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Prologue

In 2001, the Conference Board for Mathematical Sciences published a volume
to describe the mathematics that institutions of higher learning should be teach-
ing prospective school teachers ([MET]). It recommends that the mathematical
course work for elementary and middle school teachers should be at least 9 and
21 semester-hours, respectively, and for high school teachers it should be the
equivalent of a math major plus a 6-hour capstone course connecting college
mathematics with school mathematics. The major part of the volume is devoted
to a fairly detailed description of the mathematics that elementary, middle, and
high school teachers need to know.

Given the state of mathematics education in 2008, the recommendation on
the course work for teachers by the [MET] volume is very sound, in my opinion.
As to the description of the mathematics that teachers need to know, it is such
a complicated subject that one would not expect what is in [MET] to be the
definitive statement. At the very least, one would want an alternative view from
the mathematical perspective. Certain essential features about mathematics
tend to be slighted in general education discussions of school mathematics, but
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here is one occasion when these features need to be brought to the forefront.
Mathematical integrity is important where mathematics is concerned, and this
is especially true about school mathematics.

This paper begins with a general survey of the basic characteristics of mathe-
matics (pp. 2–7). Some examples are then given to illustrate the general discus-
sion (Part I). The bulk of the paper is devoted to a description of the mathematics
that teachers of K–8 should know (Part II, pp. 22–69). The omission of what
high school teachers should know is partly explained by the fact that a series of
textbooks is being written about the mathematics of grades 8-12 for prospective
teachers ([Wu2012]).

Mathematics for K–12 Teaching

This is the name we give to the body of mathematical knowledge a teacher
needs for teaching in schools. At the very least, it includes a slightly more
sophisticated version of school mathematics, i.e., all the standard topics in
the school mathematics curriculum. In Part II of this article (pp. 22–68), there
will be a brief but systematic discussion of what teachers of K–8 need to know
about school mathematics. In other words, we will try to quantify as much as
possible what this extra bit of “sophistication” is all about.

The need for teachers to know school mathematics at a slightly more advanced
level than what is found in school textbooks is probably not controversial. After
all, if they have to answer students’ questions, some of which can be unexpect-
edly sophisticated, and make up exam problems, a minimal knowledge of school
mathematics would not suffice to do either of these activities justice. Perhaps
equally non-controversial is the fact that, even within mathematics proper, there
is a little bit more beyond the standard skills and concepts in the school cur-
riculum that teachers need to know in order to be successful in the classroom.
Teachers have to tell a story when they approach a topic, and the story line,
while it is about mathematics, is not part of the normal school mathematics
curriculum. They have to motivate their students by explaining why the topic
in question is worth learning, and such motivation also does not usually find
its way to the school curriculum. To the extent that mathematics is not a col-
lection of tricks to be memorized but a coherent body of knowledge, teachers
have to know enough about the discipline to provide continuity from day to day
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and from lesson to lesson. These connecting currents within mathematics are
likewise not part of the school curriculum. Teachers cannot put equal weight on
each and every topics in the curriculum because not all topics are created equal;
they need to differentiate between the truly basic and the relatively peripheral
ones. Teachers cannot make that distinction without an in-depth knowledge of
the structure of mathematics. And so on. All this is without a doubt part of
the mathematical knowledge that should be part of every teacher’s intellectual
arsenal, but the various strands of this component of the mathematics for K–12
teaching have so far not been well articulated in the education literature. In the
first part of this article, we will attempt such an articulation. To this end, we
find it necessary to step back and examine the nature of mathematics education.

Beyond the crude realization that mathematics education is about both math-
ematics and education, we posit that mathematics education is mathematical
engineering, in the sense that it is the customization of basic mathematical
principles for the consumption of school students ([Wu] 2006). Here we under-
stand “engineering” to be the art or science of customizing scientific theory to
meet human needs. Thus chemical engineering is the science of customizing
abstract principles in chemistry to help solve day-to-day problems, or electri-
cal engineering is the science of customizing electromagnetic theory to design
all the nice gadgets that we have come to consider indispensable. Accepting
this proposal that mathematics education is mathematical engineering, we see
that school mathematics is the product of the engineering process that converts
abstract mathematics into usable lessons in the school classroom, and school
mathematics teachers are therefore mathematical engineering technicians
in charge of helping the consumers (i.e., the school students) to use this product
efficiently and to do repairs when needed.

Just as technicians in any kind of engineering must have a “feel” for their
profession in order to avert disasters in the myriad unexpected situations they
are thrust into, mathematics teachers need to know something about the essence
of mathematics in order to successfully carry out their duties in the classroom.
To take a simple example, would a teacher be able to tell students that there is
no point debating whether a square is a rectangle because it all depends on how
one defines a rectangle, and that mathematicians choose to define rectangles to
include squares because this inclusion makes more sense in various mathematical
settings, such as the discussion of area and volume formulas? This would be a
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matter of understanding the role of definitions in mathematics. Or, if a teacher

finds that the slope of a line L is defined in a textbook to be the ratio
y2−y1
x2−x1

for two chosen points (x1, y1) and (x2, y2) on L, would she recognize the need to
prove to her students that this ratio remains unchanged even when the points
(x1, y1) and (x2, y2) are replaced by other points on L? In other words, if (x3, y3)
and (x4, y4) are any other pair of points on L, then

y2 − y1

x2 − x1
=
y4 − y3

x4 − x3

In this case, the teacher has to be alert to the inherent precision of mathematics,
so that a definition claiming to express the property of a line should not be
formulated solely in terms of two pre-asssigned points on it. It is also about
knowing the need to supply reasoning when an assertion is made about the
equality of the two ratios.

At the moment, our teachers are not given the opportunity to learn about the
basic topics of school mathematics, much less the the essence of mathematics
([Ball] 1990; [Wu1999a] and [Wu1999b]; [NRC], pp. 372-378; [MET] 2001, Chap-
ters 1 and 2; [Wu2002a]). For example, the mathematics course requirements
of pre-service elementary teachers in most education schools consist of one to
two courses (e.g., [NCTQ], p. 25), which are far from adequate for a revisit of
the elementary mathematics curriculum in greater depth. One can look at most
mathematics textbooks written for elementary teachers, for example, to get an
idea of how far we are from providing these teachers with the requisite mathemat-
ical knowledge (again, [NCTQ], pp. 35–37). Worse, anecdotal evidence suggests
that some mathematics courses that are required may be about “college algebra”
or other topics unrelated to the mathematics of elementary school. Along this
line, some knowledge of calculus is usually considered a badge of honor among
elementary teachers. While more knowledge is always preferable to less, it can
be persuasively argued that so long as our elementary teachers don’t have a firm
grasp of the mathematical topics they have to teach, any knowledge of calculus
would be quite beside the point. As for secondary teachers, their required courses
are usually taken in the mathematics departments. There is still a general lack
of awareness in these departments, however, that the subject of school mathe-
matics is about a body of knowledge distinct from what future mathematicians
need for their research ([Wu1999a]), but that it nevertheless deserves their seri-
ous attention. At the moment, future secondary school teachers get roughly the

4



same mathematics education as future mathematics graduate students, and the
only distinction between these two kinds of education is usually in the form of
some pedagogical supplement for the mathematics courses.

In general terms, such a glaring lacuna in the professional development of
future mathematics teachers is partly due to the failure to recognize that school
mathematics is an engineering product and is therefore distinct from the mathe-
matics we teach in standard college mathematics courses. Teaching school math-
ematics to our prospective teachers requires extra work, and “business as usual”
will not get it done. There is another reason. Education itself is beset with
many concerns, e.g., equity, pedagogical strategies, cognitive developments, etc.
In this mix, schools of education may not give the acquisition of mathematical
content knowledge the attention that is its due. And indeed mathematics often
gets lost in the shuffle.

To further the discussion, more specificity would be necessary. We therefore
propose that the following five basic characteristics capture the essence of
mathematics that is important for K–12 mathematics teaching:

Precision: Mathematical statements are clear and unambiguous. At
any moment, it is clear what is known and what is not known.

Definitions: They are the bedrock of the mathematical structure.
They are the platform that supports reasoning. No definitions, no
mathematics.

Reasoning: The lifeblood of mathematics. The engine that drives
problem solving. Its absence is the root cause of teaching- and learning-
by-rote.

Coherence: Mathematics is a tapestry in which all the concepts and
skills are interwoven. it is all of a piece.

Purposefulness: Mathematics is goal-oriented, and every concept
or skill is there for a purpose. Mathematics is not just fun and games.

These characteristics are not independent of each other. For example, without
definitions, there would be no reasoning, and without reasoning there would be
no coherence to speak of. If they are listed separately, it is only because they
provide easy references in any discussion.
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It may not be out of place to amplify a bit on the characteristic of purpose-
fulness. One reason some students do not feel inspired to learn mathematics is
that their lessons are presented to them as something they are supposed to learn,
willy-nilly. The fact is that mathematics is a collection of interconnecting chains
in which each concept or skill appears as a link in a chain, so that each concept
or skill serves the purpose of supporting another one down the line. Students
should get to see for themselves that the mathematics curriculum does move
forward with a purpose.

We can give a first justification of why these five characteristics are important
for teaching mathematics in schools. For students who want to be scientists,
engineers, or mathematicians, the kind of mathematics they need is the mathe-
matics that respects these basic characteristics. Although this claim is no more
than professional judgment at this point, research can clearly be brought to bear
on its validity. Accepting this claim for the moment, we see that students are
unlikely to learn this kind of mathematics if their teachers don’t know it. Apart
from the narrow concern for the nation’s technological and scientific well-being,
we also see from a broader perspective that every student needs to know this
kind of mathematics. This is because, if school mathematics education is to live
up to its educational potential of providing the best discipline of the mind in the
school curriculum, then we would want to expose all students to precise, logical
and coherent thinking. This then gives another reason why teachers must know
the kind of mathematics that respects these basic characteristics.

However, the ultimate justification of why mathematics teachers must know
these five characteristics must lie in a demonstration that those who do are better
teachers, in the sense that they can make themselves better understood by their
students and therefore have a better chance of winning their students’ trust.
These are testable hypotheses for education research, even if such research is
missing at the moment. In the meantime, life goes on. Instead of waiting for
research data and doing nothing, we proceed to make a simple argument for the
case that teachers should know these basic characteristics, and also give several
examples for illustration.

The simple argument is that many students are turned off by mathematics
because they see it as one giant black box to which even their teachers do not
hold the key. Therefore teachers who can make transparent what they are talk-
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ing about (cf. definitions and precision), can explain what they ask students to
learn (cf. reasoning and coherence), and can explain why students should learn
it (cf. purposefulness) have a much better chance of opening up a dialogue with
their students and inspiring them to participate in the doing of mathematics.

We divide the remaining discussion into two parts. In Part I, we use examples
from several standard topics in school mathematics to show how teachers who
know the basic characteristics of mathematics are more likely to be able to teach
these topics in a meaningful way. Part II highlights the main points in the
school curriculum that are often misrepresented in school mathematics. These,
therefore, should be the focus of professional development.

Part I: Some Examples

EXAMPLE 1. Place value.

Consider a number such as

7 8 7 5 7

We tell students that the three 7’s represent different values as a matter of con-
vention, and yet we expect them to have conceptual understanding of place value.
When all is said and done, it is difficult to acquire conceptual understanding of
a set of rules. This incongruity between our pedagogical input and the expected
outcome causes learning difficulties.

Teachers who know the way mathematics is developed through reasoning
would look for ways to explain the reason for such a rule. When they do, they
will discover that, indeed, the rules of place value are logical consequences of
the way we choose to count. This is the decision that we count using only ten
symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Many older numeral systems, for example
the Egyptian numeral system, pretty much made up symbols for large numbers
as they went along: one symbol for a hundred, another one for a thousand, and
yet another one for ten thousand, etc. But by limiting ourselves to the use of
ten symbols and no more, we are forced to use more than one position (place)
in order to be able to count to large numbers.

To illustrate the underlying reasoning and at the same time minimize the
enumeration of numbers, we will use three symbols instead of ten: 0, 1, 2. Of
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course, counting now stops after three steps. To continue, one way is to repeat
the three symbols indefinitely:

0 1 2
0 1 2
0 1 2 etc.

This allows us to continue counting all the way to infinity, but the price we pay
is that we lose track of where we are in the endless repetitions. In oder to keep
track of the repetitions, we label each repetition by a symbol to the left:

00 01 02
10 11 12
20 21 22

Adding one symbol to the left of each group of

0 1 2

allows us to count, without ambiguity, up to nine numbers (we only have three
symbols to add to the new position on the left!). Then we are stuck again. To
keep going, we again try to repeat these nine groups of symbols indefinitely:

00 01 02 10 11 12 20 21 22
00 01 02 10 11 12 20 21 22
00 01 02 10 11 12 20 21 22 etc.

This has the same drawback of ambiguity as before unless we again label each
repetition by a symbol to the left:

000 001 002 010 011 012 020 021 022
100 101 102 110 111 112 120 121 122
200 201 202 210 211 212 220 221 222

By adopting the convention of omitting the 0’s on the left, we obtain the first
27 numbers (27 = 9 + 9 + 9) in our counting scheme:

0 1 2 10 11 12 20 21 22
100 101 102 110 111 112 120 121 122
200 201 202 210 211 212 220 221 222
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The next step is to repeat these 27 numbers indefinitely, and then label each
of them by labeling each group of 27 numbers with a 0 and 1 and 2 to the left,
thereby obtaining the first 81 (= 27 + 27 + 27) unambiguous numbers in our
counting scheme. And so on.

This way, students get to see the origin of place value: we use three places
only after we have exhausted what we can do with two places. Thus the 2 in 201
stands not for 2, but the third round of repeating the 9 two-digit numbers, i.e.,
the 2 in 201 signifies that this is a number that comes after the 18th number
200 (in daily life we start counting from 1), and the second and third “digits”
01 signify more precisely that it is in fact the 19th number (9 + 9 + 1).

In the same way, if we use ten symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and adapt
the preceding reasoning, we see that for a number such as 374,

the 3 in 374 signifies the fourth round of repeating the 100 two-digit
numbers and therefore 374 is a number that comes after the 300th
number, 300, while the second and third “digits” 74 signify more
precisely that 374 is the 300th-and-70th-and-4th number.

When teachers know the underlying reasoning of place value, they will find a
whole host of pedagogical options opened up for them. Instead of simply laying
down a set of rules that each place stands for a different value, they can now
lead their young charges step-by-step through the counting process and make
them see for themselves why each place of a number has a different meaning.
Moreover, they can also invite their students to experience the counting process
in a different context by using any number of symbols (just as we used three
above). In mathematics, it is the case that content knowledge heavily influences
pedagogy ([Wu] 2005).

EXAMPLE 2. Standard algorithms.

The teaching of whole number standard algorithms was a flash point of the
Math Wars. As key theorems in the study of whole numbers, there is absolutely
no doubt that these algorithms and their explanations should be taught. Nev-
ertheless, their great merit may not always be obvious to elementary students,
and the need for teachers to plead their case has thus become a necessity. A
teacher must be aware of the two characteristics of definitions and coher-
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ence in mathematics in this situation. A minimum requirements for success in
teaching these algorithms is to always make explicit the definitions of the four
arithmetic operations. For example, whole number addition is by definition
continued counting, in the sense that the meaning of 1373+2615 is counting 2615
times beyond the number 1373. A teacher who appreciates the importance of
definitions would emphasize this fact by making children add manageable num-
bers such as 13 + 9 or 39 + 57 by brute force continued counting. When children
see what kind of hard work is involved in adding numbers, the addition algo-
rithm comes as a relief because this algorithm allows them to replace the onerous
task of continued counting with numbers that may be very large by the continued
counting with only single digit numbers. Armed with this realization, they will
be more motivated to memorize the addition table for all single digit numbers as
well as to learn the addition algorithm. It will also give them incentive to learn
the reasoning behind such a marvelous labor-saving device.

Multiplication being repeated addition, a simple multiplication such as 48×
27 would require, by definition, the addition of 27 + 27 + · · · + 27 a total of 48
times. In this case, even the addition algorithm would not be a help. Again,
a teacher who wants to stress the importance of definitions would, for example,
make children get the answer to 7 × 34 by actually performing the repeated
addition. Then teaching them the multiplication algorithm and its explanation
becomes meaningful. Because this algorithm depends on knowing single-digit
multiplications, children get to see why they should memorize the multiplication
table. (Purposefulness .) Similar remarks can be made about subtraction and
division.

The sharp contrast between getting an answer by applying the clumsy defi-
nition of each arithmetic operation and by using the relatively simple algorithm
serves the purpose of highlighting the virtues of the latter. Therefore a teacher
who emphasizes definitions in teaching mathematics would at least have a chance
of making a compelling case for the learning of these algorithms, and these al-
gorithms deserve nothing less. More is true. It was mentioned in passing that
the addition and multiplication algorithms depend on single-digit computations.
It is in fact a unifying theme that the essence of all four standard algorithms
is the reduction of any whole number computation to the computation of single-
digit numbers. This is a forceful illustration of the coherence of mathematics,
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and a teacher who is alert to this basic characteristic would stress this com-
monality among the algorithms in her teaching. If a teacher can provide such a
conceptual framework for these seemingly disparate algorithmic procedures, she
would increase her chances of improving student learning (cf. similar discussions
in [Pesek-Kirschner], 2000; [Rittle-Johnson-Alibali], 1999).

Incidentally, for an exposition of the division algorithm that brings out the
fact that this algorithm is an iteration of single digit computations, see the dis-
cussion below in item (A) of Whole numbers, Part II.

EXAMPLE 3. Estimation.

In recent years, the topic of estimation has become a staple in elementary
mathematics instruction. In the form of rounding, it enters most curricula in
the second grade. Textbooks routinely ask students to round whole numbers to
the nearest one, nearest ten, nearest hundred, etc., without telling them when
they should round off or why. A teacher who knows about the purposefulness
of mathematics knows that if a skill is worth learning, then it cannot be presented
as a meaningless rote exercise. She would introduce in her lessons examples in
daily life that naturally call for estimation. For example, would it makes sense
to say in a hilly town that the temperature of the day is 73 degrees? (No,
because the temperature would depend on the time of the day, the altitude,
and the geographic location. Better to round to the nearest 5 or nearest 10.
“Approximately 70 degrees” would make more sense.) If Garth lives two blocks
from school, would it make sense to say his home is 957 feet away from school?
(No, because how to measure the distance? From door to door or from the front
of Garth’s garden to the front of the school yard? Measured along the edge of
the side walk or along the middle of the side walk? Or is the distance measured
as the crow flies? Etc.) Better to round to the nearest 50, or at least to the
nearest 10. Many other examples such as a city’s population or the length of a
students’ desk (in millimeters) can also be given. When a teacher can present
a context and a need for estimation, the rounding of whole numbers becomes a
meaningful, and therefore learnable, mathematical skill.

Textbooks also present estimation as a tool for checking whether the answer
of a computation is reasonable. Here is a typical example. Is 127 + 284 = 411
likely to be correct? One textbook presentation would have students believe that,
since rounding to the nearest 100 changes 127 + 284 to 100 + 300, which is 400
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and 400 is close to 411, therefore 411 is a reasonable answer. A teacher who is
aware of the need for precision in mathematics would be immediately skeptical
about such a presentation. She would ask what is meant by “400 is close to
411”. If we change the problem to 147 + 149 = 296, how would this approach to
estimation check the reasonableness of the answer? Rounding to the nearest 100
now changes 147 + 149 to 100 + 100, which is 200, should we consider 200 to
be “close” to 296? The teacher therefore realizes that even in estimation, there
is a need to be precise. She would therefore forsake such a cavalier approach to
estimation and teach her students instead about the inevitable errors that come
with each estimation. Each rounding to the nearest 100 could bring either an
over-estimate or an under-estimate up to 50, and she would teach the notation of
±50 to express this fact. When one adds two such estimations of rounding to the
nearest 100, the error could therefore be as high as ±100. And this was exactly
what happened with the estimation of 147+149: the error of 200 compared with
the exact value 296 is 96, which is almost 100. If we use rounding to the nearest
100 to check whether an addition of two 3-digit numbers is reasonable, we must
expect an error possibly as high as 100. In this way, she shows her students that
the declaration of “closeness” for this way of checking an addition is completely
meaningless. She would tell her students that if they really want a good estimate,
in the sense of the estimation being within 10 of the true value, they should round
to the nearest 10, in which case the previous reasoning yields an error of ±10.
By rounding to the nearest 10, the addition 147 + 149 becomes 150 + 150 = 300,
and since 296 is within 10 of 300, one may feel somewhat confident of the answer
of 296.

In this case, teaching the concept of the error of an estimation helps to steer
the teacher away from teaching something that is mathematically incorrect.
Because the mathematics in school textbooks is often unsatisfactory (compare
[Borisovich], or [NMPb], Appendix B of Chapter 3, pp. 3-63 to 3-65), a knowledge
about the basic characteristics of mathematics in fact becomes indispensable to
the teaching of mathematics. Incidentally, if the consideration of estimation is
part of a discussion in a sixth or seventh grade class, then the concepts of “ab-
solute error” and “relative error” should also be taught.

EXAMPLE 4. Translations, rotations, reflections.

We will refer to these basic concepts in middle school geometry as basic
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rigid motions. The way these concepts are usually taught, they are treated as
an end in itself. Students do exercises to learn about the effects of these basic
rigid motions on simple geometric figures. They are also asked to recognize the
translation, rotation, and reflection symmetries embedded in patterns and pretty
tessellations. This is more or less the extent to which the basic rigid motions
are taught in the middle grades. One gets the impression that the basic rigid
motions are offered as an aid to art appreciation.

A teacher cognizant of the purposefulness of mathematics would try to
direct the teaching of these concepts to a mathematical purpose. She would
teach the basic rigid motions as the basic building blocks of the fundamental
concept of congruence: two geometric figures are by definition congruent if a
finite composition of a translation, a rotation, and/or a reflection brings one
figure on top of the other. The basic rigid motions are tactile concepts; many
hands-on activities using transparencies can be devised to help students get to
know them. In school mathematics, congruence is usually defined as “same size
and same shape”. To the extent that there is no discernible systematic effort in
professional development to correct such a lapse of precision , this hazy notion
of congruence is what our teachers have be forced to live with.1 By contrast, the
definition of congruence in terms of the basic rigid motions is mathematically
accurate, is (as noted) tactile, and therefore by comparison learnable. A teacher
who knows the basic characteristics of mathematics would have a much better
chance of making students understand what congruence is all about.

A teacher aware of the coherence of mathematics would also make an ef-
fort to direct students’ attention to the role played by congruence in other areas
of mathematics. She would underscore, for instance, the fact that a basic re-
quirement in the definition of geometric measurements (i.e., length, area, or
volume) of geometric figures is that congruent figures have the same geometric
measurements. By emphasizing this property of geometric measurement vis-a-
vis congruence, a teacher can greatly clarify many of the usual area or volume
computations. (See the discussion in item (D) below on Geometry.) Such
considerations enable students to see why they should learn about congruence.
(Purposefulness again.)

EXAMPLE 5. Similarity.

1This is another striking example of the absence of mathematical engineering.
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The concept of similarity is usually defined to be “same shape but not nec-
essarily the same size”. This phrase carries as much (or if one prefers, as little)
information as “same size and same shape”. A teacher who values the precision
of mathematics would know that this is not a mathematically valid definition of
similarity that she can offer to her students. For example, how would “same
shape but not necessarily the same size” help decide whether the following two
curves are similar, and if so, how?

A correct definition of similarity, one that can be taught to middle school stu-
dents, turns out to be both elementary and teachable. For convenience, restrict
ourselves to the plane. A dilation with center O and scale factor r (r > 0) is
the transformation of the plane that leaves O unchanged, but moves any point
P distinct from O to the point P ′ so that O, P , P ′ are collinear, P and P ′ are
on the same half-line relative to O, and the length of OP ′ is equal to r times the
length of OP . Here is an example.

Consider the dilation with center O and scale factor 1.8. What does it do to
the curve as shown?

O
q
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We take a few points on the curve (in this case, eleven, as shown) and proceed
to dilate every one of these points according to the definition.
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What we get is a “profile” of the dilated curve consisting of eleven points.
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If we use more points on the original curve and dilate each point the same
way, we would get a better approximation to the dilated curve itself. Here is an
example with 150 points chosen on the original curve.

15



O
q

In the middle school classroom, a teacher can capture students’ imagination
by telling them that, through the use of dilation, they can expand (scale factor
> 1) or contract (scale factor < 1) any geometric figure. In fact, this is the
basic principle behind digital photography for expanding or contracting a picture.
Both facts are likely to be new to the students.

Now the definition of similarity: two geometric figures are similar if a dila-
tion followed by a congruence bring one figure on top of another. Again, such a
precise definition makes similarity a tactile and teachable concept. To go back
to the two curves at the beginning of this discussion, it turns out that they
are similar because, after dilating the right curve by a scale factor of 1.5, we
can make it coincide with the curve on the left using the composition of a 90◦

counter-clockwise rotation, a translation, and a reflection across a vertical line.

EXAMPLE 6. Fractions, decimals, and percent.

Here we focus on the teaching of these topics in grade 5 and up. We do
so because this is where the informal knowledge of fractions in the primary
grades begins to give way to a formal presentation, and where students’ drive to
achieve algebra begins to take a serious turn. This is where abstraction becomes
absolutely necessary for the first time and, not coincidentally, this is where non-
learning of mathematics begins to take place on a large scale (cf. [Hiebert-Wearne]
1986, [Carpenter-Corbitt et. al] 1981).

In the following discussion, we use the term fraction to stand for numbers of
the form a

b , where a and b (b 6= 0) are whole numbers, and the term decimals
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to stand for finite decimals.
In broad terms, standard instructional materials ask students to believe that

a fraction is a piece of pizza, part of a whole, a division, and a ratio;

a decimal is a number one writes down by using the concept of extended
place value: 43.76 is 4 tens, 3 ones, 7 tenths, and 6 hundredths.

a percent is part of a hundred.

Teachers who have taught decimals this way are well aware of the elusiveness
(to a student) of the concept of extended place value, to the point that students
cannot form a concrete image of what a decimal is. One should be able to get
research data on this observation directly. And of course, students are also urged
to “reason mathematically” using these concepts to solve problems when all they
are given is this amorphous mess of information.

A teacher who knows the coherence characteristics of mathematics would
know that, insofar as fractions, decimals and percents are numbers, the concept
of a number should not be presented to students in such a fragmentary manner
as suggested by the above sequence of “definitions”. For example, the suggested
“definition” of a fraction has too many components, and some of them don’t
even make sense. What is a “ratio”? If students already know what a “ratio”
is, would they need a definition of a “fraction”? If a fraction is just a piece of
pizza, then how to multiply two pieces of pizza? And these are only two of the
most naive concerns. Moreover, since decimals and percent are numbers, it is
important that students feel at ease about computing with them. Therefore, if
we try to relate this notion of 43.76 to something familiar to students, could it
be 40 + 3 + 7

10 + 6
100 ? If so, isn’t a decimal a fraction, and therefore why not say

explicitly that a decimal is a fraction obtained by adding the above fractions?
By the same token, is “part of a hundred” supposed to mean a fraction whose
denominator is 100? If so, why not use this as the definition instead of the
imprecise phrase “part of a hundred”?

The teacher would recognize the need for a definition of a fraction that is at
once precise and correct. One such definition is to say that a fraction is a point
on the number line constructed in a precise, prescribed manner, e.g., 2

3 is the
2nd division point to the right of 0 when the segment from 0 to 1 is divided into
3 segments of equal length (see the discussion in item (B) in Fractions, Part
II, below; for an extended treatment, see [Wu2002b], and in a slightly different

17



form, [Jensen] 2003). Building on this foundation, she can define decimal and
percent as special kinds of fractions in the manner described above. After these
definitions have been put firmly in place, she would then using reasoning to
explore other implications and representations of these concepts. Here are the
relevant definitions:

a decimal is any fraction with denominator equal to a power of 10,
and the decimal point notation is just an abbreviation for the power,

e.g. 3.52 and 0.0067 are, by definition, 352
102 and 67

104 , respectively, and a

percent is a fraction of the form N
100 , where N is a fraction. (Notation:

N
100 is written as N%.)

Note that the N
100 above is the fraction obtained by dividing the fraction N by

the fraction 100
1 . The division A

B of two fractions A and B (B 6= 0) is called in
school mathematics a complex fraction, and B will continue to be called the
denominator of the complex fraction A

B . Therefore a percent is strictly speak-
ing a complex fraction whose denominator is 100.2

What this discussion suggests is that a teacher well aware of the importance
of coherence in mathematics would be more likely to find a way to present the
concepts of fraction, decimal, and percent from a unified perspective, thereby
lighten the cognitive load of students and make these traditionally difficult con-
cepts more transparent and more learnable. Since such a suggestion does not
as yet have support by data, it should be a profitable topic for education research.

What are the advantages of having a coherent concept of fractions, decimal,
and percent? Consider what is supposed to be a difficult problem for sixth and
seventh graders:

What percent of 76 is 88?

How might a teacher who is at ease with the basic characteristics of mathematics
handle this? Knowing that percent is a fraction, she would first suggest to her
students to look at an easier cognate problem: what fraction of 76 is 88? This

2Complex fractions are extremely important for the discussion of ratio and rates in school mathematics and
in preparing students for algebra. Their neglect in the school curriculum is inexplicable and inexcusable. See §9
of [Wu2002b].

18



problem is, by comparison, more straightforward , namely, if k
` is the fraction so

that k
` of 76 is 88, then a direct translation of “k

` of 76 is 88” is3

k

`
× 76 = 88

From this, she gets k
` = 22

19 . Now she returns to the original problem: suppose
N% of 76 is 88. Since a percent is a fraction, the same reasoning should be used
to get

N%× 76 = 88

Therefore N = 8800
76 = 11515

19 . Thus the answer is 11515
19%.

We give two more examples. The same teacher would use the definition of a
decimal to give a simple explanation of the multiplication algorithm for decimals.
For example, the algorithm says that to multiply 2.6× 0.105,

(α) multiply the corresponding whole numbers 26× 105, and

(β) put the decimal point 4 (= 1+3) places to the left of the last digit of 26×105
because the decimal point in 2.6 (resp., 0.105) is 1 place (resp., 3 places) to
the left of the last digit of 26 (resp., 105).

She would use this opportunity to illustrate the use of precise definition in math-
ematical reasoning . She would calculate 2.6× 0.105 this way:

2.6× 0.105 =
26

10
× 105

103
(by definition)

=
26× 105

10× 103
(this is (α))

=
2730

101+3

= 0.2730 (this is (β))

For the second example, recall that we brought up the concept of extended
place value in the usual definition of a decimal. In the education literature, this ad
hoc idea has to be accepted on faith for the understanding of a decimal. A teacher

3This requires a thorough understanding of fraction multiplication. See the discussion in item (B) below in
Fractions.
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who believe in the coherence of mathematics might ask whether the original
concept of place value is not already sufficient for the same purpose. She would

find out that indeed it is. For example, why is 3.712 equal to 3 + 7
10 + 1

100 + 2
1000?

This is because if we know the ordinary concept of place value, then 3712 =
3000 + 700 + 10 + 2. Therefore:

3.712 =
3712

1000

=
3000 + 700 + 10 + 2

1000

=
3000

1000
+

700

1000
+

10

1000
+

2

1000

= 3 +
7

10
+

1

100
+

2

1000

EXAMPLE 7. The equal sign.

Education research in algebra sees students’ defective understanding of the
equal sign as a major reason for their failure to achieve algebra. It is said that
students consider the equal sign

an announcement of the result of an arithmetic operation

rather than as

expressing a relation.

The conclusion is that the notion of “equal” is complex and difficult for students
to comprehend.

A teacher who values precision in mathematics would immediately recognize
such abuse of the equal sign as a likely result of too much sloppiness in the
classroom. She knows how tempting such sloppiness can be. For example, it is
so convenient to write “27 divided by 4 has quotient 6 and remainder 3” as

27÷ 4 = 6 remainder 3

Here then is a prime example of using the equal sign as “an announcement
of the result of an arithmetic operation”. But the teacher also recognizes the
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sad truth that this way of writing division-with-remainder is given in all the
standard textbooks as well as in too many professional developmental materials
for comfort.4 She knows all too well if teachers are taught the wrong thing, then
they will in turn teach their students the wrong thing. If classroom practices and
textbooks encourage such sloppiness, students brought up in such an environment
would naturally inherit the sloppiness. The so-called misconception of the equal
sign is thus likely the inevitable consequence of flawed mathematics instruction
that our teachers received from their own teachers and textbooks, which they
impart, in turn, on their own students. Again, this is something education
research could confirm or refute.

From a mathematical perspective, the notion of “equal” is unambiguous and
is not difficult to comprehend. The concept of equality is a matter of precise
definitions. If teachers can emphasize the importance of definitions , and always
define the equal sign in different contexts with precision and care, the chances
of students abusing the equal sign would be much smaller. The principal concern
for any misunderstanding of the equal sign is therefore something professional
development should address.

To drive home the point that the concept of equality is a matter of definition,
here is the list of the most common definitions of A = B that arise in school
mathematics:

• A and B are expressions in whole numbers: A and B are verified to be
the same number by the process of counting (e.g., A = 2 + 5, B = 4 + 3). If
whole numbers are already placed on the number line, then A = B means
A and B are the same point on the number line.

• A and B are expressions in fractions: same point on number line (e.g.,
1
2 + 1

3 = 2− 11
6).

• A and B are expressions in rational numbers: same point on number line
(e.g., 1

3 −
1
2 = 2− 21

6).

• A and B are two sets: A ⊂ B and B ⊂ A.

• A and B are two functions: A and B have the same domain of definition,
and A(x) = B(x) for all elements x in their common domain.

4The correct way of expressing the division-with-remainder is of course 27 = (6× 4) + 3.
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• A = (a, a′), B = (b, b′) are ordered pairs of numbers: a = b and b = b′.
(Same for ordered triples of numbers.)

• A and B are two abstract polynomials: pairwise equality of the coeffi-
cients of the same power of the indeterminate.

Part II: The Mathematics for Teachers of K–8

Let us next examine in some detail what mathematics teachers need to know
about school mathematics. Perhaps as a consequence of the hierarchical nature of
mathematics, the core content of school mathematics seems to be essentially the
same in all the developed countries as far as we know. See [NMPb], Chapter 3,
pp. 3-31 to 3-32. True, there are observable minor variations, but these variations
all seem to be related to the grade level assigned to each topic or the sequencing
of a few of the topics. For example, most Asian countries require calculus in
the last year of school, whereas such is rarely the case in the U.S. Or, the U.S.
curriculum generally dictate a year of algebra followed by a year of geometry,
and then another year of algebra, but such an artificial separation is almost never
followed in foreign countries (cf. e.g., [Kodaira], 1996 and 1997). We will have
more to say about the later presently. Such differences are, however, insignificant
compared with the overall agreement among nations on the core topics in school
mathematics before calculus. In terms of grade progression, these core topics are
essentially the following:

whole number arithmetic, fraction arithmetic, negative numbers, ba-
sic geometric concepts, basic geometric mensuration formulas, coordi-
nate system in the plane, linear equations and quadratic equations and
their graphs, basic theorems in plane geometry, functions and their
graphs, exponential and logarithmic functions, trigonometric functions
and their graphs, mathematical induction, binomial theorem.

Once we accept that these core topics are what our teachers must teach, the
hierarchical nature of mathematics mentioned above dictates, in the main, what
teachers must learn and in what order they should learn it. In this sense, teacher’s
content knowledge is not circumscribed by education research but must also be
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informed by mathematical judgment.

Before we get down to the specifics of the mathematics we want teachers to
learn, it behooves us to reflect on the nature of this body of knowledge as it has
a bearing on many ongoing discussions about teachers. If we agree that teachers
should know a more sophisticated version of school mathematics, the fact that
school mathematics is an engineering product (see the discussion of mathematical
engineering on page 3) means that what teachers should know must satisfy two
seemingly incompatible requirements, namely,

(i) it is mathematics that respects the five basic characteristics, and

(ii) it is sufficiently close to the established school curriculum so that
teachers can make direct use of it in the school classroom without
strenuous effort.

Let us address specifically the school mathematics of K-8. There is probably
no better illustration of the dichotomous nature of school mathematics than
the case of fractions, a topic that has been discussed in Example 6 of Part I.
From the standpoint of advanced mathematics, the concept of a fraction, and
more generally the concept of a rational number, is simplicity itself. Junior level
algebra courses in college deal with rational numbers and their arithmetic in less
than a week. Given the notorious non-learning of fractions and rational numbers
in grades 5–7, it is natural to ask why we don’t just use what works in college
to teach school students. The simple reason is that the college treatment of
fractions requires that we define a fraction as an equivalence class of ordered pairs
of integers. It is not just that our average fifth graders, in terms of mathematical
maturity, are in no position to work on such an abstract level, but that more
pertinently, fifth graders, through their experience, conceive of fractions as parts
of a whole, and this conception is worlds apart from ordered pairs of integers
or equivalence relations. To facilitate student learning, a theory of fractions for
fifth graders would have to take into account such cognitive developments.

A course for teachers on fractions, if it is to be useful to them in the school
classroom, therefore cannot adopt the abstract approach and ask each prospec-
tive teacher to do research of their own in order to bring such abstract knowledge
down to the elementary and middle school classsrooms. This kind of research,
nontrivial as it is, is best left to professional mathematicians. By the same token,
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a mathematics course for elementary teachers also must not teach fractions in the
usual chaotic and incomprehensible manner (cf. Example 6) and then expect our
prospective teacher to miraculously transform such chaos into meaningful lessons
in the classroom. Least of all should we expect to achieve improvement in school
mathematics education simply by exhorting our teachers to teach for conceptual
understanding while continuing to feed these same teachers such chaotic infor-
mation. We must teach our teachers materials that have gone through
the process of mathematical engineering.

There have been some attempts to bridge the chasm between the abstract
approach and what is useful in the fifth grade classroom. For example, one
textbook for professional development defines a fraction a

b to be the solution
of the equation bx = a, but then it goes on to discuss fractions without once
making use of this definition for logical reasoning. In this case, because the
“definition” is detached from the logical development, it ceases to be a definition
in the mathematical sense. Such a development ill serves both mathematics and
education.

What was said about the subject of fractions is of course true for most other
topics of school mathematics: the concepts of negative numbers, straight line,
congruence, similarity, length, area, volume, together with all their associated
logical developments. For example, one cannot teach in the school classroom,
at any level, the area of a region in the plane as its so-called Lebesgue measure
or even the value of an integral. Nor for that matter can one define a line as
the graph of a linear equation in two variables (as is done in advance mathemat-
ics). What pre-service professional development needs are, as we said, courses in
mathematical engineering. In other words, these should be courses which are de-
voted to mathematics but which have gone through a careful engineering process.
Such courses unfortunately have been in short supply in university campuses up
to this point, and one can only hope that the situation will change for the better
in the near future.

Currently, there has been a lot of interest in mathematics teachers’ content
knowledge, especially in its effect on student achievement. One measure of this
content knowledge is the number of mathematics courses teachers have taken.
For example, in [Kennedy-Ahn-Choi], it is assumed that “courses in mathematics
represent content knowledge”. One purpose of the present discussion is to call
attention to the fact that, until mathematics departments and schools of educa-
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tion take mathematical engineering seriously, mathematics courses are not likely
to be very relevant to teachers’ ability to teach better in the school classroom,
and the number of mathematics courses teachers have taken will continue to be
a defective measure of their content knowledge for teaching.

But to go back to our task at hand, we now describe, from the standpoint of
mathematical engineering, what needs to be taught to teachers of grades K-8,
more or less in accordance with the list of core topics enunciated above. It will be
clear to one and all that the description itself meticulously observes requirement
(ii) above of what teachers should know, namely, it is always close to the average
school curriculum.

(A) Whole numbers The basis of all mathematics is the whole numbers.
In particular, a complete understanding of the whole numbers and its arithmetic
operations is the core of the knowledge teachers need in K-3. What is often not
recognized is the fact that an adequate understanding of place value, the central
concept in discussions of whole numbers, only comes with an understanding of
how to count in the Hindu-Arabic numeral system. If teachers have difficulty
convincing children that, for example, the 3 in 237 stands not for 3 but for 30,
it may be because children only know it as one among hordes of other rules that
they have to memorize. Suppose now we explain to teachers the fundamental
idea of the Hindu-Arabic numeral system as the use of exactly ten symbols {0,
1, 2, 3, 4, 5, 6, 7, 8, 9} to count indefinitely. Then after the first round of using
these symbols to count from 0 up to 9, we would be stuck unless we are allowed
to also these ten symbols in a place to its left, as follows. We “recycle” these ten
symbols ten times, and each time we systematically place one of the ten symbols
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} to its left so as to keep track of the continued counting.
Thus we begin with

00 01 02 03 04 05 06 07 08 09

Then we continue with the same row of numbers but with a 1 placed to the left
in place of 0:

10 11 12 13 14 15 16 17 18 19

We continue with the same row of numbers once more but with a 2 instead of 1
placed to the left:

25



20 21 22 23 24 25 26 27 28 29

We continue this way until we get to

90 91 92 93 94 95 96 97 98 99

At this point we can count no more unless we agree to allow the placement of the
same ten symbols in another place to the left. We do the same by “recycling”
the 100 numbers {00, 01, 02, . . . , 09, 10, 11, . . . . . . , 98, 99} and by pacing each
of the ten symbols {1, 2, 3, 4, 5, 6, 7, 8, 9} in succession in the place to its left
so as to keep track of the continued counting. Thus, after

000 001 002 · · · 009 010 · · · 097 098 099

we continue with the same row of 100 numbers but with a 1 replacing the 0 on
the left:

100 101 102 · · · 110 111 · · · 197 198 199

Then we replace the 1 on the left with a 2:

200 201 202 · · · 210 211 · · · 297 298 299

And so on. We remark that in normal usage, we omit the writing of 0’s on the
left, so that 001 is just 1, 091 is just 91, etc.

As a teacher, the advantage of learning how to count in this fashion is that
she now sees the appearance of each digit in each place to the left as a necessity,
so that there is no more doubt as to why the 3 in 237 represents 30 and not 3.
This is because in the above counting process, we don’t get to 37 until we have
recycled the 10 symbols {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} a 3rd time, and then count 7
more. With the counting process clearly understood, the teacher would have a
far better chance of clearly explaining what place valuer means. More than that,
she can also explain, for two whole number m and n, what it means for one to be
bigger than the other. Precisely, m is smaller than n, or in symbols, m < n,
if m comes before n in the counting process. It then becomes possible to explain
why a two digit number is smaller than a three-digit number: a two-digit number
is of course a three digit number with a 0 to the left, so in the way counting as
done above, those three digit numbers with a leading 0 comes before those with
a leading 1, and the latter come before those with a leading 2, etc. In the same
way, we see why a number with 12 digits is smaller than one with 14 digits, etc.
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Without knowing how to count, the fact that a 12 digits number is smaller than
a 14 digit number would of course be strictly a matter of faith.

A second overriding theme about whole numbers that should be part of the
basic knowledge of elementary teachers is the fact that all the standard algorithms
(+, −, ×, ÷) reduce whole number computations to single-digit computations.
This fact was already discussed in Example 2 of Part I. A recurrent theme of
mathematics is in fact to always try to break down complex concepts or skills
to simpler ones. The fact that such a simplification is possible in the Hindu-
Arabic numeral system is a fantastic achievement. This overriding theme should
be emphasized in teaching the standard algorithms because it gives a conceptual
framework for the learning of these algorithms.

A common failing in the teaching of the standard algorithms is the lack of
emphasis on the definitions of the arithmetic operations. (Again, see Example
2 of Part I.) For example, the teaching of the addition algorithm usually goes
straight to the column-by-column mechanism and the technique of carrying with-
out a word said about what it means to add two whole numbers. For sure, such
teaching necessarily demeans the algorithm to a trick, and nothing more. If we
begin by explicitly defining addition as continued counting, so that 1373 + 2615
is counting 2615 times beyond 1373, then students would more likely recognize
that such an addition problem is no easy task. When this is understood, then
the extremely simple procedure of obtaining the answer by doing four single-digit
additions, 3 + 5, 7 + 1, 3 + 6, and 1 + 2, becomes truly impressive. All teachers
should be able to convey this sense of wonderment to their students, and this
would not happen if teachers are not taught this knowledge.

Once the teachers are secure in this knowledge, then they would recognize
the extra bit of work to cope with the phenomenon of carrying in the addition
algorithm is just that, an extra bit of work. The same remark applies to the
subtraction algorithm and trading.

Because the long division algorithm is the most challenging of the four stan-
dard algorithms, a few comments may be in order. First of all, the name of the
“long division algorithm” is misleading: it is not about division per se but about
division-with-remainder; the latter is not a “division” in the usual mathematical
sense. In the context of school mathematics as of 2008, division-with-remainder
needs careful explanation for the reason that it is so carelessly taught in general
as to not even give a proper definition of the concept of the remainder. But as is
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well-known, division-with-remainder is an important topic because it underlies
the Euclidean algorithm (see below) and the division algorithm of polynomials.

But to return to the long division algorithm, it is an iteration of divisions-
with-remainder. Here is an example to clarify this comment.

Consider the division of 586 by 3. At the outset, it should be made clear that
what the long division algorithm is about: it is an algorithm to compute, digit
by digit, the quotient and the remainder of the division-with-remainder of 586
by 3 which, when expressed correctly, states:

586 = (195× 3) + 1

School mathematics has a long tradition of expressing this fact as 583 ÷ 3 =
195 R1. This is an outright abuse of the equal sign, which contributes to much
confusion in education research and should be studiously avoided (see Example
7 of Part I). Now, the usual way to express the long division algorithm is the
following:

1 9 5
3 ) 5 8 6

3
2 8
2 7

1 6
1 5

1

It is not difficult to see that the algorithm, in this special case, is completely
captured by the following three simpler divisions-with-remainder, which will be
referred to as the procedural description of the algorithm. Observe that the
quotient can be read off, digit-by-digit, vertically from the first entries on the
right sides and that the remainder is the last number in the last line:

5 = ( 1 × 3) + 2

28 = ( 9 × 3) + 1

16 = ( 5 × 3) + 1

The mechanism for going from one division-with-remainder in this array to the
next is the following: the first division-with-remainder takes the left digit of the
dividend (586) as its own dividend, and in general, the dividend of each succeed-
ing division-with-remainder is obtained by taking the remainder of the preceding
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one, multiply it by 10, and add to it the next digit in the original dividend (586
in this case). It is now a simple exercise to make use of the procedural descrip-
tion together with the expanded form of 586 as 586 = (5× 102) + (8× 10) + 6
to derive the desired conclusion that, in fact, 586 = (195 × 3) + 1. Insofar
as this explanation does not depend on the specific numbers 586 and 3, it gives
a general understanding of why the long division algorithm always yields the
correct division-with-remainder for any two whole numbers. Teachers should get
to understand this beautiful algorithm in such depth before good teaching can
take place in the school classroom.

The basic technique of division-with-remainder has multiple implications in
the school classroom. The first are the various divisibility rules, such as a
whole number n is divisible by 3 if and only if the whole number obtained by
adding the digits of n is divisible by 3. Emphasize that all such divisibility rules
are nothing more than a consequence of the behavior of a power of 10 when it is
divisible by a single digit number (such as 3). (Incidentally, the divisibility rule
for 7 is so complicated that it does not deserve to be taught in the professional
development of elementary teachers.) Because these divisibility rules are usually
taught as unexplained tricks in the elementary classroom, their explanations
are overdue. A more substantial application of division-with-remainder is the
Euclidean algorithm, which is an algorithm for finding the GCD (greatest
common divisor) of two whole numbers. (It is not necessary, but it is easier
if the concept of an integer is available at this juncture.) In the process of
developing this algorithm, the following basic fact will be uncovered: the GCD
k of two whole numbers a and b can be expressed as:

k = ma+ nb

for some integers m and n. From this, it follows that if a prime number p divides
a product of whole numbers ab, and p does not divide a, then p must divide b.
The Fundamental Theorem of Arithmetic is now a simple consequence. Students
in grades 5-7 may not fully grasp the significance of the uniqueness statement,
but elementary teachers must make an effort to come to an understanding of
this fact. The concept of uniqueness, while subtle (Euclid did not have it, for
example), is of fundamental importance in modern mathematics, but it is rarely
taught in K–12. If elementary teachers can begin to informally teach this idea,
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and middle and high school teachers can continue to keep this idea alive in class-
room discussions, all students would benefit from such instruction.

In recent years, the subject of estimation has been emphasized in K–6, and
rightly so, but what has found its way into textbooks on the subject tends to
misrepresent the reason for this emphasis. (See Example 3 of Part I.) Let us
begin with an enumeration of some of the troubling issues. The first one is
that it is difficult to get a correct description of the rounding of numbers to the
nearest 10, nearest 100, nearest 1000, etc. In standard textbooks, students are
usually taught to round a whole number n to the nearest 10 by the following
algorithm: if the ones digit of n is ≤ 4, change it to 0 and leave the other digits
unchanged, but if the ones digit is b ≥ 5, then change it to 0 but also increase
the tens digit by 1 and leave other digits unchanged. This is correct in most
cases, but collapses completely in the case of a number such as 12996. A correct
formulation of rounding a whole number n to the nearest 10 is the following:

Write n as N + n, where n is the single-digit number equal to the
ones digit of n (and hence N is the whole number obtained from n by
replacing its ones digit with 0). Then rounding n to the nearest ten
yields the number which is equal to N if n < 5, and equal to N + 10
if n ≥ 5.

One can give an analogous formulation for rounding to other powers of 10. A
more fundamental issue is that estimation is taught as a rote activity with no
thought given to convincing students that this is something worth learning. Stu-
dents are not told why sometimes they should estimate (e.g., uncertainties in
a measurement), under what circumstance an approximate answer is all that
makes sense (e.g., built-in imprecision in the concept, such as distance from
house to school or temperature of the day), or under what circumstance an es-
timation becomes an aid to achieving precision (e.g., the process of carrying out
the long division algorithm). An even more serious concern is that students are
not alerted to the need of always finding out about the error that comes with
each estimation. In grades up to five (approximately), it is understood that only
the concept of absolute error can be discussed, but starting with roughly grade
six, students should be taught to routinely estimate the percentage error.

Professional development would do well to take these potential pitfalls into
account and provide teachers with the kind of instruction that would enable them
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to avoid such pitfalls.

(B) Fractions Fractions are positive rational numbers for this discussion.
Compare [Wu 2008], especially with regard to the research literature. We will
address fractions in this section, and negative rational numbers in the next.

Before we begin the detailed discussion of teachers’ knowledge of fractions,
it should be stated up front that the kind of knowledge discussed below is es-
sentially one that can be used in the classroom of grades 5–7 without drastic
changes. Where then does this discussion leave the primary teachers? We be-
lieve that all elementary teachers, including primary teachers, should acquire
such knowledge about fractions. The most obvious reason is that no elementary
teacher can guarantee that they will teach only the primary grades the rest of
their lives. The real reason is, however, the fact that what a teacher teaches in
the primary grades may be simple, but it should still be a simplified version of
correct mathematics. For example, a teacher familiar with a logical development
of fractions would recognize the futility of relying exclusively on cutting pizzas
in order to teach fractions. Such a teacher would be more likely to introduce the
number line as early as possible. If a teacher knows how fractions can be devel-
oped in a way that is consonant with the basic characteristics of mathematics,
then she would be immeasurably better equipped to provide primary students
with the mathematical foundation they need in the later grades.

Traditionally, students’ failure to learn fractions is explained by the discon-
nection in their understanding of the conceptual complexity of fractions (e.g.,
[Behr-Lesh-Post-Silver] 1983, [Bezuk-Bieck] 1993). Our teachers are therefore
exhorted to develop a strong number sense about fractions and to develop an
ability to think about fractions “in other ways” beyond part-whole. A recurrent
theme in the education literature is that, to achieve flexibility in working with
rational numbers, one must acquire a solid understanding of the different repre-
sentations for fractions, decimals, and percents. Another theme, equally prized,
is that a deep understanding of rational numbers should be developed through
experiences with a variety of models, such as fraction strips, number lines, 10×10
grids, and area models.

There are two things fundamentally wrong with such a view of fractions. The
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first is that, if students are not told what a fraction is, any talk about their
“different representations” of a fraction would be akin to talking about the spots
on the skin of a unicorn. It is appealing, but it is educationally unsound. (See
Example 6 of Part I.) The second thing wrong is that, up to this point, there has
been hardly any mathematically correct presentation of the subject of fractions in
the school classroom or pre-service professional development. Against this back-
ground, to talk about developing a “deep understanding” of fractions through
hands-on experiences is therefore to concede that an incoherent presentation of
fractions is a law of nature, so that we must settle for ultra-mathematical meth-
ods for the learning of fractions. Although such a view happens to be consistent
with one commonly held in mathematics education research (cf. papers from the
Rational Number Project, e.g., [Behr-Harel-Post-Lesh] 1992; also [Kieren] 1976
and [Vergnaud] 1983), it is not a mathematically acceptable view of a topic in
mathematics.

Teachers’ understanding of fractions as a mathematical concept will not im-
prove until we can provide them with a mathematical framework in which all
these “representations” emerge as logical consequences of a clearly enunciated
conception (definition) of a fraction. (Compare the discussion of coherence in
Examples 2, 4, and 6 of Part I.) We want teachers to see that the subject of
fractions is one that is infused with the aforementioned five characteristic prop-
erties of mathematics. Because the tradition of teaching by rote in fractions is so
entrenched, unless we can make our teachers buy into the idea that the subject
of fractions is logical rather than whimsical, there would be little hope that their
students would perceive fractions as a learnable subject.

We need to approach fractions from a viewpoint that is consonant with re-
quirements (i) and (ii) above. In other words, we need an approach that is
rooted in mathematical engineering. Such an approach has been available for
some time now ([Wu 2002]; for a similar but slightly different one, see [Jensen
2003]). Regardless of how soon school textbooks will teach fractions as part of
mathematics (rather than as part experimental science and part royal decree),
there is an urgent need for our teachers to learn a mathematically valid presen-
tation of fractions.

Such a presentation begins with a definition of fractions as points on the
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number line constructed in a specific manner and, on this basis, provides all
the properties we expect of fractions with mathematical explanations. This is
not the place to give a detailed treatment or even a complete summary of such
a presentation. We can, however, try to give a flavor of what this presentation
tries to accomplish. For example, let us see what is a reasonable definition of
the fractions with denominator equal to 3. We first fix some terminology. If a
and b are two points on the number line, with a to the left of b, we denote the
segment from a to b by [a, b]. The points a and b are called the endpoints of
[a, b]. The special case of the segment [0, 1] occupies a distinguished position in
the study of fractions; it is called the unit segment and its length is, intuitively,
our “whole”. The point 1 is called the unit. Since the fraction 1

3 is one-third of
the whole, we see from the picture of the number line below that the length of
any of the three smaller segments of equal length between 0 and 1 qualifies as 1

3 .
However, the right endpoint of the thickened segment is sufficient, in an intuitive
sense, to indicate the length of this thickened segment, so this right end-point
will be chosen as the representative of 1

3 .

0 1 2 3

1
3

If we divide, not just [0, 1], but every segment between two consecutive whole
numbers — [0, 1], [1, 2], [2, 3], [3, 4], etc. — into three equal parts, then these
division points together with the whole numbers form an infinite sequence of
equi-spaced points, to be called the sequence of thirds. The point in this

sequence to the right of 1
3 will be called 2

3 , the third 3
3 , etc.

0 1 2 3 4

0
3

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3

10
3

11
3

12
3

Observes that each point in this sequence gives the length of the segment from
0 to the point itself. For example, 10

3 is the length of the segment [0, 10
3 ], as the

latter is 10 times the length of [0, 1
3 ] (just count!).

0 1 2 3

10
3
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We have now used intuitive reasoning to locate the fractions with denominator
equal to 3 on the number line.

In a formal mathematical introduction to fractions, we would therefore first
create the sequence of thirds in exactly the same way, and then define the frac-
tions with denominator equal to 3 to be exactly these points. In other words, as
far as mathematics is concerned, the fraction 10

3 (for example) is just the tenth
point in this sequence to the right of 0, no more and no less. If we want to say
anything about this fraction, we must start with the fact that it is the tenth point
in the sequence of thirds.

In like manner, the fractions with denominator equal to n are by definition
the points in the following sequence: we divide each of [0, 1], [1, 2], [2, 3], . . . , into
n equal parts, then these division points together with the whole numbers form
the sought-for infinite sequence of equi-spaced points. This sequence is called
the sequence of nths. The fraction m

n is then the m-th point to the right of 0
in this infinite sequence.

Here we can point to an immediate advantage of having such a precise defini-
tion of a fraction. Given two fractions A and B, we define A < B, and say A is
less than (or smaller than) B if A is to the left of B on the number line. Why
this is significant is that, in the traditional presentation of fractions, there is no
definition of what it means for one fraction to be smaller than another. Rather,
students are told to do something first (e.g., get a common denominator for both
fractions) and then decide after the fact that one is smaller than the other.

In the following, the whole number n in a fraction symbol mn will be automat-
ically assumed to be nonzero.

A special class of fractions are those whose denominators are all positive
powers of 10, e.g.,

1489

102
,

24

105
,

58900

104
.

These are called decimal fractions, but they are usually abbreviated to

14.89, 0.00024, 5.8900

respectively. The rationale of the notation is clear: the number of digits to
the right of the so-called decimal point keeps track of the power of 10 in
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the respective denominators, 2 in 14.89, 5 in 0.00024, and 4 in 5.8900. In this
notation, these numbers are called finite or terminating decimals. In context,
we usually omit any mention of “finite” or “terminating” and just say “decimals”
if there is no danger of confusion. One would like to think that 5.8900 is the
same as 5.89, as every school student is taught about this at the outset, but we

have already agree by definition that 5.8900 is 58900
104 whereas 5.89 is (again by

definition) 89
102 . How do we know that they are equal?

58900

104
=

589

102

We must give a proof! It turns out to be more enlightening to first prove a
general fact which is fundamental to the whole subject of fractions. This is the
theorem known in school mathematics as “equivalent fractions”. First, we define
two fractions to be equal if they are the same point on the number line.

The Theorem on Equivalent fractions is the statement that given two

fractions m
n and k

` , if there is a whole number j so that k = jm and ` = jn, then
m
n = k

` .

It is common to state this theorem in the following form: for all whole numbers
j, m, and n (so that n 6= 0 and j 6= 0),

m

n
=
jm

jn

This fact can be simply proved with the definition of a fraction available. We
give the reasoning for the special case

4

3
=

5× 4

5× 3

but this reasoning will be seen to hold in general. First locate 4
3 on the number

line:

0 1

6 6 6 6 666 6

4
3
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We divide each of the segments between consecutive points in the sequence of
thirds into 5 equal parts. Then each of the segments [0, 1], [1, 2], [2, 3], . . . is
now divided into 15 equal parts and, in an obvious way, we have obtained the
sequence of fifteenths on the number line:

0 1

6 6 6 6 6 666

4
3

The point 4
3 , being the 4-th point in the sequence of thirds, is now the 20-th

point in the sequence of fifteenths. The latter is by definition the fraction 20
15 ,

i.e., 5×4
5×3 . Thus 4

3 = 5×4
5×3 .

Observe that without a precise definition of a fraction, it would be difficult to
make sense of the statement of equivalent fractions for arbitrary j, m and n.

The first application of the theorem on equivalent fractions is to bring closure
to the discussion about the decimal 5.8900. Recall that we had, by definition,

58900

104
= 5.8900

We now show that 5.8900 = 5.89 and, more generally, one can add or delete
zeros to the right end of the decimal point without changing the decimal. Indeed,

5.8900 =
58900

104
=

589× 102

102 × 102
=

589

102
= 5.89,

where the middle equality makes use of equivalent fractions. The reasoning is of
course valid in general, e.g.,

12.7 =
127

10
=

127× 104

10× 104
=

1270000

105
= 12.70000

It is commonly stated that a conceptual understanding of fractions should
include the fact that a fraction is both parts-of-a-whole and a division. We hasten
to point out that this statement is meaningless as a statement in mathematics.
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Indeed, one is supposed to understand, for example, that the fraction 5
7 is not

only 5 parts when the whole is divided into 7 equal parts, but also “5 divided
by 7”. The first questionable aspect of this statement is that if 5

7 does mean “5
divided by 7”, then one must be able to give a reason. In other words, there is a
theorem to prove, although none is ever offered. A second questionable aspect is
that, among whole numbers, there is no division such as “5÷ 7”, only divisions
of the form 12÷ 4, 25÷ 5, 48÷ 6, or in general, a÷ b when a is a multiple of
b. Therefore just to make sense of m

n as “m ÷ n”, we must first precisely define
for any two whole numbers m, n (n 6= 0), that

m÷ n is the length of one part when a segment
of length m is partitioned5 into n equal parts.

Now we are at least in a position to make an assertion that is mathematically
meaningful, namely, we assert the equality of two numbers, m

n and m÷ n:6

m

n
= m÷ n

This is the correct meaning of the so-called division interpretation of a
fraction. And, of course, we still need to give a proof! The advantage of having
done all this work to clarify this statement is that we see more clearly how to
prove it. To divide [0,m] into n equal parts, we express m = m

1 as

nm

n

using equivalent fractons. That is, nm copies of 1
n , which is equivalent to n copies

of m
n . So one part out of these n equal parts is just m

n .

We note once again that such a precise explanation could be given only be-
cause we have a precise definition of a fraction.

No professional development for elementary teachers can afford to avoid a
discussion of whether a teacher can insist on always reducing a fraction to
lowest terms. Implicit in this stance is the statement that

5To avoid the possibly confusing appearance of the word “divide” at this juncture, we have intentionally used
“partition” instead.

6Notice how careful we are in using the equal sign! Compare Example 7 in Part I.
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every fraction is equal to a unique fraction (one and only one fraction)
in lowest terms.

First of all, we must recognize the fact that it is quite nontrivial to prove this
statement. This is where the Euclidean algorithm comes in. While a proof should
be given, it cannot be given in grade 5 or even in grade 6 in most schools because
of the mathematical sophistication involved. In addition, teachers should also
know that, a fraction such as 12

9 is every bit as good as 4
3 , so that the insistence

that 4
3 be use rather than 12

9 must be recognized as a preference but not a math-
ematical necessity. Finally, it is sometimes not immediately obvious whether a
fraction is in lowest terms or not, e.g., 68

51 . (It is not.) For all these reasons, a
more flexible attitude towards unreduced fractions would consequently make for
a better mathematics education for students.

One would go on to define the addition and subtraction of fractions, the mul-
tiplication of fractions, and the division of fractions. Here, we want teachers to
appreciate the coherence of mathematics by exhibiting the fundamental similarity
between the arithmetic operations on fractions and those on whole numbers. See
[Wu 2001]. Teachers need to appreciate the fact that fractions are not “another
kind of numbers”. To define the addition of two fractions, we first consider how
we add whole numbers when whole numbers are considered as points on the
number line. Take for example, the addition of 4 to 7. In terms of the number
line, this is just the total length of the two segments joined together end-to-end,
one of length 4 and the other of length 7, which is of course 11, as shown.

4 7

0 4 11

We call this process the concatenation of the two segments. Imitating this

process, we define, given fractions k
` and m

n , their sum
k
`

+ m
n

by

k

`
+
m

n
= the length of two concatenated segments, one

of length k
` , followed by one of length m

n

k
`

m
n

k
` + m

n
� -
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Then one proves the addition formula for any two fractions k
` and m

n :

k

`
+
m

n
=

kn+ `m

`n

For the subtraction
k
`
− m

n
to make sense, we first have to make sure

that k
` >

m
n . Once done, the subtraction is then defined to be the length of the

remaining segment when a segment of length m
n is taken away from one end of a

segment of length k
` .

0
k
`
− m

n
k
`

m
n

︸ ︷︷ ︸
Next, given two fractions A and B, we will define A×B and A

B . We first define
k
`

of a number x to be the number which is the length of the concatenation of
k parts when the segment [0, x] of length x is partitioned into ` parts of equal

length. Then, by definition, the product
k
`
× m

n
is k

` of mn . On the basis of this

definition, one proves the well-known product formula for any two fractions k
`

and m
n :

k

`
× m

n
=
km

`n

Observe that when ` = 1, k
` = k, so that (if m is a whole number) “k of m”

is according to the above definition exactly the length of k copies of [0,m], i.e.,
k × m is km, which is the definition of multiplication among whole numbers.
It should mentioned that the product formula leads to the second, and equally
important meaning of fraction multiplication:

The area of a rectangle with sides of lengths k
` and m

n is equal to

k

`
× m

n

One proves this by first proving it for unit fractions, i.e., the special case where
k = m = 1, and then using this special case to prove the general case.
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Finally, given fractions A and B (B 6= 0), the division or quotient A
B

is
by definition the fraction C so that A = CB. If this doesn’t sound familiar,
consider the division of whole numbers such as 36

9 . We tell children that 36
9 = 4

because 36 = 4× 9. Now if replace 36 by A, 9 by B, and 4 by C, then we would
get exactly the definition of A

B . (We should add that, in the preceding definition
of A

B , the existence of a unique fraction C that satisfies A = CB must be proved.)
The classical rule of invert-and-multiply now becomes a theorem.

Once the concept of division is available, we can introduce the important
concept of a complex fraction, i.e., the division A

B , where A and B are fractions
(B 6= 0). Now a complex fraction is just a fraction, so why single it out for
discussion? To see this, consider the sum of the two complex fractions such as

2.8
4
5

+
12
7

2.5

We know how to do the addition: express each complex fraction as a fraction by
the invert-and-multiply rule,

2.8
4
5

=
28
10
4
5

=
28× 5

10× 4
=

140

40

and similarly,
12
7

2.5
=

120

175
.

Then the above addition becomes a routine problem:

2.8
4
5

+
12
7

2.5
=

140

40
+

120

175
=

7

2
+

24

35
=

293

70

However, suppose we make believe that the complex fractions are just ordinary
fractions and we add them as we would ordinary fractions. Then the addition
formula for fractions yields the same answer:

2.8
4
5

+
12
7

2.5
=

(2.8× 2.5) + (4
5 ×

12
7 )

4
5 × 2.5

=
7 + 48

35

2
=

7

2
+

24

35
=

293

70

Two thoughts immediately come to mind. One is that although the second
strategy is blatantly illegal at this point (the addition formula has been proved
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only for ordinary fractions), it nevertheless gives the correct answer. Is it just
luck? We will show that it is not. A second thought is that, since the first
strategy always works, why bother with the second one? The superficial reason
is that because the second strategy uses the same mechanical procedure for both
ordinary fractions and complex fractions, it has the advantage of saving some
wear-and-tear of the brain. But the real reason is that when we come to the
manipulation of rational expressions in algebra, we will be forced to use the
second strategy and will no longer have a choice.

This leads us to the arithmetic of complex fractions: can we add, subtract,
multiply, and divide them as if they were ordinary fractions (see above)? The
answer is yes. Textbooks and the education literature take this fact for granted
and make use of it without a word of explanation. They do not consider it neces-
sary to point out that such an extension of the arithmetic of fractions to complex
fractions has taken place and, even more importantly, that it is correct. What
we wish to affirm is that, indeed, every single one of the computational formulas
involving fractions can be proved to be valid for complex fractions (though the
proofs are mechanical and not interesting). Our main point is, however, that it
is bad policy for school mathematics to be so cavalier about this generalization
— from fractions to complex fractions — and we must at least get our teachers
to understand why this is a bad policy.

Students should learn not to overstep the bounds of what they know. If they
want to claim more than they know, they should be immediately aware of the
need to prove it. In this instance, it is a matter of luck that the extrapolation from
fractions to complex fractions turns out not to cause any problems. One cannot,
however, expect this kind of luck to persist. For example, among fractions, it
is true that for any fraction A, the fact that B ≥ C implies that AB ≥ AC.
Students who have formed the habit of claiming more than they know would
assume, when they come to rational numbers (i.e., positive and negative fractions,
see item (C), Rational numbers, below), that for any rational numbers A, B,
C, B ≥ C also implies AB ≥ AC. This would be a mistake, because while
3 ≥ 2, it is false that (−4)3 ≥ (−4)2 because (−4)3 = −12, which is less than
(−4)2 = −8. If we do not want students to fall into this bad habit, then we are
obligated to make sure that our teachers do not form such bad habits in the first
place.

Complex fractions are critical to the study of fractions and should be singled
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out and systematically taught to teachers. To demonstrate their importance, let
us introduce the concepts of percent, ratio, and rate in general.

A percent is a complex fraction whose denominator is 100. By tradition, a
percent N

100 , where N is a fraction, is often written as N%. By regarding N
100 as

an ordinary fraction, we see that the usual statement N% of a number m
n

is

(by the definition of fraction multiplication) exactly N%× m
n . With this precise

definition of percent available, all questions about percent can be routinely com-
puted. See Example 6 in Part I.

Next, given two fractions A and B (B 6= 0), both referring to the same unit
(i.e., they are points on the same number line), the ratio of A to B, sometimes
denoted by A : B, is by definition the complex fraction A

B
. In connection with

ratio, there is a common expression that needs to be made explicit. To say that
the ratio of boys to girls in a classroom is 3 to 2 is to say, by convention,
that if B (resp., G) is the number of boys (resp., girls) in the classroom, then
the ratio of B to G is 3

2 .

When A and B are whole numbers, we want to show that this definition of
the ratio 5 : 7 has the same intuitive meaning as “5 parts to 7 parts”. Indeed,
5 : 7 is by definition the fraction 5

7 which, by the definition of a fraction, is the
5th division point when the unit segment [0, 1] is divided into 7 equal parts:

0 1
7

2
7

3
7

4
7

5
7

6
7 1

? ?

We therefore see that 5 : 7 (i.e., 5
7) is 5 parts (a part being 1

7) compared with 7
parts.

The significance of this definition of the ratio of a fraction A to a fraction B

is that, by first establishing the meaning of a fraction as a point on the number
line, we show that when A and B are both whole numbers, the meaning of A : B
is exactly the fraction A

B . As is well-known, one of the traditional definitions of
a fraction A

B (A, B are whole numbers, B 6= 0) is that it is the ratio of A to
B. What we have done is therefore to clarify the relationship between these two
concepts by turning the table: we define fractions first and then define ratio in
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terms of a fraction.

In school mathematics, the most substantial application of the concept of di-
vision is to problems related to rate, or more precisely, constant rate. The precise
definition of the general concept of “rate” requires more advanced mathematics,
and in any case, it is irrelevant in school mathematics whether we know what
a rate is or not. What is important is to know the precise meaning of “con-
stant rate” in specific situations, and some of the most common ones will now
be described.

The most intuitive among the various kinds of rate is speed. A motion is of
constant speed v (v being a fixed number) if the distance traveled, d, from
time 0 to any time t is d = vt. Equivalently, in terms of the concept of division,
a motion is of constant speed if there is a fixed number v, so that for any positive
number t, the distance d (feet, miles, etc.) traveled in any time interval of length
t (seconds, minutes, etc.) satisfies

d

t
= v

Notice that d
t is a complex fraction, from which, one can infer that most of the

computations in speed problems involve the arithmetic of complex fractions.
What is noteworthy about the preceding equation is the fact that we are

dividing two numbers, d and t, ostensibly from different number lines. In greater
detail, d is a number on the number line where 1 is the chosen unit of length
(foot, mile, etc.) while t is on the number line whose unit 1 is the chosen unit of
time (second, minute, etc.). What we have done, at least implicitly, is to identify
the two units of length and time, so that d and t are now points on the same
number line. If this sounds strange, it could only be because it is rarely explicitly
pointed out, although it is done all the time. For example, suppose a rectangle

has area 48 ft2 and one side is 8 ft. The length of the other side is then 48
8 = 6 ft.

Here the division makes sense only because we have identified the unit ft2 with
the unit of length, one foot. In any case, it is the need of identifying two number
lines that distinguishes rate from ratio.

In the language of school mathematics, speed is the “rate” at which the work
of going from one place to another is done. Other standard “rate” problems
which deserve to be mentioned are the following. One of them is painting (the
exterior of) a house. The rate there would be the number of square feet painted
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per day or per hour. A second one is mowing a lawn. The rate in question
would be the number of square feet mowed per hour or per minute. A third
is the work done by water flowing out of a faucet, and the rate is the number
of gallons of water coming out per minute or per second. In each case, the
concept of constant rate can be defined in a manner that is identical to the
case of constant speed. For example, a constant rate of lawn-mowing would
mean: there is a constant r (with unit equal to square-feet-per-hour) so that if
A is the total area mowed after T hours, then A = rT no matter what T is.
Equivalently, the lawn-mowing is of constant rate if there is a fixed number r so
that the number of square feet A mowed in T hours satisfies

A

T
= r

no matter what T is.
Without knowing the precise meanings of division and multiplication among

fractions, it would be impossible to detect the fact that all these constant rate
problems are identical problems. For example, assuming constant rate in each
situation, the problem of “if I walk 287 meters in 9 minutes, how many meters
do I walk in 7 minutes?” is identical to “if I mow 287 square meters of lawn
in 9 minutes, how many square meters do I mow in 7 minutes?”. This is one
argument for emphasizing the importance of definitions.

Finally, we take up the topic of converting a fraction to a finite or infinite
decimal. We take this up last because of its deceptive subtlety. Consider first
the case of those fractions which are equal to a finite decimal. (Teachers should
learn how to prove the theorem that a reduced fraction is equal to a finite decimal
if and only if its denominator only has 2 or 5 as its prime factors. This proof
needs the Fundamental Theorem of Arithmetic.) Let us prove, for example, that

3

8
= 0.375

By itself, this equality is unremarkable. Indeed, the definition of 0.375 is 375
1000 , so

that, by equivalent fractions, we get

0.375 =
375

1000
=

3× 125

8× 125
=

3

8
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However, the algorithm that converts a fraction to decimals asserts that one
obtains the decimal 0.375 from the fraction 3

8 by doing the long division of 3×105

(or 3×10n for any large n) by 8 and then placing the decimal point in the quotient
in some prescribed way. Thus what is at issue here is not so much that the two
numbers 3

8 and 0.375 are equal,7 but that the method of long division of 300000
by 8 would yield the correct answer. This can be done simply as follows:

3

8
=

1

105
× 3× 105

8

By the long division algorithm, 3×105

8 = 37500. Therefore, using the definition of
a decimal, we have:

3

8
=

1

105
× 37500 =

37500

105
= 0.37500 = 0.375

Clearly, we would obtain the same answer if 105 is replaced by 103, or any power
of 10 greater than 3. In general, we just try to multiply the numerator and
denominator of the fraction under consideration by a large power of 10, where
“large” means “large enough to see the decimal terminate in 0’s”. The same
reasoning is applicable to all other cases.

In general, a fraction is equal to an infinite repeating decimal. For example,

3

7
= 0.428571428571428571428571428571 . . .

The task of proving this is not so simple. It involves (i) making sense of an infinite
decimal as a point on the number line, (ii) showing that through the process of
long division the fraction 3

7 is equal to the above infinite decimal, and (iii)
proving that the infinite decimal is necessarily repeating. In school textbooks,
basically none of these three steps is proved (though there may be some half-
hearted attempt at explaining (iii)), which is understandable considering the
advance nature of the mathematics involved. Professional development materials
usually concentrate on explaining (iii) but completely ignore (ii) and (i). It
would be a good idea to tread lightly on (i), at least for elementary teacher,
but (ii) should be taken up seriously in professional development. One shows

7But note the importance in this context of having precise definitions of both 3
8 , a fraction, and 0.375, a

decimal, as numbers. Anything less (such as only knowing a fraction as a piece of pizza) and this equality
wouldn’t even make sense.
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directly using the mechanism of the long division algorithm (see part (A) on
Whole numbers) that

3

7
=

4

10
+

2

102
+

8

103
+

5

104
+

7

105
+

1

106
+

1

106

(
4

10
+

2

102
+

8

103
+

5

104
+

7

105
+

1

106

)
+ · · ·

This then is the meaning of 3
7 = 0.428571428571 . . . on one level. On a deeper

level, we need to prove the convergence of the infinite series.

(C) Rational numbers Like the teaching of fractions, the teaching of ra-
tional numbers (positive and negative fractions) is usually nothing more than
the presentation of a collection of rules to be memorized, with an occasional
pseudo-explanation thrown in (such as the many analogies purporting to show
why negative × negative = positive). Rational numbers present a higher level of
abstraction than fractions, and can be understood only if the abstract laws of op-
erations, especially the distributive law for both positive and negative fractions,
are taken seriously. Few of our teachers get this message in their college courses.
This is a subject littered with plausible statements promoted unceremoniously

as truths without explanations, e.g., the statement that −xy = x
−y = −

x
y for all

rational numbers (not just whole numbers) x and y. Nowhere is it more impor-
tant that we carefully attend to the clarity of the definition of each concept and
the proof of every assertion.

With a number understood to be a point on the number line, we now look
at all the numbers as a whole. Take any point p on the number line which is
not equal to 0; such a p could be on either side of 0 and, in particular, it does
not have to be a fraction. Denote its mirror reflection on the opposite side of 0
by p∗, i.e., p and p∗ are equidistant from 0 and are on opposite sides of 0. We
simply call p∗ the mirror reflection of p. If p = 0, we define

0∗ = 0

Then for any points p, it is clear that

p∗∗ = p
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This is nothing but a succinct way of expressing the fact that reflecting a nonzero
point across 0 twice in succession brings it back to itself (if p = 0, of course
0∗∗ = 0). Here are two examples of mirror reflections:

0 pp∗ q∗q

Because the fractions are to the right of 0, the numbers such as 1∗, 2∗, or
(9

5)∗ are to the left of 0. The set of all the fractions and their mirror reflections
with respect to 0, i.e., the numbers m

n and (kl )
∗ for all whole numbers k, l,

m, n (l 6= 0, n 6= 0), is called the rational numbers. Recall that the whole
numbers are a sub-set of the fractions. The set of whole numbers and their
mirror reflections,

. . . 3∗, 2∗, 1∗, 0, 1, 2, 3, . . .

is called the integers. We therefore have:

whole numbers ⊂ integers ⊂ rational numbers

We now extend the order among numbers from fractions to all numbers: for
any x, y on the number line, x < y means that x is to the left of y. An
equivalent notation is y > x.

x y

Numbers which are to the right of 0 (thus those x satisfying x > 0) are called
positive, and those which are to the left of 0 (thus those that satisfy x < 0)
are negative. So 2∗ and (1

3)∗ are negative, while all nonzero fractions are
positive, but if y is a negative number to begin with, y∗ would be positive. The
number 0 is, by definition, neither positive nor negative. As is well-known, a
number such as 2∗ is normally written as −2 and (1

3)∗ as − 1
3 , and that

the “−” sign in front of −2 is called the negative sign. However, it is better
to avoid mentioning the negative sign until we get to subtraction, because we
should develop one concept at a time.
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For teachers’ need in the classroom, it would be a good idea to begin the
discussion of the arithmetic of rational numbers with a concrete approach to the
addition of rational numbers. To this end, define a vector to be a segment on the
number line together with a designation of one of its two endpoints as a starting
point and the other as an endpoint. We will continue to refer to the length of
the segment as the length of the vector, and call the vector left-pointing if the
endpoint is to the left of the starting point, right-pointing if the endpoint is to
the right of the starting point. The direction of a vector refers to whether it is
left-pointing or right-pointing. We denote vectors by placing an arrow above the
letter, e.g., ~A, ~x, etc., and in pictures we put an arrowhead at the endpoint of a
vector to indicate its direction. For example, the vector ~K below is left-pointing
and has length 1, with a starting point at 1∗ and an endpoint at 2∗, while the
vector ~L is right-pointing and has length 2, with a starting point at 0 and an
endpoint at 2.

3∗ 1 32∗ 1∗ 0 2
� -

~K ~L

By definition, two vectors being equal means exactly that they have the same
starting point, the same length, and the same direction.

For the purpose of discussing the addition of rational numbers, we can further
simplify matters by restricting attention to a special class of vectors. Let x be
a rational number, then we define the vector ~x to be one with starting point
at 0 and endpoint at x. It follows from the definition that, if x is a nonzero
fraction, then the segment of the vector ~x is exactly [0, x]. Here are two examples
of vectors arising from rational numbers:

4∗ 3∗ 12∗ 1∗ 0 2
-�
1.5

→
1.5

→
3∗

With this notation understood, we now describe how to add such vectors.
Given ~x and ~y, where x and y are two rational numbers, the sum vector ~x + ~y
is, by definition, the vector whose starting point is 0, and whose endpoint is
obtained as follows:

48



slide ~y along the number line until its starting point (which is 0 ) is
at x, then the endpoint of ~y in this new position is by definition the
endpoint of ~x+ ~y.

For example, if x and y are rational numbers, as shown:

0
� -

~x~y

Then, by definition, x+ y is the point as indicated,

x+ y

0
� -

~x

We are now in a position to define the addition of rational numbers. The sum
x + y for any two rational numbers x and y is by definition the endpoint of the
vector ~x+ ~y. In other words,

x+ y = the endpoint of ~x+ ~y.

Put another way, x+ y is defined to be the point on the number line so that its

corresponding vector
−→

(x+y) satisfies:

−→
(x+y)= ~x + ~y.

We proceed to prove that the addition of rational numbers is commutative,
i.e., x + y = y + x for all rational numbers. Of course this is equivalent to
checking ~x + ~y = ~y + ~x. Remembering that two vectors are equal if and
only if they have the same length and the same direction, we simply check that
~x + ~y and ~y + ~x do have the same length and same direction. The checking is
straightforward.

One can also prove that the addition of rational numbers is associative, i.e.,
(x+ y) + z = x+ (y+ z) for all rational numbers x, y, z. However the reasoning
this time is much more tedious and not so instructive.
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With this definition of the addition of rational numbers, one can prove in a
hands-on manner the following basic facts for all positive fractions s and t:



s+ t = the old addition of fractions.

s∗ + t∗ = (s+ t)∗ (e.g., 2∗ + 5∗ = (2 + 5)∗)

s+ t∗ = (s− t) if s ≥ t (e.g., 6 + (1
2)∗ = (6− 1

2))

s+ t∗ = (t− s)∗ if s < t (e.g., 21
2 + 7∗ = (7− 21

2)∗)

Because s∗+ t = t+s∗, by the commutative law of addition, the above four cases
exhaust all the possibilities of the addition of any two rational numbers. We
have just explicitly determined how to add any two rational numbers in terms
of the addition and subtraction of fractions.

We now must confront the fact that rational numbers are on a higher level of
abstraction than fractions. A fact not mentioned in the brief discussion of frac-
tions is that the addition and multiplication of fractions satisfy the associative,
commutative, and distributive laws, but now things are going to change. We
have just brought out the commutativity and associativity of addition among
rational numbers. At this point, these laws must come to the forefront, because
while the addition of rational numbers can be directly defined using the concept
of vectors, there will be no such analog for multiplication. For the latter, we
have to approach it from a different vantage point. Therefore, to prepare for
multiplication, we forget the preceding definition of addition in terms of vectors
and start from the beginning.

We now take the attitude that although we do not know what the nega-
tive numbers are, the collection of rational numbers simply “must” satisfy the
associative, commutative, and distributive laws with respect to addition and
multiplication. Historically, this was what happened, and of course our intel-
lectual inertia welcomes the status quo! Such being the case, one reasonable
way to develop the addition of rational numbers is to make three fundamental
assumptions about the addition of rational numbers at the outset. The first
two fundamental assumptions are entirely noncontroversial:

(A1) Given any two rational numbers x and y, there is a way to add
these to get another rational number x+y so that, if x and y are frac-
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tions, x+y is the same as the usual sum of fractions. Furthermore, this
addition of rational numbers satisfies the associative and commutative
laws.

(A2) x+ 0 = x for any rational number x.

The last assumption explicitly prescribes the role for all negative fractions:

(A3) If x is any rational number, x+ x∗ = 0.

On the basis of (A1)–(A3), one can proceed to compute the sum of two rational
numbers in terms of the addition and subtraction of fractions as before. Let s
and t be any two positive fractions. By (A1),

s+ t = the old addition of fractions.

Then one can prove, with some effort, that (A1)–(A3) imply that
s∗ + t∗ = (s+ t)∗

s+ t∗ = (s− t) if s ≥ t

s+ t∗ = (t− s)∗ if s < t

We now pause to amplify on the second equality above by rewriting it as

s− t = s+ t∗ when s ≥ t.

The ordinary fraction subtraction s − t now becomes the addition of s and t∗.
This fact prompts us to define, in general, the subtraction between any two
rational numbers x and y to mean:

x− y
def
= x + y∗

Note the obvious fact that the meaning of the subtraction of (say) the two rational
numbers 6

5 −
3
4 is, according to this definition,

6

5
+

(
3

4

)∗

which, on account of “s + t∗ = (s − t) if s ≥ t”, is just the fraction subtraction
6
5 −

3
4 . More generally, when x, y are fractions and x ≥ y, the meaning of x− y

as a subtraction of rational numbers coincides, according to this definition, with
the old meaning of subtracting fractions. In other words, we have not created

51



a new concept of subtraction, merely made it more comprehensive. To repeat,
6
5 −

3
4 has exactly the same meaning whether we look at it as a subtraction

between fractions or between rational numbers; this is reassuring. On the other
hand, we are now free to do a subtraction between any two fractions such as
3
4 −

6
5 , whereas before (i.e., in item (B), Fractions) we could not carry out the

subtraction because the first fraction is smaller than the second. We now see
for the first time the advantage of having rational numbers available: we can as
freely subtract any two fractions as we add them. But this goes further, because
we can even subtract any two rational numbers.

The main message to come out of this definition is, however, the fact that
subtraction is just a different way of writing addition among rational numbers.

As a consequence of the definition of x− y, we have

0− y = y∗

because 0 + y∗ = y∗. Common sense dictates that we should abbreviate 0− y

to −y. So we have
−y = y∗

It is only at this point that we can abandon the notation of y∗ and replace
it by −y. Many of the preceding equalities will now assume a more familiar
appearance, e.g., from x∗∗ = x for any rational number x, we get

−(−x) = x,

and from x∗ + y∗ = (x+ y)∗, we get

−(x+ y) = −x− y

We now come to the multiplication of rational numbers, and we see the payoff
from the more abstract approach to fraction addition. For multiplication, we
make the following similar fundamental assumptions that

(M1) Given any two rational numbers x and y, there is a way to mul-
tiply them to get another rational number xy so that, if x and y are
fractions, xy is the usual product of fractions. Furthermore, this mul-
tiplication of rational numbers satisfies the associative, commutative,
and distributive laws.
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(M2) If x is any rational number, then 1 · x = x.

We note that (M2) must be an assumption because we would not know what 1×
5∗ means without (M2). The equally “obvious” fact, which is the multiplicative
counterpart of (A2), to the effect that

(M3) 0 · x = 0 for any x ∈ Q.

turns out to be provable once (M1) and (M2) are assumed to be true.

We want to know explicitly how to multiply rational numbers. Thus let x, y
be rational numbers. What is xy? If x = 0 or y = 0, we have just seen from
(M3) that xy = 0. We may therefore assume both x and y to be nonzero, so that
each is either a fraction, or the negative of a fraction. Letting s, t be positive
fractions, one can prove on the basis of (M1)–(M3):

(−s)t = −(st) (e.g., (−3)(1
2) = − 3

2)

s(−t) = −(st) (e.g., 3 (−1
2) = − 3

2)

(−s)(−t) = st (e.g., (−1
2)(−1

5) = 1
10)

Since we already know how to multiply the fractions s and t, we have completely
described the product of rational numbers.

The last item, that if s and t are fractions then (−s)(−t) = st, is such a big
part of school mathematics education that it is worthwhile to go over at least a
special case of it. When students are puzzled by this phenomenon, the disbelief
centers on how the product of two negatives can make a positive. The pressing
need in this situation is most likely that of winning the psychological battle. So
we propose to use a simple example to demonstrate why such a phenomenon is
inevitable. Thus we will give the reason why

(−1)(−1) = 1

Let us concentrate on the part of this assertion that says (−1)(−1) is a positive
number. It would be nice if we can demonstrate this though a direct computation
of the following type: we know (−3)− (−8) is positive because we can use the
definition of subtraction and the above rules for adding rational numbers to
conclude that

(−3)− (−8) = (−3) + (−8)∗ = 3∗ + (8∗)∗ = 3∗ + 8 = 8 + 3∗ = (8− 3) = 5
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This is a most satisfying proof because we see explicitly how the answer “5” comes
out of a direct computation. The proof leaves no room for doubt. However, this
kind of proof is not always around, and we are sometimes forced to use an indirect
method to find the answer. To give this line of thinking some context, you may
remember what you learned in your school chemistry: if you have to find out
whether a bottle of liquid is acidic or alkaline, the best scenario would be that
there is clear label on the bottle stating it is HCl or ammonia. If not, then you
would have to resort to an indirect method by dipping a blue litmus strip in the
liquid: if the strip turns red, then it is an acid. So you have to trust the litmus
paper and allow it to give you the needed information indirectly. It is the same
with (−1)(−1). There is no known explicit computation with (−1)(−1) so that
a positive number pops out at the end of the computation, but a possible “litmus
test” in this case is to add to (−1)(−1) a negative number. If the answer is either
0 or positive, then you’d have to agree that (−1)(−1) is a positive number. This
is exactly what we are going to do.

So we are going to test the positivity of (−1)(−1) by adding to it the negative
number −1. Why −1 and not some other negative number? This comes from
experience and some common sense; one way is to ask yourself why not −1 ?
After all, it is natural to think of −1 in this particular context. In any case, we
are going to apply the distributive law (assumption (M1)) to this sum and get:

(−1)(−1) + (−1) = (−1)(−1) + 1 · (−1) = {(−1) + 1}(−1) = 0 · (−1) = 0,

where the last equality is by (M3). This therefore shows that, if we believe in
the distributive law for rational numbers, it must be that (−1)(−1) is positive.
In fact, we know a bit more: if (−1)(−1) added to −1 is 0, then (−1)(−1) has
to be 1. In other words, (−1)(−1) = 1.

The fact that the distributive law holds for rational numbers is also responsi-
ble for the general assertion that (−s)(−t) = st.

The concept of the division of rational numbers is the same as that of dividing
whole numbers or dividing fractions. For two rational numbers x and y, with
y 6= 0,

x
y

is by definition the rational number z so that x = zy. As in the case

of fractions, the existence and uniqueness of such a z must be proved. Assuming
this, we can now clear up a standard confusion in the study of rational numbers
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mentioned above, namely, the reason why the following equalities are true:

3

−7
=
−3

7
= − 3

7
.

First let C = − 3
7 . We want to prove that 3

−7 = C. This would be true, by

definition, if we can prove 3 = C × (−7), and this is so because

C × (−7) = (− 3

7
)× (−7) = (

3

7
)(7) = 3

where we have made use of (−a)(−b) = ab for all fractions. Of course this proves
3
−7 = − 3

7 . In a similar manner, we can prove −3
7 = − 3

7 .

More generally, the same reasoning supports the assertion that if k and ` are
whole numbers and ` 6= 0, then

−k
`

=
k

−`
= − k

`
and

−k
−`

=
k

`
.

We may also summarize these two formulas in the following statement: for any
two integers a and b, with b 6= 0,

−a
b

=
a

−b
= − a

b
.

This formula is well-nigh indispensable in everyday computations with rational
numbers. In particular, it implies that

every rational number can be written as the quotient of two integers.

Thus, the rational number − 9
7 is equal to −9

7 or 9
−7 .

The concept of complex fractions has a counterpart in rational numbers, of
course. For lack of a better name, we call them rational quotients, and as in
the case of complex fractions, rational quotients can be added, subtracted, mul-
tiplied, and divided as if their numerators and denominators were whole numbers.

Finally, to compare rational numbers, recall the definition of x < y between
two rational numbers x and y: it means x is to the left of y on the number line.

x y
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The following inequalities are basic to any discussion of rational numbers and
therefore belong to middle school mathematics. Here, x, y, z are rational num-
bers, and the symbol “ ⇐⇒” stands for “is equivalent to”:

(i) For any x, y, x < y ⇐⇒ −x > −y.

(ii) For any x, y, z, x < y ⇐⇒ x+ z < y + z.

(iii) For any x, y, z, if z > 0, then x < y ⇐⇒ xz < yz.

(iv) For any x, y, z, if z < 0, then x < y ⇐⇒ xz > yz.

Of these, (iv) is the most intriguing. We give an intuitive argument of “z < 0
and x < y imply xz > yz” that can be refined to be a correct argument. Consider
the special case where 0 < x < y and z = −2. So we want to understand why
(−2)y < (−2)x. We know that (−2)y = −2y and (−2)x = −2x. Thus we want
to see, intuitively, why −2y < −2x. From 0 < x < y, we get the following
picture:

0 x y

Then the relative positions of 2x and 2y do not change, but each is pushed further
to the right of 0:

0 2x 2y

If we reflect this picture across 0, we get the following:

0 2x 2y−2y −2x

We see that −2y is now to the left of −2x, so that −2y < −2x, as claimed.
Obviously, this consideration is essentially unchanged if the number 2 is re-

placed by any negative number z.
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(D) Geometry Our teachers are generally ill-prepared on the subject of ge-
ometry (cf. [IMAGES]). They are often misled into believing that introductory
geometry is nothing more than one big vocabulary test, and not a very precise
vocabulary at that. We have to impress on them, first of all, that there is a
need for this vocabulary to be precise, and secondly, that geometry is about
the reasoning underlying the precise study of spatial figures rather than just the
vocabulary. Precision in the vocabulary is necessary because it is only through
this vocabulary that we can transcribe intuitive spatial information into precise
mathematics, and it is entirely on this vocabulary that we base our reasoning.
The definitions of common concepts such as “angle”, “convex figures”, “poly-
gons”, etc., are anything but obvious. We also have to impress on them the fact
that we draw a distinction here between what they as teachers should know and
what they teach their students in K-8, especially in grades 4-5. The precision that
they as teachers should learn may not literally translate into suitable classroom
material in upper elementary and middle school as it might overwhelm students
at this stage of their mathematical development. But it behooves teachers to
learn such precision, because they must know the whole truth before they can
judiciously hide unpleasant details in the service of good teaching. Part of the
professional development in geometry would ideally include lots of drawings-by-
hand and some hands-on activities such as the construction of regular polyhedra.
There has to be an integration of the direct spatial input with the verbal-analytic
output in a geometric lesson.

An important component of K–8 geometry (one that has not yet been fully
implemented in the classroom) is familiarity with the three basic rigid mo-
tions in the plane: rotation, translation, and reflection (teachers should be
steered away from the uncivilized terminology of “turn, glide, and flip”). Cer-
tainly, professional development must give precise definitions of these concepts,
but in this case, the professional development may include the information that,
with the availability of (overhead projector) transparencies, these concepts can
be graphically demonstrated so that, in the school classroom, the precise defini-
tions may be soft-pedaled in exchange for a tactile and intuitive understanding.
The said demonstration consists of making identical drawings on two pieces of
transparencies, preferably in different colors. By moving one against the other,
the effects of basic rigid motions, and compositions thereof, can be tellingly dis-
played, and students get a sound conception of what these rigid motions do. It is
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in this context that we recommend that in a middle school classroom, the quite
sophisticated precise definitions of basic rigid motion be soft-pedaled. The hope
is that students will reprise these concepts in a high school geometry course, so
that if they attain at least a good intuitive knowledge in the middle grades, they
will gain a better understanding the second time around.

In terms of these basic rigid motions, congruence can now be defined as a
finite composition of such. (See Example 4 of Part I.) Teachers should learn
that, while “same size, same shape” is a good sales pitch about congruence for
the general public, it should not be offered as a mathematical definition because
it does not conform to the basic characteristic of precision. There is an urgent
need in school mathematics to replace “same size, same shape” with the above
definition of congruence that is correct and is also something that students can
directly experiment with.

The next important topic is dilation. First of all, teachers should be con-
vinced of the feasibility of teaching this concept in middle school. For example, it
should be pointed out that a precise definition of dilation would allow students
to magnify any picture by any scale factor, if enough sampling points of the
original picture are chosen. (See Example 5 of Part I.) Such magnification (or
contraction) activities have never ceased to impress students. Therefore teaching
the correct definition of a dilation would not be a hard sell. Professional devel-
opment can build on this fact. Of course the reason one needs dilation is that
the concept of similarity can now be correctly defined as the composition of
a dilation and a congruence. The error in school textbooks, defining similarity
as “same shape but not necessarily same size”, must be corrected as soon as
possible.

The reason for the critical need of a definition of similarity is that a work-
ing knowledge of similar triangles is absolutely essential for students to achieve
algebra. Without this knowledge, they would have no hope of understanding
the interplay between a linear equation of two variables and its graph, which is a
major topic in beginning algebra. This means our teachers of middle school must
be completely at ease with similar triangles and know how to exploit the same,
and they must know the underlying reasoning. The professional development
on this topic may include the information that, while teachers should know the
reasoning (i.e., proofs) behind the AAA (three pairs of equal angles) and SAS
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(two pairs of proportional sides and a pair of equal included angles) criteria for
similarity, students in middle school can get by with less. Students can afford
to learn to use these theoretical tools first and wait for their explanations later.
This is standard practice in mathematics education (e.g., the teaching of calculus
without epsilon-delta). Professional development should assure teachers of this
fact so that they do not feel overwhelmed by the need to teach all the proofs about
similarity, something that even our high school teachers may find difficult. The
goal is to equip middle school teachers with this knowledge so that they can
better instruct their students about similarity.

Another important topic in the teaching of elementary geometry is the concept
of measurement, which leads to the standard mensuration formulas about area
of triangles, circumference of circles, etc. Conceptually, there is no difference
between length, area, or volume. If we let “measurement” stand for any of
these three concepts, then on the basis of the following three entirely reasonable
statements, all the standard mensuration formulas can be proved:

(1) Measurement is the same for congruent sets.

(2) Measurement is additive, in the sense that if two sets are disjoint
except at their respective boundaries, then the measurement of the
union is the sum of the measurements of the two sets.

(3) If a set S is the limit of a sequence {Si} in an appropriate sense,
then the measurement of S is the limit of the measurements of the {Si}.

Of course (3) has to be carefully qualified, and any discussion of “limit” has to
remain intuitive, but if experience is any guide, such an approach to limit at
the middle school level does not seem to be a hindrance to learning. As is well-
known, the introduction of limit at this juncture is necessary if the circumference
and area of a circle are to be meaningfully computed. The noteworthy feature of
these three assumptions lies not in (3), but, rather, in how congruence enters the
discussion of measurement through (1). The fact that the concept of congruence
underlies the concept of measurement has not been sufficiently emphasized in
school mathematics, but it should be. This is another example of the coherence
of mathematics. Incidentally, the important role played by congruence in the
study of measurements is one reason why congruence must be correctly defined.
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It should be mentioned that while the number π can be defined in many
ways, a strong recommendation for school mathematics is to define it, not
as circumference divided by the diameter, but as the area of the unit circle. The
former does not lend itself to any hands-on experiments to determine its value
with any precision, whereas the latter does. Using accurate grid papers (with
small grids), one can approximate the area of a circle by counting the number of
grids in it together with elementary estimation of those only partially in it, and
the value of π estimated by this method usually comes out to be within 0.05 of
the exact value.

(E) Algebra It can be argued that the most basic aspect of the learning of
algebra is the fluent use of symbols. Unfortunately, if textbooks are any guide,
students’ attempt to learn about symbols is at present hindered by the need to
master the concept of a variable. There are two reasons why the concept of a
variable unnecessarily obstructs learning. The first one is that the mathematics
education literature, including textbooks, does not make explicit what a “vari-
able” is. It is sometimes described as a quantity that changes or varies. At
other times, it is asserted that students’ understanding of this concept should
be beyond recognizing that letters can be used to stand for unknown numbers
in equations, but it does not say what exactly lies “beyond” this recognition. A
second reason is that while mathematicians use the terminology of a “variable”
informally and often, there is no mathematical concept called a “variable”. The
closest that comes mind is “an element in the domain of definition of a function”,
or “the indeterminate of the polynomial ring R[x]”, but certainly nothing varies
in mathematics. The first task in the professional development of algebra there-
fore has to be to disabuse prospective teachers of this notion of a “variable” that
they acquired in their K–12 education. There is absolutely no need for it. For
further discussions of how to handle the pedagogical issue of the use of symbols
and what a “variable” is, see pp. 3–6 of [Schmid-Wu].

In summary, the important thing at the beginning algebra is to get used
to using symbols to represent numbers and to compute with them. It is not
necessary to worry about what a “variable” means. However, it should be also
pointed out that, the language of “variable” being entrenched in mathematics
as it is, it would be to our advantage to follow the common usage and use it
informally when it is convenient. But each time we do, we will be explicit about
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what the word stands (though it will not be anything that “varies”).
Let a letter x stand for a number, in the same way that the pronoun “he”

stands for a man. Then any (algebraic) expression in x is a number, and all
the knowledge accumulated about rational numbers can be brought to bear on
such expressions. There is a caveat, however. Because all we know about such
an x is a number without any knowledge of its exact value, computations with
expressions in x must then be done using only all the rules we know to be true
for all numbers, namely, the associative and commutative laws and the distribu-
tive law. Doing computations not with specific numbers but with an arbitrary
number brings into focus the concept of generality. For this reason, begin-
ning algebra is generalized arithmetic. Nevertheless, arithmetic it is, and despite
students’ initial unfamiliarity with the presence of a large number of symbols,
they will soon get used to computing with polynomials or rational expressions
as ordinary numbers. Note that students who are uncomfortable with ordinary
number computations to begin with may be made even more uncomfortable at
this juncture.This underscores the importance of a firm grasp of rational numbers
for the learning of algebra. (Cf. [Wu] 2001.) For example, the following addi-
tion of rational expressions in a number x can be carried out as with rational
quotients,

x2

(3x4 + x+ 2)
+

6

(x2 + 5)
=

x2(x2 + 5) + 6(3x4 + x+ 2)

(3x4 + x+ 2)(x2 + 5)
,

because if k, `, m, n stand, respectively, for the numbers x2, (3x4 + x + 2), 6,
and (x2 + 5), then each of these is a rational number and the equality becomes
nothing more that the usual formula for the addition of rational quotients:

k

`
+
m

n
=
kn+m`

`n

(See the comments on rational quotients in item (C) on Rational numbers
above.)

Three remarks about the preceding paragraph should be made in the context
of professional development. The first is that consideration of the arithmetic of
rational expressions confirms why the arithmetic of complex fractions and ratio-
nal quotients are indispensable to the learning of algebra. Teachers need to be
aware of this fact for their own teaching of fractions and rational numbers. A
second one is the reference above to x as a number. In school mathematics, the
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only kind of numbers treated with any thoroughness are the rational numbers.
Irrational numbers are basically no more than a name. Unfortunately, it is not
in the tradition of school mathematics to be explicit about the restriction to only
rational numbers in mathematical discussions about real numbers. For example,
the preceding paragraph implicitly assumes that even if x is an irrational num-
ber, the addition of the two rational expressions above will continue to hold. This
is indeed correct on account of advanced considerations about the “extension of
continuous functions from rational numbers to real numbers”. The explanation
of the phrase in quotes is beyond the level of normal professional development
for middle school teachers, but we are nevertheless obligated to make teachers
aware of this extrapolation from rational numbers to all numbers. One can suc-
cinctly formulate this extrapolation as FASM, the Fundamental Assumption
of School Mathematics (see [Wu2002b]):

All the information about the arithmetic operations on fractions can be
extrapolated to all real numbers.

A third and final remark is that if we let x be a whole number, then the above
addition

x2

(3x4 + x+ 2)
+

6

x2 + 5

becomes an addition of two (ordinary) fractions because the numerators and
denominators are whole numbers. Notice therefore how the addition was carried
out, which is to use the basic formula

k

`
+
m

n
=
kn+m`

`n

without worrying about the LCM of the whole numbers 3x4 + x+ 2 and x2 + 5.
If elementary school teachers can take note of this fact in algebra, then they will
realize how misguided it really is to teach the addition of fractions using the
LCM of the denominators, which is how most school textbooks still teach it. If
we do not want to mislead students with this kind of defective information, it
would be most helpful if teachers can see through the defect. Incidentally, this
is one reason why we want teachers to know the mathematics of several grades
beyond what they teach (cf. [NMPa], Recommendation 19 on page xxi.)
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It should be pointed out that, if the letters x and y are just numbers, then
the distributive law gives

xn+1 − yn+1 = (x− y)(xn + xn−1y + xn−2y2 + xn−3y3 + · · ·+ xyn−1 + yn)

for any two numbers x and y, and any positive integer n.

Because this equality of these two expressions in x and y is valid for all numbers
x and y, we call the equality an identity. Letting y = 1, we get another identity:

xn+1 − 1 = (x− 1)(xn + xn−1 + xn−2 + · · ·+ x2 + x+ 1)

for all numbers x and for all positive integers n. If x 6= 1, multiplying both sides
by the number 1

x−1 and switching the left and the right sides give:

1 + x+ x2 + x3 + · · ·+ xn =
xn+1 − 1

x− 1

for any number x 6= 1, and for any positive integer n. This is of course the
so-called summation of the finite geometric series. In a school classroom,
one might teach this summation formula by first doing a few concrete cases such
as n = 2, n = 3 and n = 4, before doing it for a general n. This summation
formula is usually taken up near the end of the study of algebra in high school.
We have seen that there is no reason for the delay, all the more so because this
formula is important in so many areas of mathematics.

A major topic in beginning algebra is the relationship between a linear equa-
tion in two variables ax+ by = c and its graph. To the extent that our teachers
learned from their K–12 school textbooks, there would be many gaps in teachers’
knowledge about these equations. The first is a correct definition of the slope of
a line L. It needs to be shown that the slope of L defined by two chosen points
P and Q on L is in fact independent of the choice of P and Q. In this case, it is
not merely correctness for its own sake. Knowing this independence leads to the
awareness that, in each situation, one can choose the two points most suitable to
one’s purpose for the computation of the slope. Sometimes, being able to make
such a choice is the difference between success and failure. But this indepen-
dence cannot be proved without knowing the AAA criterion for the similarity
of triangles (i.e., two triangles with three pairs of equal angles are similar), and
this is the reason similarity must be taught correctly before taking up algebra.
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A second gap is the precise definition of the graph of ax+ by = c as the set of
all the points (x′, y′) whose coordinates satisfy the equation, i.e., ax′ + by′ = c.
Without explicitly invoking this definition, it would be impossible to prove the
basic theorem of linear equations in two variables, to the effect that the graph of
ax + by = c is a line, and any line is the graph of some linear equation of two
variables. The lack of emphasis in enunciating the definition of the graph of an
equation goes hand-in-hand with the absence of this proof in most algebra text-
books. Such a proof depends strongly on knowing the precise definition of the
graph of an equation and on knowing when two triangles are similar. Students
who understand the details of this proof will have a good grasp of the genesis of
the many forms of the equation of a line (point-slope form, slope-intercept form,
etc.) that satisfies some prescribed conditions, e.g., passing through two given
points; they will have no need to memorize these different forms by brute force.
At the moment, anecdotal evidence suggests that the relationship between a lin-
ear equation and its graph remains a black box to many teachers and students;
if this can be verified by research, it would mark a significant progress in the
teaching and learning of algebra.

Associated with linear equations in two variables are linear inequalities. Again,
one must first give a precise definition of the graph of an inequality and then
prove that such a graph is a half-plane. There are many ways to handle this
theorem. A drastic way to cut through the subtleties is to simply define a half-
plane to be the graph of a linear inequality and then give many examples and
ample discussions to make this drastic step reasonable. A more reasonable al-
ternative is to define a half-plane of a line L which is not vertical to be all the
points above L or all the points below L, and then prove the theorem. (The def-
inition of the half-planes of a vertical line is trivial.) However, no matter which
approach is adopted, it is not an acceptable way to teach mathematics by not
defining either the graph of an inequality or a half-plane, and then engaging in
the wishful thinking that, by drawing a few pictures, the reader would automat-
ically understand how to define these terms and also buy into the theorem. The
uphill battle one must fight in the professional development of algebra therefore
includes the need to convince teachers not to engage in such practices and to
learn a new way to deal with this topic.

Many algebra curricula now take up linear programming as an application
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of linear inequalities. The fact that a linear function assumes it maximum and
minimum in a convex polygonal region at a vertex then requires a careful expla-
nation. For this purpose, it is all the more reason to have a precise definition of
the graph of a linear inequality and that of a half-plane.

The subject of simultaneous linear equations (to be called linear systems) is
a straightforward study of the interplay between two linear equations, or what is
the same thing, the interplay between two lines, but its simplicity is often com-
promised in school texts. There, the meaning of the solution of a linear system
is almost never explicitly given, with the result that it is not used to explain why
the point of intersection of the lines defined by the individual equations provides
a solution of the linear system then cannot be given. Students are told to use
graphing calculators to get the solution of a linear system, but they are not told
why the graphing calculator gives the right answer. This is a new paradigm of
learning-by-rote, and is one that we should strive to eliminate from the school
classrooms. To this end, our teachers must receive careful instruction on the
definitions in question as well as the associated explanations.

There is another misconception associated with linear systems. The usual
method of solution of a linear system by substitution, due to misinformation
from textbooks, has been interpreted as an exercise in the symbolic manipula-
tion of variables. When done correctly, however, the method of substitution is
strictly a computation with numbers, no more and no less, and there is no need
in this context to worry about the purported complex meaning of the equal sign
when applied to variables. Indeed, what the substitution method does is not to
produce a solution, but rather, starting with the assumption that a solution
(x0, y0) exists , it shows what the values of x0 and y0 must be. Then one sub-
stitutes these values into the original linear system to verify easily that they are
solutions. Explications of such subtleties have to be a necessary component of
any reasonable professional development in algebra.

The next major topic in algebra is the concept of a function, its definition and
the study of linear and quadratic functions. Again, one should insist on explicit
definition of the graph of a function; for real-valued function f of one variable, its
graph is the subset of the plane consisting of all ordered pairs {(x, f(x))} where
x is a member of the domain of f . The graphs of linear functions, f(x) = cx+k,
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are lines, and this follows from the work on graphs of linear equations in two
variables because the graph of the function f is seen to be the graph of the
linear equation in two variables y = cx + k. A special class of linear functions,
those without constant term k, are especially important in middle school
mathematics. They underlie all considerations of constant rate. Constant speed,
for example, is the statement that there is a constant v, so that if the distance
traveled from time 0 to time t is f(t), then f(t) = vt. It also underlies all
the problems connected with proportional reasoning. This then calls for a little
soul-searching in this connection.

At the moment, there appears to be some misconception about the formula-
tion of mathematical problems. Consider a prototypical proportional-reasoning
problem such as:

A group of 8 people are going camping for three days and need to carry
their own water. They read in a guide book that 12.5 liters are needed
for a party of 5 persons for 1 day. How much water should they carry?

It should be clear that this problem cannot be done without first assuming that
everybody drinks the same amount of water each day. There is nothing obvious
about this assumption, because even young kids can see that some people drink
lots of water and others very little. If we believe that mathematics is precise,
then precision demands that this assumption be made explicit. An alternative
to the question, “How much water should they carry?”, is to ask how to make a
rough estimate of the amount of water they should carry if we simplify matters
by assuming that everybody drinks the same amount everyday. Once we have
this assumption, let f be the function defined on the whole numbers so that
f(n) is the amount of water n people drink each day. Then the assumption
gives f(n) = cn for some constant c, where c is the amount of water each
person is assumed to drink per day. A common practice is to now allow the
symbol n to stand for any number, and not just a whole number, so that f(n)
becomes a linear function without constant term. With the given data that
f(5) = 12.5, we want the number 3f(8). From the former, we get c = 2.5,
so the answer is 3 × 2.5 × 8 = 60 liters. The main point is, however, that
if proportional reasoning is about “understanding the underlying relationships
in a proportional situation and working with these relationships” ([NRC 2001],
p. 241), then the proportional relationship must be made explicit for students as
otherwise students would be groping in the dark without a clue. Professional
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development should make this point very clear: guesswork is not to be confused
with conceptual understanding, and there is no ground for assuming that every
student “understands” that all people drink the same amount of water everyday.

Once these ground rules are understood, a discussion of word problems related
to proportional reasoning from the point of view of linear functions should be
both revealing and rewarding.

From linear functions we go to quadratic ones. The graph of a linear function
is a line, but what is the graph of a quadratic function? If by some good fortune
we know that the quadratic function is presented to us in the form of f(x) =
a(x+p)2 +q, where a and q are fixed numbers, then one can picture the graph of
f without too much effort, as follows. From f(−p+ s) = f(−p− s), we see that
for all numbers s, the point (−p−s, f(−p−s)) and the point (−p+s, f(−p+s))
are symmetric relative to the vertical line x = −p. Therefore the graph of f has
an axis of reflection symmetry along the vertical line x = −p, and the graph
has its lowest (resp., highest) point at (−p, f(−p)), if a > 0 (resp., a < 0). Of
course, f(−p) = q. So at least for simple quadratic functions expressible as
f(x) = a(x + p)2 + q, the graph is completely understood, and therewith, the
function itself is completely understood. In fact, we can trivially read off from
the equality f(x) = a(x+ p)2 + q where the function is equal to 0, namely,

−p±
√
−q
a

The fundamental theorem about quadratic functions is that, by the technique
of completing the square, every quadratic function can be written in the form
f(x) = a(x + p)2 + q for fixed numbers a, p, and q. Included in this statement
is the quadratic formula for the roots (zeros) of f , but the whole discussion
make it perfectly clear that the technique of completing the square is the key
to the understanding of quadratic functions. One can then go on to discuss the
relationship between roots and the factoring of a quadratic function, and also the
relationship between the roots and the coefficients a, b, c in f(x) = ax2 + bx+ c.
In particular, teachers should be aware that the quadratic formula trivializes, at
least in principle, the problem of factoring quadratic polynomials, because one
proves (the far from obvious statement) that if r1, r2 are the roots of a quadratic
polynomial f , then f(x) = a(x− r1)(x− r2) for some fixed number a, and this is
a factoring of f . Since the quadratic formula provides the values of the roots, the
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factoring immediately follows. The implication of this discussion for professional
development is therefore quite clear: our algebra teachers have to understand
this aspect of the quadratic formula in order for them to teach the factoring of
trinomials with the proper perspective.

The availability of quadratic functions enlarges the range of word problems.
Their discussion should be an integral part of professional development.

If we look ahead into the high school curriculum, we see that introductory
algebra is inextricably tied to the materials in high school mathematics as a
whole. We have already emphasized the important role of similar triangles in
the discussion of linear equations of two variables. For teachers to be comfortable
teaching about such linear equations, they would have to learn the proofs of the
basic criteria for similar triangles. As is well-known, similarity is the deepest part
of plane geometry. Thus a teacher who wants to teach introductory algebra well
should be at least familiar with high school geometry. Furthermore, we have
seen that linear and quadratic functions are a staple of introductory algebra.
Teachers cannot, however, teach about these functions if this is all they know.
They need a reservoir of knowledge about a few other standard functions as
well, e.g., higher degree polynomial functions, exponential functions, logarithmic
functions, periodic functions. For polynomial functions in general, teachers need
to be familiar with the most basic facts, such as the Fundamental Theorem of
Algebra and its implications on the factorization of polynomials, especially the
factorization of real polynomials. But these already comprise all the main topics
in the school algebra curriculum. Finally, among the most profound applications
of similarity is the definition of the trigonometric functions, and these are the
basic building blocks of periodic functions. A teacher of beginning algebra should
therefore also know something about trigonometry.

If we can draw any conclusion from the preceding discussion, it must be that
a middle school teacher who teaches beginning algebra should have at least a
good mastery of the high school mathematics curriculum.

(F) Probability and statistics It has long been recognized by some math-
ematicians and statisticians that K–6 is not the place to teach serious statis-
tics. The recent publication of Curriculum Focal Points by the National Council
of Teachers of Mathematics ([NCTM] 2006) has finally acknowledged this fact.
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There is no harm in discussing the basic notions such as mode, mean, and me-
dian to liven up the discussion of number facts from time to time, but teachers
should be made aware that meaningful statistics appears only in high school
or beyond, when there is sufficient mathematical preparation to support such a
discussion. They should also be alerted to the senseless practice in standardized
tests of asking for the mode of a small number of items. The concept of mode is
meaningful only when a large number of items is involved.

The basic concepts of probability can and should be discussed in middle school,
of course, such as the fact that probabilities are numbers between 0 and 1, the
concept of a sample space, the relation between theoretical probability and the
relative frequency of an event. The teaching of simple facts concerning binomial
coefficients and elementary combinations and permutations would also enrich the
curriculum of middle school.
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