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Setting the stage
The controversy discussed in this article has its origin in the 1992 Math-

ematics Framework for California Public Schools (“the 1992 Framework”)1.
Published three years after the Curriculum and Evaluation Standards of the
National Council of Teachers of Mathematics (“the NCTM Standards”)2, the
1992 Framework has come to symbolize the more extreme of the practices
of the mathematics education reform initiated by the NCTM document. Its
overemphasis on pedagogy at the expense of mathematical content knowledge
spawned several new curricula that so enraged the parents of school children
that grassroots revolt against the reform within California spread like wildfire
in a hot summer day. Eventually, the Californian legislature bowed to the
inevitable and called for an earlier than expected writing of a new Frame-
work. It was also decided for the first time in the history of California that
there should be a set of mathematics standards. By law, these standards
have to be set at a level comparable with the best in the world. The Cali-
fornia Academic Standards Commission (“the Commission”) was created by
the California legislature for the purpose of writing the standards.

0 January 31, 2001. This article has appeared in What is at Stake in the K-12
Standards Wars: A Primer for Educational Policy Makers, Sandra Stotsky,
ed., Peter Lang Publishers, NY, 2000. Pp. 3-31.
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In October, 1997, the Standards Commission submitted to the State
Board of Education (“the Board”) a draft of Mathematics Content Stan-
dards which took the Commission more than a year to complete3. Under
normal circumstances, the Board would approve such a document with no
more than minor changes. However, a preliminary review of the Commis-
sion’s Standards by several well-known research mathematicians was so dev-
astating that the Board broke precedent by commissioning a group of Stan-
ford University mathematics professors to revamp the Commission’s draft.
Within ten weeks, the Board issued the revised standards, first the portion
on grades K–7 and then that on 8-124. The reaction to the new version was
swift and violent:

“[The Board’s set of Standards] is ‘dumbed down’ and is un-
likely to elicit higher order thinking from the state’s 5.5 million
public school students.”

Delaine Eastin, as reported in the NY Times

“I will fight to see that California Math Standards are not imple-
mented in the classrooms.”

Judy Codding, as quoted at an NCEE conference

“The critics claimed the Board’s ‘back-to-basics’ approach marked
a return to 1950s-style methods. . . .Opponents characterized the
[Board’s] Standards as a ‘return to the Dark Ages’”.

as reported in the San Diego Union

The interest engendered by these two sets of Standards remained un-
abated in the ensuing months. For example, in the February 1998 issue of
its News Bulletin, NCTM weighed in with unflattering comments about the
Board’s Standards5. Because education is a very political issue, it is expected
that opinions would be delivered without relation to facts. However, a set
of mathematics standards for schools also deserves a critical inspection from
a mathematical as well as an educational perspectives, one that is based on
facts and not on hyperbole. With this in mind, this article proposes to take
a close look at both sets of standards from a scholar’s perspective. Section
2 gives an overview of the comparison between the two versions. Section 3
details some of the mathematical flaws in the Commission’s Standards, and
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Section 4 contrasts these flaws with the clarity and the overall mathematical
soundness of the Board’s revision.

Section 5 discusses the problems that were in the Board’s Standards and
indicates whether and how these were addressed in the new California Math-
ematics Framework6 that was approved in December 1998. Should the ap-
pearance of the new Framework in a discussion of the Standards come as a
surprise, let it be noted that, in the state of California, the Standards were
not designed to stand by themselves. Rather, the Standards and the Frame-
work are required by law to function as a single unit in providing a blueprint
for California’s mathematics education.

The final section summarizes what we have learned from this battle.
It may be asked why a dispute within the state of California should be

of interest to the rest of the nation. There are several reasons. One is that
California, the most populous state of the nation, has been in the forefront of
the current mathematics education reform. In the opinion of people outside
California, “as California goes, so goes the nation”. A second reason is
that the inadequacy of mathematics education in this country has held a
firm grip on the public’s attention in the recent past, and the very visible
act of groping for a solution in California adds enormously to cement this
grip. Also the timing is just right: the Californian squabble came right in
the midst of the revelation about the nonperformance of American students
in the Third International Mathematics and Science Study (TIMSS). The
Californian situation thus offers other states a glimpse of what to look forward
to in their own battles to save mathematics education.

A third reason that makes the dispute between the two sets of Standards
interesting to other states lies in the very nature of the dispute. The per-
vasive lack of precision in the Commission’s Standards is symptomatic of a
larger trend in contemporary mathematics education, which is to minimize
the technical precision inherent in the discipline in order to make it more
accessible to a wider audience. Would a state be fulfilling its basic mission in
mathematics education if it promotes such a modified version of mathemat-
ics in order to reach out to a higher percentage of its students? California
answered this question in the negative in 1998, when the Board’s revision
restored the precision and the technical materials. This very likely insures
California’s ability to continue to produce a robust corps of scientists and
engineers. Whether or not it will also succeed in raising the mathematical
achievements of the lower 50% of its students will be a matter of intense pub-
lic interest. Other states would do well to look at the details of this dispute
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before they too fight the same battle in the near future.
The fourth and final reason is perhaps the most important because of its

enormous practical consequences: the Board’s Standards will generate a com-
pletely new set of mathematics textbooks by 2001. According to the latest
information (Decemeber 1998) from the California Department of Education,
there is more publisher interest, by far, in this new round of textbook adop-
tion than in any other that has ever been conducted in this state. This means
that by 2001, the nation will have a plethora of alternative textbooks that
heed the call, not of the NCTM Standards, but of the California Standards
and Mathematics Framework. The debate within California will become a
national debate in a matter of two years.

An overview of the two sets of Standards
No critical inspection of the two sets of standards, the Commission’s and

the Board’s, should engage in hairsplitting in order to search for perfection.
Social documents generally do not fare too well when subjected to this kind
of treatment. We expect flaws in both versions, and we shall find flaws
aplenty. Yet, there is a fundamental difference between their flaws, and it is
this difference that is our major concern.

The Commission’s Standards is a thoughtful document. In both the In-
terim Report from the Commission Chair to the State Board and the In-
troduction to Mathematics Standards, one sees clearly the care that went
into the enunciation of the goals, the work that had been done to achieve
them, and the work that was envisioned in their implementation. Even if one
disagrees with some of the details, one can applaud the overall soundness of
purpose and the conscientious effort that went into the writing. The good
intentions, however, are not abetted by flawless execution. Some parts of the
document are controversial, such as the omission of the division algorithm in
the lower grades7, the omission of the Fundamental Theorem of Algebra in
the upper grades, or the mixing of pedagogical statements with statements
on content. There is also a pervasive ambiguity of language that makes the
document unreadable in many places, e.g., the word “classify” has a precise
meaning in a mathematical context which is not consistently respected. Or,
what is a 7th grade teacher to make of “identify, describe, represent, extend
and create linear and nonlinear number patterns”? But the most striking
impression it makes on a mathematically knowledgeable reader would likely
be the numerous mathematical errors that almost leap out of the pages.

The Board’s Standards do not suffer from mathematical errors8. Math-



5

ematical accuracy thus assured, one can proceed to find fault from a higher
perspective. It should be fairly obvious to the experienced eyes that the
standards for each grade are not very “idiomatic”: they are more like march-
ing orders from an outsider than sure-handed utterances by a veteran of the
classroom. There are occcasional (though very rare) linguistic ambiguities.
There is an over-emphasis on pure mathematics in grades 8-12. The geome-
try curriculum in grades 8-12 is too much tilted towards synthetic Euclidean
geometry. And so on. But perhaps the one quality of the document that
stands out is its overall jaggedness; the various standards don’t fit together
too well. Is there an obvious explanation?

According to James Milgram—one of the Stanford mathematicians who
helped revise the Commission’s Standards—the revision was carried out un-
der many constraints. The goals had been set for them: to rid the Commis-
sion’s Standards of all the mathematical errors, to re-arrange the existing
standards to make better sense of them and, above all, to clarify what was
in there. There was also a strict order not to add anything new unless it was
absolutely necessary, because the Board itself was under the same pressure.
Milgram also added that, in fact, the Stanford mathematicians would not
have minded if the Standards were a little less inclusive, but the choice of
deleting the existing standards was not open to them or to the Board.

Retrofitting a set of standards is much more difficult than writing a new
one, and it showed.

In spite of the controversy surrounding these two Standards, the ver-
dict among mathematicians has been overwhelmingly in favor of the Board’s
version9. Could this be no more than a case of closing of ranks behind their
own colleagues? At least one mathematician would venture the opinion that
such is not the case, and that it is more a matter of triumph of substance
over form, and clarity over vagueness.

The Board’s Standards have the unmistakable virtue of being clear, pre-
cise, and mathematically sound overall. They describe clearly and precisely
what is expected of students’ mathematical achievement at each level, and
the mathematical demands thus imposed conform to the conception of math-
ematics of most active working mathematicians. The qualities of clarity, pre-
cision, and correctness are the sine qua non of any mathematical standards
worthy of the name, but the sad truth is that very few of the existing math-
ematics standards of other states can lay claim to any of them10. Even the
influential NCTM Standards2 is no exception11. These qualities will come to
the fore in the comparison between the Commission’s and the Board’s Stan-
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dards in the next two sections. At the end, there should be little mystery
as to why, notwithstanding its flaws, the Board’s Standards is the preferred
version by far.

It may be puzzling to some as to why there is this great emphasis on the
soundness of the mathematics in a set of mathematics standards. No doubt
part of the puzzlement comes from a belief that the experts in mathematics
education should be able to get the mathematics right. We know that such is
not the case—as evidenced by the discussion of the Commission’s Standards
in the next section—and this discrepancy between perception and reality
points to a serious problem in contemporary mathematics education: the
divorce of mathematics from education. Too often mathematics educators
and administrators lose touch with mathematics. Perhaps the publication of
the Board’s Standards and the publicity engendered by the accompanying
fracas will inaugurate a new era of reconciliation between the two disciplines.

The large number of mathematical errors in the Commission’s Standards
also point to an intellectual problem far removed from the political fray. As
the errors begin to pile up, they send out the unmistakable message that
these standards were written by people whose mathematical understanding
is inadequate for the task, and whose vision is therefore unreliable as a guide
to lead students of California to a higher level of mathematical achievement.
Such being the case, the so-called “conceptual understanding”12 embedded
in this document is thus of questionable value at best. The politicians and
educators who rallied around the Commission’s Standards and praised it for
its emphasis on “conceptual understanding” were most likely unaware of this
fact.

The Commission’s Standards: its mathemati-
cal flaws
Local flaws

The mathematical flaws in the Commission’s Standards are of two kinds:
local and global. The local ones are those which contain obvious errors but
which can be corrected without causing damage elsewhere. A colleague has
estimated that there are over a hundred of these, and that is a conservative
estimate. Since it is impossible to be exhaustive, only a few that are easily
understood even when taken out of context will be discussed. Starting with
the Glossary at the end, one finds, for example:

Asymptote: a straight line to which a curve gets closer and
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closer but never meets, as the distance from the origin increases

Since this definition of an asymptote does not specify that the distance be-
tween the curve and the straight line has to decrease to zero, it would make
the line y = −1 an asymptote of y = 1/x for x > 0.

Axiomatic system: system that includes self-evident truths:
truths without proof and from which further statements, or theo-
rem, can be derived

By dictating that the “axioms” of an axiomatic system must be “self-evident
truths”, this definition excludes the axioms for non-Euclidean geometry from
being an axiomatic system. After all, the statement that given a line and
a point not on the line there are infinitely many lines from the point not
intersecting the given line is certainly not a “self-evident truth”.

Recursive function: in discrete mathematics, a series of num-
bers in which values are derived by applying a formula to the
previous value

This term has a precise technical meaning in symbolic logic, and its defini-
tion is nothing this simple. Perhaps the authors had in mind “recurrence
relations” instead. Assuming this to be the case, then the correct definition
would change “the previous value” to “previous values”. Otherwise, even the
Fibonacci numbers would not fit this description.

It has been argued by some people that it is inappropriate to criticize the
Glossary with such mathematical precision because phrases such as “closer
and closer” and “self-evident truths” are merely intended to be comprehen-
sible to the layman in the same way a dictionary definition is. This kind of
argument does not take into account the fact that an official state document
on mathematics education which addresses not only the lay citizen but also
the professional—the mathematics teacher—has the duty to aim higher than
merely being informally correct. Moreover, for the case at hand, it is easy to
be both informal and correct: just change “closer and closer” to “arbitrarily
close” and “self-evident truth” to “statements to be taken on faith”.

Next, we turn to the Commission’s Standards proper and look there at
some representative local flaws. It may be noted that the following examples
do not include any that might have been the result of carelessness, such as
that about the asymptotes of a polynomial (Clarification and Examples13 for
Standards 1.1 and 1.2 in Algebra and Functions of grades 11/12).
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Grades K-8 Problem Solving and Mathematical Reasoning
2.1 Predict outcomes and make reasonable estimates.

It is not common to equate “predict outcomes” with mathematical reason-
ing. Could the authors have in mind “Make conjectures and provide justifi-
cation”? One would gladly overlook this as an inadvertent error but for the
fact that the same sentence appears nine times in grades K through 8

Grade 3 Problem Solving and Mathematical Reasoning
Clarifications and Examples Your friend in another classroom
says that her classroom is “bigger” than yours. Find the answer,
and prove that your solution is correct using mathematics you
have learned this year. (Note: Students should be able to approach
this task using concepts of perimeter and area.)

This passage is supposed to clarify the content of the Standards, but it has
achieved the opposite effect by obfuscating it. It would take many pages
to write an analysis that does this passage justice, so here is a very abbre-
viated account14. First of all, mathematics deals with precise statements,
and to the extent that we try to educate our children about mathematics,
we would do well to teach them the necessity of eliminating the inherent
vagueness in many everyday utterances before transcribing them into math-
ematical terms. “Her classroom is bigger” is clearly a case in point. Faced
with such a statement, a set of mathematics standards has the responsibility
to instruct children of grade 3 to make sense of the word “bigger” before
proceeding any further. If they interpret “bigger” to mean “more area”,
then they should measure the respective areas. If they interpret “bigger”
to mean “longer perimeter”, then measure the perimeters. The basic mes-
sage is therefore that each answer would be correct according to whichever
interpretation is used. Furnishing such an explanation would seem to be
the minimum requirement of a mathematics education for the young. Now
look at the passage above: it tells teachers and students alike to accept an
instruction that has no precise meaning (“bigger”) and immediately proceed
to “find the answer”, and worse, “prove that your solution is correct using
mathematics”. If a teacher in an English class shows students a black box
without telling them what is inside other than that it is an expensive piece
of jewelry, and asks them to write an essay to describe the latter and justify
why their description fits the object, there would be an uproar. Yet when
the same thing happens in a set of mathematics standards, we have people
leaping to its defense and calling it “world class”. Why is that?
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Grade 4 Measurement and Geometry
1. Students understand and use the relationship between the con-
cepts of perimeter and area, and relate these to their respective
formulas.
Grade 5 Measurement and Geometry
1. Students understand the relationship between the concepts of
volume and surface area and use this understanding to solve prob-
lems.

The trouble with both standards is that there is no general relationship
between perimeter and area, or between volume and surface area, except for
the isoperimetric inequality. However, the latter would be quite inappropriate
for students at this level. Moreover, how are students supposed to “use”
this nonexistent relationship to help relate to the “respective formulas” of
perimeter and area, etc.? What could the authors have in mind?

Grade 5 Number Sense
Clarifications and Examples What is the fractional value of each
of the tangram pieces to the whole set of tangrams? Determine
equivalences between one or more pieces and other pieces, based
on the fractional values that you have determined.

What does “fractional value” refer to in this case? Does each piece count as
one unit, or is the area of each piece being sought in proportion to the whole
area? What kind of “equivalence” between the pieces is intended here and
why has it not been clearly defined?

Grade 6 Number Sense
Clarifications and Examples Emphasize how fractions and ratios
as well as operations involving them are similar and how they can
differ.

Since a fraction is a ratio of integers, how can there be any difference between
them with respect to their mathematical operations? Some educators, it is
said, have begun to advocate that fractions are not ratios. If so, then we
must redouble our efforts to produce better informed mathematics educators
and not allow such ideas to creep into any mathematics standards.

Grade 6 Measurement and Geometry
1.2 Determine estimates of π (3.14; 22/7) and use these values to
estimate and calculate the circumference and the area of circles.
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There is no explanation of how a 6th grade student could “determine esti-
mates of π” with this kind of accuracy, 3.14 or 22/7, especially the latter
value. Is such a precise estimate even remotely conceivable?

Grade 7 Algebra and Functions
Clarifications and Examples Order of operations may be help-
ful when evaluating expressions such as 3(2x + 5)2, recognizing
the structure of the algebraic notation may be more helpful when
evaluating 3(2x + 5); both should be included as techniques.

The order of operations to evaluate algebraic expressions is a matter of defi-
nition, and is not a technique. Moreover, to say in a mathematics standards
document that knowing the simple definition of the notation is more help-
ful in the situation of 3(2x + 5) than in 3(2x + 5)2 is to undercut its own
credibility.

Grade 8 Algebra and Functions
Clarifications and Examples Record and graph the relationship
between time and the height of water in a cylindrical container
when a drain on the bottom of the container is open and determine
an equation which generalizes the situation.

One would guess (although that is asking a lot of the general reader of the
Standards) that the “relationship between the time and the height of water”
is that the height is a well defined function of time. This function happens
to be quadratic, but what could it mean to find an equation that would
generalize the situation?

Grades 9/10 Algebra and Functions
Clarifications and Examples Students should understand the fact
that equations in one variable (e.g., (x − 3)(x + 1)(x − 1) = 0,
3x−2 − 81 = 0) have related two-variable counterparts (e.g., (x−
3)(x + 1)(x− 1) = y, 3x−2− 81 = y) and use this fact to solve or
check the original equation and analyze the graph.

If the intended message is that the zeros of a given polynomial can be ap-
proximated by examining the intersection of its graph and the x-axis, then
this statement is very poorly phrased. If the intended message is something
else, then obviously this statement needs to be completely re-written.
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Global flaws
Next we examine the global flaws. Their corrections would involve changes

in several related parts. The first such example occurs in grade 7:

Grade 7 Measurement and Geometry
3.2 understand and use coordinate graphs to plot simple figures,
determine lengths and areas related to them, and determine their
image under simple transformations in the plane

Now Grade 7 is not the usual place to find references to simple transfor-
mations in the plane and their images. What is meant by a “simple trans-
formations”? Has it been defined? Has the image of a transformation been
discussed? It turns out that “simple transformations” are defined nowhere in
the Standards, but one could guess from related comments that the authors
had in mind reflections and translations. It is difficult to decide whether the
authors were unaware of the need to fulfill the minimum mathematical re-
quirement of clarity or simply considered such matters unimportant. Could
such negligence be nothing more than a momentary lapse? Not likely, be-
cause one also finds in grades 9/10 another reference to “transformations” in
the plane with no explanation:

Grades 9/10 Algebra and Functions
1. Students classify and identify attributes of basic families of
functions (linear, quadratic, power, exponential, absolute value,
simple polynomial, rational, and radical).
1.4 demonstrate and explain the effect that transformations have
on both the equation and graph of a function

A pertinent related issue in connection with the above standard in grade
7 is how much coordinate geometry has been developed up to that point so
that students may appreciate such a discussion. The answer appears to be
“not enough”. The first introduction of coordinates in the plane takes place
in the 4th grade under, of all places, Algebra and Functions:

Grade 4 Algebra and Functions
1. Students use and interpret variables, mathematical symbols
and properties to write and simplify expressions and sentences.
1.4 understand and use two-dimensional coordinate grids to find
locations, and represent points and simple figures
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Special attention should be called to the fact that the important idea of “al-
gebraicizing” the geometric plane occurs here almost as an after-thought in
a discussion on variables and mathematical symbols. Since it is now fashion-
able to talk about “conceptual understanding”, one can say unequivocally
that such a set of mathematical standards displays a lack of conceptual un-
derstanding of mathematics. But, to continue with the present discussion, in
the standards of grade 5, one finds “write the [linear] equation and graph the
resulting ordered pairs of whole numbers on a grid” (Algebra and Functions,
2.2) and that, in grade 6, more graphing of linear functions and “single vari-
able data” is called for in Algebra and Functions and Statistics, Data Analysis
and Probability. This would seem to be the extent to which students have
been exposed to coordinate geometry before they are asked to contemplate
the image of a transformation in the plane.

Consider now a second example, which is the way the Commission’s Stan-
dards approaches the Pythagorean theorems, a fundamental result in school
mathematics. The first mention of this theorem is in grade 7:

Grade 7 Measurement and Geometry
3.3 use the Pythagorean Theorem to find the length of the miss-
ing side of a right triangle and lengths of other line segments, and
check the reasonableness of answers found in other ways.
Clarifications and Examples Help students understand the rela-
tionship between the Pythagorean Theorem and direct measure-
ment. Experience with both measurement tools and measurement
on a coordinate grid should be included.

(One’s first reaction to the last sentence—“Experience with . . . ”—is: “How
very Californian!”) This standard certainly makes it sound as though the
Pythagorean theorem is a tool already familiar to the students. Yet, in fact,
this is the first time the theorem is discussed. One could bend over backward
to give a benign interpretation of this standard as: “State the Pythagorean
theorem and verify it empirically by direct measurements”. Few readers,
however, would recognize that this is the intended message. Because this
theorem is so surprising to a beginner, one would expect a demonstration
of its truth early on. For example, the so-called “tangram proof” using four
congruent right triangles nestled in a square is so elementary that it could
be presented to 4th or 5th graders. One finds instead that when the theorem
is mentioned again in grade 8 and for the first time in grades 9/10, no proof
is mentioned:



13

Grade 8 Measurement and Geometry
1.3 use the Pythagorean Theorem to determine distance and com-
pare lengths of segments on a coordinate plane.
Clarifications and Examples Include using the Pythagorean Theo-
rem to confirm accuracy of scale drawings, and contexts involving
coordinate graphing.

Grades 9/10 Measurement and Geometry
2.4 use the Pythagorean Theorem, its converse, properties of spe-
cial right triangles (e.g., sides in the ratio 3-4-5) and right trian-
gle trigonometry to find missing information about triangles.

It should be obvious that this standard in grade 8 merely repeats what is
already in grade 7. What purpose does this serve? In addition, is it good
education to ask students to believe in the converse of this theorem in grades
9/10, as indicated above, without first giving them a proof of the theorem
itself? It remains to point out that only later in sub-Standard 4.4 of Mea-
surement and Geometry, grades 9/10, do we find: “prove the Pythagorean
Theorem using algebraic and geometric arguments”.

It was mentioned earlier that the Commission’s Standards omits the long
division algorithm in the early grades except for the case of a single digit
divisor (grade 4). With that in mind, let us look at what happens in grade
7.

Grade 7 Number Sense
1.3 describe the equivalent relationship among representations of
rational numbers (fractions, decimals and percents) and use these
representations in estimation, computation and applications.
Clarifications and Examples Students should understand the re-
lationship between terminating and repeating decimals and frac-
tions.

Yet the mere fact that a fraction yields a repeating decimal depends on the
understanding of the sequence of remainders in the division algorithm. How
are students going to understand that terminating and repeating decimals
represent fractions without first knowing this algorithm by heart? Further-
more, in grades 11/12, we have:

Algebra and Functions
Clarifications and Examples Graphing calculators, long and syn-
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thetic division may be used to factor polynomials and rational
equations to verify attributes of the equation and graph.

Perhaps not enough thought was given to the fact that, without learning
the division algorithm for integers, it would be difficult to teach synthetic
division for polynomials.

Incidentally, the preceding two examples from the Commission’s Stan-
dards show an all-too-common sloppiness of language: “equivalent relation-
ship among . . . ”, “relationship between terminating and repeating decimals
. . . ”, and “attributes of the equation and graph” are too vague for a set of
mathematics standards.

As a final example, let us look at how the Commission’s Standards handles
the concept of a function. The term “functional relationship” is used already
in grades 4 and 5 (“the functional relationships within linear patterns” in
grade 4, and “solve problems involving functional relationships” in grade
5). Now, there is nothing wrong with an informal discussion of a formal
concept before a precise definition, but it is pedagogically untenable not
to make it very clear that only an informal discussion is intended. (The
Board’s Standards simply deletes all such references.) Next, in grade 6 of
Commission’s Standards, one finds:

Grade 6 Algebra and Functions
2. Students analyze tables, graphs and rules to determine func-
tional relationships and interpret, and solve problems involving
rates.
2.1 identify and express functional relationships in verbal, nu-
meric, graphical and symbolic form.

Since it calls for a direct confrontation with the concept of a function itself,
this standard is less likely to be ignored and the potential damage is con-
sequently greater than before. Are students to learn about the definition
of a function, or are they not? That is the question. The hazy conception
of mathematics itself as exemplified in this instance (and elsewhere too, of
course) is unnerving to the mathematically informed. If one cannot resolve
this issue here, what about the next one in grade 8?

Grade 8 Algebra and Functions
1.1 identify the input and output in a relationship between two
variables and determine whether the relationship is a function.
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Clarifications and Examples Students should be able to identify
key ideas when a relationship is expressed through a table, with
symbols, or through a graph.

Because this explicitly asks students to distinguish between a relation and a
function, nothing short of a full-scale investigation of the functional concept
would suffice. But should one do this in grade 8? And is this really what the
authors had in mind? The answers seem to be supplied, however indirectly,
by the following standard in grade 9:

Grades 9/10 Algebra and Functions
2. Students demonstrate understanding of the concept of a func-
tion, identify its attributes, and determine the results of opera-
tions performed on functions.

It would appear that here is the first time that students learn what a function
is. If this is to be believed, then what is one to make of all the rumblings on
this topics in grades 6 through 8? But if not, i.e., if a function is supposed
to have been defined earlier, then what is such a standard doing in grades
9/10?

I hope the foregoing gives some idea of the magnitude of the problems be-
setting the Commission’s Standards. At the same time, it should be pointed
out that these problems are probably not detectable by someone who is
not mathematically knowledgeable. The criticisms of the Board’s Standards
coming from educators and politicians are therefore understandable to a cer-
tain degree. By the same token, this gap in mathematical knowledge then
imposes on professional mathematicians the obligation to serve as intermedi-
aries between major decisons in mathematics education and the public. May
the mathematics community as a whole take this responsibility seriously.

The Board’s Standards
Now a brief look at the Board’s Standards4. Some of the flaws of this

document will be discussed in the next section. The main aim of this section
is to contrast the mathematics here with the Commission’s Standards. Let
us first start with grades K–7. This portion is very close to the Commission’s
Standards, and the only difference between the two is that the Board’s ver-
sion eliminates the ambiguous and superfluous, corrects the erroneous, and
deletes the Clarifications and Examples in the right column of the original.
I will have more to say about this last concern presently, but let us sample
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some of the differences. It was mentioned above that in grade 4, the Commis-
sion’s Standards incorrectly asks for “the relationship between the concepts
of perimeter and area”. By comparison, the Board’s version now reads:

Grade 4 Measurement and Geometry
1. Students understand perimeter and area.

1.1 measure the area of rectangular shapes, using appropriate
units (cm2, m2, km2, yd2, square mile)

1.2 recognize that rectangles having the same area can have
different perimeters

1.3 understand that the same number can be the perimeter of
different rectangles, each having a different area

1.4 understand and use formulas to solve problems involving
perimeters and areas of rectangles and squares. Use these formu-
las to find areas of more complex figures by dividing them into
parts with these basic shapes

It is clear, and it is correct. More than that, 1.2 and 1.3 anticipate students’
possible confusion, and 1.4 emphasizes the importance of applications and
the general principle of progressing from the simple to the complex.

Another example is the Board’s correction of the error committed in the
Commission’s version regarding the introduction of coordinates in the plane
in grade 4. Now it is accorded a standard all its own and is placed correctly
in the strand on Measurement and Geometry.

Grade 4 Measurement and Geometry
2. Students use two-dimensional coordinate grids to represent
points and graph lines and simple figures

2.1 draw the points corresponding to linear relationships on
graph paper (e.g., draw the first ten points15 for the equation y =
3x and connect them using a straight line)

2.2 understand that the length of a horizontal line segment
equals the difference of the x-coordinates

2.3 understand that the length of a vertical line segment equals
the difference of the y-coordinates

Note that sub-standard 2.1 pays special attention to the tactile aspect of
learning mathematics: use graph papers and draw ten points (by hand). We
should be grateful that it does not say: enter these data in a graphing calcu-
lator and watch the graph emerge on the screen. Moreover, sub-standards 2.2
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and 2.3 again anticipate students’ confusion by singling out two key points
for discussion. There is no question that this is an education document that
truly tries to educate.

As a final example, let us look at how the Board’s version discusses in
one instance the issue of mathematical reasoning:

Grade 4 Mathematical Reasoning
3. Students move beyond a particular problem by generalizing to
other situations.

3.1 evaluate the reasonableness of the solution in the context
of the original situation.

3.2 note method of deriving the solution and demonstrate con-
ceptual understanding of the derivation by solving similar prob-
lems.

3.3 develop generalization of the results obtained and extend
them to other circumstances.

In plain English—readable English—this standard lays out a step-by-step
method of doing mathematics. Educational writing can be no better than
this.

It is improvements of this nature that make the Board’s Standards a
superior document over the Commission’s Standards in grades K–7. Yet,
intense criticisms were already pouring in as soon as the K–7 portion of the
Board’s Standards appeared. Looking at the facts, how does one presume to
claim that this set of standards is “basics only”, or that it “almost cuts out
almost everything that is not related to computation and the memorization
of formulas” ? Obviously not on account of the standards themselves. But
one explanation is that some people reacted strongly to the deletion of the
Clarifications and Examples that are in the Commission’s Standards.

It was pointed out earlier that whereas in other states the Mathematics
Standards must stand alone as the sole guide-post for mathematics education,
California has two documents: the Standards and the Framework6. In this
arrangement, the curricular comments on the Standards, including examples,
properly belong to the Framework, which at the time of the controversy was
yet to be approved by the Board. It serves no purpose to criticize the absence
of examples in the Board’s Standards when they have merely been moved to
a companion document.

Let us complete our brief survey of the Board’s Standards by looking at
grades 8–12. There is a basic change of format here, in that the grade-by-
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grade account in the Commission’s version is replaced by a listing of topics in
the traditional strands across the grades: Algebra I, Geometry, Algebra II,
etc. The justification is that since at present an overwhelming majority
of the schools teach mathematics in the traditional manner while others
do so in an “integrated”16 manner, listing only the content of each subject
would provide maximum flexibility. Instead of prescribing one particular
approach to the curriculum, it throws the door open to many approaches.
Such a change is a defensible one, and is in any case not one to make a
lot of fuss about. With this understood, one can immediately appreciate
the clear and uncompromising demand that the Board’s Standards places on
students’ all-around mathematical competence—not the formula-laden, rote-
learning variety, but the genuine one. Students must be technically proficient,
and they must also know what they are doing. For example, consider the
discussion of the quadratic formula in Algebra I (which contains twenty-five
standards):

Algebra I (Grades 8-12)
14. Students solve a quadratic equation by factoring or complet-
ing the square.
19. Students know the quadratic formula and are familiar with
its proof by completing the square.
20. Students use the quadratic formula to find the roots of a
second degree polynomial and to solve quadratic equations.

It does not say: derive the quadratic formula and use it to solve all quadratic
equations. Instead, it makes students learn the important technique of com-
pleting the square first. Then it asks for a derivation of the formula. It is
only after this that it mentions using the formula to solve equations. Does
a document that handles the learning of a formula in this manner strike
anyone as a “back-to-basics” document that emphasizes memorization and
computation? Next, a similar example in a different subject:

Geometry (Grades 8-12)
2. Students write geometric proofs, including proofs by contradic-
tion.
3. Students construct and judge the validity of a logical argument.
This includes giving counterexamples to disprove a statement.
4. Students prove basic theorems involving congruence and simi-
larity.
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The unequivocal demand on students’ ability to write down proofs and coun-
terexamples is important in this day and age of diminished standards when
proofs produce allergic reactions in many education circles. One can quibble
with the precise meaning of standard 4—and more of this later—but that
is not the same as insinuating that these Standards axe the development of
mathematical understanding in the students. My personal opinion is that
these are thoughtful standards, but their virtues are by no means apparent
to the general public. Perhaps for this reason, the torrent of abuse heaped
on these Standards took over the front pages of many newspapers for several
weeks. Here are some reminders:

“I think [the Board’s Standards are] half a loaf. We went from
a world-class set of standards to one that cannot be characterized
as world-class”
“The reality is one set of standards had basics and problem-solving
and conceptual understanding but what the Board adopted was the
basics only.”

Delaine Eastin
Superintendent of Public Instruction

“When the State Board took a knife to the Commission’s Stan-
dards, it cut out almost everything that was not related to com-
putation and the memorization of formulas. What was gained?
Nothing.. . .What the State Board deleted or weakened were Stan-
dards intended to make sure students understand the key concepts
underlying mathematics.”

Judy Codding
Member, Academic Standards Commission

“While emphasizing important basics and memorization, [the
Board’s set of Standards] axes development of understanding, ap-
plications and critical thinking skills students will need to live in
the 21th century.

In one stroke, the Board discards the last three years’ hard
work and reasoned consensus among math professors and teach-
ers, college professors who use math in their teaching (science
and business) and public representatives.”
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James Highsmith
Chair, Academic Senate; California State University

Letter to the editor, LA Times

“The Commission’s Standards are the best set of mathematics
standards in the U.S. . . .The Board’s Standards are most disap-
pointing, [and are nothing more than] a ‘back-to-basics’ document
that emphasizes memorization and computations.”

William Schmidt
Executive Director for the U.S. Center for TIMSS

“The wistful or nostalgic ‘back-to-basics’ approach that char-
acterizes the Board Standards overlooks the fact that the approach
has chronically and dismally failed. It has excluded youngsters
from engaging in genuine mathematical thinking and therefore
true mathematical learning.”

Luther Williams
NSF Director for Education and Human Resources

Letter to the California State Board

It may be noted that the NCTM editorial of February, 19985 endorsed
the preceding statement by Luther Williams, and that none of the preceding
writers is a mathematician.

One may ask, in light of all the flaws in the Commission’s Standards
and the obvious emphasis on mathematical understanding in the Board’s
version, how people could bring themselves to make indefensible statements
about the high quality of the former and the unworthiness of the latter. There
are probably political and psychological reasons that are beyond my power to
probe. But as an educator, I would like to offer a speculation on how this has
happened. I believe there is a fundamental misconception about mathematics
education that has sprung up more or less in the past decade, which is that
there are conceptual understanding and problem solving ability on the one
hand and basic skills on the other. Furthermore, this misconception is based
on the assumption that one can acquire the former without the latter. Thus
when the Board’s Standards explicitly call for fluency in basic skills, all kinds
of red flags went up. Were these Standards not set up by elitists to thwart
students’ “mathematical empowerment”?
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One can acquire some appreciation of mathematics without mastering
technical skills, in much the same way that one can learn the main melodies
of an opera by listening to recordings of “operas without the human voice”17

and even enjoy them to some extent. But if we wish to educate students
properly about the art of the opera, using such recordings “without the hu-
man voice” is not recommended. In the same way, a correctly written set
of mathematics standards should not just talk about “the conceptual un-
derstanding in mathematics” without getting the mathematics straight. It
must start and end with 100% correct mathematics, and will therefore be
more like the Board’s version rather than the Commission’s. Mathematical
understanding goes through technique, and technique is built on understand-
ing. That is the way it is.

The new Framework
What were the problems with the Board’s Standards? Without trying to

be comprehensive, I will describe a few obvious ones and, at the end of the
section, will look into how the new Framework6 addressed them.

First, the terse statements of the Board’s Standards need examples to
clarify them. For example, standard 4 in Geometry (Grades 8–12)—“Students
prove basic theorems involving congruence and similarity”—means many
things to many people. Should one only assume SAS and prove SSS and
ASA, or should all three be assumed for simplicity? Should the AA theo-
rem for similar triangles be proved? Or take the case of the introduction of
negative fractions and decimals in elementary school: exactly when should
this take place? The preamble of the standards in Grade 5 states: “Students
increase their facility with the four basic arithmetic operations applied to
positive and negative numbers, fractions, and decimals”. Is this to be taken
literally so that “fractions” and “decimals” mean (as usual) positive fractions
and positive decimals, or does it mean “positive and negative numbers, posi-
tive and negative fractions, and positive and negative decimals”? It does not
help that this linguistic ambiguity persists in the subsequent enunciation of
the detailed standards in both grades 5 and 6.

We must remember that these Standards are pioneering something new
in California, and pioneers have to be transcendentally clear at each step
or they run the risk of having no followers on their trail. I wish to drive
home this point by comparing with what I consider a very admirable set of
mathematics standards, the 1990 Mathematics Standards of Japan18. There
the statement about similarity (in grade 8!) is equally terse:
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To enable students to clarify the concepts of similarity of fig-
ures, and develop their abilities to find the properties of figures by
using the conditions of congruence or similarity of triangles and
confirm them.
a. The meaning of similarity and the conditions for similarity of
triangles.
b. The properties of ratio of segments of parallel lines.
c. The applications of similarity.

There is a big difference, however. The Japanese change their standards
every ten years and, because they already have a well established tradition,
the changes are gradual and minor by comparison with the kind of sea change
we have over here. Moreover, they have excellent textbooks19 already in
place, so there is no great need to spell out everything. By contrast, we
are almost starting anew in California, especially in these turbulent times in
education. There is therefore very great need for the Board’s Standards to
be absolutely clear.

The Board’s Standards intentionally eschew any prescription on how to
teach students in grades 8–12, whether in the traditional way or the “inte-
grated” way16. The intention for greater flexibility was admirable, except
that in the absence of a tradition, the added flexibility could be a curse. For
example, the Standards specify that each discipline (Algebra I, Geometry,
etc.) need not “be initiated and completed in a single grade”. It would ap-
pear that this specification makes it possible to describe the desirable content
of each discipline without undue regard to the time limitation of fitting ev-
erything into exactly one year. Perhaps for this reason, there are more topics
in Algbra II than can be reasonably completed in a single year. How to teach
this material in more than two semesters then becomes a challenge which few
schools could meet. Also Algebra I asks that “Students [be] able to find the
equation of a line perpendicular to a given line that passes through a given
point.” No matter how this is done, it would involve theorems about similar
triangles. Does it then imply—contrary to the traditional curriculum—that
Geometry may be taught simultaneously with Algebra I?

Finally, it appears that the forthcoming 10th or 11th grade statewide
mathematics test would include some statistics. Was the Framework going
to suggest ways of teaching statistics in the early part of secondary school if
the traditional curriculum is followed?

Considerations of this nature bring out the fact that the traditional
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method of offering year long sequences on algebra and geometry is too rigid to
be educationally optimal. While none of the current “integrated” models in
this country seems to be entirely successful, the argument cannot be ignored
that we should pursue the kind of integrated mathematics education that
has been in use in Japan or Hong Kong for a long time20. The Framework
might fulfill its basic function if it could nudge California in this direction in
a forceful manner.

An idea that undoubtedly occurred to many people is how much the
standards of grades 8–12 in the Board’s Standards read like a “Manual for
Pure Mathematics”. One almost has the feeling that this document could not
bring itself to face the relationship between school mathematics and practical
problems. Thus the Framework needed to restore the balance between the
pure and applied sides of school mathematics. While it is true that the reform
exaggerates the role of “real-world” problems in mathematics, ignoring them
altogether is for sure not a cure either. We would do well to remember that
the overwhelming majority of school students will be users of mathematics,
and that as future citizens they need to be shown the power of mathematics
in the context of daily affairs. But all through grades 8–12, I seem to see
only three explicit references to applications:

Algebra I
15. Students apply algebraic techniques to rate problems, work
problems, and percent mixture problems.
23. Students apply quadratic equations to physical problems such
as the motion of an object under the force of gravity.
Trigonometry
19. Students are adept at using trigonometry in a variety of
applications and word problems.

I hope I am not over-using the Japanese model if, again, I look at the corre-
sponding situation in the 1990 Japanese Standards. The description of the
Content of the Japanese Standards is every bit as abstract and “pure” as the
Board’s Standards, but The Construction of Teaching Plans and Remarks
Concerning Content after each of grades K, 1–6, 7–9, and 10–12 pays careful
attention to the bearing of “daily affairs” on the curriculum. For example,
here is what is said after grades 7–9:

In the [8th and 9th] grades, problem situation learning should
be included in a total teaching plan with an appropriate allot-
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ment and [implementation] for the purpose of stimulating stu-
dents’ spontaneous learning activities and of fostering their views
and ways of thinking mathematically. Here, ‘problem situation
learning’ means the learning to cope with a problem situation,
appropriately provided by the teacher so that the content of each
domain may be integrated or related to daily affairs.

The tone makes it abundantly clear that this is no mere lip service to appli-
cations, but that the applied component is central to the whole curriculum.

A final comment is on the contentious subject of technology. From K to
12 in the Board’s Standards, I could detect only the following two references
to technology:

Grade 6 Algebra and Functions
1.4 solve problems using correct order of operations manually and
by using a scientific calculators
Grade 7 Statistics, Data Analysis and Probability
1. Students collect, organize and represent data sets . . . both man-
ually and by using an electronic spreadsheet program.

This reticence is a de facto confession that we, as educators, do not know
what the proper role of technology is in mathematics education. The reality
is that computer and graphing calculators are here to stay, and the younger
generation is besieged on all sides by them. It would not be an effective
education policy to retreat and abdicate responsibility exactly when we were
supposed to come forward to provide guidance. We do not want any kind
of technological debauchery in the mathematics classroom, but neither do
we want to make technological prudes out of our students. What we want
are students who are technologically informed, especially about the role of
technology in mathematics, but we won’t get them if we continue to pretend
that technology does not exist. I am being intentionally suggestive in my
use of language in order to force the comparison with sex education. In both
situations, it is better to keep our students informed than to let them pick
up the wrong information in a state of prevailing ignorance.

Allow me to cite for the last time the 1990 Japanese Standards. Part of
The Construction of Teaching Plans and Remarks Concerning Content also
deals with the technological issue after each of grades K, 1–6, 7–9, and 10–12.
Here is what is said after grades 1–6 and 10–12, respectively.



25

At the 5th Grade or later, the teacher should help children ad-
equately use “soroban” or hand-held calculators, for the purpose
of lightening their burden to compute and of improving the effec-
tiveness of teaching in situations where many large numbers to be
processed are involved for statistically considering or represent-
ing, or where they confirm whether the laws of computation still
hold in multiplication and division of decimal fractions. At the
same time, the teacher should pay attention to provide adequate
situations in which the results of computation may be estimated
and computation may be checked through rough estimation.

In teaching the content, the following points should be considered.
The teacher should make active use of educational media such as
computers, so as to improve the effectiveness of teaching.
In the teaching of computation, the teacher should have students
use hand-held calculators and computers as the occasion demands,
so as to improve the effectiveness of learning.

The Board had already wisely decided that no Standards-based state test
in grades K–12 would use calculators. This general policy on technology, sen-
sible as it is, needed to be supplemented by a more comprehensive one which
gives guidance not only on when not to use it but also on when to use it.
For example, encouraging teachers to use problems with more natural—and
therefore more unwieldy—numerical data by enlisting the help of calculators
is a beginning. In the presence of the no-calculator-in-tests rule, students
would get a clear perspective on what they need to know regardless of tech-
nology, and on how they can use technology to their benefit when the need
arises. Encouraging students in calculus to use calculator to estimate the
limits of sequences while also holding them responsible for proofs of conver-
gence is another example. Doubtlessly, thoughtful educators could formulate
similar specific recommendations in other situations. As the preceding pas-
sages from the Japanese Standards indicate, we needed to make active use
of calculators and computers to improve the effectiveness of teaching and
learning.

With all this said, it is time to look at the new Framework6 to see how it
managed to address the foregoing problems in the Board’s Standards. In this
context, the foremost accomplishments of the new Framework would seem to
be:
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(1) It adopted a policy on the use of technology in the classroom
that is as comprehensive as the available research allows. For ex-
ample, it essentially recommends against the use of calculators in
grades K–5, but encourages its judicious use starting with grade
6.

(2) It gives a detailed guide on how to teach the Standards in each
grade of K–7, and for each discipline in grades 8–12 (see Chapter
3). In particular, the ambiguities regarding the introduction of
negative fractions and negative decimals have been cleaned up.

A conscientious attempt was also made in the new Framework to emphasize
applications in grades 8–12. Thus almost all the major concerns regarding
the Board’s Standards have been removed. Almost, except for two of them.
It failed to directly address the issue of how to teach statistics in the tradi-
tional curriculum before grade 11. More seriously, it did not even take up
the question of how to give Californian high school students a more inte-
grated kind of mathematics education along the line of the Hong Kong or
Japanese model.20 These failures are blemishes in the new document to be
sure, but considering how far it has outdistanced its 1992 predecessor1 in
terms of mathematical coherence and accuracy, one can afford to be philo-
sophical about these blemishes. Social changes are rarely accomplished all
at once. They take time.

What have we learned?
It is often forgotten in the war of words that mathematics education

has a substantive component: mathematics. We have seen how a choice
between the two versions of the Mathematics Content Standards in Califor-
nia came down to a mathematical assessment of the documents. The scant
attention given to this component in the mathematics standards of an over-
whelming majority of the states, as pointed out in the Fordham Foundation
monograph10, is nothing short of scandalous. One positive outcome of the
current mathematics education reform may very well be the revival of the
idea that mathematics is important in discussions of mathematics education.
The battle over the Standards is a stunning illustration of this fact.

If there is anything that the Californian experience can teach policy mak-
ers in the other states, it is that without a solid mathematical input, it would
be impossible to have a sound policy on mathematics education. California
happened to benefit from such an input through entirely fortuitous circum-
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stances. The accidental confluence of a group of enlightened State Board
members and a group of knowledgeable mathematicians who are also edu-
cationally informed led to the writing of a set of quality standards and a
Framework that is equally promising. So what can other policy makers do
in order to bring about comparable happy results?

One can try to seek out mathematicians who are dedicated to the cause of
education, but by itself this is not without risk. It suffices to recall that the
New Math of the sixties was spearheaded by a small group of well-intentioned
mathematicians.21 A safer recommendation would be that policy makers cul-
tivate standard channels of communication within the mathematical commu-
nity as a whole, and seek consensus in that community at each major step
of decision making. Back in the age of the New Math, much anguish and
frustration would have been avoided had this guideline been followed.22 The
mathematical community, especially research mathematicians, should like-
wise do their share and make an effort to stay informed about mathematics
education. Happily, recent events have proven that at least the latter seems
to be taking place. Let us hope that in the near future, mathematicians
would be alongside of educators in formulating major decisions in mathe-
matics education.

It goes without saying that having a set of good standards and curriculum
framework is only the first step towards improvement in education. The far
more difficult issues of getting qualified teachers and administrative support
for the implementation of the Standards lie ahead of California. However,
these would be subjects of a different article.

Finally, let us return to the battle of the Standards for a moment. Few
would disagree that this so-called math war is entirely senseless, but in the
context of human affairs, it may be necessary. Destruction often has to
precede progress. Needless to say, not everybody shares this view. When
news of the U.S. 12th-grade performance on TIMSS was released on February
34, 1998, the then President of NCTM, Gail Burrill, made the following
comment on the TIMSS result: “What’s important is that we are working
together toward a common goal of excellence in mathematics. The recent
math wars have done nothing to improve mathematics education.” These
are sobering statements. On the one hand, Ms. Burrill’s optimistic view
that we are already working together toward a common goal in mathematics
education could not have been based on the reckless public condemnations
of the Board’s Standards that had just transpired. NCTM’s editorial5 did
not exactly contribute to promoting harmony either. On the other hand, the
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math war in California did manage to reverse the disastrous trend initiated
by the 1992 Framework1. While much work remains to be done to achieve a
balanced mathematics education in California, this achievement would give
the lie to the assertion that the math wars have done nothing to improve
mathematics education.

When all is said and done, educational reconstruction should be the com-
mon goal of all parties at this juncture, and the battle over the Standards is
in this light nothing but a distraction. In his address before the Joint An-
nual Meeting of the American Mathematical Society and the Mathematical
Association of America on January 8, 1998, Secretary Richard W. Riley had
sounded the same theme of reconciliation: “This leads me back to the need
to bring an end to the shortsighted, politicized, and harmful bickering over
the teaching and learning of mathematics. I will tell you that if we continue
down this road of infighting, we will only negate the gains we have already
made—and the real losers will be the students of America.” In all our edu-
cation activities we should think of our children first. No, we must. If there
is a main lesson to be learned from the battle of the Standards, it is that
we should all learn to look at the facts and keep in mind the welfare of the
students before we air our opinions.
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