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We start with the basic premise that the most urgent task in school mathe-
matics education is to produce teachers who are mathematically well-informed
(cf. Wu [7]). This talk addresses the question of how to accomplish this goal
in professional development. It will not touch on the perhaps far more difficult
issues of administrative support and social forces that shape career decisions.

With the exception of Part III, the comments that follow would be valid for
both pre- and in-service professional developments. But I will concentrate for
the most part on in-service professional development, for the simple reason
that, in general, the pre-service situation presents immense difficulties. There
are too many hoops to jump through in the pre-service case, such as bureau-
cratic decisions by universities and the generic lack of cooperation between
math departments and schools of education.2 Although the present climate

1November 18, 2006. A slightly expanded version of a presentation in the special
session on the Mathematical Education of Teachers at the Fall Southeastern Section
Meeting of the American Mathematical Society, October 16, 2005, at East Tennessee
State University, Johnson City, Tennessee. I am grateful to Michel Helfgott for his
hospitality. I also wish to warmly thank Kristin Umland, Tony Gardiner, and Jim
Stigler for their valuable comments on an earlier draft.

2It is to be understood that sweeping statements of this nature always allow for a
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in in-service professional development is, overall, not conducive to the teach-
ing of mathematics either, as I will presently explain, the in-service route is
nevertheless more amenable to individual initiatives. There is at least more
flexibility in the in-service arena for each person to act on his/her new ideas
to bring about change.

I will divide the discussion into three parts:

Part I Description of some of the obstacles.

Part II Suggestion on how to overcome the obstacles.

Part III An example of what can be done.

Part I One person’s view of the main obstacles standing in the way of pro-
moting the teaching of content in in-service professional development.

(i) Insufficient attention to the importance of content knowledge from the
top down: from NSF-EHR to education officials in most states.

The consideration of content in the funding of proposals by NSF-EHR (the
Education and Human Resources directorate of the National Science Foun-
dation) appears to be of recent vintage. Its neglect of mathematical integrity
has been commonplace for a very long time, and this neglect is likely still
being replicated across the land. For example, in a recent survey by Tom
Loveless, Alice Henriques, and Andrew Kelly of winning proposals among the
state-administered Mathematics Science Partnership (MSP) grants from 41
states ([2]), it was found that while “Some of the MSPs appear to be offering
sound professional development. Many, however, are vague in describing what
teachers will learn”. Typically, these “MSPs’ professional development activ-
ities tip decisively towards pedagogy.” I can also offer a personal anecdote.

small number of exceptions. For example, although an overwhelming majority of the
colleges do not require three mathematics courses as part of the preparation of elementary
teachers, there are some which have done that.
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In year 2000, when the state of California convened a meeting with publish-
ers on California’s new criteria for the forthcoming math book adoption, the
importance of correct mathematics was emphasized. After the meeting, a
publisher representative approached me and confided that he had been to
numerous state adoption meetings, but that it was the first time that he had
heard content discussed.

(ii) Mistaken notion of what constitutes “content” in school mathematics.

Content is a word that is easily said, but its meaning in the context of
school mathematics education has proven to be elusive. I will illustrate this
elusiveness by way of two examples from both ends of the educational spec-
trum: university mathematicians who are sincere in their belief in the impor-
tance of mathematics, and educators who are equally sincere in their belief
in the importance of process in education.

Exampe 1: A university mathematician once described how he had been
presenting “fractions from the field axioms point of view” to algebra and pre-
algebra teachers from grades 6–8.

Does this constitute appropriate professional development? Probably not,
because this kind of mathematics is too abstract for use in the classroom of
grades 6-8. More importantly, teachers in these grades are generally struggling
to find ways to correctly teach fractions to their students, so learning another
approach that they cannot use in their classrooms cannot be high on their
agenda.

Most university mathematicians are not aware of the fundamental fact that

College mathematics 6= School mathematics.

School mathematics is the customized version of college mathematics for
the consumption of school classrooms (see the discussion in Wu [8]), just as
a personal computer is the customized version of an IBM mainframe for use
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in ordinary households. In both cases, it is the added engineering process
that makes the crucial difference.

Example 2: A university math educator illustrated how he approached
the teaching of content to elementary teachers with a problem that he gave
as a class project for open-ended investigations. Let X, Y , Z be the number
of beans placed on the vertices of a triangle, and let nonzero whole numbers
A, B, C be attached to the sides of the same triangle, as shown, so that

A = X + Y, B = Y + Z, C = X + Z (∗)
The problem is: If whole numbers A, B, C are given, would there be whole
numbers X, Y , Z which satisfy (∗)?
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Note that one can show, using mathematics that is understandable to a
6th grader, the following: there is a unique solution ⇐⇒ A+B +C is even
and the sum of any two of A, B, C is greater than the third. By contrast,
this educator let his pre-service teachers use the discovery method to carry
out the investigations. He let them explore how various integral values of X,
Y , Z lead to different values of A, B, C, and how a solution {X, Y, Z} can
be obtained by guess-and-check when certain whole numbers A, B, C are
given. He also got them to look into other formulations of this problem (such
as replacing the triangle by a quadrilateral). But no mention was ever made
of the necessary and sufficient conditions given above.

Nevertheless, he believed that it was a wonderful learning experience for
the pre-service teachers.
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My concern is that this educator has confused “pre-mathematics” (in the
sense of heuristic arguments, explorations, and other processes that precede
the clear formulation of precise hypotheses, precise conclusions, together with
the logical unfolding of the steps connecting the former to the latter) with
mathematics itself (the clear formulation of precise hypotheses, precise con-
clusions, and the steps connecting them). Teaching should address both
pre-mathematics and mathematics, there is no doubt of that. However, a
common mistake in discussions of mathematics education in the past fifteen
years has been to confer blessings on the replacement of mathematics with
pre-mathematics. When professional development does likewise, it misleads
teachers into teaching pre-mathematics in place of rather than in addition
to mathematics, and students are the ultimate victims. In particular, these
teachers will have no conception of mathematical closure, such as the enunci-
ation of the necessary and sufficient conditions in the preceding problem and
the explanation of why they lead to a precise mathematical understanding of
the problem itself. How can these teachers be effective in the classroom?

(iii) Mistaken notion of what constitutes correct mathematics in existing
professional development materials.

The thought that the mathematics in professional development materials
could be defective is not something that comes naturally to mind, but in
fact such defects are common. For example, a standard text for elementary
teachers defines a rational number a

b
for integers a and b, as

the solution of the equation bx = a.

Then it sets up a table of the “several different ways in which we use rational
numbers”:
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Use Example

Division problem or solution The solution to 2x = 3 is 3
2 .

to a multiplication problem

Partition, or part, of a Joe received 1
2 of Mary’s salary

whole each month for alimony.

Ratio The ratio of Republicans to
Democrats in the Senate
is 3 to 5.3

Probability When you toss a fair coin, the
probability of getting heads is 1

2

If you believe that the text goes on to explain why the solution to bx = a

would have these three other properties, i.e., partition, ratio, and probability,
you are mistaken.

If you believe that the text goes on to make use of the solution to bx = a

to develop other properties of rational numbers, e.g., equivalent fractions, the
addition and multiplication of fractions, then you are equally mistaken.

If, however, you believe that in this text, the definition of a rational num-
ber is irrelevant, then you are right.

Learning from a book like this would be like taking a tour in a zoo: you
get to see each property of the rational numbers displayed like an animal in
a cage, but not so much how these properties are interwoven into an organic
whole. But

Mathematics is not a zoo. It is an organic entity.

Teachers have to be shown this organic entity.
This example also illustrates what might be called the pro forma approach

to content. Having been told that definitions are important in mathematics,
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some textbooks choose to satisfy this requirement by putting forth precise
definitions and then proceed to ignore them the rest of way.4 Incidentally, the
definition of rational numbers as solutions of ax = b is inappropriate for the
professional development of elementary teachers because it is pedagogically
inappropriate to make use of such a definition in the elementary classroom.

(iv) Mistaken notion of what constitutes correct mathematics in existing
education documents.

Again, I will simply illustrate with an example. On p. 26 of the CBMS vol-
ume on The Mathematical Education of Teachers ([1]), there is the following
comment on the mathematics that middle school teachers need to learn.

Proportional reasoning is psychologically and mathematically a so-
phisticated form of reasoning based on intuitive pre-school experi-
ences and developed in school through appropriate experiences.

It should be made absolutely clear that what is called proportional reason-
ing in middle schol mathematics is nothing other than mathematical reasoning
based on the concept of a linear function without constant term. Briefly, it
requires the recognition that a situation is completely described by a function
of the form

f(x) = cx for some constant c.

Without formally introducing the concept of a “linear function”, one can
nevertheless talk about proportional reasoning by making explicit that f(x)

x = c

for all nonzero x. For example, walking at a constant speed of 2.7 mph means,
by definition,

the number of miles walked in t hours

t hours
= 2.7

4The practice in calculus books of the sixties and seventies to define a function as a
set of ordered pairs at the beginning, and then never mention ordered pairs again in the
remaining hundreds of page, readily comes to mind.
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no matter what t may be. (See pp.46-50 of Milgram-Wu [3] for related dis-
cussions). Knowing f(x)

x = c for all x, proportional reasoning is the statement
that for any two distinct nonzero values x1 and x2,

f(x1)

x1
=

f(x2)

x2
,

and the reason is that both are equal to c. In the language of school mathe-
matics, the four numbers f(x1), x1, f(x2), and x2 form a proportion.

There is thus no mystery to forming a proportion once the presence of
the linear function f(x) = cx is recognized. Because pre-algebra school
mathematics does not have a tradition of making explicit the presence of,
or bringing out, the underlying linear function without constant term, both
teachers and students have a hard time understanding why there is a propor-
tion. It is perhaps in this mathematical vacuum that some educators would
bring psychology into the fabric of mathematics to “explain” the mystery of
forming a proportion.

In every kind of learning or creation, psychology must play a role. Learning
or creating mathematics is no exception. But mathematics itself is completely
WYSIWYG, what you see is what you get; everything must be on the table.
As teachers, we are required to make every concept and every skill logically
self-contained: all the requisite information, such as whether or not a linear
function is at work, must be made available to students before talking about
the psychological factors that may affect the way they internalize the concepts
or skills. If a piece of mathematics cannot be learned without appealing to
psychology or some ineffable pre-school experiences, then it is bogus math-
ematics. The reason is simple: students’ pre-school experiences vary, so a
piece of mathematics that relies on a special kind of pre-school experience
for its mastery automatically excludes some segment of the students. But
mathematics is an open book, and if our students do not buy into this fact,
what incentive could there be for them to learn?

Professional development must strive to make our teachers aware that
mathematics is an open book, because they are the instrument to spread this
message to students. It would not do to mislead our teachers into believing
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that psychology is an integral part of mathematics.

To drive home the point that mathematics must be psychology-independent,
consider the following problem (cf. the discussion in Wu [6], Section 10):

A group of 8 people are going camping for three days and need to
carry their own water. They read in a guide book that 12.5 liters
are needed for a party of 5 persons for 1 day. How much water
should they carry? (NCTM Standards, [4] p. 83)

It is obvious that this problem cannot be solved without the assurance that
each person drinks the same amount of water each day, and such an assurance
is not forthcoming in the problem as it stands. If we only want to achieve
mathematical correctness, we could of course add this pedantic assumption
outright to the problem. A more effective formulation of the problem5 would
be to add flexibility to the wording so that students realize the need to make
an “on average” calculation”:

A group of 8 people are going camping for three days and need to
carry their own water. They read in a guide book that roughly 12.5
liters are needed for a party of 5 persons for 1 day. What does this
suggest as the quantity of water they should take with them?

In any case, what is at issue here is that, in the original formulation,
students are expected to take this fact, drinking the same amount
of water each day, for granted, presumably because they should have the
psychological maturity to see that this must be so. The minimal requirement
of mathematics is, however, that such a (nonobvious) fact must be made
explicit as part of the given data of the problem. Yet, problems of this
nature, where a crucial assumption is hidden from students, are routinely
given to assess students’ mathematical proficiency.

Three consequences of the practice of using such problems for assessment
are worth noting. On the one hand, when students fail to “set up the cor-
rect proportion” to solve such problems in standardized tests, students are

5Suggested to me by Tony Gardiner.
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blamed for a lack of conceptual understanding of proportional reasoning. Of
course we know that the cause of this failure is not students’ lack of under-
standing but that they have not been taught correct mathematics. A second
consequence is more pernicious. Some students manage to learn from their
exposure to these problems that, when a problem is not solvable as stated,
they simply make up extra assumptions in order to get a solution. But when
the perception becomes ingrained in these students that mathematics always
carries a hidden agenda in the form of these extra assumptions, and that
guessing that agenda is part of doing mathematics, then in a real sense, they
cease being mathematics learners. Instead, they would serve as Exhibit A of
the collateral damage of a failed mathematics education.

A final consequence of the common use of such problems is that many
students are forced to cope by setting up a proportion at all costs. This is of
course the same as assuming that every function under the sun is linear. A
few colleagues have expressed frustrations about the impossibility of convinc-
ing some college students that not all functions are linear. We don’t need to
look far for an explanation.

We want our teachers to know that this kind of problem is not acceptable
mathematics.

Incidentally, it is possible to profit from the use of such problems-with-
hidden-assumptions in a classroom. Hand out such a problem and ask stu-
dents what additional assumptions are needed to make it solvable. In the
hands of a knowledgeable teacher, this could be an enriching educational ex-
perience.

Part II Suggestions on how to meet teachers’ mathematical needs in the
face of these obstacles.

If professional development is to help our teachers learn the mathematics
they need, then we must face the facts unflinchingly: Most teachers have
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been immersed in this culture of imprecise, incorrect mathematics through-
out their 17 years as students as well as all through their careers as teachers.
It is therefore to be expected that many of them would have little or no
conception of the need for precise reasoning or mathematical closure, have
no understanding of why precise definitions are indispensable in mathematics,
and also see no need to teach mathematics as an open book with no hidden
agendas. One cannot overcome such cumulative misconceptions of mathe-
matics by teaching just a few mathematical skills or concepts, nor by offering
a few one- or two-day workshops. A reasonable guess would be that one
must make an intensive and sustained effort to systematically revamp their
mathematical knowledge if one has any hope of revamping their perception of
what mathematics is really about. To this end, there are at least four major
areas that are deserving of special emphasis.

(i) Precise definitions which are grade-level appropriate are the cornerstone
of school mathematics; they must be made an integral part of the instruction
in order to demonstrate their importance.

To get a sense of to what extent definitions are neglected in school mathe-
matics, I will make a partial list of the basic concepts whose precise definitions
are usually missing from the school classroom:

the remainder in the division of whole numbers;

fraction;

decimal;

the sum, product, and quotient of two fractions;

constancy of speed;

constancy of the rate of work;

graph of an equation;

half-plane;

graph of an inequality;
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circumference;

area of a planar region;

volume of a solid.

congruent figures

similar figures

(ii) Mathematics is WYSIWYG; there is no hidden agenda anywhere, es-
pecially in its assessment items.

I have discussed the problem about eight people on a camping trip as well
as “proportional reasoning” problems in general. In the same breath, I should
also mention the standard pattern problems in elementary school designed
to promote so-called algebraic thinking. A typical such problem asks for the
number of dots in the 18-th figure in a sequence whose first three figures are
shown:

•
• •
• •

• • •
• • •
• • •

The expected answer is of course 182, but this answer assumes that each
figure of the sequence is a square with one more dot on each side than the
preceding square. This implicit assumption is then the hidden agenda, be-
cause there is no reason why the sequence must progress as described, e.g.,
these three figures could be repeated forever, in which case, the correct an-
swer would be 32. If we wish to test students’ ability to count correctly in
a pattern, one might try to reformulate the problem by prefacing the three
figures with words to the effect that, “If dots are arranged in successively
larger square arrays, starting as shown here, how many dots would there be
in the 18th figure starting with four dots?”
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(iii) Every assertion in mathematics is supported by reasoning; we have to
teach students to reason logically so that they can solve problems.

Unexplained statements are scattered all over the K-12 curriculum, and
unfortunately it falls on the teachers to clean up this mess, at least in the
short term. It is ironic that, at a time when problem-solving has become
synonymous with mathematics education, the far more fundamental need for
logical reasoning does not make the headlines. Logical reasoning is the back-
bone of problem solving. Our students’ purported inability to solve problems
is inextricably linked to the fact that logical reasoning is not part of the rou-
tine in the mathematics classroom. Until students are constantly exposed to
logical reasoning, their performance in problem solving is unlikely to improve.
To make such exposure a reality, our teachers have to develop the conditioned
reflex that to every mathematical assertion there is an explanation. This is
unfortunately not an easy task for teachers brought up by the present kind of
pre-service professional development, because it would require a fundamental
re-orientation of their mindset.

Again, to give an idea of the magnitude of the problem, here are some
major topics of school mathematics for which, generally, little or no reasoning
is given:

the standard algorithms for whole numbers and decimals;

invert-and-multiply for fraction division;

solutions of rate problems;

multiplication and division facts for rational numbers;

the relationship between linear equations and straight lines;

the relationship between linear inequalities and half-planes;

the relationship between roots of quadratic polynomials and their
factorization.
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(iv) The mathematics across the grades is tightly-structured and coher-
ent;6 mathematics teaching at all levels benefits from knowing this structure
and coherence.

Often a teacher’s knowledge is limited to the mathematics of one or two
grades. When a teacher is unaware of the longitudinal coherence of the math-
ematics across K–12, the teaching inevitably suffers. Consider, for example,
the following strands of development among standard topics:

whole numbers → fractions → rational numbers → polynomials
and rational expressions;

proportional reasoning → linear functions;

similar triangles → graphs of linear functions;

the concept of congruence → concepts of length, area, and volume.

I will now illustrate the relevance of these strands to the present discussion
with a trivial example. It is often said that children come to the study of
fractions with the fixation that multiplication makes things bigger and division
makes things smaller, and that teachers of fractions have a hard time undoing
the misconceptions. Such misconceptions are attributed to the fact that,
among whole numbers, multiplication magnifies and division shrinks. This is
only the partial truth. Such misconceptions are also the result of teachers in
the lower grades being totally oblivious to the needs of more advanced grades,
in particular, to the future instruction in fractions where such phenomena of
magnification and shrinking are no longer valid. If a primary teacher is aware
of the longitudinal coherence of the development from whole numbers to
fractions and to rational numbers, she would, at each step, caution students
against possible pitfalls so that incorrect fixations do not take hold in students’
thinking. Point out, for instance, that if we multiply 3 by 0, we get 0, and if
we multiply it by 1, we get 3. So in neither case does multiplication lead to

6But one has to add that, once we get to the traditional sequence of Algebra I,
Geometry, Algebra II, etc., one has to look past the articificial boundaries created by
these courses to see the coherence.
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a bigger number. If this message is repeated sufficiently often, even young
kids would develop a healthy respect for the complexities of multiplication,
and whatever misconception they might secretly harbor would be less likely to
calcify. Of course if the primary teacher also explicitly mentions the possibility
that multiplication by some numbers students have yet to learn may led to
smaller numbers, so much the better.

One reason many, if not most, primary teachers pay no attention to the
connection between whole numbers and fractions is that they are taught that
“fractions are such different numbers”. They are never told that fractions are
nothing more than natural extensions of whole numbers (see e.g., Wu [8] for
a more elaborate discussion of this point).

The importance of teachers’ awareness of the global structure of school
mathematics cannot be over-emphasized.

Part III The foregoing ideas guided my own work in professional development
since year 2000. Perhaps there is some virtue in giving a brief description of
the in-service summer institutes I have conducted since then, if for no other
reason than to provide a point of reference for discussion.

The basic format of the institutes is as follows (cf. Wu [5]):

(i) They meet for three consecutive weeks in the summer, from
8:30 am to 4 pm everyday.7

(ii) There are also five follow-up Saturdays sessions in the succeed-
ing school year devoted to reviews, some new topics, and especially
pedagogical issues.

(iii) The daily schedule is as follows. Before 2 pm there are three
hours of lectures on mathematics, each hour followed by twenty
minutes of seat work and break. There is a one-hour break for
lunch. The period from 2:30 pm to 4 pm is devoted to small group
discussions of homework, mathematics of the day, and pedagogy.

7I have also conducted one week institutes on focussed topics, e.g., length and area.
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(iv) There are daily homework assignments.

Why three weeks? The glib answer ”because few would come for four
weeks” is actually the truth. As the discussion in Part II indicates, the more
time one can spend with teachers, the better chance one has to re-orient
their thinking about mathematics. Experience indicates, however, that three
weeks may be the maximum that most teachers are willing to sacrifice in the
summer. They need time to recharge their batteries.

Three additional comments may be relevant. One is that teachers in these
institutes are paid 100 dollars a day for participation. A second one is that
daily homework assignments are essential for learning. Finally, the Saturday
follow-up sessions are an indispensable part of the professional development.
Teachers cannot possibly learn all they are taught in three weeks; this is just a
reflection of the usual time lag between being exposed to an idea and actually
learning it. By coming back to some of the topics in a more leisurely fashion
in the ensuing nine months, and often from a different perspective, we greatly
increase the chances that learning would take place. Equally important is the
opportunity for the teachers in the follow-up sessions to begin thinking about
how to use what they learn in their lessons. Such pedagogical attempts of
course enhance the learning of mathematics as well.

To successfully convey to teachers the basic structure of mathematics,
twenty days of contact time is not enough. For this reason, not much time
during the summer can be explicitly spent on pedagogy. To compensate for
that, one has to make sure that every piece of mathematics taught in the
institute is inspired by concerns for the school classrooms and, more impor-
tantly, the mathematics is taught at a level as close as possible to what takes
place in a school classroom. For example, fractions will not be taught as
equivalence classes of ordered pairs of whole numbers, no matter how attrac-
tive the explanation may be. It is therefore appropriate that I conclude with
a brief description of the contents of the four institutes that I have given. I
hope the brevity does not preclude a glimpse into the pedagogical decisions.
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Numbers and Operations: whole numbers, one-sided number line,
standard algorithms, elementary number theory (prime factorization, GCD,
LCM, Euclidean algorithm), definition of fractions as certain points on the
number line and their arithmetic, definition of decimals as special fractions
and their arithmetic, definition of rational numbers as points on the two-sided
number line and the arithmetic of rational numbers.

Geometry: definitions of basic geometric concepts (polygons, polyhedra,
perpendicularity, parallelism, angles), rigid motions in the plane in terms of
hands-on activities and the definition of congruence, dilation as a hands-on
activity and the definition of similarity, definition of area and area formulas
(including area of the circle and definition of π), definition of volume and
volume formulas, the Pythagorean theorem (two proofs).

Pre-Algebra: definitions of fractions, decimals, rational numbers and
their arithmetic; rigid motions in the plane and congruence, dilation and
similarity, simple geometric proofs, the Fundamental Theorem of Similarity,
basic criteria for similar triangles, definition of the slope of a line, definition
of parallelism and perpendicularity and theorems thereof in terms of slope.

Algebra (Wu [6]): algebra as generalized arithmetic, symbolic manipu-
lations, transcription of verbal information into symbolic language, geometry
of linear equations in two variables with special emphasis on the relationship
between a linear equation and its graph, simultaneous equations, definition
of half-planes and graphs of linear inequalities, linear programming, func-
tions and their graphs, linear functions and proportional reasoning, graphs of
quadratic functions and the quadratic formula.
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http://math.berkeley.edu/∼wu/

18


