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The main points of this presentation:

(1) Every concept will have a definition: Fraction, sum of two

fractions, product of two fractions, percent, ratio, etc. You do

not need to know more about a concept than what is contained

in the definition. There are no guesses in mathematics.

(2) Similarity between fractions and whole numbers will

be emphasized throughout. Whole number facts provide the

proper guidance for what we do with fractions.

(3) A reason will be given for every assertion. Everything

will be explained. There will be no doubts or suspicions.
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The goal: To go through all four operations +, −, ×, ÷ with

fractions.

However, I will only go as fast as you can understand me. Given

the limited time, there is a good chance that we won’t get to

division if I do everything systematically. So I may skip some

topics to make sure we get to division. In that case, you may

ask for the PDF file of these slides and read the rest on your

own.
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(A) Definition of fraction Why we need a definition of a frac-

tion.

(i) A fraction is an abstract concept. For the number 4,

a school student sees “4 fingers”. But what is 3
11? Thus, if

students have to add, subtract, multiply, and divide fractions,

they have to know what a fraction is. They cannot work with

something without knowing what it is.

(ii) Reasoning in algebra and higher mathematics depends on

precise definitions. Learning how to work with a precise definition

of a fraction is an excellent introduction to algebra.
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Comment on (i): The usual way of teaching fractions does not

give a definition of fraction, but insists rather that a fraction is

just part of daily experience, e.g., it is like a piece of pizza.

How is a student going to think about the following problem?

How much is 12
13 bucket of water and 7

8 buckets of water

together?

What is (12
13 + 7

8) buckets of water?

The teacher only teaches adding two pieces of pizza together,

but this is two buckets of water. So what is a fraction? A

piece of pizza or some bucket of water?
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Comment on (i) (cont.): So the student forces herself to just

think of adding pizzas.

Can she think of 12
13 of a pizza? We know instinctively that we

don’t cut up a pizza like that. In any case, why would anyone

put 12
13 of a pizza and 7

8 of a pizza together?

We insist to students that fractions are nothing but an extension

of our daily experience and is not an abstraction, but we agree

that putting 12
13 of a pizza and 7

8 of a pizza together is unnatu-

ral. Then it becomes difficult for a student to think about this

addition.

(We will have more to say about this addition later.)
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On a horizontal line, let two points be singled out. Identify the

point to the left with 0 and the one to the right with 1. This

segment, denoted by [0, 1], is called the unit segment and 1 is

called the unit.

0 1

Now mark off equidistant points to the right of 1 as in a ruler,

as shown, and identify the successive points with 2, 3, 4, . . . .

0 1 2 3 4 5

The line, with a sequence of equidistant points on the right

identified with the whole numbers, is called the number line.
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Let the unit segment [0,1] be the whole. Naturally, all other

segments [1,2] (the segment between 1 and 2), [2,3], etc., can

also be taken to be the whole. If we divide each such segment

into thirds (three segments of equal length), then we can count

the number of thirds (the “parts”) by going from left to right

starting from 0. Thus, the red segment comprises two thirds:

0 1 2 3 4 5

The following green segment comprises seven thirds:

0 1 2 3 4 5
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With the left endpoint 0 understood, the red segment can be

identified by its right endpoint, which we naturally denote by 2
3:

0 1 2 3 4 5

2
3

Likewise, the green segment can be identified by its right end-

point, which is denoted by 7
3:

0 1 2 3 4 5

7
3
7
3

Thus each “part of a whole” (in the present context of thirds)

can be replaced by a point on the number line, so that the point

that is the 7th point to the right of 0 is denoted by 7
3 , and the

point that is the nth point to the right of 0 is denoted by n
3 .
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Fractions with denominator equal to 5 are similarly placed on the

number line: 8
5 is the 8th point to the right of 0 in the sequence

of fifths. And so on.

In general, if n is a positive integer, the fraction 3
n is the third

point to the right of 0 among the nths on the number line, and

if m is a whole number, then the fraction m
n is the mth point to

the right of 0 among the nths on the number line.

We also agree to identify 0
n with 0 for any positive integer n. In

this way, all fractions are unambiguously placed on the number

line.
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For the sake of conceptual clarity as well as ease of mathematical

reasoning, we will henceforth define a fraction to be a point on

the number line as described above.

What does it mean to define a fraction to be a point on the

number line?

It means: any time we want to explain something about frac-

tions, we must remember that a fraction is a point on the num-

ber line and our explanation must begin with the number line.

There is no longer any need to guess the right way to interpret

a fraction: Just go to the number line.
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The importance of the unit.

The meaning we assign to the number 1 determines the meaning

we give to all fractions on the same number line. For example,

if 1 is “the area of a piece of a given pizza” (ignoring depth),

then 2 will be 2 times the area of the pizza and 12
13 will be “12

13
of the area of the pizza.”

If 1 is the volume of a bucket of water, 1
2 will be half the volume

of the bucket of water, and 12
13 will be “12

13 of the volume of the

bucket of water.”

You can see that when a fraction is identified with a point on

the number line, it gains flexibility in its interpretations.
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Three things are noteworthy:

(i) The fractions with denominator 3 are qualitatively no different

from the whole numbers: both are a sequence of equidistant

points on the number line, and if we replace 1
3 by 1, then the

former sequence becomes the whole numbers.

(ii) The number line is to fractions what one’s fingers are to

whole numbers: It anchors students’ intuition about fractions.

(iii) The number line is not some gimmick created specifically for

the discussion of fractions. On the contrary, it is omnipresent in

mathematics, being the x-axis of the familiar coordinate system

in the plane. It will follow a student everywhere as long as he or

she studies anything related to mathematics.
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(B) Equivalent fractions. The following theorem is basic.

Theorem on equivalent fractions Given any two fractions m
n

and k
` . If there is a positive integer c so that

m = c k, and n = c `

then the fractions are equal, i.e., m
n and k

` are the same point.

In your classroom, you wouldn’t teach like this! Rather, you’d

begin by saying, 3
6 and 1

2 are equal because

3 = 3× 1 and 6 = 3× 2,

10
12 and 5

6 are equal because

10 = 2× 5 and 12 = 2× 6,

You’d give many examples before stating the general fact above.
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Let us prove that 10
12 = 5

6 .

We must show that the 5th point to the right of 0 in the se-

quence of sixths is also the 10th point to the right of 0 in the

sequence of twelfths. (Recall: with a clear-cut definition of a

fraction, there is no ambiguity about what we must prove.)

We divide each of the sixths into 2 equal parts (i.e., segments

of equal lengths), getting twelfths (2× 6 = 12):

0

5
6

1
t t t t t t

Clearly, the 5th point to the right of 0 in the sequence of sixths is

also the 10th point to the right of 0 in the sequence of twelfths.
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One more example: 14
6 = 7

3.

We must show that the 7th point to the right of 0 in the

sequence of thirds is also the 14th point to the right of 0 in the

sequence of sixths.

We divide each of the thirds into 2 equal parts, getting sixths

(2× 3 = 6):

0 1 2 3 4 5

7
3
7
3t t t t t t t t t t t t t t t

The number line now has a sequence of sixths, and the 14th

point to the right of 0 is therefore exactly the 7th point to the

right of 0 in the sequence of thirds, as claimed.
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Here is a problem you can do: Explain why
5

2
=

15

6
.

Write down your explanation; consult with your neighbors if you

wish.

Let us try to get it done in 10 minutes.
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Solution:

Divide each of the halves into 3 equal parts, getting a sequence

of sixths (3× 2 = 6):

0 1 2 3

5
2
5
2t t t t t t t t t t t t

The 5th point to the right of 0 in the sequence of halves is the

same point as the 15th point in the sequence of sixths.

Thus
5

2
=

15

6
.
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We see that the reasoning for each of 10
12 = 5

6 , 14
6 = 7

3 , and
5
2 = 15

6 is the same.

The same reasoning in fact proves that c k
c ` = k

` for all fractions
k
` and for all c > 0.

Once a theorem is proved, i.e., shown to be true, it is meant to

be used. This theorem will be used often because it lies behind

every statement about the operations of fractions. We now give

some illustrations.
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(C) Comparison of fractions. First, what does mean to say

a fraction m
n is bigger than another fraction k

` ? (Symbols:
k
` < m

n .)

By definition, it means: on the number line, m
n is to the right

of k
` . (Textbooks don’t give any definition.)

k
`

m
n

We must make sure that this definition is consistent with our

intuition: Check that 2 < 5, 2
3 < 1, 1

3 < 1
2, etc.

0 1
u

1
3

2
3
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Here is a standard problem:

Which of 19
54 and 6

17 is bigger?

Once we have agreed on “lying further to the right on the number

line” as the definition of “bigger”, the only way we can answer

this question is to determine which of 19
54 and 6

17 lies to the

right of the other.

It must be recognized that the difficulty lies in having to compare

the 19th point (to the right of 0) in the sequence of 54ths with

the 6th point (to the right of 0) in the sequence of 17ths. We

simply don’t know at this juncture how to compare a 54th with

a 17th, i.e., 1
54 with 1

17 .
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Consider, for example, the analogous problem:

Which is longer, 19 feet or 6 meters?

You try to find a common unit. In this case, cm is good:

19 ft. = 19× 30.48 cm = 579.12 cm

Since 6 meters is 600 cm, we see that 6 meters is longer.

Thus, faced with comparing 19 54ths and 6 17ths , we try to

find a common unit for 1
54 and 1

17 . The Theorem says

1

54
=

17

54× 17
and

1

17
=

54

54× 17

So 1
54×17 will serve as a common unit for 1

54 and 1
17 .
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Now we apply the Theorem twice to get:

19

54
=

19× 17

54× 17
=

323

54× 17

6

17
=

54× 6

54× 17
=

324

54× 17

In terms of
1

54× 17

the 324th point to the right of 0 is clearly to the right of

the 323rd point.

We therefore conclude that 6
17 is bigger than 19

54 .
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You may wonder why I spent so much time emphasizing some-

thing obvious: why not just say that because 323 < 324, there-

fore
323

54× 17
<

324

54× 17
?

Because, what do you say to a student who claims:

7

12
<

7

13
because 12 < 13?

Get your students into the habit of thinking precisely by dedicat-

ing sufficient time to precise and clear reasoning.

24



The basic idea of the above can be abstracted: given two frac-

tions m
n and k

` , the Theorem says we can always rewrite them

as two fractions with equal denominators, e.g.,

`m

`n
and

kn

`n

We just did that: we rewrote 19
54 and 6

17 as

19× 17

54× 17
and

54× 6

54× 17

However, sometimes this is not the only way to rewrite two frac-

tions so that they have the same denominator!
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Suppose we are given 7
10 and 69

100. We could rewrite them as

7× 100

10× 100
and

10× 69

10× 100

But common sense tells you that, in this special case, we can

rewrite them as
7× 10

10× 10
and

69

100

Summary: Fundamental Fact on Fraction Pairs (FFFP)

Any two fractions may be regarded as two fractions with the

same denominator.
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FFFP has far reaching consequences. For example:

Cross-Multiplication Algorithm (CMA) : Given any two frac-

tions k
` and m

n ,

k
` = m

n if and only if kn = `m

k
` < m

n if and only if kn < `m

This is quite clear once we write k
` and m

n as

kn

`n
and

`m

`n

then the equality of the denominators allows us to compare the

fractions by comparing the numerators.
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(D) Comparison of decimals. By definition, a decimal is a

fraction whose denominator is a power of 10 written in the special

notation introduced by the German Jesuit astronomer C. Clavius

(1538-1612):

235

100
(=

235

102
) we write as 2.35;

write
57

10000
(=

57

104
) we write as 0.0057

A decimal is a fraction. The alternate definition of 2.35 as

2 + 3
10 + 5

100 (i.e., 2 and 3 tenths and 5 hundredths) requires

the addition of fractions to be defined first before the alternate

definition can make sense.
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Comparing decimals is therefore a special case of comparing frac-

tions, but with one important advantage. If we want to compare,

let us say, 0.12 with 0.098, there is no doubt as to what common

denominator to use. For example, rewrite

12

100
and

98

1000
as

120

1000
and

98

1000
,

respectively. Clearly 0.12 is bigger.

Here is a problem for you: Which is bigger, 0.59 or 16
27?
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Solution:

By definition, 0.59 = 59
100. To compare 59

100 with 16
27, we

use the CMA:

59× 27 = 1593 < 1600 = 100× 16

So 59
100 < 16

27.
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(E) Addition of fractions. First, how do we add whole num-

bers? 4 + 3 is obtained by “combining 4 and 3”. Thus it is the

length of the concatenation of a segment of length 4 and a

segment of length 3. The meaning of “concatenation” is clear

from the following picture:

u︸ ︷︷ ︸
4

︸ ︷︷ ︸
3

In other words, the “concatenation of two segments” is the seg-

ment obtained by joining an endpoint of one segment to an

endpoint of the other and putting them on a straight line.
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Now, because whole numbers are also fractions, the meaning

of 4
5 + 3

5 should not be different from the addition of whole

numbers.

We define 4
5 +

3
5 to be the length of the concatenation of one

segment of length 4
5 followed by a second segment of length 3

5 :

u︸ ︷︷ ︸
4
5

︸ ︷︷ ︸
3
5
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In terms of a segment of length 1
5, 4

5 + 3
5 is just the concate-

nation of 4 such segments and 3 such segments, and is therefore

exactly 4 + 3 such segments. Essentially the same as 4 + 3.

Thus, by definition,

4

5
+

3

5
=

4 + 3

5
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Next, we consider something more complicated: 4
7 + 2

5.

We define 4
7 +

2
5 in exactly the same way: it is the length

of the concatenation of one segment of length 4
7 followed by

another segment of length 2
5:

u︸ ︷︷ ︸
4
7

︸ ︷︷ ︸
2
5
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By definition, 4
7 + 2

5 is the total length of 4 of the 1
7’s and 2

of the 1
5’s.

This is like adding 4 feet and 2 meters; we cannot find its exact

value until we can find a common unit for feet and meters.

The same with fractions. FFFP tells us what to do: use 1
7×5 as

the common unit.

4

7
+

2

5
=

4× 5

7× 5
+

7× 2

7× 5
=

34

35
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In general, we define the addition of k
` and m

n in exactly the

same way: k
` +

m
n is the length of the concatenation of one

segment of length k
` and another of length m

n :

u︸ ︷︷ ︸
k
`

︸ ︷︷ ︸
m
n

By FFFP,

k

`
+

m

n
=

kn

`n
+

`m

`n
=

kn + `m

`n
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By definition, addition of fractions is commutative, i.e.,

k

`
+

m

n
=

m

n
+

k

`

because the length of a concatenated segment is independent of

the order of the segments being concatenated.

Commutativity of addition will be useful when we consider mixed

numbers.

Note that we have added fractions without once considering

Least Common Denominator. The LCD is a grave distraction to

learning fractions but contributes nothing to the understanding

of fraction addition.
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The continuity from whole numbers to fractions is of critical

importance for the learning of fractions.

At the moment, students learn about the addition of whole

numbers as “combining things”, but the addition of fractions

is presented as a completely different concept: getting the Least

Common Denominator and rewriting the numerators. Nothing

about “combining things”.

The discontinuity leads to unnecessary mental disorientation and

unwillingness to learn mathematics.

Our definition of fraction addition above shows clearly why adding

fractions still means “combining things”.
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A 1978 NAEP (National Assessment of Educational Progress

in the U.S.) question on the eighth grade test:

Estimate
12

13
+

7

8
.

(1) 1

(2) 19

(3) 21

(4) I don’t know

(5) 2

(Recall: We encountered this addition at the beginning of the

workshop.)
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The statistics:

• 7% chose “1”.

• 28% chose “19”.

• 27% chose “21”.

• 14% chose “I don’t know”.

• 24% chose “2” (the correct answer).

Do we only blame the students?

40



Students need a mental image of a fraction as intuitive as the

mental image of a whole number given by the fingers on their

hands.
12
13

1? 20

7
8

10 ?

Direct concatenation gives:

1 20︸ ︷︷ ︸
12
13+7

8
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(F) Mixed numbers. It is customary to shorten a sum such as

3 + 2
7 to just 32

7; in mathematics, we love abbreviations!

In general, we call a fraction m
n a proper fraction if it is smaller

than 1, or what is the same, m < n. Then the notation qmn ,

where q is a nonzero whole number and m
n is a proper fraction,

is called a mixed number.

It is important that you do not introduce the concept of a “mixed

number” until you have defined the addition of fractions. Stu-

dents have to realize that a mixed number is a sum of a nonzero

whole number and a proper fraction.
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The fear of mixed numbers comes mainly from (at least in Amer-

ica) introducing mixed numbers as soon as fractions are men-

tioned, before the addition of fractions is discussed.

The advantage of knowing the correct definition of mixed num-

bers is that it is clear how to convert a mixed number to a

fraction. For example:

3
2

7
=

3

1
+

2

7
=

3× 7

7
+

2

7
=

23

7
There is no need to memorize any formulas!

To convert a fraction to a mixed number, use division-with-

remainder on the numerator with the denominator as the divisor:

37

7
=

(5× 7) + 2

7
=

5× 7

7
+

2

7
= 5 +

2

7
= 5

2

7
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To compute with mixed numbers, remember that addition is

commutative, e.g.,

1
2

3
+ 7

4

5
= 1 +

2

3
+ 7 +

4

5
= (1 + 7) + (

2

3
+

4

5
)

We know that

2

3
+

4

5
=

2× 5

3× 5
+

3× 4

3× 5
=

22

15
=

1× 15 + 7

15
= 1 +

7

15

Thus

1
2

3
+ 7

4

5
= 8 + 1 +

7

15
= 9

7

15

Here is a problem for you: do the same addition by first convert-

ing 12
3 and 74

5 to fractions, and then add.
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Solution:

1
2

3
+ 7

4

5
=

5

3
+

39

5

=
5× 5

3× 5
+

3× 39

3× 5

=
25 + 117

15
=

142

15

This is a perfectly good answer. However, if you wish, we can

convert it to a mixed number:

1
2

3
+ 7

4

5
=

(9× 15) + 7

15
= 9

7

15
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(G) Subtraction. It will be the same as addition, with one

element of subtlety.

Once we have negative numbers, we can subtract a fraction from

any fraction. But in terms of student learning, it may be better

to break up subtraction into two steps:

(1) k
` −

m
n , with k

` > m
n , so that the answer is a fraction

rather than a negative fraction.

(2) k
` −

m
n , with no restrictions on k

` or m
n .

We only deal with step (1) here.
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Consider
7

6
−

5

8
.

The CMA tells us that 7
6 > 5

8. The meaning of this subtraction

is then the same as the case of whole numbers: “taking 5
8 away

from 7
6.”

More formally: 7
6 −

5
8 is the length of the segment that remains

(the red segment below) after a segment of length 5
8 has been

removed from one end of a segment of length 7
6.

7
6︷ ︸︸ ︷︸ ︷︷ ︸

5
8
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In general, if m
n < k

` , then we define k
` −

m
n to be the length of

the remaining segment when a segment of length m
n is removed

from one end of a segment of length k
` .

k
`︷ ︸︸ ︷︸ ︷︷ ︸

m
n

We use FFFP to compute:

k

`
−

m

n
=

kn

`n
−

`m

`n
=

kn− `m

`n

Because of the CMA, we know kn > `m so that the whole number

subtraction kn− `m gives a whole number rather than a negative

integer.
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Compute 71
3 − 2.94.

7
1

3
− 2.94 =

22

3
−

294

100
=

22× 100

300
−

3× 294

300

=
2200− 882

300

=
1318

300

This is a good answer, but if we wish, we can get a mixed number

instead:
1318

300
=

4× 300 + 118

300
= 4

118

300
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(H) Multiplication. The product 3×5 means “3 copies of 5”.

So 2
3×

5
4 should mean, at least intuitively, “two-thirds of a copy

of 5
4.

How to make precise the concept of “two-thirds of a copy of
5
4”? Imagine buying 11

4 kg (= 5
4 kg) of cheese, and you want to

give two-thirds of it to your mother. What you do is divide the

cheese into 3 equal parts (by weight) and give your mother 2 of

the parts.

This suggests a way to define 2
3 ×

5
4 precisely.

(Yes, we need a precise definition.)
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Definition 2
3 ×

5
4 is the length of 2 concatenated segments

when [0, 5
4] is divided into 3 segments of equal length.

To compute 2
3 ×

5
4, it suffices to find out the length of one

segment when [0, 5
4] is divided into 3 segments of equal length,

i.e., it suffices to compute

1

3
×

5

4

We begin with an easier calculation: 1
3 ×

9
4. It is 3

4.

0 3
4

6
4

9
4
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We could compute 1
3 ×

9
4 = 3

4, because it is easy to divide 9

segments of equal length (= 1
4) into 3 parts of equal length:

each part has three segments.

Now we want 1
3 ×

5
4. How to divide 5 segments of equal length

(= 1
4) into 3 parts of equal length?

However, by equivalent fractions, 1
3 ×

5
4 = 1

3 ×
3×5
3×4. We know

how to divide 15 segments of equal length (= 1
12) into 3 parts

of equal length: each part has five segments.

0 5
12

10
12

15
12

1
3 ×

5
4 = 5

12.
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The equality 1
3 ×

5
4 = 5

12 means if we divide [0, 5
4] into 3 equal

parts, then the length of one part is 5
12. Since 2

3 ×
5
4 is the

length of 2 concatenated parts when [0, 5
4] is divided into 3 equal

parts, we see that

2

3
×

5

4
=

5

12
+

5

12
=

10

12
We recognize that this says:

2

3
×

5

4
=

2× 5

3× 4
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In general, we define
k
` × m

n to be the length of k (concate-

nated) parts when [0, mn ] is divided into ` equal parts.

This leads us to guess that, in general, for any two fractions k
`

and m
n ,

k

`
×

m

n
=

km

`n

We call this the Product Formula.
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Proof of the Product Formula:

k
` ×

m
n is the length of k parts, each part of length

1

`
×

m

n

We first compute the length of 1
` ×

m
n .

1

`
×

m

n
=

1

`
×

`m

`n
=

m

`n

Now k
` ×

m
n is the length of k concatenated copies of m

` ,

which is

m

`n
+ · · ·+

m

`n︸ ︷︷ ︸
k

=
km

`n

So the Product Formula is true.
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The Product Formula shows that fraction multiplication is com-

mutative in general:

k

`
×

m

n
=

m

n
×

k

`

If you find this formula boring, do the following problem:

Which is heavier, 7
9 of 11

4 kg of sand, or

11
4 of 7

9 kg of sand?

(By definition, the first is the totality of 7 parts when 11
4

is divided into 9 equal parts, while the latter is 11 parts

when 7
9 is divided into 4 equal parts. Are they equal?)
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Fraction Multiplication is also associative and distributive in gen-

eral: (
k

`
×

m

n

)
×

a

b
=

k

`
×
(
m

n
×

a

b

)
and

k

`
×
(
m

n
+

a

b

)
=

(
k

`
×

m

n

)
+

(
k

`
×

a

b

)

The verification using the Product Formula is routine (and some-

what tedious).

We next explore the many consequences of the Product Formula.
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A first consequence of the Product Formula is the cancellation

phenomenon, e.g.,

6 8× 5

6 9× 13
×

7× 6 9
6 8× 11

=
5

13
×

7

11

i.e., we cancelled the 8 in top and bottom, and cancelled the 9

in top and bottom.

We could do that because, by the Product Formula and the

theorem on equivalent fractions, we have:

8× 5

9× 13
×

7× 9

8× 11
=

(8× 9)× (5× 7)

(8× 9)× (13× 11)
=

5× 7

13× 11

Obviously 5
13 ×

7
11 is also equal to 5×7

13×11.
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By cancellation, any nonzero fraction m
n satisfies

n

m
×

m

n
= 1

Now take an arbitrary fraction k
` and multiply both sides of the

above equality by k
` . Then we get:

k

`
×
(
n

m
×

m

n

)
=

k

`

By the associative law, we have(
k

`
×

n

m

)
×

m

n
=

k

`

Denoting the fraction k
` ×

n
m by Q, this means:

Given any nonzero fraction m
n and any fraction k

` , there

is always a fraction Q so that k
` = Q× m

n .
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The fact that for any fractions m
n and k

` , (mn 6= 0), there is

always a fraction Q so that k
` = Q × m

n , will be basic to the

discussion of fraction division.

We now give a second interpretation of k
` ×

m
n :

k
` ×

m
n is k

` copies of m
n , in the sense of everyday

language.
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If k
` is a whole number, e.g., 5, then by the Product Formula,

5×
m

n
=

5

1
×

m

n
=

5m

n
=

m

n
+ · · ·+

m

n︸ ︷︷ ︸
5

,

which displays “5 copies of m
n ”.

If k
` is a proper fraction, e.g., 3

7, then by the definition of

fraction multiplication, 3
7 ×

m
n is exactly “3

7 copies of m
n ”.
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Finally, if k
` is not a proper fraction, e.g., 35

4 , then we first

write it as a mixed number, 83
4. Suppose the capacity of a bucket

is m
n liters. Does (83

4 ×
m
n ) liters have the meaning of “8 and

3
4 buckets”?

By the distributive law, 83
4 ×

m
n liters is equal to

8
3

4
×

m

n
= (8 +

3

4
)×

m

n
= (8×

m

n
) + (

3

4
×

m

n
)

Now 8 × m
n liters is “8 buckets”, and 3

4 ×
m
n liters is (by

definition) 3
4 of the bucket.

Thus 83
4×

m
n liters is “83

4 buckets” (if the capacity of the bucket

is m
n liters).
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Example. A rod 155
7 meters long is cut into short pieces which

are 21
8 meters long. How many short pieces are there?

︸ ︷︷ ︸
21

8

︸ ︷︷ ︸
21

8

︸ ︷︷ ︸
21

8 · · ·· · ·

Students are taught that the way to do such problems is to

divide. In other words, the answer is

155
7

21
8

But why? How to explain this to students?
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Solution: We do the problem by multiplication, and return to it

at the end after we have done division.

Let us say a
b short pieces make up the rod. By what we just did,

this says

a

b
× 2

1

8
= 15

5

7

But 21
8 = 17

8 and 155
7 = 110

7 , so

a

b
×

17

8
=

110

7
Therefore,

a

b
=

a

b
×

17

8
×

8

17
=

110

7
×

8

17
=

880

119
= 7

47

119
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Comment on 7 47
119.

We know the answer is: “7 47
119 short pieces equal the whole rod”,

i.e.,

7
47

119
× 2

1

8
= 15

5

7

What is the meaning of 47
119? The equation above says

15
5

7
= (7 +

47

119
)× 2

1

8
= (7× 2

1

8
) + (

47

119
× 2

1

8
)

This says, explicitly, that the whole rod consists of 7 short pieces,

each 21
8 meters long, plus 47

119 of a short piece.
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Why bother with such an elaborate definition of multiplication?

Why not just define multiplication by the Product Formula

k

`
×

m

n
=

km

`n
?

Because: (i) This definition of multiplication immediately raises

the question: why not define addition as

k

`
+

m

n
=

k + m

` + n

It may not easy to explain to school students why not.

(ii) Problems such as the one about the rod cannot be done if

multiplication is defined by the product formula with no other

meaning.
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(I) Multiplication of fractions as area. The following theorem

complements our understanding of what fraction multiplication

means.

m

n
×

k

`
= the area of a rectangle with sides

m

n
and

k

`

m
n

k
`

To prove the theorem, we first prove that the area of a rectangle

with sides m
n and k

` is mk
n` . Then we use the Product Formula

to conclude that the latter is m
n ×

k
` .
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It suffices to give the proof of the theorem for the special case

of a rectangle with sides 2
3 and 5

4, because the reasoning in the

general case is no different. Thus we have:

2
3

5
4

Recall that 2
3 is 2 copies of 1

3, and 5
4 is 5 copies of 1

4, as shown:

2
3

5
4
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If we can find out the area of any of the smaller rectangles, such

as the red one R below, then the area of the big rectangle would

just be the sum of (2× 5) of the area of R.

2
3

5
4

R

We will prove that the area of R is 1
3×4. Recall R has sides 1

3

and 1
4.

1
3

1
4

R
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Look at a unit square, i.e., a square all of whose sides have

length 1. Then the unit square is paved by 3×4 = 12 rectangles

all of which are congruent to R, as shown.

1

1

R

On the number line, let the unit 1 be the area of the unit square.

The areas of these 12 rectangles provide a division of the unit 1

into 12 equal parts, so the area of any one of these 12 rectangles

is 1
12. In particular, the area of R is 1

12.
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Now back to the original rectangle with side lengths 2
3 and 5

4.

It is paved by 2 × 5 = 10 rectangles each congruent to R, as

shown.

2
3

5
4

R

Since the area of each of the 10 rectangles is 1
12, as shown above,

the total area of the big rectangle is therefore 10
12 = 2×5

3×4. By the

Product Formula,

area of rectangle of 2
3 by 5

4 =
2× 5

3× 4

This completes the proof.
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(J) Division. To uncover the meaning of the division of frac-

tions, again we look to whole numbers for guidance because

whole numbers are themselves fractions and their division can-

not be different from the division of arbitrary fractions.

We tell students that 24
6 (the preferred notation for “24÷ 6” )

is 4 because 4× 6 = 24, that 48
3 = 16 because 16× 3 = 48,

that 54
18 = 3 because 3× 18 = 54, etc.

We can summarize as follows. If m, n, q are whole numbers

(n 6= 0 and m is a multiple of n), then we say

m

n
= q if m = qn
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Comments (i) Division among whole numbers is nothing more

than a different way of writing a multiplication fact.

(ii) A division m
n among whole numbers m, n cannot be carried

out unless m is a multiple of n. For example, 37
16 is not a division

among whole numbers.

(iii) Among whole numbers, be careful to distinguish between

division and division-with-remainder. Division (like addition,

subtractions and multiplication) is a binary operation, in the

sense that it send two numbers (e.g., 48 and 3) to a third num-

ber (16 in this case). Division-with-remainder is not a binary

operation as it sends 37 and 16 to two numbers, 2 (quotient)

and 5 (remainder).
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For whole numbers m, n (n 6= 0), we say m divided by n is the

whole number q if we already know m = qn.

For the division of a fraction M by another fraction N (N 6= 0),

we simply imitate:

Given fractions M , N , (N 6= 0), we define M divided by N to

be the fraction Q if we already know M = QN . In symbols,
M

N
= Q if M = QN .
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Recall an earlier fact: Given any nonzero fraction m
n and any

fraction k
` , there is always a fraction Q so that k

` = Q× m
n .

Thus given fractions M and N as above, there is always a fraction

Q so that
M

N
= Q.

Conclusion: Unlike whole numbers, it makes sense to divide any

fraction M by a nonzero fraction N , i.e.,MN , because there is

always a fraction Q so that M = QN . (So M
N = Q).
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We repeat: the statement that the division of a fraction M by

a nonzero fraction N is equal to Q, i.e., M
N = Q, is merely a

different way of writing the multiplicative fact that M = QN

for a fraction Q. The fact that there is always such a fraction Q

is guaranteed.

Let M = k
` and N = m

n . If
k
`
m
n

= Q, then k
` = Q × m

n .

Multiplying both sides by n
m, we get

k

`
×

n

m
= Q×

m

n
×

n

m

Thus Q =
k

`
×

n

m
.
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To recapitulate: if Q is the division of a fraction k
` by m

n , then

Q =
k

`
×

n

m

In other words, “to divide, you invert and multiply”, i.e., invert
m
n to get n

m and then use it to multiply k
` .

In America, this used to be considered totally incomprehensible.

Even now (2010), some mathematics educators still try to avoid

teaching the invert-and-multiply rule.

With the concept of division clearly defined, we see why one

should invert and multiply.
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Let us revisit an earlier problem: A rod 155
7 meters long is cut

into short pieces which are 21
8 meters long. How many short

pieces are there?

The detailed discussion of multiplication makes sense of the fact

that if there are Q short pieces in the rod, then 155
7 = Q × 21

8.

By the definition of division, this means

Q =
155

7

21
8

=
110

7
17
8

=
110

7
×

8

7
=

880

119
= 7

47

119

where we have used the invert and multiply rule to compute the

division.

Notice that we have explained why one should divide 155
7 by

21
8.
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Comments: The discussion of division is heavily dependent on

a solid knowledge of multiplication. First, the fact that M
N always

makes sense depends on a fact proved about multiplication. In

the solution of word problems, such as the last problem with

the rod, the possibility of reasoning with the problem to get a

solution again depends on a solid grounding in multiplication.

In mathematics, foundational knowledge is always critical.
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