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Some ten years ago, when the idea of creating a cadre of math specialists1

in the upper elementary grades first made its way to the halls of the California
legislature, a legislator pooh-poohed the need for any such legislation. What
he said was something like: “All you have to do is add, subtract, multiply
and divide numbers. How hard is that?”

On the other hand, Clive Goodall of the Royal Statistical Society in Eng-
land recently made a comment about school mathematics, to the effect that
even the most skilled teacher would struggle to convey the nuances, connec-
tions and usefulness of school mathematics unless they have a math back-
ground. Although Goodall did not specifically have the elementary mathe-
matics curriculum in mind, his comment is particularly apt in this context.

Who is right? Today I will avoid making provocative pronouncements but
will try instead to give you an idea of the content knowledge that is needed
to teach elementary mathematics effectively. My charge is to discuss the
mathematics curriculum of elementary school, but clearly 45 minutes is not
long enough for that. Most likely, my host had in mind a discussion of the
essence of the elementary curriculum. Such a task is easier. Insofar as the
mathematics in elementary school is the foundation of all of K-12 mathemat-
ics and beyond, it should, in a grade-appropriate manner, respect the basic
characteristics of mathematics. This sounds simple, but its implementation
is anything but that, as the available evidence in the education literature
shows. My personal conviction is that the essence of the elementary school
curriculum consists of coherence, precision, and reasoning. In fact, the same

∗This was the text of a presentation at the Mathematics Symposium held at Skywalker
Ranch, California, on November 22, 2005

1Added May 31, 2007: In this article, the term “math specialist” refers to a teacher who
teaches students only mathematics in grades 4–6.
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is true of the mathematics curriculum for all grades, not just the elementary
grades. Perhaps I can give you some idea of these qualities.

First of all, the elementary curriculum is surprisingly coherent. If you dig
beneath the surface, you will find that the main topics of this curriculum are
not a collection of facts unrelated to each other like caged animals in a zoo;
rather, they form a whole tapestry where each item exists as part of a larger
design. For example, although whole numbers and fractions are related in
such a way that fractions extend directly from whole numbers, and should
be taught that way (cf. Wu, 2001), too often whole numbers and fractions
are taught as if they are unrelated topics. If the smooth transition from
whole numbers to fractions is properly made through classroom instruction,
fraction-phobia could be greatly reduced.

Children should learn about this mathematics tapestry in a language that
does not leave room for misunderstanding or guesswork. It should be a
language sufficiently precise, so that they can reconstruct the tapestry step-
by-step if necessary. Too often, such precision of language is not achieved.
For example, if you tell a sixth grader that two objects are similar if they
are the same shape but not necessarily the same size, it begs the question of
what “same shape” means.

Above all, I would like to illustrate why it is important that elementary
school mathematics, like all mathematics, be built on reasoning. Reasoning
is the power that propels each move from one step to the next. When students
are given this power, they learn that mathematics is something they can do,
because it is done according to some objective criteria, in the same way that
video games are played according to some objective criteria. When students
are emboldened to make moves on their own in mathematics, they becomes
sequential thinkers, and sequential thinking is the engine that drives problem-
solving. If one realizes that almost the whole of mathematics is problem-
solving, the centrality of reasoning in mathematics becomes all too obvious.
By contrast, when reasoning is absent, mathematics becomes a black box,
and fear and loathing set in. An example that immediately comes to mind
is some children’s failure to shift successive rows one digit to the left when
multiplying whole numbers:
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8 2 6
× 4 7 3

2 4 7 8
5 7 8 2

+ 3 3 0 4

1 1 5 6 4

8 2 6
× 4 7 3

2 4 7 8
5 7 8 2

+ 3 3 0 4

3 9 0 6 9 8

If no reason is ever given for the shift, it is natural that children would take
matter into their own hands and make up new rules.

Learning cannot take place in the classroom if students are kept in the
dark about why they must do what they are supposed to do.

If you are convinced as I am that the mathematics of elementary school
is really this sophisticated, then you would see why children’s faltering first
steps in exploring the terrains of numbers and geometric figures need in-
formed guidance. It is not fair that elementary teachers, in addition to all
the impossible tasks we ask them to perform, are also asked to provide such
guidance. This was the original motivation for the creation of math special-
ists in California. In the real world, however, math specialists in K-6 are no
more than a pipe dream, and a more realistic compromise is to have math
specialists only for the upper elementary grades.

For the next half hour or so, I will explain to you two simple pieces of
mathematics: how to add whole numbers, and what it means to divide two
numbers. At this point, you may feel as the California legislator did: “How
hard is that?” So I will have to show you that addition and division are not
as easy as you imagine. In so doing, I have put myself in a win-win situation.
If you feel that at the end of the half-hour you understand everything, then
clearly my presentation is a runaway success. If, however, you get all confused
at the end of the half-hour, then I will have convinced you that elementary
mathematics is not that elementary. Either way I will have made my point.

Consider then the seemingly mundane skill of adding two whole numbers,
e.g.,

4 5
+ 3 1

7 6
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Nothing could be simpler. But if you are the teacher, how would you convince
your children that this is worth learning? Is it, as some have claimed, a rote-
learning skill that stunts children’s intellectual growth? Let us see. How else
would you add these two numbers? In fact, what does adding whole numbers
mean? This will be a dominant theme of my presentation: before we do
anything in mathematics, we must make clear what it is that we
are doing. Adding whole numbers means iterated counting. In this case,
you count to 45, and then starting at 45, you count 31 times again and see
where you end up. You end up at the number 76, and that is the sum. If you
are the teacher, and if you know exactly what adding whole numbers means,
you would begin by asking your children to act out the iterated counting:
count to 45, and then count 31 more times to make sure they get to 76. This
would keep them interested, but it will also make them feel frustrated. That
is good, because you want them to know that

adding numbers is hard work.

Now you get to play the magician. You tell them it is not necessary to
count so strenuously to get the answer to 45+31 (make them learn to write
addition horizontally as well as vertically from the beginning!), because you
are going to do two simple countings instead, one being 4 + 3 and the other
5 + 1, and these already give the correct answer. This should really perk
them up!

You can demonstrate this effectively by bringing in two bags of marbles,
one bag containing 45 and the other 31. You dump them on the mat, mix
them up and ask them to count how many marbles there are together. They
will have to count a long time, and of course the longer the better. Then you
collect the 45 marbles, and put them into bags of 10; there will be 4 such
bags with 5 stragglers. Do the same with the other 31 marbles. Now you
dump these bags and stragglers on the mat again, and ask them how many
marbles there are. It won’t take long for them to figure out that

there are 4 + 3 bags of 10, and

5 + 1 stragglers

They will figure out that 7 bags of 10 together with 6 stragglers give 76 again.
Now ask them to compare the counting of the bags-and-stragglers with the
magic you performed just a minute ago. If they don’t see the connection (and
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some won’t), you the teacher will patiently explain it to them. Of course this
is the time to go over place value all over again and use it to explain the
algorithm to them:

4 5
+ 3 1

? ?

⇐⇒
40 + 5

+ 30 + 1

? ?

⇐⇒

40 + 5
+ 30 + 1

70 + 6

⇐⇒
4 5

+ 3 1

7 6

They will listen more carefully this time to your incantations of place value
because you have now given them more incentive to learn about this impor-
tant topic.

So this is the essence of the addition algorithm: instead of doing the te-
dious, mind-numbing counting, you break up the task digit-by-digit and end
up counting only two one-digit numbers in succession. Recall that the main
goal of the elementary mathematics curriculum is to provide children with a
good foundation for mathematics. In this context, the addition algorithm,
when taught this way, serves as a splendid introduction. It teaches children
an important skill in mathematics: one always breaks up a complicated
task into a sequence of simple easy ones if possible. This is why we
do not look at 45 or 31, but only 4 and 3 and also 5 and 1. We break up
the numbers into single digits, add the single digits, and then reassemble the
separate pieces of information to arrive at the final result. Of course, further
down the road, you would encounter the phenomenon of “carrying”, but that
is just a sidelight, a little wrinkle on the fabric. “Carrying” is not the main
idea of the addition algorithm as most textbooks would have you believe. The
main idea is to break up any addition into the additions of one-digit numbers
and then put these simple computations together to get the final answer. If
you can make your children understand that, you would be doing fantasti-
cally well as a teacher, because you have taught them important mathematics.

You still think learning the standard algorithm stunts children’s intellec-
tual growth?
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But you wouldn’t be able to teach this way unless you have the necessary
content knowledge. In the teaching of mathematics, it is usually the case that
content guides pedagogy. (Cf. Wu, 2005.) In a real world, it would be far
more realistic to expect a math specialist rather than an average elementary
teacher to have this kind of content knowledge.

Division of numbers is next. We begin with the division of whole num-
bers. What does the division 54

6 = 9 mean? In the primary grades, it is
certainly appropriate to talk exclusively about partitive or measurement di-
visions among whole numbers. As an example of measurement divisions, a
third grader’s understanding of 54

6 = 9 may be limited to thinking of a par-
titioning 54 into equal groups of 6 and then finding that there are 9 groups
in all. In the upper elementary grades, however, this conception of division
will not be enough. Why not? Because

(1) Even in elementary school, we have to deal with the division of
fractions, and the partitive or measurement meaning of division will
not be able to handle a division such as

1
3
4
5

(2) The elementary curriculum does not exist in isolation; it must
support the curriculum in K-12 and beyond. For the latter (e.g.,
the study of algebra), we must have a more symbolic definition of
division.

Sometimes, progress in mathematics is achieved, not by looking forward,
but by looking back and understanding what we have done a little better. In
the case of 54

6 = 9, its partitive meaning as a partition of 54 objects into
9 groups of 6’s already points to a symbolic expression of the meaning of
division:

54 = 6 + 6 + · · · + 6︸ ︷︷ ︸
9

= 9 × 6

The last equality uses the very definition of multiplication, of course. This is
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actually very clear from the way we teach division:

9
6 ) 5 4

5 4
0

What we tell children is that, to divide 54 by 6, we look for the number
which, when multiplied by 6, gives 54. Therefore, in symbolic terms,

the meaning of the division 54
6 = 9 is that 54 = 9 × 6.

In a similar fashion, the meaning of 48
6 = 8 is that 48 = 8 × 6, the meaning

of 36
12 = 3 is that 36 = 3 × 12, etc. By using symbols (which is definitely

appropriate for fifth graders), we can express this new understanding of the
division of whole numbers as follows:

for whole numbers m and n, where m is a multiple of n and n is
nonzero, the meaning of the division m

n
= q is that m = q × n

For fifth and sixth graders, we should ask them to reconceptualize division
from this point of view. They should revisit division from the perspective
of their new knowledge and reshape their thinking accordingly. Such is the
normal progression of learning.

Note that this reconceptualization is not a rejection of the meaning of the
division of whole numbers. On the contrary, it evolves from the latter, and
makes it more precise.

The reason this reconceptualization is important is that the meaning of
division, when reformulated this way, turns out to be universal in mathe-
matics, in the following sense. If m and n are any two numbers (i.e., not
just whole numbers) and n is nonzero, then the definition of “m divided
by n equals q” is that m = q × n. In other words,

m

n
= q means m = q × n.

It is possible that some amplification of this sentence would enhance its clar-
ity, so I will do that. What it says consists of two parts. The first part
says no matter what the numbers m and n may be, the statement m

n
= q

for some number q is nothing but another way of expressing m = q × n.
Furthermore, if we know m = q × n, then we may choose to rewrite it as
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m
n

= q if it suits our purpose. Thus in a very precise sense, division is just
multiplication in a different format.

It would be quite wrong to consider this statement to be just another way of
saying “division and multiplication are inverse operations.” The latter state-
ment signifies that, knowing what multiplication and division are, we merely
make the observation about how they are related. Little or no thought is
given to how this relationship might be the key to understanding division.
By contrast, what we are now saying is that the only way we can get to know
division is through multiplication, because the division statement m

n
= q

is just a different, but equivalent, way of writing the multiplication state-
ment m = q × n, no less and no more. A teacher’s understanding of this
difference would be critical to how she could put this concept of division to
effective use, as we proceed to show.

Why does
5
6
9
4

equal
5

6
×

4

9
?

In other words, why invert and multiply? To give an explanation, we have
to go back to the above definition of division; this is what a definition is for.
It is easy to see that

5

6
=

{
5

6
×

4

9

}
×

9

4
If we think of

5
6 as m,

5
6 × 4

9 as q,

9
4 as n,

then the preceding equality says m = q × n. By the definition of division,
this is exactly the statement that m

n
= q, or,

5
6
9
4

=
5

6
×

4

9
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So you see that there is nothing to invert-and-multiply once we know the
meaning of division. What is sobering is that the limerick, “Ours not to
reason why/ Just invert and multiply,” gets it all wrong. The key issue here
is not the “why”, because before we ask why invert and multiply, we have to
know what division means. We are thus harking back to our earlier theme:
before we do anything in mathematics, we must make clear what it is that
we are doing. In other words, we must have a precise definition of division
before we can talk about its properties.

In general, this reasoning explains why one inverts and multiplies in the
division of fractions:

a
b
c
d

=
a

b
×

d

c

Let us consider a slightly different problem. Take for instance, the division
of 12 by −3. Students are told that 12

−3 = −4, but not why this is so.
This creates a very dangerous situation, because in the absence of a valid
reason, students’ imagination runs wild. My own experience points to the
fact that many of them are led to believe the reason 12

−3 = −4 is true is
that, somehow, the “fraction bar” is something you can ignore when it is not
to your liking. So since they don’t know how to deal with 12

−3 , they simply
push the minus sign in front beyond the fraction bar to get

12

−3
= −

12

3
= −4

The truth is actually simpler: We want to know what the division 12
−3 is

equal to. We also remember that whatever it is equal to, let us say that
12
−3 = q, then this is actually the statement that 12 = q × (−3). It
remains to find out what q is. Now, if we know how to multiply rational
numbers, we would recognize that 12 = (−4)×(−3). Therefore q = (−4)
and the multiplication fact 12 = (−4)× (−3), when written as a division,
is exactly

12

−3
= (−4)

The same reasoning explains in general why for any two numbers x and
y, we always have:

x

−y
=

−x

y
= −

x

y
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I am afraid I have tired you out with so much mathematics, so I will refrain
from further exploiting the advantage of using a clear-cut definition of division
to explain why the solutions of certain word problems require division (rather
than some other arithmetic operation). An example of such a problem is the
following:

If 5 yards of ribbon are cut into pieces that are each 3/4 yard long
to make bows, how many bows can be made?

Students usually recognize that this problem calls for a division of 5 by 3/4,
but not the reason why “division” should be used. If we use the preceding
definition of division, the reason would become all too apparent. (See Section
5 of Wu, 2005.)

Let me conclude with two observations. The first is that I began by as-
serting that the essence of the elementary mathematics curriculum consists
of coherence, precision, and reasoning. Let us see if the preceding discussion
reflects a little bit of these qualities:

Coherence: One of the manifestations of the coherence of mathe-
matics is the ubiquity of the general principle of reducing a compli-
cated task to a collection of simple sub-tasks. This principle runs
right through the addition algorithm. This algorithm is also based
on the place value of the decimal system which weaves through all
the discussions of whole numbers and later decimals and, in a re-
duced role, in polynomials. Similarly, we saw how one embracing
definition of division clarifies the meaning of the division of whole
numbers, fractions, and rational numbers. The same definition also
underlies the validity of both invert-and-multiply and the equalities
x

−y
= −x

y
= − x

y
.

Precision: The bedrock of this discussion is the precise definitions
we give to the addition of whole numbers and the division of arbitrary
numbers. It is worth repeating that before we do anything in math-
ematics, we must make clear what it is that we are doing. Equally
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noteworthy is the fact that the definitions given are precise and all
inclusive: they are sufficient to provide precise mathematics, with no
psychological overtones. Contrast this with a common definition of
fraction as both part of a whole and a ratio. Beyond appealing to
children’s naive response to the mention of the word “ratio”, what
purpose does such a definition serve?

Reasoning: Every step of this discussion evolves from an earlier
step by logical deduction. The addition algorithm follows from the
place value of our numeral system, and invert and multiply is a logi-
cal consequence of the definition of division in terms of multiplication.

My belief is that the presence of these three qualities, coherence, precision,
and reasoning, is a prerequisite to making school mathematics learnable. Too
often, all three are absent from the elementary curriculum. More than that,
too often they are absent from the elementary classroom. As I explained at
the beginning, it is not the fault of the elementary teacher not to provide
this kind of instruction. Indeed, I repeat that it is altogether unrealistic to
expect our average elementary teacher to possess this kind of mathematical
knowledge. One way or another, we have to get math specialists into our
school classroom.

Finally, you may have noticed that in the whole discussion, I have placed
a greater emphasis on the curriculum of the upper elementary grades while
seemingly slighting the primary grades. I want to assure you that the same
coherence, precision, and reasoning are of equal importance there. But if I
were to also discuss in depth these qualities in the primary grades, then it
would be necessary to more carefully qualify, for example, the kind of preci-
sion that would be optimal for the learning of young children, or how much
formal reasoning is appropriate at each of the early grades. These are delicate
issues that deserve a more detailed examination than I am capable of pro-
viding, or in any case, it would be unrealistic to do this in forty-five minutes.
Nevertheless, there should be no letup in our insistence on these essential
qualities of mathematics. Recall that the mathematics of elementary school
serves as the foundation of the mathematics of K-12. So regardless of the
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difference in the preponderance of skills or the pedagogical needs in the pri-
mary grades, the principal concern is still with building a robust foundation
for children’s learning of mathematics. Even little kids need mathematics
that is coherent, precise, and logical.
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