirable
characteristics of courses designed for students who do not pursue graduate
work in mathematics.

(1) Only proofs of truly basic theorems are given, but whatever proofs
are given should be complete and rigorous. On the one hand, we are doing
battle with time: given that there are many topics we want the students
to be informed about, the proofs of some of our favorite theorems (e.g. the
Jordan canonical form of a linear transformation or the implicit function
theorem) would have to go in favor of other issues of compelling interest (e.g.
historical background or motivation). On the other hand, we also want them
to understand that proofs are the underpinning of mathematics. Thus any
time we present a proof, we must make sure that it counts.

(2) In contrast with the normal courses which are relentlessly “forward-
looking” (i.e., the far-better-things-to-come in graduate courses), considerable
time should be devoted to “looking back”. In other words, there should be
an emphasis on shedding light on elementary mathematics from an advanced



2 Some proposed changes 7

viewpoint. One example is the cleaning up of the confusion about ratio-
nal numbers (cf. the discussion in the preceding section). Another is the
elucidation of Euclidean geometry and axiomatic systems.

(3) Keep the course on as concrete a level as possible, and introduce ab-
stractions only when absolutely necessary. The potency of abstract consid-
erations should not be minimized, but we have to be aware of the point of
minimal return, when any more abstraction would decrease rather than pro-
mote students’ understanding. The example of the construction of a quotient
field from an integral domain in the context of rational numbers has already
been given above.

(4) Ample historical background should be provided. This idea is by now
so widely accepted that no argument need be given save to point out that
a knowledge of the evolution of a concept or theorem helps to break down
students’ resistance to abstractions.

(5) Provide students with some perspective on each subject, including the
presentation of surveys of advanced topics. For example, in discussing di-
agonalization of matrices, students would benefit from a discussion of the
various canonical forms – without proofs – because they need to understand
that diagonalization is not an isolated trick but a small part of the general
attempt to simplify and classify all mathematical objects. Along this line,
I cannot help but be amazed by the general tendency in most texts to re-
frain from discussing any topic that is “out of logical order”. The desire to
develop the subject ab initio is well taken, but what is there to fear about
exposing students to interesting advanced ideas without proofs, so long as
the advanced nature of the material is made clear to them? The way we
learn is hardly “logically-linear”; otherwise there would be no incentive for
any of us to go to colloquium lectures. So why deny the students the same
opportunity to learn when we can so easily provide it?

(6) Give motivation at every opportunity. The usual complaint about
school mathematics degenerating into rote-learning is fundamentally a re-
flection of the fact that most teachers were themselves never exposed to any
motivation for every concept, lemma, and theorem that they learned. It is
incumbent on the college instructors to break this vicious circle.

As an example of how to implement some of these changes, consider the
teaching of Dedekind cuts to students in introductory analysis. As is well-
known, there are two kinds of Dedekind cuts. If we try to construct R out
of Q, then we would define:

(1) A real number is an ordered pair (A, B) of nonempty subsets of Q,
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so that A ∪B = Q, and a < b, ∀ a ∈ A, ∀ b ∈ B.
On the other hand, if we try to define R as a complete ordered field, then

we postulate (in the original words of Dedekind, 1872):
(2) “If all points of the straight line fall into two classes such that every

point of the first class lies to the left of every point of the second class, then
there exists one and only one point which produces this division of all points
into two classes, this severing of the straight line into two portions.” ([D],
p.11)

Beginners are usually befuddled by either of these quaint statements.
Now suppose in the classroom we have to use (1) to construct R. We would
first point out the relationship between (1) and (2), describe the state of the
calculus in Dedekind’s time, and make students understand that there was a
real need for a non-mystical approach to the real numbers. Clearly something
had to be done, and Dedekind’s was the first successful contribution. Did he
get this idea out of the blue? Hardly. Again, in his own words (1887): “. . . if
one regards the irrational number as the ratio of two measurable quantities,
then is this manner of determining it already set forth in the clearest possible
way in the celebrated definition which Euclid gives of the equality of two
ratios (Elements, V., 5). This same most ancient conviction has been the
source of my theory . . . to lay the foundations for the introduction of irrational
numbers into arithmetic.” ([D], pp.39–40) Students at this point should be
curious about this famous definition in Elements, V., 5. Historians agree that
this was in fact the creation of Eudoxus (408–355(?) B.C.), and it states ([E],
p.114):

“Magnitudes are said to be in the same ratio, the first to the second
and the third to the fourth, when, if any equimultiples whatever be taken of
the first and the third, and any equimultiples whatever of the second and the
fourth, the former equimultiples alike exceed , are alike equal to, or alike fall
short of the latter equimultiples respectively taken in corresponding order.”

Naturally, few can penetrate this kind of prose. This then gives the
instructor an excellent opportunity to extol the virtues of the symbolic no-
tation, something that most students take for granted without any appre-
ciation. In symbols, the preceding paragraph merely states, word for word:
“a1 : a2 = a3 : a4 iff given any positive integers m and n, ma1 > na2 =⇒
ma3 > na4, ma1 = na2 =⇒ ma3 = na4, and ma1 < na2 =⇒ ma3 < na4.”
One can make this even more accessible by using modern mathematical
langauge: “a1

a2
= a3

a4
iff for any rational number n

m
, the following holds:

n
m

< a1

a2
=⇒ n

m
< a3

a4
, n

m
= a1

a2
=⇒ n

m
= a3

a4
, and n

m
> a1

a2
=⇒ n

m
> a3

a4
. Or,
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more simply:
“a1

a2
= a3

a4
iff the cuts in Q induced by both a1

a2
and a3

a4
are equal.”

This then brings us to the previous statement (2) of Dedekind.
It remains to explain to students why Eudoxus would even dream of

such a tortuous definition of equal ratio. Couldn’t he just divide the two
pairs of real numbers? Now is the time to discuss the Greeks’ veneration of
rational numbers in the 5th century B.C., the absence of any concept of “real
numbers” back then, the subsequent crisis precipitated by the discovery of
incommensurable quantities, and Eudoxus’ brilliant achievement in defining
incommensurable quantities using only the rationals. Dedekind’s insight was
to realize that Eudoxus’ ad hoc definition in fact suffices to pin down the real
number field.

Such a detour in a beginning course in analysis takes time. If one’s aim
is to usher students to the frontier of research in the most efficient manner
possible, this detour would be ill-advised. But if one tries to instill a little
understanding together with some mathematical culture in these students
before they leave mathematics, then the detour would be well worth it. So
it becomes important to know whether we are teaching the 20% or the other
80%.

3 An experiment

What I will take up next is the description of a small experiment I am
currently conducting at Berkeley in an attempt to implement the preceding
philosophy of teaching. Starting in the spring semester of 1996, I have been
offering an upper division course each semester specifically for “math majors
who do not go on to graduate school in mathematics”. At the time of writing
(April 1997), I have taught introductory algebra and linear algebra, and am
currently teaching differential geometry. The remaining courses I hope to
have taught by June of 1999 (in some order) are history of mathematics,
introductory analysis, complex functions and classical geometries.4 Having
taught two such courses and being in the middle of a third one, I would like
to recount my experience in some detail. Since there is as yet no tradition of
teaching upper divisional math courses with this philosophical orientation,

4 The absence of number theory in this list may come as a surprise to some, but I cannot
imagine there is anything in a beginning number theory course that should not be known
to one and all regardless of students’ needs.
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others might find this account to be of some value.
Two general observations emerged from this experience. The first one is

that it is very difficult, if not impossible, to find an appropriate text for such
a course. Almost all the standard texts are written to prepare students for
graduate work in mathematics. At the other extreme are a few texts that
try to be “user-friendly” by trivializing the content. Neither would serve my
purpose. The other observation is that in this approach to upper divisional
instruction, the trade-offs are quite pronounced even for someone who is
prepared for them. Let me be more specific by discussing separately the two
courses I have taught thus far.

For the introductory algebra course, the announced goals of the course
were the solutions of the three classical construction problems and the ex-
planation of why the roots of certain polynomials of degree ≥ 5 cannot be
extracted from the coefficients by use of radicals. In more details, the first
two thirds of the course were devoted to the following topics:

Part I: The quadratic closure of Q, constructible numbers, Z and
Q revisited, Euclidean algorithm and prime factorization, congru-
ences mod n, fields, polynomials over a field, irriducibility and
unique factorization of polynomials, Eisenstein, complex numbers
and the fundamental theorem of algebra, roots of unity and cyclo-
tomic polynomials, field extensions and their degrees, solutions of
the construction problems, constructibility of regular polygons.

The last third of the course was more descriptive in nature. It consisted of
the following:

Part 2: Isomorphism of fields, automorphisms relative to a ground
field, root fields, computations of automorphisms, groups and
basic properties, solvable groups, Galois group of an extension,
radical extensions, theorems of Abel and Galois.

The main reason for the decision to direct the whole course towards these
classical problems was the hope that students’ prior familiarity with these
problems would entice them to learn the abstract algebraic concepts needed
for their solutions. My hope was not in vain: a few of my 19 students told me
after the course was over that they had worked harder for this course than
other math courses because they could relate to what they were learning.
Sadly, with the gutting of Euclidean Geometry and the de-emphasis of purely
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mathematical questions (without real-world relevance) in the present school
mathematics education reform, soon students will go to college not knowing
any of these famous problems. This is a potential educational crisis that
mathematicians must do all they can to avert.

Another reason for this choice of materials was the historical connection.
Since these problems gave impetus to almost all the important advances in
algebra up to the nineteenth century, the course provided a natural setting to
delve into the historical roots of the subject. I was able to discuss the slow
emergence of the symbolic algebraic notation, Cardan, Tartaglia, Fermat,
Gauss, Galois and Abel.

Compared with more standard approaches to introductory algebra, some
losses and gains are worth noting. Because I consider the topics in Part 1
to be basic to a teacher’s understanding of algebra, every theorem there was
proved, with the exception (of course) of the fundamental theorem of algebra,
the transcendence of π , and the theorem of Gauss on the constructibility of
regular polygons. Students received, and welcomed, a careful and rigorous
treatment of Q and C. In addition, because Part I gives a detailed treatment
of the polynomial ring over R, these students got to understand this impor-
tant object — important especially for the future teachers — much better
than otherwise possible. For example, I made a point of proving for them the
technique of partial fractions which is usually imperfectly stated and used
for integration in calculus. On the other hand, this choice of topics entails
certain glaring omissions: no PID’s and no UFD’s, no general construction
of the quotient field of a domain, and no serious discussion of ideals, ring
homomorphisms and quotient rings.

The omissions in Part 2 are much more serious. With only five weeks to
treat these sophisticated topics, there was hardly time to prove any theorem
other than the simplest. Even at the most basic level, there was no discus-
sion of homomorphism between groups, and hence also no discussion of the
relationship between normal subgroups and the kernel of a homomorphism,
and theorems about the existence of subgroups of an appropriate order were
hardly mentioned. In exchange, students were given exposure to the fantas-
tic ideas of Galois theory – without proofs, to be sure – and the hope is that
perhaps one day some of them would revisit the whole terrain on their own.

Implicit in the preceding syllabus is the fact that no noncommutative
mathematics appears until two thirds of the way into the course when groups
enter the discussion. This is by design. It seems to me that students taking
such a course are confronted with proofs in a serious way for the first time,
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and that is enough of a hurdle without their being simultaneously overloaded
by noncommutativity as well. Because it took mankind more than two thou-
sand years after Euclid to face up to noncommutativity, it seems unfair that
beginning students are not given a few weeks of reprieve before being sad-
dled with it. The presentation in almost all the standard texts in algebra,
beginning with groups and followed by rings and fields, mimics the order
adopted by van der Waerden in his pioneering text of 1931 ([WA]). However,
van der Waerden was writing a research monograph, and there seems to be
very little reason why undergraduate texts should follow suit without due
regard for pedagogy. Along this line, let it be said that the first American
undergraduate textbook on (modern) algebra, A Survey of Modern Alge-
bra of Birkhoff and MacLane ([BM]), does begin with integers, commutative
rings, and more than a hundred pages of commutative mathematics before
launching into groups. There is a reason why Birkhoff-MacLane is still in
print after 55 years. Having said that, I want to reiterate a serious concern
in the teaching of such a course, which is the pressing need of an appropriate
textbook.

Next, let us turn to linear algebra. Among upper division math courses,
this course may be the only one which is as rich in nontrivial scientific appli-
cations as calculus. Furthermore, this is also a subject almost tailor-made for
computers and therefore the consideration of computational simplicity plays
an important role. For the benefit of those students who do not go on to
higher mathematics, a course on linear algebra that emphasizes both of these
facts in place of topics like the Cayley-Hamilton theorem and the rational
canonical form would seem to be more educational.5 While it is true that
standard courses usually pay some attention to computational simplicity at
the beginning when discussing Gaussian elimination, it is also true that they
quickly drop this consideration the rest of the way. I would prefer that this
consideration be the underlying theme of the whole course because, in scien-
tific applications, savings in cost and time are important.6 The syllabus for
the course I gave in the fall of 1996 is then:

Elementary row operations, Gaussian elimination, existence and

5 Of course students should learn the Cayley-Hamilton theorem and the rational form
too if there is time.

6 It should be mentioned that the issue of roundoff errors was mentioned in my course
but not pursued. It seems to me that this would be better handled in a course on numerical
analysis.
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uniqueness of LU decomposition of nonsingular square matrices,
approximate solutions of ODE’s by linear systems, review of vec-
tor spaces and associated concepts, LU decomposition in general,
the row space, column space and solution space of a general ma-
trix, the rank-nullity theorem, application to electrical networks,
inner product spaces, orthogonal projection on a subspace, least
square approximations, Gram-Schmidt, the QR decomposition
of a nonsingular matrix, signal processing and the fast Fourier
transform, determinants, eigenvalues and eigenvectors, diagonal-
ization, applications to Fibonacci sequence, symmetric and Her-
mitian matrices, quadratic forms.

This is clearly a course on matrices rather than abstract vector spaces.
Even so, some standard topics on matrices are conspicuous by their absence:
the minimal polynomial, Cayley-Hamilton, Jordan canonical form and ratio-
nal canonical form. But perhaps the most distressing aspect was my inabil-
ity, due to lack of time, to impress on the students the advantage of knowing
the coordinate-free point of view. It goes without saying that there was
no mention in the course of invariant subspaces, dual spaces, and induced
dual linear transformations. The difficulty with some of these deficiencies
could have been alleviated by making reading assignments in an appropriate
textbook, one in which the applications are presented with integrity and the
abstract point of view is treated with the clarity and precision that befit a
mathematics text. However, the scarcity of textbooks suitable for the kind
of teaching under discussion continues to call attention to itself.

What remains to be said are the gains that go with such losses, namely,
the interesting applications that throw a completely different light on abstract
linear algebra. Personally, I must admit to having been enthralled by the
applications of the fast Fourier transform to signal processing, and this sense
of enchantment would be shared by the students too if the latter is properly
explained. No less interesting is the way the QR decomposition helps save
time and cost in formulating precise experimental laws using the least squares
method. These rather pronounced trade-offs in such an approach to teaching
will undoubtedly continue to invite strong reactions from each of us.

Finally, an ongoing concern of my colleagues is that by not proving every
theorem, such courses run the risk of giving students a distorted perception
of the fundamental nature of proofs in mathematics. Whether or not such a
danger would be realized in the classroom seems to me to depend very much
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on the way a course is actually taught. There are no foolproof pedagogical
strategies. For the cases at hand, I have appended the final exams of the
preceding two courses for the readers’ inspection. One can at least get a
sense of what was emphasized in these courses even if not what was actually
achieved.

4 The summing up

Upper division courses should enlarge a student’s basis of mathematical
knowledge. With this in mind, I find it necessary to lecture throughout
these courses to insure that a minimum number of topics be covered. At the
same time, I also attach a great deal of importance to homework assignments.
To help students with problem solving, which includes not only getting the
solutions but also learning how to write intelligible proofs, I either pass out
solution sets or schedule extra problem sessions each week. While one hes-
itates to make an unconditional recommendation of such time-consuming
efforts as part of our teaching duty, one should also ask if most students can
learn much in these courses by simply attending lectures.

It should be emphasized that what has been proposed above is an alter-
native to the standard courses, not a replacement. If we are still committed
to the concept of the university as a repository of knowledge, then we must
insure the continuity of this knowledge by producing future mathematicians.
The standard upper division courses therefore play a vital role in honoring
this commitment. On the other hand, a university is also an educational in-
stitution and the education of the majority of the math majors must also be
taken seriously. The aim of the present proposal is therefore to suggest a way
for the university to better fulfill this dual obligation, and not to suggest a
radical change in undergraduate education. In practical terms, the suggested
alternative can be implemented more easily in large institutions than in small
colleges. In the former, scheduling parallel sections of the same course cater-
ing to different student clienteles does not present much difficulty. One can
only hope that this suggestion, in one form or another, will be discussed in
these institutions. In the smaller colleges, any change would seems to come
only with some special effort or ingenuity.

Finally, the present proposal is very germane to the current education re-
form in K-14. There is a tendency in this reform to make sweeping changes:
wholesale replacements of existing curricula or pedagogies are routinely rec-
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ommended. The idea that one can offer alternatives to some but not all of
what are already in place appears to be foreign to the reformers, as is the
need to clearly delineate the liabilities as well as virtues of every one of the
proposed changes. Education is a multi-faceted enterprise which, for better
or for worse, involve both politicians and the public. We accept the fact that
the latter two thrive in the world of hyperbole. However, most of the reform
measures have been proposed in the academic community. I hope I will be
forgiven for my temerity if I offer the reminder that, insofar as education
is still an academic subject, the academics who propose education reform
should make an effort to conform to the minimal standards of intellectual
integrity and candor. Had such an effort been made, much of the rancor
of the present reform would have disappeared and a more rational course of
action would have resulted. For the sake of the next generation — and the
reform is nothing if not about the welfare of the next generation — let us
restore such integrity and candor to our discussions.

A Final Exam of Introductory Algebra

Math 113 FINAL EXAM
May 13, 1996 8-11 am Prof. Wu

1. (5%) Prove that for an integer n, 3 | n ⇐⇒ 3 | (sum of digits of n).
2. (5%) Let f(x) = xn + an−1x

n−1 + · · · a1x + a0 be a polynomial with
integer coefficients, and let r be a rational number such that f(r) = 0. Show
that r has to be an integer and r | a0.

3. (5%) Find a minimal polynomial of
3
√

1 +
√

3 over Q. (Be sure to
prove that it is minimal.)

4. (5%) Let n be a positve integer ≥ 2 such that n | (bn−1 − 1) for all
integers b which are not a multiple of n. What can you say about n?

5. (5%) Do the nonzero elements of Z13 form a cyclic group under mul-
tiplication? Give reasons.

6. (10%) Let p be a prime.

(a) Prove: p

∣∣∣∣(p

k

)
for k = 1, · · · p− 1, where

(
p

k

)
≡ p!

k!(p− k)!
.

(b) Prove: the mapping f : Zp → Zp defined by f(k) = kp for all k ∈ Zp is a
field isomorphism.

7. (10%) Is x4 +2x+3 irreducible over R? Is it irreducible over Q? Give
reasons.
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8. (10%) Let F ≡ {a + ib : a, b ∈ Q} and let K ≡ Q[x]/(x2 + 1)Q[x].
Show that F is isomorphic to K as fields by defining a map ϕ : F → K and
show that ϕ has all the requisite properties.

9. (10%) If β is a root of x3 − x + 1, find some p(x) ∈ Q[x] so that
(β2 − 2) p(β) = 1.

10. (10%) Let ζ = ei2π/3. Compute (Q(ζ, 3
√

5) : Q(ζ)).
11. (25%) (In (a)–(d) below, each part could be done independently.)

(a) Assume that if p is a prime, then xp−1 + xp−2 + · · ·+ 1 is irreducible over
Q. Compute (Q(cos(2π/7) + i sin(2π/7)) : Q). (Each step should be clearly
explained.)
(b) Suppose the regular 7-gon can be constructed with straightedge and com-
pass. Explain why (Q(cos(2π/7) : Q) = 2k for some k ∈ Z+.
(c) If F ≡ Q(cos(2π/7)), show that (F (i sin(2π/7)) : F ) = 1 or 2.
(d) Use (b) and (c) to conclude that if the regular 7-gon can be constructed
with straightedge and compass, then (Q(cos(2π/7) + i sin(2π/7)) : Q) = 2m

for some m ∈ Z+.
(e) What can you conclude from (a) and (d)? What is your guess concern-
ing the construction of the regular 11-gon, the regular 13-gon, the regular
23-gon, etc.?

A Final Exam of Linear Algebra

Math 110 FINAL EXAM
Dec 11, 1996 12:30-3:30 pm Prof. Wu

1. (5%) Find the determinant of


2 2 0 4
3 3 2 2
0 1 3 2
2 0 2 1

 and show all your steps.

2. (15%) Let A =

 1 −1 −1
−1 1 −1
−1 −1 1

. Find its eigenvalues and the corre-

sponding eigenvectors. Also find a 3× 3 matrix S and a diagonal matrix D
so that S−1AS = D.

3. (5%) If Q is an n×n orthogonal matrix, what is det Q? What are the
eigenvalues of Q? Give reasons.
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4. (15%) Let Fk denote the Fourier matrix of dimension k. Define for
each n:

Y2n =


y0

y1

y2
...

y2n−1

 , Yodd =


y1

y3

y5
...

y2n−1

 , Yeven =


y0

y2

y4
...

y2n−2



Also let w = ei 2π
2n and W =


1

w
w2

. . .

wn−1

. Then the fast Fourier

transform can be described as follows:

F2nY2n =

[
FnYeven + WFnYodd

FnYeven −WFnYodd

]
Now let ρ(2n) denote the minimum number of operations needed to compute
F2nY2n. Prove: ρ(2k) ≤ k2k for every integer k ≥ 1. (Recall: an “operation”
means either a multiplication-and-an-addition or a division.)

5. (10%) We want a plane y = C +Dt+Ez in y− t− z space that “best
fits” (in the sense of least squares) the following data: y = 3 when t = 1 and
z = 1; y = 5 when t = 2 and z = 1; y = 6 when t = 0 and z = 3; and y = 0
when t = 0 and z = 0. Set up, but do not solve the 3 × 3 linear system of
equations that the least squares solution C, D, E must satisfy.

6. (10%) Let v1, · · · , vk be eigenvectors of an n×n matrix A correspond-
ing to distinct eigenvalues λ1, · · · , λk, respectively, where k ≤ n. Prove that
v1, · · · , vk are linearly independent.

7. (10%) Suppose a real n×n matrix A has n distinct real eigenvalues. Is
there necessarily a real n× n matrix S so that S−1AS is diagonal? Explain.

8. (10%) If the eigenvalues of A are λ1, · · · , λn (not necessarily distinct),
what are the eigenvalues of Ak where k is an integer ≥ 1? If A is nonsingular,
what are the eigenvalues of A−k for k ≥ 1? Give reason.

9. (15%) Let P be the projection matrix which projects Rn onto a k-
dimensional subspace W ⊂ Rn, where 0 < k < n. Enumerate all the eigen-
values of P and for each eigenvalue, describe all its eigenvectors.
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10. (5%) Let A be an n × n matrix and let A′ be obtained from A be
Gaussian elimination. Do A and A′ necessarily have the same eigenvalues?
Give reasons.
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