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How to Read This Monograph

In order to learn mathematics, you will have to read arti-
cles and books in mathematics, such as this monograph. Read-
ing mathematics requires a different skill from reading novels or
magazines, and I want to say a few words about this difference.

First of all, reading mathematics requires sustained effort and
total concentration. It is a slow and painstaking process. This
monograph is not a great candidate for bedtime reading unless
insomnia is not a problem with you. Some mathematics text-
books, especially those written in the last three decades, do a lot
of “padding”, i.e., inserting long passages with little content, and
may have instilled the illusion that skipping is a good policy in
the reading of mathematics. This monograph, by contrast, says
only what needs to be said, so you will have to read every line
and try to understand every line. In fact, often you will find
yourself struggling to understand every word in order to move
forward. On occasion, I do some chatting, but more often than
not I will be talking about straight mathematics. I have made
every effort to supply you with sufficient details to follow the rea-
soning with ease, but I tend not to waste too many words. So
you would have to read everything carefully. In the event that I
believe something can be safely skipped on first reading, I leave
it in indented fine-print paragraphs.

You may have gotten used to the idea that in a mathematics
book you only need to look for soundbites: understand a few
procedures and forget the rest. Not so here. This monograph tells
a coherent story, but the outline of the plot (the procedures)
is already familiar to you. It is the details in the unfolding of
the story (the reasoning) that are the focus of attention here.
Think of yourself as a detective who has to solve a murder case:
you already know going in that someone was killed, so you job is
not just to report the murder but to to find out who did it, how
he did it, and why he did it. It is the details that matter, and
they matter a lot. Learning the details of anything is hard work.
I want to to tell tell you that most mathematicians also regard
learning mathematics as very hard work. It takes time and effort,
and it may mean being stuck for a long time trying to understand
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a particular passage. Nothing good comes easily.
It would be futile, not to say impossible, for me to anticipate

the kind of difficulties each of you may have in reading the mono-
graph. Experience would seem to indicate, however, that most
of you will be surprised by the emphasis in this monograph on
the importance of definitions. A (very) mistaken belief which
unfortunately has gained currency in recent years is that, in the
same way that children learn to speak whole sentences without
first finding out the precise meaning of individual words, students
can also learn mathematics by bluffing their way through logi-
cal arguments and computations without finding out the precise
meaning of each concept. As a result, it is customary in schools
to teach mathematics using mathematical concepts that are only
vaguely understood. Such a belief is completely without
foundation.

Take the concept of a fraction or a decimal, for example. It is
almost never clearly defined. Yet children are asked to add, multi-
ply and divide fractions and decimals without knowing what they
are or what these operations mean, and textbooks contribute to
children’s misery by never defining them either. If we can get
away with this kind of mathematics education, — in the sense
that children learn all they need to learn without the benefit of
clear definitions — fine. But we cannot, because children are
on the whole not learning it. From the standpoint of mathemat-
ics, the first remedy that should be tried is to explain clearly
what these concepts mean, because mathematics by its very na-
ture is a subject where everything is clearly explained. Giving
clear definitions of concepts before putting them to use has the
virtue of taking the guesswork out of learning: every step can
now be explained, and therefore more easily learned. This is the
approach taken here. If you feel uncomfortable with such an ap-
proach, can you perhaps suggest an alternative? In any case, it
is only a matter of time, and maybe a little practice, before you
get used to it. (Smokers also feel extremely uncomfortable at the
beginning of their attempt to quit smoking.) You will discover
that having clear-cut definitions is by far the better way to learn
and to teach mathematics.

At the risk of stating the obvious, I may point out that while
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this monograph addresses serious mathematics, its exposition is
given in ordinary conversational English (or as conversational as
an ESL person can manage it). Why this is worth mentioning is
that there is at present a perception that mathematical writing
should not be couched in ordinary English. The thinking goes
roughly as follows. Because mathematics is somehow differ-
ent, it requires a different kind of writing: fewer words and
more symbols, for instance, and complete sentences are optional.
Whatever the justification of this kind of misconception, the end
result is there for all to see: students stop using correct gammar
and syntax in their homework and exam papers, and a random
collection of symbols out of context usually passes for an expla-
nation. If we want to change such behavior among students, we
would do well to first change this misconception about mathe-
matical writing amongst ourselves. We should never forget that
mathematics is an integral part of human culture. Doing math-
ematics is above all a normal part of human activities, and it
imposes on us the same obligations of normal human communi-
cation as any other endeavor. We must make ourselves under-
stood via the usual channels in the usual manner. The subject
matter requires greater precison of expression than a chat about
the private lives of movie stars, to be sure, but this precision is
something we try to achieve in the context of normal com-
munication, rather than in spite of it. Please keep this in mind
as you read this monograph.
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Chapter Preview

This chapter discusses the whole numbers

0, 1, 2, 3, 4, . . .

with a view towards laying a firm foundation for the treatment of the main
topics of this monograph, namely, fractions and decimals. Notice that we
include 0 among the whole numbers. The main emphasis throughout will
not be on the well-known procedures such as the long division algorithm
— although a precise and correct statement of that algorithm is certainly
difficult to find in the literature — but on the logical reasoning that under-
lies these procedures. In mathematics, be it elementary or advanced, the
first question you should always ask when confronted with any statement is
“Why?”. To try to find out why something is true is a very natural human
impulse. Should you have any doubts, just observe how often pre-school
children raise this simple question with their parents each time they are in-
troduced to something new. As a teacher, your obligation is to keep alive
this sense of curiosity in a child. One way to do this is to ask yourself the
same question at all times and to find out the answers, because it is also your
obligation to answer this question for your students. To this end, this chap-
ter will revisit a very familiar territory, — the arithmetic of whole numbers
— with the goal of explaining everything along the way. Because everything
here is familiar to you, at least as far as procedures are concerned, there is
an inherent danger that as you read this material you would put yourself
on automatic intellectual pilot and cease to think. To get you out of this
counter-productive mode, I would explicitly ask you to put yourself in the
position of a first-time learner and to make believe that you are encountering
every topic for the first time. I realize that it is very difficult to do this be-
cause it requires a suspension of habits. Nevertheless, learning this material
is so crucial for the understanding of the rest of the monograph that I must
ask you to please try your best. Once you get the hang of it, you would not
only acquire an enhanced appreciation of the marvelous qualities of many
things you have always taken for granted, but also find yourself in a much
better position to learn the materials in the later chapters on decimals and
fractions.
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1 Place Value

One cannot understand the arithmetic of whole numbers without a basic
understanding of our numeral system, the so-called Hindu-Arabic numeral
system.1 It became the universal numeral system in the West circa 1600. This
chapter discusses only the whole numbers 0, 1, 2, 3, . . . , and the discussion
of this numeral system will continue in Chapters 4 and 5. We are here mainly
concerned with the fact that a symbol such as 2 in the number 2541 stands
not for 2 but 2000. In fact, 2541 means

2000 + 500 + 40 + 1 ,

i.e., two thousand five hundred and forty-one. As is well-known, the ten
symbols 0, 1, 2, . . . , 9 are called digits. The digit “2” in 2541, being in the
fourth place (position) from the right, stands not for 2 but 2000, i.e., two
thousand, as mentioned above. Similarly, the digit “5” being in the third
place from the right stands not for 5, but for 500, i.e., five hundred, the
“4” in the second place from the right stands for 40, and “1” being in the
right-most place means just 1. Similarly, 64738 denotes

60000 + 4000 + 700 + 30 + 8

and 6001 denotes
6000 + 1,

and so on. These examples illustrate a fundamental and fruitful idea of
representing numbers, no matter how large, by the use of only ten symbols
0, 1, 2, . . . , 8, 9, and by the use of their place in the number symbol to
represent different magnitudes (sizes). Thus the “5” in 125 represents a
completely different order of magnitude from the “5” in 2541, namely, 5 and
500 respectively. The term place value means that the value (magnitude,
size) of each digit depends on its place in the numeral symbol.

1 This is most likely a misnomer. The Chinese had a decimal numeral system since the
first available record of writing dating back to at least 1000 B.C., and the rod numeral
system (also called the counting board numeral system) which has been firmly in place no
later than 200 A.D. is identical to the Hindu-Arabic system except for the ten symbols 0,
1, 2, . . . themselves. Moreover, negative numbers and decimal fractions (see Chapter 4)
have been part of the rod numeral system from the beginning. Because of the long history
of contact between the Indians and the Chinese, it may be difficult to separate what is
Indian and what is Chinese in the Hindu numeral system. The much needed research has
not yet been done.
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In case the idea of place value has become too commonplace to strike you
as noteworthy, let us look at a different numeral system for comparison: in
Roman numerals,2 the number 33 is represented by XXXIII. Observe then
that the three “X’s” are in three different places, yet each and every one
of them stands for 10, not 100 or 1000. Just 10. Similarly, the three “I’s”
occupy different places too, but they all stand for 1, period. Contrast this
with the numeral 111 in our numeral system: the first 1 on the left stands
for 100, the second stands for 10, and only the third stands for 1 itself. You
see the difference.

We have used the concept of addition to explain place value (e.g., 125 =
100+20+5). We could have pretended that you didn’t know what it means
to add whole numbers and give a precise definition, but that would be too
pedantic. People seem to have no problem with understanding this concept.
But we will carefully and precisely define the other three arithmetic opera-
tions in this and the the next two sections, i.e., subtraction, multiplication,
and division.

So far we have not brought out the significance of the fact that only ten
symbols 0, 1, 2, . . . , 8, 9 — instead of twenty or sixty, say — are used to
denote any number, no matter how large. We now fill in this gap. Like
place value, the fact that only ten symbols are used is easy to overlook due
to constant usage. It should be pointed out, therefore, that the great virtue
of the Hindu-Arabic system lies precisely in the systematic and combined
application of both ideas — place value and a fixed small number of symbols
(ten, to be exact) — to generate all the numbers. No other numeral system of
the world (except the rod numeral system of China, see footnote 1) has ever
attained the same degree of symbolic economy. The Babylonians in the B.C.
era, for instance, used a numeral system that used place value only partially,
and the symbolic representation of some numbers became unwieldy. Since
we have already mentioned the Roman numerals, let us use it to illustrate
how complications arise from trying to cope with large numbers when place
value is not systematically applied. The symbol with the largest numerical
value in the Roman system is M , which denotes a thousand, 1000. In order
to write a million, which is a thousand thousand, one would have to write

2 It is well to point out that even in the Roman numeral system, there is a partial place
value at work. For instance “VI” is 6 while ”IV” is 4.
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MMM . . . MM (a thousand times). The Romans were spared this drudgery
apparently because they never had to deal with a large number of this size.
A latter day ad hoc convention to improve on the Roman system is to add
a bar above each symbol to increase its value a thousand times. Thus X
would denote not 10 but 10000, and M would denote a million. Even such
a desperate effort cannot save this numeral system from certain disaster,
however, because it would still be too clumsy. For instance, the simplest way
to write 388999 is

CCCLXXXV IIICMXCIX.

It is conceivable that had Roman numerals been adopted as the universal
numeral system in the modern era, someone would have tried to introduce
symbols for “ten thousand” and “hundred thousand” to simplify the writing
of 388999, but if so, what about writing 60,845,279,037? Presumably, more
symbols would yet be introduced. Would you want to waste your time learn-
ing how to navigate in such a system?

To truly understand place value, we must review the process of counting
from 0, 1, 2, . . . onward in order to see how the whole numbers develop in
the Hindu-Arabic numeral system. After 0, 1, . . . , 8, 9, we have used up
all possible symbols by allowing ourselves only one place (position), the so-
called ones place. To generate the next set of numbers without adding more
symbols, the only option available is to put the same synbols in an additional
place, the so-called tens place, which by convention is to the left of the ones
place. (Keep in mind that this is no more than a convention.) In our minds,
we may think of 0, 1, 2, . . . , 8, 9 as 00, 01, 02, . . . , 08, 09; in other words
the single-digit numbers may be thought of as two-digit ones with 0 in the
tens place.3 From this point of view, the next number after 9 is naturally
10, i.e., since 0 has already been used in the tens place, we replace 0 by its
successor 1. Thus we change the 0 of 09 to 1, and start the counting in the
ones place all over again with 0. The numbers after 09 are then 10, 11, 12,
. . . , 18, 19. The same outlook then guides us to write the number after 19
as 20, because after having used up all the digits in the ones place with the
tens place occupied by 1, it is natural to increase the latter from 1 to 2 and
start the counting in the ones place all over again with 0. Thus the next
numbers are 20, 21, 22, etc. Continuing this way, we get to 97, 98, 99. At

3 There is a further discussion of this issue of having 0’s to the left of a number at the
end of this section.
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this point, we have used up all ten digits in both the tens place and the ones
place. To proceed further, and without introducing more symbols, we will
have to make use of another place to the left of the tens place, the so-called
hundreds place (the third place from the right). Thinking of 99 again as
099, the same consideration then dictates that the next number is 100, to be
followed by 101, 102, etc. Thus we come to 109, and the next is 110, followed
in succession by 111, 112, 113, . . . , 198, 199. After that come 200, 201, 202,
etc., for exactly the same reason.

We pause to note that, between the numbers 0 and 100, if we skip count
by 10’s, then we have 00, 10, 20, . . . , 80, 90, 100. Thus in ten steps of 10’s,
we go from 0 to 100.

By the time we reach 999, again we have used up all ten digits in three
places so that the next number will have to make use of a fourth place, the
so-called thousands place (fourth place from the right). It will have four
digits and it has to be 1000 because 999 can be thought of as 0999 and we
naturally increase the 0 of 0999 to 1 and start counting all over again in the
ones, tens, and hundreds places. In general, whenever we reach the number
99 . . . 9 (n times for any nonzero whole number n), the next number must
be 100 . . . 0 (n zeros). As before, we make the following observation: if we
count from 0 to 100 . . . 0 (n zeros) in steps of 100 . . . 0 (n − 1 zeros) for any
nonzero whole number n, then we have

0 00 . . . 0︸ ︷︷ ︸
n−1

, 1 00 . . . 0︸ ︷︷ ︸
n−1

, 2 00 . . . 0︸ ︷︷ ︸
n−1

, . . . , 9 00 . . . 0︸ ︷︷ ︸
n−1

, 1 000 . . . 0︸ ︷︷ ︸
n

.

In other words, in ten steps of 100 . . . 0 (n− 1 zeros), we get to 1000 . . . 0 (n
zeros) from 0.

Thus we can make three observations about the way counting is done in
the Hindu-Arabic numeral system: for any nonzero whole number n,

(i) an n digit number precedes any number with more than n
digits,

(ii) given two n digit numbers a and b, if the n-th digit (from the
right) of a precedes the n-th digit of b, then a precedes b, and

(iii) the sum of ten 1 00 . . . 0︸ ︷︷ ︸
n−1

’s is 1 00 . . . 0︸ ︷︷ ︸
n

.

In view of the previous comments about adding 0’s in front of a number,
we should add the following clarification: a number is said to be an n digit
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number if, counting from the right, the last nonzero digit is in the n-th place.
For example, 0050000 is a 5-digit number, and 1234 is a 4-digit number. As
illustrations of (i)–(iii): 987 precedes 1123, 65739 prcedes 70001, and

10000 + 10000 + · · ·+ 10000︸ ︷︷ ︸
10

= 100000.

This is the right place to review and make precise the common notion of
“bigger than”. Formally, for two whole numbers a and b, we define b to be
bigger than a (or what is the same, a to be smaller than b) if, in the method
of counting described above, a comes before b. In symbols:

a < b or b > a.

Note that one sometimes says greater than in place of bigger than, and less
than in place of smaller than. If we want to allow for the possibility that b
is bigger than or equal to a, then we write:

a ≤ b or b ≥ a.

Thus 13 ≤ 13 and 7 ≥ 7, but 7 < 13 and 9356 < 11121, etc. In particular,
it is always the case that

if n is a nonzero whole number, then n > 0.

It follows from observations (i) and (ii) that

(iv) if a, b are whole numbers and b has more digits than a, then
a < b, and

(v) if a, b are two whole numbers with n digits and the n-th digit
of a is smaller than the n-th digit of b, then a < b.

For example, 872 < 1304, 100002 > 99817, 803429 < 911104, etc.

We next turn our attention to the phenomenon of “too many zeros”.
Consider a moderate-size number such as the number of seconds in a 365-
day year: 31536000. As we know, this means:

30000000 + 1000000 + 500000 + 30000 + 6000.
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I hope you are already weary of reading and trying to keep track of so many
zeros. It could be much worse, of course. For example, the age of the
universe has now been established (by observations of the Hubble telescope)
to be approximately 14000000000 (9 zeros) years. Back in the third century
B.C., Archimedes estimated that the number of grains that can be packed
into a ball the size of the then-known universe was

1, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000,
000, 000, 000, 000, 000, 000, 000, 000, 000

(63 zeros). Clearly, we must devise a shorthand notation to deal with these
zeros. (In case you haven’t noticed, symbolic notation has always arisen from
the need for better human communication. The Hindu-Arabic numeral sys-
tem — as you have seen — is a good example.)

We need to introduce a new notation and to review an old one. First the
new notation: we write 101 for 10, 102 for 100, 103 for 1000, 104 for 10000,
105 for 100000, and in general, write

10n for 1 00 . . . 0︸ ︷︷ ︸
n

(1)

where n is any whole number > 0. For notation consistency, we also write

100 for 1.

(You may think of 100 as “zero number of 0’s”.) The number n in 10n is
called the power or exponent of 10n, and 10n is read as “10 to the n-th power”.

Next, we recall the definition of multiplication among whole numbers as a
shorthand notation for repeated addition. In other words, 3×5 by definition
5 + 5 + 5 , and in general, if m, k are whole numbers, the definition of mk
(the accepted abbreviation of m× k) is:

mk =

 0 if m = 0
k + k + · · ·+ k︸ ︷︷ ︸

m

if m 6= 0 (2)

Sometimes we refer to mk as the product of m and k, and call m and k the
factors of mk. We call attention to the fact that mk, the multiplication of k
by m, is a shorthand notation for adding k to itself m times, no more and
no less. Please be sure to impress this fact on your students. (See Exercise
1.8.)
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Activity: Consider the following introduction to multiplication
taken from a third grade textbook (the text has the goal of mak-
ing sure that at the end of the third grade, students know the
multiplication table of numbers up to 10):

Look at the 3 strips of stickers shown on the right
(there is a picture of three strips of stickers). There
are 5 stickers on each strip. How can you find the
number of stickers there are in all?
You can find the total number in different ways.

You can write an You can write a
addition sentence. multiplication

5 + 5 + 5 = 15 sentence
3× 5 = 15

Think: 3 groups of 5 Read: Three times
= 15. 5 equals 15.

Answer: 15 stickers.

Do you think this is an ideal way to convey to third graders what
multiplication means?

The definition of multiplication in (2) lends itself to an easy pictorial
representation. For example, 3× 5 , which is 5 + 5 + 5 , can be represented
by three rows of five dots:

• • • • •
• • • • •
• • • • •

Similarly, mk (=

m︷ ︸︸ ︷
k + k + · · ·+ k ) can be represented by m rows of k dots:

• • · · · •
• • · · · •
...

...
...

• • · · · •︸ ︷︷ ︸
k
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There should be no mistaking the fact that the definition in (2) means
exactly that mk is adding k to itself m times, and NOT adding m to itself
k times. We are taking nothing about multiplication for granted, so that if
we wish to say mk actually also equals adding m to itself k times, we would
have to explain why. This will be done later in §2, but for now we don’t need
this distraction.

We now put the new information to use: if n is a nonzero whole number,
then

2× 10n = 1 00 . . . 0︸ ︷︷ ︸
n

+1 00 . . . 0︸ ︷︷ ︸
n

= 2 00 . . . 0︸ ︷︷ ︸
n

3× 10n = 1 00 . . . 0︸ ︷︷ ︸
n

+1 00 . . . 0︸ ︷︷ ︸
n

+1 00 . . . 0︸ ︷︷ ︸
n

= 3 00 . . . 0︸ ︷︷ ︸
n

and in general, for k = 1, 2, . . . , 9,

k × 10n = 10n + 10n + · · ·+ 10n︸ ︷︷ ︸
k

= k 00 . . . 0︸ ︷︷ ︸
n

.

We can now revisit 31536000 and rewrite it as

31536000 = (3× 107) + (1× 106) + (5× 105) + (3× 104) + (6× 103).

(We recall the convention concerning parentheses: do the computations within
the parentheses first.) Similarly, the age of the universe is approximately

14, 000, 000, 000 = 10, 000, 000, 000+4, 000, 000, 000 = (1× 1010)+ (4× 109),

and Archimedes’ number of grains of sand is simply 1063.

In general, a whole number such as 830159 can now be written as

830159 = (8× 105) + (3× 104) + (1× 102) + (5× 101) + (9× 100) .

Such an expression is sometimes referred to as the expanded form of a number,
in this case, 830159. Another example is

2070040 = (2× 106) + (7× 104) + (4× 101).

One advantage of writing a number in its expanded form is that it instantly
reveals the true value of a given digit in the number. For example, the 3
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of 830159 is given on the right as 3 × 104, which immediately signals that
it stands for 30000 and not 3. The notation also gives a clear and precise
location (place) of a digit in the number symbol: the exponent, say k, of
10 in the expanded form of a number indicates precisely that the associated
digit is the (k +1)-th one from the right. Thus the expression 3×104 tells us
that 3 is in the fifth place (from the right) of 830159, and 2 × 106 indicates
the position of 2 as the seventh digit from the right of 2070040. The clear
location of a digit in the expanded form of a number will turn out to be very
helpful in understanding all the arithmetic algorithms in §3.

There is one aspect of the expanded form that may trouble you: why use
the cumbersome notation of 5 × 101 and 9 × 100 in the expanded form of
830159 instead of just 5× 10 and 9 ? The answer is: it all depends on what
we want. When absolute conceptual clarity is called for, we will use 5× 101

and 9×100, such as when we discuss the complete expanded form of a number
later on in §3 of Chapter 4. On the other hand, the less rigid notation of
5× 10 and 9 is sufficient for ordinary purposes, so usually we just write:

830159 = (8× 105) + (3× 104) + (1× 102) + (5× 10) + 9 .

It remains for us to tie up some loose ends in the foregoing discussion.
The first one is that some of you may have encountered another definition of
10n for a nonzero whole number n as

10× 10× · · · × 10︸ ︷︷ ︸
n

,

whereas we have defined 10n in (1) as

10n = 1 00 . . . 0︸ ︷︷ ︸
n

.

We need to clarify this situation by proving that these two numbers are the
same, i.e., we have to prove:

10n = 10× 10× · · · × 10︸ ︷︷ ︸
n

(3)

for all whole numbers n > 0.
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Activity: Prove that (3) is true for n = 1, 2, 3.

You may think that (3) is obvious, but it could only be because you are
used to thinking of n as a small number, say n = 1, 2, 3. But what about
n = 123457321009? Can you even make sense of (3) in that case? Thinking
about these questions will perhaps convince you that we should spend some
time finding out why (3) is true for all values of n.

A second loose end we should tie up is a fact that many of you probably
take for granted, namely, that for any number, e.g., 2,133,070, multiplying
it by 100,000 (say) results in a number that is obtained from 2,133,070 by
tagging the 5 zeros of 100,000 to the right of 2,133,070. That is,

2, 133, 070× 100, 000 = 213, 307, 000, 000

The last loose end we wish to address is the issue of the implicit zeros in
front of any whole number, i.e., 0023 is the same as 23.

Let us first explain why (3) above is true. The reason is twofold:
(a) It is true for n = 1, and
(b) if we introduce the temporary notation that

10[n] = 10× 10× · · · × 10︸ ︷︷ ︸
n

,

then both symbols 10n (= 1 00 . . . 0︸ ︷︷ ︸
n

) and 10[n] are “built up” in exactly the

same way, in the sense that for any nonzero whole number n,

10n+1 = 10× 10n and 10[n + 1] = 10× 10[n]. (�)

Note that using the temporary notation, (3) may be restated as

10n = 10[n] for all whole numbers n > 0.

Let us first make use of (a) and (b) to prove this before we prove (a) and (b)
themselves.

For n = 1, it is quite obvious that both 101 and 10[1] are equal to 10
and therefore equal. Next, why is 102 = 10[2]? This is because

102 = 10× 101 (by first equality of (�) with n = 1)
= 10× 10[1] (by 101 = 10[1])
= 10[2] (by second equality of (�) with n = 1)
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Next we prove 103 = 10[3]:

103 = 10× 102 (by first equality of (�) with n = 2)
= 10× 10[2] (by 102 = 10[2])
= 10[3] (by second equality of (�) with n = 2)

Next we prove 104 = 10[4]:

104 = 10× 103 (by first equality of (�) with n = 3)
= 10× 10[3] (by 103 = 10[3])
= 10[4] (by second equality of (�) with n = 3)

At this point, it is clear that the proof of 105 = 10[5] will follow exactly the
same pattern, and then 106 = 10[6], 107 = 10[7], etc. So we see that (3)
must be true in general for all n > 0.

We now take care of (a) and (b). Clearly (a) does not need any proof.
In order to prove (b), it is enough to prove (�). First recall observation (iii)
made during the earlier discussion of counting in the Hindu-Arabic numeral
system, namely, for any whole number n,

the sum of ten 1 00 . . . 0︸ ︷︷ ︸
n

’s is 1 00 . . . 0︸ ︷︷ ︸
n+1

.

This can be expressed in the present notation as:

10× 10n =

10︷ ︸︸ ︷
1 00 . . . 0︸ ︷︷ ︸

n

+100 . . . 0︸ ︷︷ ︸
n

+ · · ·+ 1 00 . . . 0︸ ︷︷ ︸
n

(by definition of ×)

= 1 00 . . . 0︸ ︷︷ ︸
n+1

= 10n+1

This proves one half of (�), and the other half is easier:

10[n + 1] =

n+1︷ ︸︸ ︷
10× 10× · · · × 10

= 10×
n︷ ︸︸ ︷

10× 10× · · · × 10
= 10× 10[n] (by definition of 10[n])

The proof of (b) (and therefore the proof of (3)) is complete.

We now have another expression of 10n given by (3), namely, 10n =



1 Place Value 17

10× 10× · · · × 10 (n times). This has obvious implications, e.g.,

101 × 103 = 104

102 × 104 = 106

103 × 104 = 107

104 × 105 = 109.

This suggests that in general, if m and n are any whole numbers,

10m × 10n = 10m+n (4)

Because (3) is available to us, we can dispatch (4) easily enough. If m = 0
or n = 0, there is nothing to prove, so we may assume m,n > 0. Then:

10m × 10n = 10× 10× · · · × 10︸ ︷︷ ︸
m

× 10× 10× · · · × 10︸ ︷︷ ︸
n

= 10× 10× · · · × 10︸ ︷︷ ︸
m+n

= 10m+n

So we see that (4) is true.4

It is a point well worth making that, without (3), it is not at all clear why
(4) should be true. Remember, 10m is by definition the number 100 . . . 00 (m
zeros), so the left side of (4) means (by the definition of multiplication in (2))
adding 100 . . . 0 (n zeros) to itself 100 . . . 00 (m zeros) times. If n is a big
number, such as 21334658, and m = 68739, can you be absolutely certain
that adding 100 . . . 0 (21334658 zeros) to itself 100 . . . 00 (68739 zeros) times
would result in the number

1000 . . . 00 ((68739 + 21334658) zeros) ?

So the key point of the proof of (4) is that, by using (3), the evaluation of
the product 10m × 10n is reduced to the counting of the number of copies
of 10’s, which we could do without any difficulty.

4 But see the discussion of the associative law of multiplication in §2.
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We are now in a position to explain the fact that multiplying 2,133,070
by 100,000 gives a number which can be obtained from 2,133,070 by adding
the 5 zeros of 100,000 to the right of 2,133,070. That is,

2, 133, 070× 100, 000 = 213, 307, 000, 000

Note that, appearance notwithstanding, this fact is again not obvious! Ac-
cording to (2), the left side means adding 100,000 to itself 2,133,070 times.
The last 5 digits of the resulting number will be 0’s, to be sure, but why are
the beginning digits exactly 2133070 ? The reason is:

2, 133, 070× 100, 000 = { (2× 106) + (1× 105) + (3× 104)

+(3× 103) + (7× 101) } × 105

= (2× 106 × 105) + (1× 105 × 105) +

(3× 104 × 105) + (3× 103 × 105) +

(7× 101 × 105)

= (2× 1011) + (1× 1010) + (3× 109) +

(3× 108) + (7× 106) (using (4))

= 213, 307, 000, 000

The same reasoning of course allows us to write 213,307,000,000 more simply
as 213, 307 × 106. This is, incidentally, our first substantive application of
the expanded form of a number,5 but it will hardly be the last.

In a similar way, we can now write the number of seconds in a year
as 31, 536 × 103, and the age of the universe as 14 × 109 years. Further-
more, astronomers use as their unit of measurement a light year, which is
5,865,696,000,000 miles. We can now write this number as 5, 865, 696 × 106

miles.

The above reasoning is sufficiently general to show that if N is any nonzero
whole number and k is any whole number, then

N × 10k = the whole number obtained from N by attaching k
zeros to the right of the last digit of N .

5 The discerning reader would have noticed that the above derivation made implicit use
of the distributive law, which will be discussed presently in the next section.
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Finally, we deal with the issue of why the number 830159 is the same
number as 0830159, and is the same number as 000830159, etc. This is very
easy to explain because by the expanded form of a number,

000830159 = 0× 108 + 0× 107 + 0× 106 + 8× 105+
3× 104 + 1× 102 + 5× 101 + 9× 100

= 830159 .

This observation is conceptually important in the understanding of the var-
ious algorithms in §3.

Exercise 1.1 Imagine you have to explain to a fourth grader that 43 ×
100 = 4300. How would you do it?

Exercise 1.2 Imagine you have to explain to a fifth grader why 48 ×
500, 000, 000 = 24, 000, 000, 000. How would you do it?

Exercise 1.3 What number should be added to 946,722 to get 986,722?
What number should be added to 68,214,953 to get 88,214,953?

Exercise 1.4 What number should be added to 58× 104 to get 63× 104?
What number should be taken from 52× 105 to get 48× 105 ?

Exercise 1.5 Which is bigger? 4873 or 12001? 4×105 or 3×106? 8×1032

or 2× 1033? 4289× 107 or 1011? 765,019,833 or 764,927,919? Explain.
Exercise 1.6 Write each of the numbers 6100925730, 2300000000, and

7420000659 in expanded form.
Exercise 1.7 Show that for any nonzero whole number k, 10k > m×10k−1

for any single-digit number m.
Exercise 1.8 The following is the introduction to the concept of multi-

plication taken from a third grade textbook. On the side of the page is the
Vocabulary of the Day:

multiplication an operation using at least two numbers to
find another number, called a product.

product the answer in multiplication.

Then in the text proper, one finds:

How many are in 4 groups of 6?

You can use multiplication to solve the problem.

Use cubes to model the problem and record the answer to the
problem:
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Number of groups | Number in each group | Product
6 × 4 = 24

Further down:

If Helena practices singing 3 hours each day for a week, how
many hours will she practice altogether?

Find: 3× 7
There is more than one way!

Method 1: You can use repeated edition to solve the problem.

3 + 3 + 3 + 3 + 3 + 3 + 3 = 21

Method 2: When the groups are equal, you can also write a
multiplication sentence.

7× 3 = 21.

Write down your reaction to the appropriateness of such an introduction,
and compare your view with those of others’ in your class.

2 The Basic Laws of Operations

This section discusses the basic laws which govern the arithmetic operations
on whole numbers, e.g., why 23 + 79 = 79 + 23, or why (47 × 4) × 5 =
47×(4×5). The key point of such a discussion is always that two collections of
numbers which look superficially different are in fact equal, and this equality
is indicated by the ubiquitous equal sign “=”. Because the equal sign is one
of the sources of confusion in elementary school, let us first deal with this
symbol.

The most important thing to remember is that while the meaning of
the equal sign does get more sophisticated as the mathematics gets more
advanced, there is no reason for us to learn everything about this symbol
all at once! We are starting from ground zero, the whole numbers, so the
meaning of “=” is both simple and unequivocal: two numbers a and b are
said to be equal if we can verify by counting that they are the same number.
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For example, 4 + 5 = 2 + 7 because we count 4 objects and then 5 more
and get 9, whereas we count 2 objects and then 7 more and also get 9, so
this is what 4 + 5 = 2 + 7 means. So be sure to explain to your students —
again and again if necessary — that the equal sign between two collection
of whole numbers does not signify “do an operation to get an answer”. It
merely means:

check the numbers on both sides of the equal sign by counting to
verify that both sides yield the same number.

When we deal with fractions (Chapter 2) and decimals (Chapter 4), then
obviously we can no longer just count. The equality of two fractions or two
decimals will have to be more carefully explained (see §1 of Chapter 2 and
§§1 and 3 of Chapter 4).

Now we come to the main concerns of this section: the associative laws
and commutative laws of addition and multiplication, and the distributive
law. These are without doubt among the most hackneyed items you have
ever come across in mathematics. Your textbooks mention them with a
sense of noblesse obligé and can’t wait to get it over with, presumably they
believe you deserve better. Yet we are going to spend the next twenty
pages discussing exactly these laws without any apology. You are entitled
to know why. There are at least three reasons. The first is that they are
used everywhere, sometimes implicitly without your being aware of them.
To bring home this point, let me just cite two of many instances where
we have used them in §1 in an “underhanded” manner: the proof that
2, 133, 070×100, 000 = 213, 307, 000, 000 implicitly made use of the distribu-
tive law, and the proof of (4) (that 10m× 10n = 10m+n) made implicit use of
the associative law of multiplication, as we shall explain below (see the dis-
cussion above (10)). Because these laws infiltrate every aspect of arithemtic
operations, your awareness of their presence would help you avoid making
incorrect pronouncements. Take, for instance, the simple problem of addi-
tion: 12 + 25 + 18. A quick way to compute this sum is to add 12 and 18
to get 30, and then add 30 to 25 to get 55. Now, some teachers probably
explain this shortcut to their second graders by saying

you just “fly over” the middle number and add the two at both
ends,

but this would be incorrect because by convention,
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in any expression involving arithemtic operations such as 12 +
25 + 18 or 4 × 17 × 25, it is understood that one only adds or
multiplies two neighboring numbers at a time: e.g., 12 + 25, or
25 + 18, or 4× 17, or 17× 25.

To add or multiply two number by “flying over” another number is not a
permissible move in mathematics. But the possibility of computing 12+25+
18 as (12+18)+25 = 30+25 = 55 or 4×17×25 as 17×(4×25) = 17×100 =
1700 will turn out to be entirely correct, because the apparent “flying over”
can be precisely justified by the commutative and associative laws of addition,
and the commutative and associative laws of multiplication, respectively. As
a teacher, you have to be ready with the correct mathematical explanations
for such phenomena when the occasion calls for it.

A second reason is that knowing these basic laws can be helpful. Consider
the following simple problems:

(a) (87169× 5)× 2 = ?
(b) 107 × 6572 = ?
(c) 4× ([25× 18] + [7× 125]) = ?

These computations can be tedious if taken literally. For example, the defi-
nition in (2) of §1 implies that (b) must be computed by adding 6572 to itself
10, 000, 000 times. Yet with a judicious application of the basic laws, these
computations can all be done effortlessly in one’s head so that the answers
are, respectively, 871690, 65,720,000,000, and 5300. See the later discussions
in this section for the explanations.

A final reason, and the most substantive one for our purpose, is that these
laws play a central role in this monograph. They weave in and out of the
five chapters, but are especially prominent in §§3.3–3.4 of Chapter 1, §7.2 of
Chapter 2, and §3 of Chapter 5. For this reason, we take the opportunity to
clarify these foundational matters once and for all.

For addition, the two basic laws are the associative law and the commu-
tative law. These state that, if L, M and N are whole numbers,

(L + M) + N = L + (M + N) (5)

M + N = N + M (6)

These are nothing more than summaries of our collective experiences with
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whole numbers, and we take their truth as an article of faith.6 For
illustrations of some of these experiences, think of the addition of two num-
bers as combining two groups of discrete objects. Then the following pictures
describe the validity of the associative law (5) for L = 2, M = 4 and N = 7:

2︷︸︸︷
� �

4︷ ︸︸ ︷
� � � �︸ ︷︷ ︸ 7︷ ︸︸ ︷

� � � � � � �︸ ︷︷ ︸
2︷︸︸︷

� �︸︷︷︸ 4︷ ︸︸ ︷
� � � �

7︷ ︸︸ ︷
� � � � � � �︸ ︷︷ ︸

It is obvious from the pictures that whether we combine 2 and 4 first and
then combine the sum with 7, or combine 2 with the sum of 4 and 7, we
get 13. Needless to say, the pictorial evidence for the truth of (5) can be
similarly obtained for other numbers. As to the commutative law (6), the
following pictures show that whether we combine 3 objects with 5 objects or
5 objects with 3 objects, either way we get 8 objects:

3︷ ︸︸ ︷
� � �

5︷ ︸︸ ︷
� � � � �

� � � � �︸ ︷︷ ︸
5

� � �︸ ︷︷ ︸
3

Again, the pictorial evidence is not dependent on the particular choice of
M = 3 and N = 5 and would hold equally well for other numbers.

We pause to comment on the equal sign in the context of the associative
law (5) to reinforce the definition of this symbol. What (5) asserts is that the
two numbers (L + M) + N and L + (M + N) are the same. In other words,
we count the left side by first counting the group consisting of L objects and
M objects, and then continue the counting to include the next N objects; we
get one number. For the right side, we begin with L objects, then continue
the counting to include the group consisting of M objects and N objects,
thereby getting a second number. What (5) says is that these two numbers
are the same number.

6 In the proper axiomatic setup, both of (5) and (6) can be proved as theorems.
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One consequence of the associative law of addition is that it clears up the
meaning of such common expressions as 4 + 3 + 7. This triple addition is a
priori ambiguous, because it could mean either (4 + 3) + 7 or 4 + (3 + 7) .
(Note again that adding 4 to 7 before adding the result to 3 is not an option
because, by convention, only neighboring numbers are added.) But (5) tells
us that there is in fact no ambiguity because the two ways of adding are the
same. In general then, (5) leads to the conclusion that we don’t need to use
parentheses in writing the sum of any three whole numbers l + m + n , e.g.,
4 + 3 + 7 . Once this is noted, however, it should not be surprising that
we can draw the same conclusion about the sum of any four whole numbers
l + m + n + p. For example, let us show:

((l + m) + n) + p = l + ((m + n) + p),

where

the convention regarding parentheses is to do the innermost
parentheses first and then systematically work one’s way out. Thus
((l + m) + n) + p means: add l to m, then add the result to n,
and finally add ((l + m) + n) to p.

Let us explain the preceding equality of four numbers by using (5) repeatedly.
Letting L = (l + m), M = n, and N = p in (5), we obtain

((l + m) + n) + p = (l + m) + (n + p). (\)

Now let L = l, M = m, and N = (n + p) in (5) again, then the right side of
(\) becomes

(l + m) + (n + p) = l + (m + (n + p)).

Finally, letting L = m, M = n, and N = p and reading (5) from right to left,
we obtain m + (n + p) = (m + n) + p. Substituting this value of m + (n + p)
into the right side of the preceding equation, we obtain:

(l + m) + (n + p)) = l + ((m + n) + p). (])

Putting (\) and (]) together, we get

((l + m) + n) + p = l + ((m + n) + p),

as desired. Consequently, the meaning of l + m + n + p is also unambiguous
without the use of parentheses.
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Because this kind of abstract, formal reasoning looks so facile and believ-
able, there is the danger that you would take it for granted. Let me therefore
make sure you are aware that there is substance beneath the smooth surface
of formalism. For example, if we let l = 5, m = 2, n = 8 and p = 1 and
compute both ((5 + 2) + 8) + 1 and 5 + ((2 + 8) + 1) directly to compare the
results step-by-step, it is far from obvious why they turn out to be equal at
the end:

((5 + 2) + 8) + 1 = (7 + 8) + 1 = 15 + 1 = 16
5 + ((2 + 8) + 1) = 5 + (10 + 11) = 5 + 11 = 16

This is the first instance that we come across the paradoxical situation that,
by resorting to formal abstract reasoning, an argument for the general case
(which should be more difficult) turns out to be more understandable than
the special case. I want to assure you that this will not be the last instance
where this happens.

The same reasoning shows that

given any collection of numbers, say 26 of them {a, b, c, · · · , y, z},
we can unambiguously write

a + b + c + · · ·+ y + z

without the use of any parentheses and, regardless of the order of
the addition of the numbers,7 the result will be the same.

You cannot fail to notice at this point that in the very first sum of §1, i.e.,
20000 + 500 + 40 + 1, we have already made implicit use of this fact. The
same can be said of the later expression (in §1) that

31536000 = 30000000 + 1000000 + 500000 + 30000 + 6000.

Needless to say, there are many other examples of using the associative law
of addition without mentioning it.

Essentially the same comments apply to the commutative law (6). For
example, if we have three numbers l, m and n, then all six expressions

l + m + n l + n + m m + l + n

m + n + l n + l + m n + m + l
7 Don’t forget the convention that one can only add two neighboring numbers at a time.
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are the same. (Notice that we have already made use of the fact that the
use of parentheses is not needed for the addition of three numbers !) Let us
show, for instance, that l + m + n = n + m + l by applying (6) repeatedly
to two numbers at a time:

l + m + n = m + l + n = m + n + l = n + m + l

Of course the same is true of the addition of any collection of whole numbers:

the order of appearance of the whole numbers in any finite sum is
unimportant.

By now, you undoubtedly appreciate one aspect of the laws (5) and (6):
they are tremendous labor saving devices. If we have five numbers 2, 4, 5 11,
3, then there are 120 ways of adding them (try it!). But we only have to do
one of them, say, ((4 + 5) + 11) + (2 + 3) = (9 + 1) + 5 = 20 + 5 = 25, and
there is no need to do any of the other 119 sums because they would all be
equal to 25. This then justifies the writing of 2 + 5 + 4 + 11 + 3 = 25.

Before proceeding further, it may be time to tie up the loose end left open
earlier as to why it is permissible to first add 12+18 in the sum 12+25+18.
In detail, we are arguing that

12 + 25 + 18 = (12 + 18) + 25.

Observe first of all that the associative law of addition is already used in
writing 12+25+18 without the use of parentheses; we may insert parentheses
any which way we wish. So with this understood, we give the proof:

12 + 25 + 18 = 12 + (25 + 18)
= 12 + (18 + 25) (commutative law)
= (12 + 18) + 25 (associative law)

Exactly as claimed.
We should emphasize that argument of this sort is primarily for your ben-

efit as a teacher and should not be taken as a statement that good teaching
means always explaining details of this kind. What it does say is that, as
a teacher, you should be ready with an explanation. In the fourth or fifth
grade, for instance, there will be occasions for you to introduce this kind of
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reasoning to your students, gently. But a teacher must exercise good judg-
ment in not overdoing anything.

Next we turn to the multiplication of whole numbers as defined in (2) of
§1. We have two similar laws, the associative law of multiplication and the
commutative law of multiplication: for for any whole numbers L, M and N ,

(LM)N = L(MN) (7)

MN = NM (8)

where we have made use of the

notational convention: when letters are used to stand for num-
bers, the multiplication sign is omitted so that “MN” stands for
“M ×N”.

Before discussing the empirical evidence behind (7) and (8), we can
demonstrate their power by applying them to problems (a) and (b) posed at
the beginning of this section. First, (87169×5)×2 is equal to 87169×(5×2),
by the associative law (7). Since 5×2 is 10, the triple product is immediately
seen to be equal to 871690. This disposes of (a). Next, 107×6572 = 6572×107

by the commutative law (8), but the right side is 65,720,000,000 by the con-
clusion we arrived at near the end of §1, to the effect that

N × 10k = the whole number obtained from N by attaching k
zeros to the right of the last digit of N .

This then disposes of (b).
The way we have just dealt with (a) and (b) affords an excellent op-

portunity to remind you of the importance of using definitions exactly as
given. It would have been very easy, for example, for you to equate in your
minds without thinking that 107 × 6572 = 6572 × 107 and then conclude
that the result is 65,720,000,000. What we are doing here is to intentionally
bring the underlying reason (the commutative law (8)) for the validity of
107×6572 = 6572×107 to your attention: by definition, 107×6572 is adding
6572 to itself 10,000,000 times, whereas 6572 × 107 is adding 10,000,000 to
itself 6572 times. They look at first glance, at least, to be quite different
animals. The equality of these two products may not seem important to you
because you have taken it for granted. But if you do not begin to take note
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of the role of (8) in arithmetic, you would not be able to follow the reasoning
in later discussions when the direction of the discussion is determined by (8),
e.g., in §3.4 when we show that the two interpretations of division yield the
same result.

As with the corresponding laws for addition, one may regard (7) and (8)
as summaries of empirical experiences and accept them on faith. Here is the
kind of pictorial evidence that is easily available:

Activity: Verify by direct counting that (8) is valid for M
and N between 1 and 5 inclusive (in symbols: 1 ≤ M, N ≤ 5),
by using rectangular arrays of dots to represent multiplication of
whole numbers as in the discussion below (2) in §1.

Activity: Verify by direct counting that (7) is valid for L, M ,
N between 1 and 5 inclusive (in symbols: 1 ≤ L, M, N ≤ 5), by
using 3-dimensional rectangular arrays of dots to represent triple
products of whole numbers.

For later needs in this monograph (cf. the discussions of fractions and
decimals in Chapters 2 and 4), the representation of multiplication by dots
would be inadequate and it would be more suitable to use a area model.
For example, 3 × 5 is represented as a rectangle with “vertical” length 3
(corresponding to the first number) and “horizontal” length 5 (corresponding
to the second number):

(9)

According to this description of the area model, the product 5× 3 would be
represented by the area of a rectangle with “vertical” length 5 and “horizon-
tal” length 3:
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Because these two rectangles can be obtained from each other by a 90◦ ro-
tation, they have the same area. This then give a pictorial “explanation” of
3 × 5 = 5 × 3. As usual, this discussion is independent of the choice of the
numbers 3 and 5 and would be the same for any two numbers m and n.

In §4, we will present yet another interpretation of the multiplication of
whole numbers that will be important when we come to fractions. We cannot
give this interpretation here because it involves a deeper understanding of
what a “number” is.

A word about “area” would be appropriate: A detailed discussion of this
concept will not be attempted here, nor will it be needed, except to mention
that, by convention, we agree to let the area of the unit square (the square
with each side equal to 1) to be just 1, so that the area of the rectangle in
(9) is 15 because precisely 15 unit squares tile (or pave) the rectangle.

It is worthwhile to point out that the area model of multiplication pro-
vides the mathematical underpinning of the manipulative Base Ten Blocks.
Most likely you have used this manipulative in your classroom to facilitate
the learning of multiplication. We would like to add a passing comment that
while Base Ten Blocks, like other manipulatives, can be helpful, students
should not be allowed to become dependent on it. The real challenge in
a mathematics classroom is still to learn the mathematics, not manipulate
manipulatives.
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The product of three whole numbers l, m and n can be represented as
the volume of a rectangular solid. For example, (3× 5)× 2 is the volume of
the rectangular solid of height 2 built on the rectangle in (9) above:
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Similarly, 3× (5× 2) = (5× 2)× 3 by the commmutative law (8), so that
3× (5× 2) is the volume of the solid of height 3 built on the rectangle with
“verticle” length 5 and “horizontal” length 2:
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The equality of the volumes of these two solids — because one is obtained
from the other by a rotation in space — is then the pictorial evidence for the
truth of (3 × 5) × 2 = 3 × (5 × 2). We remark as in the case of area that
we shall not go into the precise definition of volume but will only use it in
an intuitive way. Again, the concrete numbers 3, 5, and 2 of the preceding
argument can be replaced by any triple of numbers in (7).

Of course, as in the case of addition, there are more general versions of
(7) and (8) for arbitrary collections of numbers. For example, the previous
discussion of the associative law and commutative law for addition ((5) and
(6)) applies to multiplication verbatim, and we know that
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the product of any collection of numbers can be written unam-
biguously without the use of parentheses and without regard to
order.

Thus, for any four numbers, say l, m, n, p, their product can be written in
any of the following 24 ways:

lmnp lmpn lnmp lnpm lpmn lpnm
mlnp mlpn mnlp mnpl mpln mpnl
nlmp nlpm nmlp nmpl nplm npml
plmn plnm pmln pmnl pnlm pnml

and all of them are equal to ((lm)n)p. To drive home the point that first
surfaced in connection with the associative law of addition, let us use four
explicit numbers — say l = 7, m = 3, n = 2 and p = 4 — to illustrate the
nontrivial nature of, for example, mlpn = plnm:

(7× 3)× (2× 4) = 21× (2× 4) = 21× 8 = 168
(4× (7× 2))× 3 = (4× 14)× 3 = 56× 3 = 168 .

At the risk of harping on the obvious, note that none of the intermediate
steps of the two computations look remotely similar, and yet miraculously
the final results are identical.

Now we are in a position to point out in what way the proof of (4) in §1,
namely, 10m × 10n = 10m+n, implicitly made use of the associative law of
multiplication. Properly speaking, its proof should go as follows: Because we
may write a product of m numbers without the use of parentheses, we have
10m = 10× 10× · · · × 10︸ ︷︷ ︸

m

. Similarly, 10n = 10× 10× · · · × 10︸ ︷︷ ︸
n

. Therefore,

10m × 10n = (10× 10× · · · × 10︸ ︷︷ ︸
m

)× (10× 10× · · · × 10︸ ︷︷ ︸
n

)

However, we also know that a product of m + n numbers can be written
without the use of parentheses. Consequently,

10m × 10n = 10× 10× · · · × 10︸ ︷︷ ︸
m+n

,

and the right side is just 10m+n. This shows 10m × 10n = 10m+n.
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Finally, the distributive law connects addition with multiplication. It
states that for any whole numbers M , N , and L,

M(N + L) = MN + ML (10)

Recall in this connection

the convention that in the expression MN + ML, we multiply
the numbers MN and ML first before adding.

Again, like the other laws we have discussed so far, the distributive law
(10) is nothing more than a summary of common sense. Pictorially, we have:

Activity: Directly verify (10) using rectangular arrays of dots
to represent multiplication for 1 ≤ L, M, N ≤ 5.

One can also use the area model: if M = 3, N = 2 and L = 4, then 3(2 + 4)
is the area of the following big rectangle:

On the other hand, 3× 2 is the area of the left rectangle and 3× 4 is the
area of the right rectangle. Thus 3(2 + 4) = (3 × 2) + (3 × 4). Again, the
essence of this picture is unchanged when 2, 3, and 4 are replaced by other
triples of numbers.

Clearly, the distributive law generalizes to more than three numbers. For
example:

m(a + b + c + d) = ma + mb + mc + md

for any whole numbers m, a, b, c and d. This can be seen by applying the
distributive law (10) twice, as follows:

m(a + b + c + d) = m({a + b}+ {c + d})
= m{a + b}+ m{c + d}
= {ma + mb}+ {mc + md}
= ma + mb + mc + md
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Observe that each step in the preceding calculation depends on the earlier
discussion of the legitimacy of writing a + b + c + d without parentheses.

As mentioned earlier, the distributive law is the glue that binds addition
+ and multiplication × together. Despite its obvious importance, it seems
to be the least understood among the three laws and for many, a firm grasp
of this law proves elusive. We urge you to spare no effort in learning to use
it effectively. Spending more time with some of the exercises at the end of
this section may be the answer.

A common mistake in connection with the distributive law is to remember
(10) only in the form of “the left side of (10) is equal to the right side” (i.e.,
M(N + L) = MN + ML) without realizing that (10) also says “the right
side of (10) is equal to the left side” (i.e., MN + ML = M(N + L)). In
other words, given 35 × (72 + 29), most people recognize that it is equal
to (35× 72) + (35× 29), but when (35× 72) + (35× 29) is given instead,
they fail to see that it is equal to 35× (72 + 29). In practice, the latter skill
may be the more critical of the two, and there is an mathematical reason
for this. In terms of the preceding example, (35× 72) + (29× 35) involves
two multiplications ( 35 × 72 and 29 × 35 ) and one addition, whereas
35 × (72 + 29) involves only one multiplication and one addition. Because
multiplication is in general more complicated, it is preferable to multiply as
little as possible and therefore preferable to compute 35× (72 + 29) rather
than (35× 72) + (29× 35). Therefore, to recognize (35× 72) + (29× 35) =
35× (72 + 29) is to be able to achieve a simplification.

To further pin down the last idea, we bring closure to this section by
doing problem (c) posed near the beginning: 4× (25× 18 + 7× 125) = ? We
know 125 = 5× 25, so that 7× 125 = 7× 5× 25 = 25× [7× 5]. Therefore:

4× (((25× 18 + 7× 125) = 4× (25× 18 + 25× [7× 5])))

= 4× 25× (18 + [7× 5]) (distributive law)

= 100× 53 = 53× 100

= 5300.

It should be clear that the whole computation can be done by mental math.
On the other hand, we would be looking at calculating three multiplications
if we don’t appeal to the distributive law: 25× 18, 7× 125, and 4× 1325,
where 1325 = 25× 18 + 7× 125.
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Moral: Be sure you know MN + ML = M(N + L).

We began the discussion of order among whole numbers (i.e., which whole
number is bigger) in §1. We can now conclude that discussion. Recall that
given two whole numbers a and b, the inequality a < b is defined to mean
that in the counting of the whole numbers starting with 0, 1, 2, . . . , the
number a precedes b. For the convenience in logical arguments, we wish
to express this definition differently:

The statement a < b is the same as the statement: there is a
nonzero whole number c so that a + c = b.

Before giving the reason for this assertion, we explain what is meant by the
two conditions being the same. This is a piece of mathematical terminology
that signifies that both of the following statements are true:

If a < b, then there is a nonzero whole number c so that
a + c = b.

Conversely, if there is a nonzero whole number c so that a+c = b,
then a < b.

In concrete situations, both statments are quite obvious. For example,
7 < 12 means that in counting from 7, we have to go 5 more steps before
we get to 12, so 7 + 5 = 12. Conversely, if we know 7 + 5 = 12, then we
must go 5 more steps from 7 before we get to 12, so 7 < 12. The general
reasoning is not much different. Given a < b, we know by definition that
a precedes b, so that in the counting of the whole numbers, after we get
to a, we need to go (let us say) c more steps before getting to b, and c is
not zero. This implies a + c = b. Conversely, suppose a + c = b is given,
with c > 0, then after counting a objects, we have to count c more objects
before we get b objects. So by the definition of “smaller than”, we know a < b.

At this juncture, it is time to introduce the number line in order to give
a geometric interpretation of inequalities. Fix a straight line and designate
a point on it as 0. To the right of 0, mark off equally spaced points and call
them 1, 2, 3, 4, etc., as on a ruler. Thus the whole numbers are now identified
with these equally spaced points on the right side of the line. It is convenient
to single these points out by markers (notches), again as on a ruler, and to
identify the points with the markers. We explicitly call attention to the fact
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that the counting of the whole numbers (as was done in §1) corresponds to
the progression of the markers to the right of the line starting with the initial
marker 0, as shown below. (Until Chapter 5, we will have no need for the
part of the line to the left of 0):

0 1 2 3 4 5 etc.

It follows from the way the number line is drawn that

two whole number a and b satisfy a < b precisely when the
position of a on the number line is to the left of that of b.

Here is a pictorial representation of the situation:

a b

a < b

A further geometric interpretation can be given: given a < b as shown,
suppose a + c = b, then c is precisely the number of markers between a and
b. This follows immediately from the way the whole numbers are positioned
on the number line.

Activity: Verify the last statement about c for some concrete
numbers such as a = 8, b = 21, or a = 86, b = 95.

The following facts about inequalities are well-known:

a + b < a + c is the same as b < c
a 6= 0, ab < ac is the same as b < c

a < b and c < d implies a + c < b + d
a < b and c < d implies ac < bd

(11)

We will only give the explanation for the second assertion (the most
difficult of the four) and leave the rest as exercises.

Activity: Convince yourself that 2a < 2b is the same as a < b,
and that 3a < 3b is the same as a < b. Do it both numerically as
well as on the number line.
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Now the proof of the second assertion. Given a 6= 0. First we prove that

ab < ac implies b < c.

There are three possibilities between the whole numbers b and c : (A) b = c,
(B) c < b, and (C) b < c. We know ahead of time that only one of the three
possibilities holds. In order to show that (C) is the correct conclusion, all
we need to do is to show that both (A) and (B) are impossible. Now if (A)
holds, then ab = ac, which is contrary to the assumption that ab < ac. We
have therefore eliminated (A). If (B) holds, then c < b, and there will be a
nonzero whole number l so that c+ l = b. It follows that a(c+ l) = ab, which
implies ac + al = ab, by the distributive law. But both a and l are nonzero,
so al > 0 and therefore ac < ab. This is also contrary to the assumption that
ab < ac. Hence (B) is also eliminated. It follows that (C) is the only possible
conclusion.

Next, we prove the converse, i.e.,

b < c implies ab < ac.

Now b < c implies that b + l = c for some nonzero l. Thus a(b + l) = ac, so
that ab + al = ac again by the distributive law. Because al is nonzero, the
last equation means ab < ac, as desired. This completes the proof.

Exercise 2.1 Elaine has 11 jars in each of which she put 16 ping pong
balls. One day she decided to redistribute all her ping pong balls equally
among 16 jars instead. How many balls are in each jar? Explain.

Exercise 2.2 Before you get too comfortable with the idea that everything
in this world has to be commutative, consider the following. (i) Let A1 stand
for “put socks on” and A2 for “put shoes on”, and let A1 ◦ A2 be “do A1

first, and then A2”, and similarly let A2 ◦ A1 be “do A2 first, and then A1”.
Convince yourself that A1 ◦A2 does not have the same effect as A2 ◦A1. (ii)
For any whole number k, let B1(k) be the number obtained by adding 2 to
k, and B2(k) be the number obtained by multiplying k by 5. Show that no
matter what the number n may be, B1(B2(n)) 6= B2(B1(n)).

Exercise 2.3 Find shortcuts to do each of the following computations and
give reasons (associative law of addition? commutative law of multiplication?
etc.) for each step: (i) 833 + (5167 + 8499), (ii) (54 + 69978) + 46, (iii)
(25× 7687)× 80, (iv) (58679× 762) + (58679× 238), (v) (4× 4× 4× 4)×
(5 × 5 × 5 × 5 × 5), and (vi) 64 × 125, (vii) (69 × 127) + (873 × 69), M
(viii) (((([125× 24]× 674) + ([24× 125]× 326))).
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The purpose of the last exercise is not to get you obsessed with tricks in
computations everywhere. Tricks are nice to have, but they are not the main
goal of a mathematics education, contrary to what some people would have
you believe. What this exercise tries to do is, rather, to make you realize that
the basic laws of operation discussed in this section are more than empty,
abstract gestures. They have practical applications too.

Exercise 2.4 Prove the remaining three assertions in (11).
Exercise 2.5 Prove that both assertions in (11) remain true if the strict

inequality symbol “<” is replced by the weak inequality symbol “≤”.
Exercise 2.6 Let m and n be a 3 digit number and a 2 digit number,

respectively. Can mn be a 4 digit number? 5 digit number? 6 digit number?
7 digit number?

Exercise 2.7 Let m and n be a k digit number and an ` digit number,
respectively, where k and ` are nonzero whole numbers. How many digits
can the number mn be? List all the possibilities and explain.

Exercise 2.8 Suppose you have a calculator which displays only 8 digits
(and if you have a fancy calculator, you will be allowed to use only 8 digits!),
but you have to calculate 856164298 × 65. Discuss an efficient method to
make use of the calculator to help with the comutation. Explain. Do the
same for 376241048× 872.

Exercise 2.9 Let x and y be two whole numbers. (i) Explain why (x +
y)(x + y) = x(x + y) + y(x + y). (ii) Explain why (x + y)(x + y) =
xx +xy + yx + yy. (iii) Explain why (x + y)(x + y) = x2 + 2xy + y2, where
as usual x2 means xx and y2 means yy.

Exercise 2.10 Let x and y be two whole numbers. Explain why (x −
y)(x + y) = (x− y)x + (x− y)y.

Exercise 2.11 The following is how a fourth grade textbook introduces
the associative law of multiplication.

Ramon buys yo-yos from two companies, He buys six different
styles from each company and gets each style in 4 different
colors. How many yo-yos does he buy in all?

Find 2×6×4 to solve. You can use the associative property
to multiply three factors. The grouping of the numbers does not
affect the answer.

Step 1: Use parentheses to show grouping.

2× 6× 4 = (2× 6)× 4
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Step 2: Look for a known fact to multiply.

2× 4 is a known fact.

Step 3: Use the Commutative Property to change the order, if
necessary.

(2× 6)× 4 = (6× 2)× 4

= 6× (2× 4)

= 6× 8 = 48

Write down your reaction to such an introduction, and compare with
those of others’ in your class.

3 The Standard Algorithms

By an algorithm, we mean an explicitly defined, step-by-step computational
procedure which has only a finite number of steps. The purpose of this
section is to describe as well as provide a complete explanation of the so-
called standard algorithms for the four arithmetic operations among whole
numbers.

At the outset, we should make clear that there is no such thing as the
unique standard algorithm for any of the four operations +, −, ×, ÷, be-
cause minor variations in each step of these algorithms not only are possible,
but have been incorporated into the algorithms by various countries and even
different ethnic groups. The underlying mathematical ideas are however al-
ways the same, and it is these ideas that are the focus of our attention here.
For this reason, the nomenclature of “standard algorithms” is eminently jus-
tified. This is not to say that the algorithms themselves — the mechanical
procedures — are of no interest. On the contrary, they are, because compu-
tational techniques are an integral part of mathematics. Furthermore, the
conciseness of these algorithms, especially the multiplication algorithm and
the long division algorithm, is a marvel of human invention. One of the goals
of this section is to make sure that you come away with a renewed respect for
them. Nevertheless, we shall concentrate on the mathematical ideas behind
them as you are likely to be less familiar with these ideas.
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A fundamental question about these arithmetic algorithm is why you
should bother to learn them. Take a simple example: what is 17 × 12 ?
By definition, this is 12 added to itself 17 times and one school of thought
would have you count 17 piles of birdseed with 12 in each pile. But what
about 34, 609 × 549, 728 ? Because brutal counting is less than attractive
for numbers of this magnitude, a shortcut is clearly called for. This is where
algorithms come in: they provide a shortcut in lieu of direct counting. There-
fore at the outset, the efficiency of an algorithm — how to get the answer
as simply and quickly as possible — is an overriding concern. But one could
push this argument further. Why worry about efficiency if pushing buttons
on a calculator may be the most efficient way to make a computation such as
34, 609 × 549, 728 ? There are at least two reasons why a strict reliance on
the calculator is inadequate. First, without a firm grasp of the place value of
our numeral system and the mathematical underpinning of the algorithms, it
would be impossible to detect mistakes caused by pushing the wrong buttons
on the calculators.8 A more important reason is that learning the reasoning
behind these efficient algorithms is a very compelling way to acquire many
of the fundamental skills in mathematics, including abstract reasoning and
symbolic manipulative skills. These are skills absolutely essential for the
understanding of fractions and decimals in the subsequent chapters. Much
more is true. The present crisis in the learning of algebra in schools would
have been largely eliminated if students were properly taught the logical rea-
soning behind the algorithms in the upper elementary and middle schools.9

Please keep all this in mind when you learn the mathematics surrounding
the algorithms and especially when you teach them to your students.

There is a kind of leitmotif all through the algorithms, which can be
roughly described as follows:

To perform a computation with an n digit number, break the com-
putation into n steps so that each step involves only one digit of
the given number.

The precise meaning of this statement will be made clear with each algorithm,
but the overall idea is that those simpler single-digit computations can all be

8 I trust that it would be unnecessary to recount the many horror stories related to
finger-on-the-wrong-button.

9 This conclusion is based on the fact that, in mathematics, learning does not take place
without a solid foundation.
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carried out routinely without thinking. The last sentence calls for some com-
ments as it runs counter to some education theories which a segment of the
education community holds dear. The fact that a crucial part of mathematics
rests on the ability to break down whole concepts into discrete sub-concepts
and sub-skills must be accepted if one hopes to learn mathematics. This is
the very nature of mathematics, and no amount of philosophical discussion
would change that. A second point concerns the uneasiness with which some
educators eyes the routine and nonthinking nature of an algorithm. It is the
very routineness that accounts for the fact that these algorithms get used; it
guarantees an easy way to get results. If we teach these algorithms without
emphasizing their routine character, we would be falsifying mathematics.

As to the non-thinking aspect of these algorithms, there is at present
a perception that if anything can be done without thinking, then it does
not belong in a mathematics classroom. This is wrong. If mathemati-
cians are forced to do mathematics by having to think every step of the way,
then little mathematics of value would ever get done and all research math-
ematics departments would have to close shop. What is closer to the truth
is that deep understanding of a topic tends to reduce many of its sophis-
ticated processes to simple mechanical procedures. The ease of executing
these mechanical procedures then frees up mental energy to make possible
the conquest of new topics through imagination and mathematical reasoning.
In turn, much of these new topics will (eventually) be once again reduced
to routine or nearly routine procedures, and the process then repeats itself.
There is nothing to fear about the ability to execute a correct mathematical
procedure with ease, i.e., without thinking. More to the point, having such
an ability in the most common mathematical situations is not only a virtue
but an absolute necessity. What one must fear is limiting one’s mastery of
such procedures to only the mechanical aspect and ignoring the mathemat-
ical understanding of why the procedures are correct. A teacher’s charge in
the classroom is to promote both facility with procedures and the ability to
reason. In the teaching of these algorithms, we should emphasize both their
routine nature as well as the logical reasoning that lies behind the procedures.

The preceding discussion is about the kind of mathematical understand-
ing teachers of mathematics must have in approaching the basic arithmetic
algorithms. The pedagogical issue of how to introduce these algorithms to
children in the early grades is something that lies outside the scope of this
monograph and needs to be treated separately. There is however a discus-
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sion of this issue concerning the addition and multiplication algorithms in
the article, “Basic skills versus conceptual understanding”, in the Fall 1999
issue of the American Educator, p. 14; it is also accessible at

http://www.aft.org/american educator/fall99/wu.pdf

3.1 An addition algorithm

Given any two numbers, say 4 and 7, to find the sum 4+7 is a simple matter
in principle: start with 4, we count 7 more times until we reach 11, and that
would be the sum. There is a graphic representation of this in terms of the
number line:

-

4
-

7

0 4

4 + 7

11

Similarly, here is a graphic representation of 9 + 5 = 14:

9
- -

5

9 + 5

0 5 9 14

For many purposes, it is more convenient to take a slightly different point
of view. Denote the line segment from 0 to 7 by [0, 7]. It is natural to call 7
the length of [0, 7]. Simlarly, we define the length of the segment [0, n] from
0 to the whole number n to be n. We can now define the length of more
general line segments by treating the number line as an “infinite ruler”, as
follows. For any line segment [x, y] from a point x to another point y on the
number line, — where it is understood from the notation [x, y] that y is to
the right of x — we say the length of [x, y] is n for a whole number n if,
by sliding [x, y] to the left along the number line until x rests at 0, the right
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endpoint y rests at n. With the notion of length at our disposal, we can
describe another way to find the sum of 4 +7: concatenate the two segments
[0, 4] and [0, 7] in the sense of placing them on a straight line end-to-end,
then the length of the concatenated segment is the sum of 4 + 7. Thus:

︸ ︷︷ ︸
[0,4]

︸ ︷︷ ︸
[0,7]

11� -

Notice that concatenating the left endpoint of [0, 7] to the right endpoint of
[0, 4] corresponds exactly to “start with 4, we count 7 more times until we
reach 11”.

Similarly, we can concatenate [0, 9] and [0, 5] to get 9 + 5 = 14:

︸ ︷︷ ︸
[0,9]

︸ ︷︷ ︸
[0,5]

14� -

This discussion continues to be meaningful when 4 + 7 and 9 + 5 are re-
placed by a + b for any a + b where a and b are whole numbers. In principle
then, addition is simple.

Now look at 4502+263. It can be rather trying to count 263 times start-
ing from 4502 before getting an answer. (Try it!) However, a special feature
of the Hindu-Arabic numeral system, namely, the fact that its numerals “al-
ready come pre-packaged”, renders such a desperate act completely unneces-
sary. Let us use a simpler example of addition to explain what is meant by
the phrase in quotes. Suppose we have two sacks of potatoes, one containing
34 and the other 25, and we want to know how many potatoes there are
altogether. One way is to dump the content of both sacks to the ground and
start counting, which is what we called “the desperate act”. But suppose
upon opening the sacks, we find that in each sack, the potatoes come in bags
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of 10: the sack of 34 potatoes is put in 3 bags of 10 each plus 4 stray ones,
while the sack of 25 is put in 2 bags of 10 each plus 5 stray ones. Therefore
an intelligent way to count the total number of potatoes is to first count the
total number of bags of 10’s (3 + 2 is 5, so there are 5 bags of 10 each), and
then count the stray ones separately (4 + 5 is 9, and so there are 9 extra).
Thus the total is 5 bags of 10 each, plus 9 extra ones, which puts the total at
59. This is exactly the idea behind the addition algorithm because
the number 3 in 34 — being in the tens place — signals that there are 3 tens,
and the 2 in 25 signals that there are 2 tens. Adding 2 and 3 to get 5, we
know that there are 5 tens in the total. Adding 4 to 5 then rounds off the
whole sum, and we get 34 + 25 = 59.

The standard addition algorithm is nothing more than a formal elabora-
tion of this simple idea. It says:

The sum of two whole numbers can be computed by lining them up
digit-by-digit, with their ones digits in the extreme right column,
and adding the digits column-wise, starting with the right column
and moving to the left; in case no digit appears in a certain spot,
assume that the digit is 0.

Schematically then for 4502 + 263:

4 5 0 2
+ 2 6 3

4 7 6 5
(12)

Thus starting from the ones digit (right column), we have: 2+3 = 5, 0+6 = 6,
5 + 2 = 7, and since there is no digit in the spot below the number 4, the
algorithm calls for putting a 0 there and the sum is 4+0 = 4 for that column.
Observe how the addition algorithm illustrates the leitmotif mentioned near
the beginning of the section: the addition 4205 + 263 is reduced to the
calculation of four single-digit additions: 4 + 0, 5 + 2, 0 + 6, and 2 + 3.

The following discussion of addition will be restricted to this particular
version of the algorithm. In due course, we shall discuss why the algorithm
moves from right to left, which some people consider unnatural.

First of all, when this algorithm is taught in the classroom, the main
emphasis is usually not on simple cases such as 4502 + 263 where the sum of
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the digits in each column remains a single-digit number, but on cases such
as 69 + 73 where the process of “carrying” to the next column takes place.
In this monograph, we reverse the emphasis by spending more time on the
simple case before dealing with the more complicated case. There is a good
reason for this decision: it is in the simple case that one gets to see with
unobstructed clarity the main line of the logical reasoning, and when that
is well understood, the more complicated case — which is nothing but the
simple case embellished with a particular technique — tends to follow easily.

To underscore the fact that each step of the algorithm is strictly limited to
the consideration of a single digit without regard to its place value, consider
865 + 32:

8 6 5
+ 3 2

8 9 7
(13)

Notice that the third column from the right of (12) and the rightmost column
of (13) are identical:

5
+ 2

7
(14)

Yet, in terms of place value, we know that in the context of (12), the addition
fact in (14) actually stands for

5 0 0
+ 2 0 0

7 0 0

because the 5 in 4502 stands for 500 and the 2 in 263 stands for 200. By
contrast, in the context of (13), the addition fact in (14) is literally true: it
is just 2+5 = 7. As far as the algorithm is concerned, however, the addition
fact (14) is carried out in exactly the same way in (12) or (13), without regard
to this difference.

Would this digit-by-digit feature of the algorithm corrupt students’ un-
derstanding of place value? Not if students are made to understand that,
far from a defect, this digit-by-digit feature is a virtue for the purpose of
easy computation. Had the procedure of the algorithm treated each digit
differently according to its place value, the algorithm would lose much of its
simplicity: imagine that for the ones place you do one thing, for the tens
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place you do another, and for the hundreds place you do yet another, etc.
How efficient can the algorithm be in that case? Moreover, in learning the
procedural aspect of the algorithm, students should at the same time achieve
the understanding that the algorithm is correct precisely because of place
value considerations. To see this, recall:

865 = 8× 102 + 6× 101 + 5× 100

32 = 0× 102 + 3× 101 + 2× 100 (15)

(Notice that we have made use of the trivial fact 32 = 032 mentioned at the
end of §1.) Recall an earlier comment made also in §1 about the occasional
advantage of explicitly writing down all the powers of 10 in the expanded form
of a number. We will see how this more clumsy notation lends conceptual
clarity to what we have to do. We add these two equations. The left sides
add up to 865 + 32, of course. What about the right sides? We can add
“vertically”:

8× 102 + 0× 102 = (8 + 0)× 102 (= 8× 102)
6× 101 + 3× 101 = (6 + 3)× 101 (= 9× 101)
5× 100 + 2× 100 = (5 + 2)× 100 (= 7× 100) ,

where we have made use of the distributive law (10) three times in succession.
(It may be instructive for you to read the exhortation near the end of §2 about
the need to know that MN + ML = M(N + L). Because the left side of
the sum of equations equals the right side of this sum, we get

865 + 32 = (8 + 0)× 102 + (6 + 3)× 101 + (5 + 2)× 100

(= 8× 102 + 9× 101 + 7× 100

= 897 ) ,
(16)

which is seen to be a parallel description of the addition algorithm in (13).
We now see that

the addition algorithm is the method of adding two numbers by
adding the digits corresponding to the same power of 10 when the
two numbers are written out in their expanded forms.

In particular, we see why the algorithm calls for replacing the empty spot
under 8 with 0: it is none other than an abbreviated statement of 8 + 0 = 8
in (16). The reasoning is valid in general and is by no means restricted to
this special case of 865 + 32.
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Activity: Give a similar explanation of (12).

The preceding explanation of the addition algorithm — by this we mean
the main ideas but not necessarily the precise notational formalism — would
be adequate in most classroom situations. It is important to realize, however,
that there are subtle gaps in the reasoning above, so that in the interest of
a complete understanding, we proceed to fill in these gaps.

From (15), we have:

865 + 32 = {8× 102 + 6× 101 + 5× 100}+
{0× 102 + 3× 101 + 2× 100}

As noted in connection with the associative and commutative laws of addition
(5) and (6), we can ignore the braces and rearrange the order of summation
of these six terms. Thus,

865 + 32 = {8× 102 + 0× 102}+ {6× 101 + 3× 101}+
{5× 100 + 2× 100}

It is at this point that we can apply the distributive law (10) to conclude
(16). Thus what we said above about “adding vertically” in (15) is in fact an
application in disguise of the associative and commutative laws of addition.

Pedagogical Comments: Should one emphasize discussion of the
above type in an elementary school classroom? Few questions in education
can be answered with absolute certainty, but there are at least two reasons
why an elaborate discussion of the associative law and commutative law in,
say, K–5 might interfere with a good mathematics education. First, such
explanations tend to be somewhat tedious and students might lose interest
and, second, such details might obscure the main thrust of the argument
which is encapsulated in (16). As a teacher, however, you owe it to yourself
to understand this kind of details. This is because, on the one hand, intel-
lectual honesty demands it and, on the other, you must be prepared in case
a precocious youngster presses you for the complete explanation. End of
Pedagogical Comments.

For the case of 865 + 32, it is possible to give a naive explanation of the
addition algorithm in terms of money. Imagine that someone has

8 hundred-dollar bills,
6 ten-dollar bills, and
5 one-dollar bills,

thus $865 altogether. Later she acquires another stack of bills consisting of
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3 ten-dollar bills, and
2 one-dollar bills,

thus another $32. To find out how much money she has altogether, she
decides on the following strategy: collect all the hundred-dollar bills, then
collect all the ten-dollar bills, and finally collect all the one-dollar bills. She
finds that she now has

8 (= 8 + 0) hundred dollar bills
9 (= 6 + 3) ten-dollar bills
7 (= 5 + 2) one-dollar bills

So she has $897. Exactly as in (13).
Before proceeding further, the question must be raised as to why it is not

sufficient to understand the addition algorithm in terms of money alone, and
why we must go through the previous mathematical explanation. The most
superficial answer is that, because the algorithm is about numbers and not
specifically about money, we should be able to offer an explanation that is
valid in all contexts besides money. For example, why does this explanation
also explain the fact that 865 crabs + 32 crabs = 897 crabs, or 865 stars
+ 32 stars = 897 stars ? By the time you have found the answer, it is most
likely the case that you have also found a purely mathematical explanation
along the line of (16). On a deeper level, we have just seen how the math-
ematical explanation brings out issues that are hidden in the explanation
using money, such as place value and the basic laws of operations of §2 .
The mathematical explanation brings a deeper understanding not only of
the algorithm itself but also of these related issues, as we begin to see the in-
terconnectedness of these seemingly disparate concepts. Moreover, we want
an explanation that is sufficiently robust to be applicable to all numbers big
or small. In this regard, it would be extremely clumsy to explain the addition
50, 060, 001 + 870, 040 in terms of money, but relatively easy to do so by the
mathematical method above, as we shall see.

Let us now take up the issue of “carrying” from one column to the next.
From our point of view, this issue is no more than a minor refinement of all
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that has been said before. Consider 68 + 59:

6 8
5 9

+ 1 1

1 2 7

(17)

The difference from the previous situations is that, in the right column, the
sum of digits, i.e., 8 + 9, is no longer a single digit number but is 17. The
algorithm calls for carrying the tens digit “1” of 17 to the next column on
the left. This is indicated by the small 1 under 5, but in some other conven-
tions, the 1 is entered above 6 instead; such minor notational differences are
irrelevant to the mathematics under discussion. Then in adding the num-
bers in the tens column, this 1 is taken into account and result in the sum
6 + 5 + 1 = 12, which is again not a single digit number. In like manner
then, the “1” of 12 is carried to the (invisible) hundreds column. Because
there is no other number in the hundreds column, the last 1 is recorded in
the hundreds column and we get 127 as the final sum.

The basic explanation is the same as before, so it suffices to consider only
the new features here. Let us begin with an explanation in terms of money.
Imagine that you have a stack of bills consisting of

6 ten-dollar bills, and
8 one-dollar bills,

and another stack consisting of

5 ten-dollar bills, and
9 one-dollar bills.

You decide to count the two stacks by counting the ten-dollar bills and the
one-dollar bills separately. Thus you have

11 (= 6 + 5) ten-dollar bills, and
17 (= 8 + 9) one-dollar bills.

But 17 one-dollar bills is the same as 1 ten-dollar bill plus 7 one-dollar bills.
So you trade 10 of your one-dollar bills for a ten-dollar bill and you now have

12 (= 11 + 1) ten-dollar bills, and
7 one-dollar bills.

}
(18)
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But we can also trade in 10 of the 12 ten-dollar bills for 1 hundred dollar
bill, thereby getting

1 hundred-dollar bill,
2 ten-dollar bills, and
7 one-dollar bills.

 (19)

This line of reasoning not only arrives at the same answer, which is 127, but
also exhibits the fact that (18) corresponds exactly to carrying the 1 to the
tens place in (17), while (19) corresponds to carrying the 1 to the hundreds
place in (17).

Finally, we give a purely mathematical explanation of (17). We preface
the explanation with the comment that, having given the detailed reasoning
in supported of the computation (13) citing the associative, commutative,
and distributive laws, we will not overwhelm you with such details from now
on but will instead ask you to be aware of their implicit presence at every
turn. With this understood,

68 + 59 = (6× 101 + 8× 100) + (5× 101 + 9× 100)
= (6× 101 + 5× 101) + (8× 100 + 9× 100)

Applying the distributive law, we get

68 + 59 = (6 + 5)× 101 + (8 + 9)× 100

= (10 + 1)× 101 + (10 + 7)× 100

= (1× 102) + (1× 101) + (1× 101) + (7× 100)
= (1× 102) + ([1 + 1]× 101) + (7× 100).

the last line explicitly shows how the 1 is carried to the next column to the
left, twice, in (16). So 68 + 59 = 127.

This is the right time and place to tie up a loose end. It was mentioned
after (12) that there is a reason for the algorithm to move from right to left.
The reason is one of economy of means : we want to simplify the algorithm
to the utmost. Consider the preceding problem of 68 + 59. Suppose we
want to embark on a different addition algorithm by starting instead with
the leftmost column and move to the right. Then the first step would be:

6 8
+ 5 9

1 1
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Here we have carried the 1 to the hundreds column. In the next step, we add
the right column and get 17. This can be recorded in the next row again in
accordance with the place value of 17 thus:

6 8
+ 5 9

1 1
1 7

Then we add these two numbers and arrive at 127 as before:

6 8
+ 5 9

1 1
1 7

1 2 7

The first comment is that this algorithm is certainly correct. Moreover,
the proper execution of this algorithm requires the same technique of car-
rying the 1 to the next column, the only difference being that, whereas the
carrying in (17) is recorded under 59, here it is done by using two extra
rows. Comparing the last computation with (17) reveals one virtue of (17):
it is compact, and this is the decisive factor. A beginner might welcome the
left-to-right algorithm at the beginning, but once familiarity sets in, (17) is
the algorithm of choice for most people. All the more so when the addition
involves numbers with many digits.

A passing comment should be made about the “unnaturalness” of making
children do things from right to left. One must put things in perspective. The
fact is that children learn to do many things that they consider unnatural.
Brushing teeth is one of them, and staying neat and clean is another. More-
over, inducing violent actions on a video screen by manipulating a joystick
is quite possibly one of the most unnatural things imaginable for children.
Yet, children all over the world welcome video or computer games with open
arms. Are we then to believe that they cannot learn to calculate from right
to left even after we explain to them why it is important that they do?

We have thus far discussed the addition algorithm in terms of concrete
numbers for the simple reason that it is very difficult, notationwise, to discuss
this and other whole number algorithms using abstract notation. Neverthe-
less, we hope that the generality of the underlying mathematical reasoning
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comes through so that, faced with other situations, you can both execute this
algorithm correctly and know how to justify it. Just to be sure, we will discuss
two more examples for further illustration. First, consider 165+27+83+829 .
(Recall that this makes sense without parentheses because of the associative
law.) Here is how the algorithm works out:

1 6 5
2 7
8 3

8 2 9
+ 1 2 2

1 1 0 4

(20)

The precise description of the procedure is nothing new: again we add
column-by-column, and move from right to left. Start with the right col-
umn and add: 5 + 7 + 3 + 9 = 24, so we carry the 2 to the next column
(to the left). Next, (6 + 2 + 8 + 2) + 2 = 20, so we again carry the 2 to the
next column. Finally, in the hundreds column: (1 + 8) + 2 = 11, and we
carry the 1 to the thousands column. Because there is no other number in
the thousands column, we record the 1 in the final sum.

The explanation is the following:

165 + 27 + 83 + 829 = (1× 102) + (6× 101) + (5× 100)+
(2× 101) + (7× 100)+
(8× 101) + (3× 100)+

(8× 102) + (2× 101) + (9× 100)
= (9× 102) + (18× 101) + (24× 100)

But 24× 100 = (2× 101) + (4× 100), so by the distributive law:

165 + 27 + 83 + 829 = (9× 102) + (18× 101) + (2× 101) + (4× 100)
= (9× 102) + ([18 + 2]× 101) + (4× 100)

This explains why we carried the 2 to the tens column in (20). Next, [18 +
2]× 101 = 2× 102. Hence,

165 + 27 + 83 + 829 = (9× 102) + (2× 102) + (4× 100)
= ([9 + 2]× 102) + (4× 100)

This explains why we carried the 2 to the hundreds column in (20). In
any case, it is now clear that because [9 + 2] × 102 = [10 + 1] × 102 =
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(1× 103) + (1× 102), we obtain:

165 + 27 + 83 + 829 = (1× 103) + (1× 102) + (4× 100) = 1104 ,

exactly as in (20).

As a final example, let us use the addition algorithm to compute 50, 060, 001+
870, 040 and at the same time give the explanation.

5 0 0 6 0 0 0 1
8 7 0 0 4 0

+ 1

5 0 9 3 0 0 4 1

The explanation is simple:

50, 060, 001 + 870, 040 = {5× 107 + 6× 104 + 1× 100}+
{8× 105 + 7× 104 + 4× 101}

= (5× 107) + (8× 105) + ([6 + 7]× 104)+
(4× 101) + (1× 100)

= (5× 107) + (8× 105)+
([10 + 3]× 104) + (4× 101) + (1× 100)

Look at the second and third terms of the right side: (8× 105) + ([10 + 3]×
104) = ([8 + 1] × 105) + (3 × 104). This then accounts for carrying the 1 to
the column containing 8. Now, we obtain:

50, 060, 001 + 870, 040 =

(5× 107) + (9× 105) + (3× 104) + (4× 101) + (1× 100) .

As we mentioned above, an explanation of this addition problem using money
would be both clumsy and irrelevant.

Exercise 3.1 Explain to a fourth grader why the addition algorithm for
57032 + 2845 is correct, first using the method of (16), then using money.

Exercise 3.2 Explain to a fourth grader why the addition algorithm
826 + 4907 is correct, with and without the use of money.

Exercise 3.3 Do the addition 67579+84937 both ways, from left to right,
and from right to left, and compare.
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Exercise 3.4 Compute 123+69+528+4 by the addition algorithm, and
give an explanation of why the computation is correct.

Exercise 3.5 Compute 7826+7826+7826 by the addition algorithm, and
give an explanation of why the computation is correct.

Exercise 3.6 Compute 670309+95000874 by the addition algorithm, and
give an explanation of why the computation is correct.

3.2 A subtraction algorithm

Subtraction has to be understood in terms of addition. Thus 37 − 19 is by
definition the number so that, when added to 19, yields 37. Thus:

(37− 19) + 19 = 37.

So adding 19 undoes the effect of subtracting 19. Similarly, if m and n are
whole numbers, and m < n, then n−m is by definition the number so that,
when added to m , yields n. Thus,

(n−m) + m = n (21)

So again, adding m undoes the effect of subtracting m. It also means that
in order to check whether a number x is equal to n − m, it is the same as
checking whether

x + m = n.

In particular, to verify a statement about subtraction, it suffices to verify
a statement about addition. This simple fact will be seen to be extremely
useful. On an intuitive level, it is common to think of 37− 19 as “taking 19
objects from 37 of them”, and n−m as “taking m objects from n of them”.

Activity: 1200 − 500 = ? 580, 000, 000 − 500, 000, 000 = ?
580, 000, 000− 20, 000, 000 = ? 15× 106 − 7× 106 = ?

In terms of the number line, n−m has the following geometric interpre-
tation. Rewrite (21) as m + (n−m) = n (the commutativity of addition!).
Note that m and n are the lengths of the segments [0, m] and [0, n]. There-
fore, according to the interpretation of the sum of two whole numbers as the
length of a concatenated segment, the preceding equality implies that n−m
is exactly the length of the segment from m to n:
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0 m n

� -n−m

We can also look at (21) as is: (n − m) + m = n. This says that the
concatenation of [0, n − m] and [0, m] is a segment of the same length as
[0, n]. This means that we can arrive at the point n −m by going from n
to the left for a length of m:

0 n−m n

m
�

As is the case with the addition algorithm, the purpose of the standard
subtraction algorithm is to relieve the tedium of counting backwards 257
times from 658 in order to compute 658−257. The mathematics underlying
this algorithm (to be introduced presently) is so similar to that of the addition
algorithm that we can afford to be brief. As before, we begin with the simple
case, e.g., 658 − 257, where the simplicity refers to the fact that each of
the digits in the first number is at least as big as the corresponding digit in
the second number. The algorithm calls for lining up the digits of the two
numbers column-by-column from the right (as in the addition algorithm) and
then do subtraction of single digit numbers in each column, starting with the
right column and move left: 8− 7 = 1, 5− 5 = 0, 6− 2 = 4.10 Schematically:

6 5 8
− 2 5 7

4 0 1
(22)

For the explanation of the algorithm, the following subtraction facts are
useful. Suppose l, m, n, a, b, and c are any whole numbers so that l − a,
m > b and n > c, we have:

(l + m + n)− (a + b + c) = (l − a) + (m− b) + (n− c) (23)

m(l − a) = ml −ma (24)

10 Again, the subtraction of 658−257 is reduced to three single-digit computations: 6−2,
5− 5, and 8− 7.
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Equation (23) is entirely plausible if it is interpreted in terms of concrete
objects. For example, if you have three piles of oranges, having l, m and n
oranges in each pile, respectively, then taking a+b+c oranges away from the
three piles combined would leave behind the same total number of oranges
as taking successively a oranges from the pile of l oranges, b oranges from
the pile of m oranges, and c from the pile of n oranges. Equation (24) is a
variant of the distributive law (10) and can be made believable using oranges
in exactly the same way.

It is also instructive to directly prove (23) and (24), because we will get to
know the deeper meaning of the definition (21) in the process. First note
that (23) makes sense, i.e., it is in fact true that (l + m + n) > (a + b + c)
so that the left side of (23) makes sense. To see why, we make repeated use
of the third assertion of (11) near the end of §2 (to the effect that A > B
and C > D imply A + C > B + D) and use the assumption of l > a, m > b,
and n > c to conclude that (l + m + n) > (a + b + c). Now to prove (23),
let x = l − a, y = m− b, and z = n− c, then the right side of (23) becomes
x + y + z, and we want to prove that

(l + m + n)− (a + b + c) = x + y + z.

According to the remark after definition (21), this is the same as checking

((a + b + c) + (x + y + z) = (l + m + n) (♣)

By the general associative law and general commutative law of addition, the
left side of (♣) is equal to (x + a) + (y + b) + (z + c), which can be further
simplified by use of

x + a = (l − a) + a = l
y + b = (m− b) + b = m
z + c = (n− c) + c = n

Thus the left side of (♣) is l + m + n, which shows that (♣) is true.

Simlarly, to show that (24) is true, let x = l − a. Then (24) becomes the
statement that mx = ml−ma. Again by the remark after (21), this would
be true if we can show

mx + ma = ml (♠)

But by the distributive law, the left side of (♠) is m(x + a) which in virtue
of x = l − a is equal to m([l − a] + a) = ml. This shows that (♠) is also
true. We have thus completed the formal proofs of (23) and (24)



3 The Standard Algorithms 56

It should be remarked that (23) is valid for more than three pairs of
numbers. For example, the analogue of (23) for five pairs of numbers would
read: if l > a, m > b, n > c, p > d, and q > e, then

(l + m + n + p + q)− (a + b + c + d + e) =

(l − a) + (m− b) + (n− c) + (p− d) + (q − e)

The proof of this more general version is of course the same as the case of
three pairs of numbers. A complete understanding of (23) and (24) must
await the introduction of negative numbers in Chapter 5.

Using (23) and (24), we can now give the explanation of (22):

658− 257 = (6× 102 + 5× 101 + 8× 100)−
(2× 102 + 5× 101 + 7× 100)

= (6× 102 − 2× 102) + (5× 101 − 5× 101)+
(8× 100 − 7× 100) (by (23))

= ([6− 2]× 102) + ([5− 5]× 101) + ([8− 7]× 100)
(by (24)

= 4× 102 + 1× 100 = 401

We now tackle the general case which requires “trading”. Consider, for
example, 756− 389. The preceding column-by-column method breaks down
at the first step because the subtraction 6 − 9 cannot be done as is using
whole numbers. In this case, the algorithm states:

Take 1 from the tens digit (which is 5) of 756 — thereby changing
the tens digit of 756 from 5 to 4 — and then do the subtraction in
the ones column, not as 6− 9, but as 16− 9 (which is 7). In the
tens column, we now have 4−8. Again, take 1 from the hundreds
digit (which is 7) of 756 — so that 7 becomes 6 — and do the
subtraction in the tens column as 14 − 8 (which is 6). Finally,
the subtraction in the hundreds column is now 6− 3 = 3.

Schematically:
6 4
6 7 6 5 6

− 3 8 9
3 6 7

(25)
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The explanation for (25) and the algorithm itself is the reverse of the explana-
tion given for carrying in the addition algorithm. We first do it schematically
(note: the double arrow “ ⇐⇒ ” in the following means “is the same as”):

7 5 6
− 3 8 9

? ? ?
⇐⇒

700+ 50+ 6
− 300+ 80+ 9

?

⇐⇒
700+ 40+ 16

− 300+ 80+ 9
?

⇐⇒
600+ 140+ 16

− 300+ 80+ 9
?

⇐⇒
600+ 140+ 16

− 300+ 80+ 9
300+ 60+ 7

⇐⇒
7 5 6

− 3 8 9
3 6 7

Now, in greater detail, we use the associative law of addition repeatedly
to get:

756 = 700 + 50 + 6

= (600 + 100) + 50 + 6

= 600 + (100 + 50) + 6

= 600 + 150 + 6

= 600 + (140 + 10) + 6

= 600 + 140 + (10 + 6)

= 600 + 140 + 16

so that

756− 389 = (600 + 140 + 16)− (300 + 80 + 9)

= (600− 300) + (140− 80) + (16− 9) (by (23))

= 300 + 60 + 7

= 367

Note that the second line of the preceding calculation corresponds exactly
to the subtraction in (25). Note also that we avoided writing the number
756 and 389 in their expanded forms, but used a simplified version instead,
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because the more complicated notation would have obscured the underlying
reasoning.

Although it is not a good policy in general to over-emphasize the role of
the laws of operations discussed in §2, it is nevertheless worthwhile to point
out the critical role played by the associative law of addition in the subtrac-
tion algorithm.

We add the usual remark that the mathematical reasoning behind the
preceding explanation is perfectly general and is applicable to any subtraction
a− b for any whole numbers a and b, so long as a is not smaller than b. Just
to be sure that this message gets across, we will work out another example:
5003− 465.

As before, the first subtraction in the right column, 3 − 5, cannot be
carried out using whole numbers. We try to take a 1 from the tens digit
of 5003, which is unfortunately zero. So we go to the hundreds digit and
hope to take 1 from there. Again it is 0. This then requires going all the
way to the thousands digit “5” of 5003 to take 1 from 5. So 5 becomes
4 in the thousands digit of 5003, but the hundreds digit of 5003 becomes
10 + 0 = 10 . From this 10, we can take 1 to bring it down to the tens digit.
in the process, the hundreds digit becomes 9 (instead of 10), and the tens
digit is now 10+0 = 10 . We are now back to our original problem of getting
1 from the tens digit to change the 3 to 10 + 3 = 13 . We do so, and the
tens digit becomes 9. So now, the subtraction in the ones column becomes
13 − 5 = 8 . The subtraction in the tens column becomes 9 − 6 = 3 , and
that in the hundreds digit becomes 9 − 4 = 5 . The thousands digit is of
course 4. Schematically:

4 9 9
6 5 6 0 6 0 3

− 4 6 5
4 5 3 8
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The explanation using the associative law of addition follows (this time,
we will dispense with the use of parentheses altogether):

5003 = 5000 + 3

= 4000 + 1000 + 3

= 4000 + 900 + 100 + 3

= 4000 + 900 + 90 + 10 + 3

= 4000 + 900 + 90 + 13

So using the generalized version of (23) for four pairs of numbers, we have:

5003− 465 = (4000 + 900 + 90 + 13)− (0 + 400 + 60 + 5)

= (4000− 0) + (900− 400) + (90− 60) + (13− 5)

= 4000 + 500 + 30 + 8

= 4538

We note that the subtraction algorithm is again one that works from right
to left. Just as in the case of the addition algorithm, one can work from left
to right, but the amount of backtracking needed for making corrections is
even greater here than in the case of addition.

Activity: Do the preceding subtraction 5003− 465 from left to
right, and compare with the computation from right to left.

It is worth repeating that there is absolutely nothing unnatural about teach-
ing children to do something from right to left.

For special numbers, there are usually tricks to make computations with
them much more pleasant. This applies in particular to the subtraction
algorithm. Let us give one such example: the preceding problem 5003−465
can be done very simply as follows:

5003− 465 = 4 + 4999− 465 = 4 + 4534 = 4538 .

Similarly,

30024− 8697 = 25 + 29999− 8697 = 25 + 21302 = 21327.
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The point here is that the subtractions with rows of 9’s in the first number
can be done without trading and can therefore be done easily by mental
math. One can even do it from left to right if one wishes. The same trick
can be used for any subtraction problem in which the first number is close to
a multiple of 10n, where n is any whole number. Then by changing the first
number to a small number plus another one with a row of 9’s, the subtraction
can be done with no effort.

The preceding algorithm for subtraction when the first number is close
to a multiple of 10n is so striking that it would have spoiled the fun if
we had called attention to a technical point. Nevertheless, mathematics
must be served, if only discretely this time, so we attend to this technical
point here. Take, for instance, 5003 − 465. The point is that the step
4 + 4999 − 465 = 4 + 4534 actually involves the associative law for integers
(positive and negative whole numbers, see Chapter 5). Precisely, we have

(4 + 4999)− 465 = (4 + 4999) + (−465)
= 4 + (4999 + (−465))
= 4 + 4534

The reason why the preceding is worthy of a separate discussion is of course
the fact that the associative law in its naive form is not always valid for
subtraction, e.g., (19 − 4) − 5 6= 19 − (4 − 5). The mystery surrounding
the associative law for subtraction would be dispelled once we do integer
operations correctly. See Chapter 5.

As a final note on the subtraction algorithm, there is a natural alterna-
tive algorithm if negative numbers — together with a few simple arithmetic
properties — are allowed to be used. To illustrate, consider the previous
problem of 756 − 389 : We continue to do column-by-column single digit
subtractions, but now we can use negative numbers to record the differences
and we are free to do the column-by-column subtractions in any order, from
left to right or right to left. So:

7 5 6
− 3 8 9

4 [[−3]] [[−3]]

where each [[−3]] indicates the result of the column subtraction in that col-
umn. To get the final answer, the algorithm says:
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treat 4[[−3]][[−3]] as if it were a whole number with digits 4, [[−3]],
and [[−3]], and write it out in expanded form.

Thus:

4[[−3]][[−3]] = (4× 102) + ((−3)× 101) + ((−3)× 100)
= 400− 30− 3
= 370− 3 = 367 .

Notice that the subtractions here are much more tractable than those in the
original.

The explanation is simple enough and is based on (23) and (24):

756− 389 = {(7× 102) + (5× 101) + (6× 100)}−
{(3× 102) + (8× 101) + (9× 100)}

= ([7− 3]× 102) + ([5− 8]× 101) + ([6− 9]× 100)
= 400 + ((−3)× 10) + (−3) = 367

There are pros and cons regarding which of two algorithms is “better”.
The first is simpler, but the second may be less prone to computational er-
rors, at least if the user is fluent with negative numbers. Because teaching
third graders about the most elementary aspects of negative numbers is a
realistic goal, the second algorithm should be a viable option in schools.

Exercise 3.7 Give an interpretation of (22) in terms of money.
Exercise 3.8 Explain to a fourth grader why the subtraction algorithm

for 563− 241 is correct, with or without money.
Exercise 3.9 Give an interpretation of (25) in terms of money.
Exercise 3.10 Explain to a fourth grader why the subtraction algorithm

for 627− 488 is correct, with and without the use of money.
Exercise 3.11 (a) Use the subtraction algorithm to compute 2403− 876

and explain why it is correct. (b) Do the same with 76431− 58914.
Exercise 3.12 Compute 800, 400 − 770, 982 in two different ways, and

explain why what you have done is correct.
Exercise 3.13 Compute 26, 004−8325 two ways, once using the standard

algorithm, and once using the preceding “negative number” algorithm.
Exercise 3.14 Let a, b, c be whole numbers. (a) Prove that a + b < c is

the same as a < c − b. (b) Suppose c < a and c < b. Prove that a < b
is the same as a− c < b− c.
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Exercise 3.15 Find shortcuts to compute the following: 8 × 875 = ?
9996× 25 = ? 103× 97 = ? 86× 94 = ?

3.3 A multiplication algorithm

We next take up the question of how to compute the product of two numbers
such as 826 × 73 without having to add 73 to itself 826 times. Bearing in
mind the leitmotif enunciated at the beginning of the section, we proceed to
break up the computation into a series of computations involving one digit
at a time. In this case, the distributive law does the breaking up:

826× 73 = 826× (7× 10 + 3) (26)

= (826× 7)× 10 + (826× 3)

Thus

the multiplication (of 826) by a multi-digit number 73 has been
reduced to two simpler computations: multiplication by 7 (i.e.,
826× 7) and multiplication by 3 (826× 3), as given by (26).

We now further break up these two tasks into yet simpler tasks.

Let us first look at 826 × 3. Instead of adding 3 to itself 826 times, we
apply the distributive law one more time:

826× 3 = {(8× 102) + (2× 10) + 6} × 3 (27)

= (8× 3)× 102 + (2× 3)× 10 + (6× 3)

where of course we have also made use of the associative and commutative
laws of multiplication to conclude that, e.g., (8× 102)× 3 = 8× 3× 102. See
the discussion in §2 above equation (10). Thus 826 × 3 will be computable
according to (27), as soon as we know the products of single-digit numbers:
8×3, 2×3, and 6×3. This is why a fluent knowledge of the multipli-
cation table is essential, because it lies at the heart of all multiplication
problems. In any case, from (27) we obtain:

826× 3 = (24× 102) + (6× 10) + 18.
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Experience with the addition and subtraction algorithms tells us that we
should proceed by working from right to left: 18 = 10 + 8, so that

826× 3 = (24× 102) + ([6 + 1]× 10) + 8 (28)

= (24× 102) + (7× 10) + 8

Now 24× 102 = ([2× 10] + 4)× 102 = (2× 103) + (4× 102), so that

826× 3 = (2× 103) + (4× 102) + (7× 10) + 8 (29)

Equations (27)–(29) explain the following multiplication algorithm when one
number is single-digit:

8 2 6
3

× 2 1

2 4 7 8

(30)

The precise description of the algorithm for the multiplication of 826 by a
single digit number 3 is this. Multiply each digit of 826 by 3, from right to
left: 3 × 6 = 18, so carry the 1 to the tens column; 3 × 2 = 6, so the tens
digit of the answer is 6 + 1 = 7; 3 × 8 = 24, so carry the 2 to the hundreds
column and get 24 for the thousands and hundreds columns respectively.

To make sure that the multiplication algorithm with a single-digit multi-
plier is clearly understood, we will quickly do another example, 826× 7, and
give a brief explanation.

8 2 6
7

× 5 1 4

5 7 8 2

It yields the right answer because:

826× 7 = {(8× 102) + (2× 10) + 6} × 7
= (56× 102) + (14× 10) + 42
= (56× 102) + (14× 10) + ([4× 10] + 2)
= (56× 102) + ([14 + 4]× 10) + 2 .

The last line explains the carrying of the 4 to the tens column. Then:

826× 7 = (56× 102) + (18× 10) + 2
= (56× 102) + (102 + [8× 10]) + 2
= ([56 + 1]× 102) + (8× 10) + 2 ,
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and the last line explains the carrying of the 1 to the hundreds column.

Recall that we are looking at the multiplication algorithm with a single-
digit multiplier because (26) reduces the general case to this special case. It
is time to return to the general case, say (26). We now know:

826× 7 = 5782
826× 3 = 2478 .

According to (26) then,

826× 73 = (5782× 10) + 2478
= 2478 + 57820 ,

so that schematically we have:

8 2 6
× 7 3

2 4 7 8
+ 5 7 8 2 0

6 0 2 9 8

Because we are used to treating an empty slot as a zero (cf. the discussion
of the addition algorithm right above (12), for example), it is customary to
omit the “0” at the end of 57820 and just write:

8 2 6
× 7 3

2 4 7 8
+ 5 7 8 2

6 0 2 9 8

(31)

We are in a position to summarize this algorithm as follows:

To compute say 826× 73, take the digits of the second factor 73
individually, compute the two products with single digit multiplier
— i.e., 826× 3 and 826× 7 — and, when adding them, shift the
one involving the tens digit (i.e., 7) one digit to the left, as in
(31).
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This is commonly called the standard multiplication algorithm. Other varia-
tions are possible. For example, one alternative algorithm is

8 2 6
× 7 3

5 7 8 2
+ 2 4 7 8

6 0 2 9 8

Essentially, this means we run the algorithm from left to right, first multi-
ply by 7 before mutiplying by 3. Mathematically, we do not consider such
formal differences to be a difference at all. It is worth noting that even the
algorithm with a single-digit multiplier can be carried out from left to right.
For example, 6718× 5 can be done this way:

6 7 1 8
× 5

3 0
3 5

5
+ 4 0

3 3 5 9 0

Activity: Give a precise explanation of the preceding algo-
rithm.

Pedagogical Comment: In a classroom, the most salient feature of
this algorithm that catches students’ attention may well be the shifting of
the product involving the tens digit (i.e., 826 × 7) to the left by one digit.
This should be carefully explained to them in terms of place value: we are
actually looking at 826×70 and the shifting of digit is caused by the presence
of the “0” in the ones digit. End of Pedagogical Comment.

In order to ensure that the generality of the preceding reasoning behind
the algorithm is understood, let us briefly explain how to do a more compli-
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cated problem.
5 2 7

× 3 6 4
2 1 0 8

3 1 6 2
+ 1 5 8 1

1 9 1 8 2 8

(32)

This is because:

527× 4 = 2108
527× 6 = 3162
527× 3 = 1582 ,

and so by the distributive law:

527× 364 = 527× (3× 102 + 6× 10 + 4)

= (527× 3)× 102 + (527× 6)× 10 + (527× 4)

= 158100 + 31620 + 2108

The last line explains the vertical alignments of the digits of the three prod-
ucts 2108, 3162, and 1581 in (32). In particular, because the 3 of 364 is the
hundreds digit, the product 527×3 is shifted two digits to the left in keeping
with the fact that it is really 527× 300 that we are adding.

Exercise 3.16 Explain to a 4th grader why the multiplication algorithm
for 86× 37 is correct.

Exercise 3.17 (a) Which 2-digit number, when multiplied by 89, gives
a 4-digit number that begins and ends with a 6? (b) List all the 3-digit
numbers which have the following properties: the sum of the digits is 12,
and when multiplied by 15 they give a 5-digit number which ends with a 5
(i.e., the ones digit is 5). (Clearly this problem can be done by guess and
check. You are however asked to use reasoning to quickly dospatch it by
narrowing down the choices.)

Exercise 3.18 Use the multiplication algorithm to compute

1 8
× 5 0 0 0 9 2

?
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and explain why it is correct. Compare with the same algorithm applied to

5 0 0 0 9 2
× 1 8

?

Exercise 3.19 Compute 4208× 879 by the multiplication algorithm and
explain why it is correct.

3.4 Division-with-remainder

When asked to divide 23 by 4, we all know the answer: the quotient is
5 and the remainder is 3. In general, given whole numbers a and b with
b 6= 0 , we likewise want to know what the quotient and remainder are when
a is divided by b. This knowledge is critical not only for the long division
algorithm of §3.5 below but also for the discussions of fractions in Chapter 2
and decimals in Chapter 4. Before we can come up with an answer, however,
we need to know precisely what the “quotient” of a ÷ b means and what
the “remainder” means. Most school textbooks do not deem it necessary to
explain these concepts, or if they do, they typically say the following:

division An operation on two numbers that tells how many
groups or how many in each group.

quotient The answer in division.

remainder The number that is left over after dividing.

If you look more closely at the text proper, you would find the statement
that the remainder should be less than the “divisor” b, but this still leaves
out a clear statement about what a “quotient” is and what “left over after
dividing” means. Such vagueness would not serve any purpose because unless
the student already knows what “division” means, the above explanations
give no information. For example, how do we compute the “quotient” of
6810255956001 ÷ 28747 if we do not know its precise meaning? The usual
attempt at an explanation of division would mention taking away multiples
of 28747 until “the remainder” is “smaller than 28747”. This unfortunately
begs the question of what a “quotient” is and whether a negative number
may be considered to be “smaller than” 28747.
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As teachers, we want to convey the clear message to our children that in
mathematics, no guesswork is needed for its mastery. We want to let them
know that it is an open book that everybody can read. Among all branches of
knowledge, mathematics is characterized by its WYSIWYG quality — what
you see is what you get — and you have no need to assume anything that
is not already explicitly stated. This is another way of expressing the fact
that every conclusion we draw in mathematics depends completely on what
is stated explictly up front. This is what we have been doing so far, and we
intend to continue doing it for the rest of this monograph.

To return to division, let us first fix the meaning of a÷ b where a and
b are whole numbers and b 6= 0 . (We will always assume b 6= 0 in this
situation because we do not want to divide by zero; see the discussion in §4
below.) Generally speaking, division is to multiplication as subtraction is to
addition: one undoes the other. However, there are certain wrinkles to this
simple-minded statement, and we will be careful to address them.

Recall that multiplication is repeated addition: by definition,

qb = b + b + · · ·+ b︸ ︷︷ ︸
q

(see (2) of §1). Division a ÷ b is roughly speaking repeated subtraction, but
the precise meaning of this phrase requires a rather long-winded explanation.
First of all, if m is a whole number, the product mb is called a multiple of
b, or more precisely, the m-th multiple of b. (In particular, 0 is a multiple of
b, by definition because 0 = 0 × b.) Intuitively, what we are going to do is
to repeatedly subtract b from a until we get to the point where the next
subtraction will not be possible because what is left is smaller than b (recall:
for x − b to make sense, we must have x ≥ b). Symbolically though, this
way of doing things is very awkward, so we do something which is the same11

but which is easier to express. In greater detail, what we do is to take (i.e.,
subtract) successive multiples of b from a: a− 0, a− b, a− 2b, a− 3b, a− 4b,
. . . , until eventually we come to a multiple qb of b so that the next multiple
— which is (q +1)b — exceeds a. In symbols, q is that whole number so that

a ≥ qb but a < (q + 1)b. (33)

11 An explanation of why it is the same is given in the next fine-print indented passage.
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By definition, we call this q the quotient of a÷b. It follows that the quotient
q is the largest multiple of b that one can take away from a, because we cannot
perform the next subtraction a− (q +1)b for the reason that a < (q +1)b, by
(33). It is intuitively clear, and we shall prove precisely below, that after we
have taken q multiples of b’s from a, what is left behind is less than b. We
call a− qb the remainder of a÷ b. To complete the terminology, we call b
the divisor and a the dividend of the division a÷ b.

We now proceed to bring out a critical property of the remainder that
was alluded to above, namely, a − qb < b. We first give a numerical proof,
but presently we will also give a pictorial proof that makes the reasoning
perfectly obvious. Here then is the numerical proof: from (33) we have
a < (q + 1)b. By taking qb away from both sides, the inequality does not
change (see Exercise 3.14(b)). So we get

a− qb < (q + 1)b− qb

= {(q + 1)− q}b (by (24) of §3.2)

= b

So we get a − qb < b. Incidentally, we also know from (33) that a ≥ qb,
so a − qb ≥ 0. We may therefore summarize the preceding two facts in the
following double inequality:

the remainder a− qb satisfies 0 ≤ a− qb < b (34)

Note that the left inequality sign of (34) is a weak inequality (i.e., allowing for
equality) because the remainder does equal 0 sometimes, e.g., when a = qb.

For example, if a = 23 and b = 4, then the multiples of 4 are 4, 2×4 = 8,
3 × 4 = 12, 4 × 4 = 16, 5 × 4 = 20, 6 × 4 = 24, and we stop at the 6th
multiple of 4 because already

23 ≥ (5× 4) but 23 < (6× 4).

Therefore the quotient of 23÷ 4 is 5, and the remainder is 23− (5× 4) = 3.
If we take a = 12 and b = 3, however, then we get the happy coincident that
12 = 4× 3, i.e., 12 is exactly the 4th multiple of 3. In this case, the quotient
of 12÷ 3 is 4, with remainder 0.

If a = qb for some whole number q, we say b divides a. In symbols: b|a.
Note that “ b divides a” says exactly the same thing as “ a is a multiple of
b”.
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Activity: Find the quotient and remainder in each of the fol-
lowing divisions by listing the multiples of the divisor (but do
not use “long division”, whatever that means): 33÷ 7, 46÷ 9,
98÷ 19, 188÷ 37.

We now give the pictorial representation of the quotient and remainder
using the number line. Consider 27÷ 6. The multiples of 6 are 0, 6, 12, 18,
24, 30, etc., as shown.

0 6 12 18 24 30
27

?

The picture clearly displays the fact that 27 is trapped between the two
multiples of 6: 24 and 30. The remainder of 27÷ 6 is just the length of the
segment between 27 and 4 × 6 = 24, which is clearly less than the length
between 24 and 30. Therefore the remainder 27 − (4 × 6) < 6 (= 30 − 24).
Thenquotient is 4 because 24 = 4× 6.

As another example, consider 97÷ 12. The multiples of 12 are: 0, 12, 24,
36, 48, 60, 72, 84, 96, 108.

0 12 24 36 48 60 72 84 96 108
?

97

Again, the dividend 97 is trapped between the two multiples 96 and 108
of 12, and the remainder of 97 ÷ 12 is the length of the segment [96, 97]
(the segment between 96 and 97), which is less than 6 (= the length of the
segment [96, 108]). Because 96 = 8× 12, the quotient of 97÷ 12 is 8.

In general, we have a ÷ b, then the multiples of b are equally spaced
markers (= points) on the number line, b units apart. The whole number
a has to be trapped between two of these multiples, or right at one of the
multiples. In the former case, let a be between qb and (q + 1)b.

?

a

0 b 2b 3b · · · qb (q + 1)b
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Then, the remainder is just the length of the segment [qb, a], and it is clearly
smaller than the length of the segment [qb, (q + 1)b] (= b).

On the other hand, if a is at one of the multiples of b, let it be at qb, as
shown.

?
a

0 b 2b 3b · · · (q − 1)b qb

In this case, a = qb and of course the remainder is 0.

We can summarize our discussion in the following theorem.

Division-with-Remainder. Given any two whole numbers a and b,
with b > 0, there exist a whole number q, called the quotient of a÷ b, so that
the remainder a− qb satisfies (34), i.e.,

0 ≤ a− qb < b.

This theorem is more commonly cast in a different form, as follows. Let
the remainder a − qb be denoted by r, then a − qb = r by definition, which
can be rewritten as a = qb + r. The condition (34) now says 0 ≤ r < b.
Hence, we have an equivalent formulation of Division-with-Remainder:

Division-with-Remainder (Second Form). Given any two whole
numbers a and b, with b > 0, there exist a whole number q, called the quotient
of a÷ b, and a whole number r, called the remainder of a÷ b, so that

a = qb + r where r satisfies 0 ≤ r < b. (35)

An added remark about the division-with-remainder will be relevant in
the discussion of long division (§3.5) and the decimal expansion of a fraction
(§4 of Chapter 4). Ordinarily when one divides a by b, there is an implicit
assumption that a is bigger than b. However, in the above statement of
division-with-remainder, the relative sizes of a and b are irrelevant. For ex-
ample, for 5 ÷ 32, we have 5 = (0 × 32) + 5, so that the quotient is 0 and
the remainder is 5. For 29÷ 127, we have 29 = (0× 127) + 29, with quotient
0 and remainder 29. The point is that the division-with-remainder makes
sense for any a÷ b, so long as b > 0.
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We now tie up two loose ends left dangling in the preceding discussion.
The first is the explanation of why “repeated subtraction of b from a” is the
same as ”subtracting successive multiples of b from a”. The second is the the
omission of the uniqueness of the quotient in the division-with-remainder.

Repeated subtractions of b from a means of course (a− b), ((a− b)− b),
(((a − b) − b) − b), . . . . We used instead a − b, a − 2b, a − 3b, . . . , in
the above. What needs to be pointed out is that ((a − b) − b) = a − 2b,
(((a− b)− b)− b) = a− 3b, and in general

(· · · ((a− b)− b) · · · − b︸ ︷︷ ︸
q

) = a− qb (†)

for all whole numbers q. Of course (†) is intuitively obvious, because whether
one takes b away from a one at a time, q times in succession, or take qb
away from a all at once, what is left behind should be the same, However,
it is also important to realize that intuition need not be the sole arbiter
of mathematical truths, so we shall give a precise proof of (†) which also
happens to be instructive.

We begin with an observation: if A, B are whole numbers so that (a −
M)−N ≥ 0, then

(a−M)−N = a− (M + N) (‡)

Here is the reason: Let x = (a−M)−N . Then (‡) becomes the statement
that x = a − (M + N). Therefore, to prove (‡), we only need to prove
x = a − (M + N), and for this, — we recall the remark made after (21) in
§3.2 — it suffices to prove x + (M + N) = a. To this end, observe again as
a consequence of the definition of subtraction in (21) that x = (a−M)−N
means

x + N = a−M. (?)

So we have:

x + (M + N) = x + (N + M) (commutative law of +)
= (x + N) + M (associative law of +)
= (a−M) + M (by (?))
= a (by definition of subtraction in (21))

This proves x + (M + N) = a, and therewith (‡).
We can now prove (†) in succession for q = 1, q = 2, q = 3, . . . , etc. If

q = 1, (†) merely says a− b = a− b. Let q = 2, then (†) states that

[a− b]− b = a− 2b, (�)

but this follows directly from (‡) by letting M = N = b. Next let q = 3.
Then we must prove:

([a− b]− b)− b = a− 3b. (��)
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This is true because:

([a− b]− b)− b = (a− 2b)− b (by (�))
= a− (2b + b) (by (‡) with M = 2b and n = b)
= a− 3b.

Now let q = 4. Then we have to prove

(([a− b]− b)− b)− b = a− 4b,

and this is true because

(([a− b]− b)− b)− b = (a− 3b)− b (by (��))
= a− (3b + b) (by (‡) with M = 3b and n = b)
= a− 4b,

as desired. The next thing to prove is the case of (†) for q = 5, etc. But it
is clear by now, with the pattern of proof firmly established, that rest of the
argument would proceed would proceed in similar fashion. Therefore (†) is
true for all whole numbers q.

We next turn to the division-with-remainder and point out that the
quotient q of the theorem is actually unique. What this means is that suppose
we have 31÷ 7. Then we know the quotient is 4, and 0 ≤ 31− (4× 7) < 7.
Now suppose there is another whole number s so that 0 ≤ 31− (s× 7) < 7.
The theorem implies that this s must be equal to 4 too. The reason for this
is based on a general fact: if we have two whole numbers m and n so that
0 ≤ m,n < 7, — and we may as well assume m ≤ n — then it is quite clear
that the difference n−m is a whole number which is not a nonzero multiple
of 7. See the picture:

0 m n 7

We now apply this simple observation to 31÷7 by letting m = 31−(4×7) and
n = 31−(s×7). As before, we may assume m ≤ n. Then we know that m−n
is not a nonzero multiple of 7. Using the simple fact that (l−a)− (m− b) =
(l −m) + (b− a), to be proved in Chapter 5, we have:

m− n = {31− (4× 7)} − {31− (s× 7)}
= (31− 31) + {(s× 7)− (4× 7)}
= (s− 4)× 7

Because we know ahead of time that m− n is a whole number, we see that
(s− 4)× 7 must be a whole number, and as such, it has to be a multiple of
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7. We already know that it cannot be a nonzero multiple of 7, so it can only
be the zero multiple, in which case s− 4 = 0, which is to say, s = 4. Exactly
as claimed.

In general, the quotient q of a÷b is unique in the sense that if s is another
whole number so that also 0 ≤ a− sb < b, then necessarily s = q. The proof
is identical to the preceding argument as soon as the numbers 31, 7 and 4
are repalced by a, b, and q, respectively. We will not repeat the argument.
Moreover, if the quotient is unique, then so is the remainder a− qb.

Conceptually, the uniqueness is important because we talk freely about
the quotient of a division and the remainder of a division. So without being
aware of it, we tacitly assume the uniquness in question. More is true.

The requirement that both q and r be whole numbers is critical
to their uniqueness.

For example, the first example 23 ÷ 4 of this subsection has (as we know)
quotient and remainder equal to 5 and 3, respectively. However, if we are
allowed to use fractions, for example, then we could have

23 = 5 + 1
4 × 4 + 2 and 0 ≤ 2 < 4

(Although we have not yet taken up the subject of fractions, there is no harm
in using them for illustration.) This would give a “quotient” of 5 + 1

4 and a
“remainder” 2. In fact, we can write many such equations at will, e.g.,

23 = 22
4 × 4 + 1 and 0 ≤ 1 < 4

This should serve as reminder how delicate the uniqueness of the quotient and
remainder really is. In school mathematics, however, such subtlety is usually
glossed over. While one cannot say that such negligence does elementary
school mathematics great harm, we hope nevertheless to have convinced you
that, as a teacher, you should be aware of it.

The special case of division-with-remainder where the remainder is 0 oc-
cupies a place of distinction, and we proceed to discuss it in some detail. So
let a = qb, where q is the quotient. In this case, it is customary to write
q = a÷ b. It follows that if a = qb, then

(a÷ b)× b = a and (ab)÷ b = a (36)

(It is of some value to point out that the second assertion is strictly a conse-
quence of the definition: let x = ab, then by the definition above, a = x÷ b,
which is another way of writing a = (ab)÷ b.) The equations in (36) clearly
display division and multiplication as two operations that undoes each other.
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If q = a ÷ b, the fact that a = qb = b + b + · · · + b (q times) means that
if we take b objects from a each time and do it q times, we would exhaust a.
Recalling once again that q = a÷ b, we have

a÷ b is the total number of groups when a objects are partitioned
into equal groups of b objects

This is called the measurement interpretation of division (in case there is no
remainder). However, there is another common way in which we use division.

Activity: In a third grade textbook, division is introduced as
follows:

You can use counters to show two ways to think about
dividing.
(A) Suppose you have 18 counters and you want to
make 6 equal groups. You can divide to find how
many to put into each group.
(B) Suppose you have 18 counters and you want to
put them into equal groups, with 6 counters in each
group.

Although you can see easily in this special case that the answer
to both problems is 6, discuss which of these two divisions uses
the measurement interpretation and which requires a new under-
standing of division. It may help you to think more clearly if we
replace 18 by 4023, and 6 by 27 in the above problem.

Suppose as usual we have a objects and q = a÷ b. Suppose we divide the
a objects into b equal groups, how many are in each group? Let a = 15 and
b = 5 so that 3 = 15÷ 5. We know that 15 can be partitioned into 3 groups
of 5’s, and we represent it pictorially by dots as follows:

• • • • •
• • • • •
• • • • •

Now if we count the dots by columns, we get 5 groups of 3’s and 15 =
3 + 3 + 3 + 3 + 3 = 5 × 3. Thus if we divide 15 (= a) objects into 5 (= b)
equal groups, there will be 3 objects in each group. But of course, 3 is just
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the quotient of 15÷5, which by definition is equal to 3×5 (= qb. Comparing
with 15 = 3 + 3 + 3 + 3 + 3 = 5 × 3, we immediately recognized that the
commutativity of multiplication 3× 5 = 5× 3 is at work.

In general then, with a objects and q = a ÷ b, then a = qb. By the
commutativity of multiplication, a = qb = bq = q + q + · · · + q (b times), so
that if we divide a objects into b equal groups, there will be q objects in each
group. This leads to the following: assuming q = a÷ b, then

a ÷ b is also the number of objects in each group when a objects
are divided into b equal groups.

This is called the partitive interpretation of division (in case there is no re-
mainder). The fact that this interpretation is valid (i.e., yields the same
number as the measurement interpretation) is due to the fact that multipli-
cation among whole numbers is commutative. For example, in the preceding
Activity, task (A) requires that you use the partitive interpretation of division
while task (b) requires the measurement interpretation.

At the risk of pointing out the obvious, both meanings of division are
common place in everyday life. Suppose you give a party and you make a
bowl of punch. If you want to find out how many cups of punch there are in
the bowl, you are making a measurement division of the amount of fluid in
your punch bowl by the amount of fluid in your cup. On the other hand, if
four people decide to drink up the whole bowl of punch but wish to exercise
caution by first computing how much fluid each must be prepared to take
in if each drinks an equal amount, then these people will be doing partitive
division of the amount of fluid in your punch bowl by 4. Everywhere you
look, you will find both kinds of division done around you.

Example There is no better illustration of the two meanings of division
than the problem of traveling (or motion). Suppose a car goes from town
A to town B at a constant speed, which means that the distance traveled
within any one-hour time interval is always a fixed constant. (Warning to
the reader: while this may seem like a good example of contextual learning,
we should not delude ourselves into believing that this is anywhere close to a
“real world” situation. Drastic oversimplifications are involved. For instance,
one rarely manages to drive at a constant speed for more than a few minutes
in real life. There is also the implicit idealization in that the car is driving
on a freeway that connects the two towns in a straight-line. How often does
this happen in everyday driving?) A typical question is then the following:
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suppose the distance between towns A and B is 264 miles, and the car gets
to town B after 4 hours, what is the speed? If 264 miles is covered in 4
hours, we just partition 264 into 4 equal parts and the number of miles in
one part is the number of miles traveled n one hour (“equal parts” because
speed is assumed constant). This is the partitive meaning of the division
264
4

, which is 66. So the speed is 66 miles per hour. Another typical question
is the following: suppose the speed is a constant 58 miles per hour and the
distance between A and B is 522 miles, how many hours does it take to go
from A to B? Here, we know that the car would be 58 miles from A after
1 hour, 58 + 58 = 116 miles from A after 2 hours, 58 + 58 + 58 = 174 miles
from A after 3 hours, etc. So the question becomes how many 58’s there are
in 522. This is the measurement interpretation of 522

58
, which is 9. So it

takes 9 hours to go from A to B.
To summarize:

For motion in constant speed, computing the speed when distance
and time are given is a partitive division problem, while comput-
ing the time to travel a certain distance at a given speed is a
measurement division problem.

Finally, we give another geometric interpretation of division without re-
mainder. In §2, we introduced an area model for multiplication. According
to this model, 2 × 3, for example, would be modeled as the area of the
rectangle with vertical side equal to 2 and horizontal side equal to 3:

Now suppose we ask for 6 ÷ 3 = ? From the point of view of the area
model, this means we have a rectangle with area equal to 6 and a horizontal
side equal to 3, and we want to know what the length of the vertical side is:

area = 6

3� -

?
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Similarly, the division 35÷ 7 may be interpreted as asking for the length
of the vertical side of a rectangle with area 35 and with the horizontal side
equal to 7:

area = 35

7� -

?

Of course, for whole numbers, such a geometric interpretation of division
is no more than slightly entertaining. However, when we come to the division
of fractions, the geometric interpretation would acquire added significance.

Exercise 3.20 Is 24 the quotient of 687÷27? Is 13 the quotient of 944÷46
? Explain. (No calculator allowed.)

Exercise 3.21 Is 6977 the remainder of 124968752 ÷ 6843 ? Why? (No
calculator is allowed.)

Exercise 3.22 . By taking multiples of the divisor, find the quotient and
remainder in each of the following cases: 964 ÷ 31, 517 ÷ 19, 6854 ÷ 731,
4972086÷ 873, and 4972086÷ 659437.

Pedagogical Comment: The use of (only) a four-function calculator
for the last two items involving 4972086 is allowed. However, it would be
instructive to first ask for a ballpark figure of the quotient without the use of
a calculator. This is a good exercise in making estimates, and would save a
lot of guess-and-check in getting the correct quotient in each case. It should
also be mentioned that there is an effective way to use the (four-function)
calculator to get the quotient and remainder without any trial and error.
How to do this and why it is true should lead to an interesting classroom
discussion (one that in fact presupposes some knowledge of decimals). End
of Pedagogical Comment.
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Exercise 3.23 Let r be the remainder of a ÷ b. Suppose a = mA and
b = mB for some whole numbers m, A and B. Let R be the remainder
of A ÷ B. What is the relationship between R and r? Give a detailed
explanation of your answer. (Caution: This problem is deceptive because
it seems almost trivial, but the explanation is actually quite subtle and it
requires the use of the uniquness of both the quotient and remainder which
is discussed in the indented fine-print passage of this subsection.)

Exercise 3.24 You give your fifth grade class a problem:

A faucet fills a bucket with water in 30 seconds, and the capacity
of the bucket is 12 gallons. How long would it take the same
faucet to fill a vat with a capacity of 66 gallons?

How would you explain to your class how to do this problem?
Exercise 3.25 Consider the following two problems: (a) If you try to

put 234 gallons of liquid into 9 vats, with an equal amount in each vat, how
much liquid is in each vat? (b) If you try to pour 234 gallons of liquid into
buckets each with a capacity of 9 gallons, what is the minimum number of
such buckets you need in order to hold these 234 gallons? Get the answer
to both, and explain in each case whether you are using the partitive or the
measurement interpretation of division.

3.5 The long division algorithm

Suppose we have to do the division problem 7864÷ 19. Up to this point, the
only way we can do it is to look at all the multiples of 19 until we get a whole
number q so that q×19 ≤ 7864 but (q+1)×19 > 7864. Of course we could
painstakingly go through all the multiples one by one until we hit one with the
above property, but that would be dull bookkeeping rather than mathemat-
ics. Let us do better. First of all, we can ignore small multiples like 10×19 or
even 100×19 because all we care about is getting a multiple of 19 that is close
to 7864. Let us make an estimate: the 100th multiple of 19 is 1900, so the
400th multiple is 7600, which is close to 7864. Add ten more of 19 and we get:
7600 + 190 = 7790, which is even closer to 7864. A little experimentation
shows that 7790+3×19 = 7847 < 7864 and 7790+(19×4) = 7866 > 7864.
Because 7790+(3×19) = (410×19)+(3×19) = 413×19 by the distributive
law, we know 413 is the quotient. This method of finding the quotient is
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clearly superior to the monotonous checking of all the multiples of 19 and
deserves to be made more systematic. With a little more work, this line of
thinking would lead us to the long division algorithm, which is a beautiful
and sophisticated method of finding the quotient and the remainder of a
division-with-remainder.

Given two whole numbers a, b, with b > 0, our goal is to find an efficient
algorithm that produces the quotient and remainder of a÷ b. According to
the second form of the division-with-remainder, this is the same as finding a
q and an r so that

a = qb + r and 0 ≤ r < b

(See (35).) Let us illustrate the algorithm we are after, long division algo-
rithm, by something relatively simple, say a = 586 and b = 3. Without
further ado, here is the usual schematic presentation of this algorithm for
586÷ 3:

1 9 5
3 ) 5 8 6

3
2 8 6
2 7

1 6
1 5

1

(37)

(Note that for reason of clarity of exposition, we bring the 6 down at each
step of the long division in (37).) We know the conclusion we are supposed
to draw from this: the mechanism described in (37) produces the quotient
195 and remainder 1. In other words,

586 = ( 195 × 3) + 1 (38)

The question is why ? Because this question can be easily misunderstood,
let us explain it further. The question here is not why (38) is correct; the
correctness of (38) is easily checked, after all, by verifying that 195 × 3 =
585 so that adding 1 to it produces 586. The question is rather why the
particular procedure adopted in (37), seemingly unrelated to multiplication
or division in the usual sense we understand it, should produce the correct
answer of 195 and 1 in (38). The failure to directly address this question
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in school mathematics and pre-service professional development materials is
what makes the long division algorithm so notorious. There is nothing wrong
with the algorithm; it has already been stated above that it is one of the most
beautiful pieces of elementary mathematics. There is plenty that is wrong
with the way elementary mathematics is taught, however. Let us proceed
to make amends by explaining the underlying reason why (37) leads to (38)
simply and correctly.

First, we make a general comment about the long division algoithm n
order to clarify our subsequent discussion. You can see from (37) that, in
arriving at the purported quotient 195, the division-with-remainder is used
three times: 5 ÷ 3, 28 ÷ 3, and 16 ÷ 3. Now you may find the following
fact puzzling: if we are trying to find an algorithm which is more efficient
than the division-with-remainder itself in order to get at the quotient and
the remainder, how can we be using the division-with-remainder itself? Here
is the main point: for “small” numbers, the quotient and remainder of a
division can be easily guessed at (e.g., 5÷ 3, 28÷ 3, and 16÷ 3), so what the
long division algorithm does is to break up the division of a large number
(e.g., 586, although you can easily put up a number as large as you want)
into a sequence of divisions of smaller numbers, and then string the latter
together in an artful way so as to get at the quotient and remainder of the
division of the original large number.12 Our task is to understand why this
“stringing together” makes sense.

Now we are going to give a preliminary explanation of why the steps in
(37) lead to the correct conclusion (38). It is, we emphasize, only a prelimi-
nary explanation, because we shall subsequently point out in what way it is
unsatisfactory.

The first step in (37) looks like 5 ÷ 3, but since 5 stands for 500 in 586,
this particular division is really 500÷3, and the remainder 2 is really 200. So
the first step in (33) is actually a restatement of the division-with-remainder
500 = ( 100 × 3) + 200 . Therefore:

586 = 500 + 86 = {([100× 3] + 200)}+ 86
= (100× 3) + 286 .

(At this point, we interject a word of caution: there will be many compu-
tations of this type in this subsection, and we have to resist the temptation

12 It is a basic strategy in mathematics to try to break up a complicated task into a
series of simpler tasks.
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of multiplying out thing like 100× 3 above, or 90× 3 in the succeeding sen-
tence. The reason is that we want the final outcome to be (195 × 3) + 1
as in (38), and for this reason we want to keep the factor 3 intact all
through these computations.) The second step in (37) is 28 ÷ 3, which as
before is in reality 280 ÷ 3. The division-with-remainder in this case reads:
280 = ( 90 × 3) + 10 . Thus,

586 = (100× 3) + 280 + 6
= (100× 3) + ([90× 3] + 10) + 6
= (100× 3) + (90× 3) + 16.

The last step is easy: 16 = ( 5 × 3) + 1 . So,

586 = (100× 3) + (90× 3) + (5× 3) + 1
= ([100 + 90 + 5]× 3) + 1

= ( 195 × 3) + 1 ,

which is exactly (38). We have of course used the distributive law, and the
reason why this law must play a role is not entirely obvious. It has to do
with (35), where we have pointed out that multiplication and division undoes
each other (at least in the case of no remainder). As we stressed in §3.3, the
key reason underlying the multiplication algorithm is the distributive law. It
therefore follows that if division undoes multiplication, and the multiplica-
tive algorithm depends critically on the distributive law, the long division
algorithm must likewise make critical use of the distributive law.

We next give an interpretation of (37) in terms of money. Suppose we
have $586 consisting of

5 hundred-dollar bills
8 ten-dollar bills
6 one-dollar bills.

Although we are trying to find out how many 3’s there are in 586, we can turn
the original problem around: suppose there are n 3’s in 586 (with 0 or 1 or
2 left over), then we may also interpret n as the number of dollars in a stack
when 3n dollars are divided equally into 3 stacks. To this end, we begin the
process of creating these 3 stacks by first distributing the 5 hundred-dollar
bills equally into these 3 stacks. In each stack we put in 1 hundred-dollar bill,
and there are 2 left over. This corresponds to the first step of (37). Next, we
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convert the 2 hundred-dollar bills into 20 ten-dollar bills, so that (together
with the original 8 ten-dollar bills already there) we now have 28 ten-dollar
bills. These can be distributed into these three stacks equally with 9 in each
stack and 1 left over. This corresponds to the second step of (37). Finally,
we convert the 1 ten-dollar bill into 10 one-dollar bills, and we now have 16
one-dollar bills. Again, we can distribute them equally into the three stacks
with 5 one-dollar bills in each, and 1 is left over. Altogether then, the original
stack of $586 has been divided into three equal stacks each consisting of 1
hundred-dollar bill, 9 ten-dollar bills, and 5 one-dollar bills, with 1 one-dollar
bill left over. This is exactly what (38) says.

Observe that the preceding interpretation of (37) in terms of money is
very similar in spirit to the intuitive approach to finding a quotient described
at the beginning of this sub-section. There are some people in mathemat-
ics education who consider the use of money to interpret the long divison
algorithm as the height of conceptual understanding. Readers of this mono-
graph cannot fail to realize, however, that the use of money is only an aid
to understanding and is not to be confused with genuine mathematical un-
derstanding itself. We will in fact take up the mathematical explanation
of long division next.

To make sure that the basic facts of the long division algorithm and the
preliminary explanation are understood, we do another example: 1215÷ 35:

3 4
3 5 ) 1 2 1 5

1 0 5
1 6 5
1 4 0

2 5

(39)

Here is an abbreviated explanation:

1215 = 1210 + 5
= {(30× 35) + 160}+ 5
= (30× 35) + 165
= (30× 35) + ([4× 35] + 25)
= ((30 + 4)× 35) + 25

= ( 34 × 35) + 25

For an in-depth understanding of the long division algorithm, the pre-
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ceding analysis falls short in two respects. First, it lacks simplicity. It does
not lead from a clear description of the algorithm straight to the desired
conclusion about quotient and remainder; in fact, a clear description of the
algorithm was never given. Second, the explanation does not clearly expose
the role played by the sequence of remainders (i.e., the numbers 2, 1, 1 in (37)
and the numbers 16 and 25 in (39)) which are critical to the understanding
of the conversion of fractions to decimals in §4 of Chapter 4. We now give a
mathematical explanation that is free of these defects.

Let us revisit (37). As we have emphasized throughout our discussion of
algorithms, every one of the standard algorithms gains efficiency and sim-
plicity by ignoring place value and by performing the operations one digit
at a time, mechanically. The long division algorithm is the most remarkable
embodiment of these features among the algorithms we have studied. Look
at the “dividend” 586 (i.e., the number to be divided), and we shall describe
the long division algorithm precisely in this special case. The idea will be
seen to be prefectly general. We repeat: the algorithm will go through each
digit of 586, one at a time, with absolutely no thought given to “breaking
the dividend into parts” (as is taught in the schools).

There will be a sequence of steps, each of which performs a division-with-
remainder The divisor will always be the original divisor (in this case
it is 3). So the only thing that needs to be specified in each step is the
dividend. We start from the left, for a change, and the dividend of the first
step is the first digit of the original dividend (in this case it is the digit 5 of
586). More formally:

Step 1: perform the division-with-remainder, using as dividend
the leftmost digit of the original dividend.

So the first division is 5÷ 3. The division-with-remainder gives

5 = ( 1 × 3) + 2

The next (second) step is the crucial one, because the algorithm will be
repeating this step ever after. The description of the dividend in the second
step is this:

Step 2: Multiply the remainder of the preceding step by 10 and
add to it the next digit (to the right) in the original dividend.
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In the present situation, the remainder from the first step is 2, and the
next digit of the original dividend 586 is 8. So the number in question is
(2× 10) + 8 = 28. Now divide 28 by the same divisor 3:

28 = ( 9 × 3) + 1

We are now on automatic pilot:

Step 3: repeat step 2.13

With this in mind, the next digit in the original dividend 586 is 6, so the
dividend of the next step is 1× 10 + 6 = 16. Thus the third step of the long
division algorithm is:

16 = ( 5 × 3) + 1

Now (37) is entirely encoded in the following three (simple) division-with-
remainders:

5 = ( 1 × 3) + 2

28 = ( 9 × 3) + 1

16 = ( 5 × 3) + 1

(40)

You could not possibly fail to observe that the quotient 195 is clearly dis-
played in (40) — read vertically down the first digits of the right sides —
as well as the remainder 1 (the last term of the last equation). Though of
slightly less interest, you can also read off the original dividend by going
down the left sides of these equations and pick out the last digit of each
number (in this case, you get 586). If you are baffled by these equations, let
us hasten to point out that there is no mystery to them at all. You can, for
example, relate them to the naive interpretation of (37) in terms of money in
the following way. The first equation is a restatement of the splitting of the
5 hundred-dollar bills into three equal stacks with 2 left over. The second is
the splitting of the 28 ten-dollar bills into three equal stacks with 1 left over,
and the third is the splitting of the 16 one-dollar bills into three equal stacks
with also 1 left over. But of course one must keep in mind that (40) is true
regardless of any such monetary interpretations.

As we have emphasized, an algorithm is a sequence of mechanical proce-
dures. Steps 1–3 explain how to generate these procedures as we go through
the digits of the original dividend one-by-one. In the case of 586 ÷ 3, (40)

13 Recall what was said at the beginning of §3, to the effect that each standard algorithm
would break a computation down to computations with single digit numbers.
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gives the procedures explicitly. We now show how to generate (38) by the
use of the long division algorithm as encoded in (40):

586 = (5× 102) + (8× 10) + 6
= {([3× 1] + 2)× 102}+ (8× 10) + 6

by the first equation of (40). This gives an explicit support to the interpre-
tation about splitting the 5 hundred-dollar bills into three equal stacks with
2 left over. But to continue:

586 = (3× 102) + (2× 102) + (8× 10) + 6
= (102 × 3) + (20× 10) + (8× 10) + 6
= (102 × 3) + (28× 10) + 6
= (102 × 3) + ([3× 9] + 1)× 10 + 6

by the second equation of (37), The last line corresponds to the splitting of
the 28 ten-dollar bills into tghree equal stacks with 1 left over. Now apply
the last equation of (40) to get:

586 = (102 × 3) + ([9× 10]× 3) + 16
= (102 × 3) + ([9× 10]× 3) + (5× 3 + 1)
= (102 × 3) + ([9× 10]× 3) + (5× 3) + 1
= {(102 + [9× 10] + 5)× 3}+ 1
= (195× 3) + 1 .

Let us review what we have accomplished. First we have verified (38)
directly from a clearly stated digit-by-digit description of the long division
algorithm, which is (40). Second, (40) exhibits the sequence of remainders
2, 1, 1 of the long division algorithm (in the case of 586 ÷ 3) which will be
of critical importance later in Chapter 4. Third, there is a point which has
been purposely suppressed thus far in order to get across the main thrust of
the argument as clearly as possible, but which needs to be aired now. It is
the fact that

at each step of the algorithm ((37) or (40)), the quotients 1, 9,
and 5 are always single digit numbers.

Obviously you have taken this for granted all along, because this is never
mentioned in school mathematics. Nevertheless, the simplicity of the long
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division algorithm depends on “replacing” each digit of the original dividend
by another digit (e.g., 5 by 1, 8 by 9 and 6 by 5; of course on other occasions,
a digit of the dividend could be replaced by 0) so that this “single-digit” fact
should be carefully verified. This we proceed to do. It is straightforward to
see from (40) — and this is another reason why the explicit description of the
algorithm in Steps 1–3 is critical — that because each remainder is by defini-
tion < 3, it is≤ 2, so that the next dividend (i.e., the number 28 after the first
step, and the number 16 after the second) is ≤ (20 + a single digit number)
according to Step 2. Therefore the dividend at each step of the long division
algorithm is always < 30. But if a number is < 30, then its quotient when
divided by 3 must be a single digit, exactly as claimed. (Cf. the first form of
the Division-with-Remainder in §3.4). As usual, we note that this reasoning
is valid in general.

We want to drive home the point that the long division algorithm is
strictly a digit-by-digit procedure without regard to place value. To this end
we shall compare (37) with the division 58671 ÷ 3, where the “dividend”
58671 has been chosen on purpose to have the three digits 5, 8, and 6 at the
beginning. The usual schematic display of the long division is as follows:

1 9 5 5 7
3 ) 5 8 6 7 1

3
2 8
2 7

1 6
1 5

1 7
1 5

2 1
2 1

0

The precise description of the algorithm in accordance with Steps 1–3 is then:
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5 = ( 1 × 3) + 2

28 = ( 9 × 3) + 1

16 = ( 5 × 3) + 1

17 = ( 5 × 3) + 2

21 = ( 7 × 3) + 0

(41)

Now compare the first three steps of both (40) and (41). They are iden-
tical. For definiteness of discussion, let us concentrate on the third step in
both. The 6 in 586 is in the ones digit, which is very different from the 6 in
58671, which is in the hundreds digit. In other words, the third step in (41)
is actually 1600÷ 3 and the corresponding division algorithm is then

1600 = (500× 3)100

if place value is taken into consideration. The point we wish to emphasize
is that, as far as the long division algorithm itself is concerned, place value
is irrelevant. Needless to say, the explanation of why (41) leads to 58671 =
3 × 19557 — along the line of the argument leading from (40) to (38) —
is squarely based on (41) and nothing else. Contrast this with the first
explanation given of (37), which is laden with place value interpretations.
This is the point we made earlier about the lack of simplicity in the latter
explanation.

As a reminder: observe once again that in (41), the dividend 58671 can be
read off by going down the last digits of the left sides, and the quotient 19557
can be read off by going down the first digits of the right sides. Moreover,
the remainder (0) appears in the last equation.

Let us give an example of a long division where the divisor has more than
one digit, carried out in accordance with Steps 1–3, in order to illustrate
more clearly why it is unnecessary to worry about “breaking the dividend
into parts”. Here then is 11546÷ 19 :
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0 0 6 0 7
1 9 ) 1 1 5 4 6

0
1 1

0
1 1 5
1 1 4

1 4
0

1 4 6
1 3 3

1 3

Now the digit-by-digit sequence of steps are the following:

1 = ( 0 × 19) + 1

11 = ( 0 × 19) + 11

115 = ( 6 × 19) + 1

14 = ( 0 × 19) + 14

146 = ( 7 × 19) + 13

(42)

Now we use (42) to verify that 11546 = 19× 607 + 13 . Note that only
the third and fifth equations carry real information, so only those will be
used in the following derivation :

11546 = 1× 104 + 1× 103 + 5× 102 + 4× 10 + 6
= (115× 102) + (4× 10) + 6
= (102 × 115) + (10× 4) + 6
= (102 × ([19× 6] + 1)) + (4× 10) + 6
= (6× 102)× 19) + (102 + [4× 10]) + 6
= (6× 102)× 19) + 146
= (6× 102)× 19) + (7× 19) + 13
= (([6× 102] + 7)× 19) + 13
= (607× 19) + 13

Hence the quotient of 11546÷ 19 is 607, and the remainder is 13.

Exercise 3.26 Explain to a sixth grader why the long division algorithm
for 642÷ 4 is correct.
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Exercise 3.27 Compute 10192 ÷ 8 using the long division algorithm.
Then write out the procedural description of this long division along the line
of (40), and use it to explain why your result is correct, i.e., if the quotient
and remainder of your original long division are respectively q and r, use
your procedural description to show directly that 10192 = (q × 8) + r.

Exercise 3.28 Do the same for 21850÷43. Be sure you write down every
step of the procedural description (as in (42), for example).

Exercise 3.29 Use (41) to derive the fact that 58671 = 3 × 19557 . (In
other words, we know you can multiply 3 × 19557 to get 19557, but we’d
prefer that you learn how to use a sequence of division-with-remainders such
as (41) to explain the long division algorithm.)

Exercise 3.30 Do the long division of 50009÷67 to find the quotient and
remainder, describe the algorithm as a sequence of division-with-remainders
in accordance with Steps 1–3, and use these to show why your quotient and
remainder are correct.

4 The Number Line and the Four Operations Revisited

We introduced the number line in §2 as an “infinite ruler” with the whole
numbers identified with a set of equally spaced points (often referred to as
“markers”) to the right of a point designated as 0. A whole number n is also
identified with the length of the line segment [0, n] from 0 to n. Until the end
of Chapter 4, we shall be concerned exclusively with the part of the number
line to the right of 0.

In the following, we shall always refer to the number line, and this ter-
minology has to be understood in the following sense. The positions of the
whole numbers depend completely on the choice of 0 and 1. Once these two
numbers have been fixed, the positions of the other whole numbers are like-
wise fixed. The segment [0, 1] is called the unit segment, and the number 1
is sometimes referred to as the unit. In each discussion,

we always assume that a unit segment has been chosen on the
given straight line so that the whole numbers are fixed on the
line.

It is in this sense that the number line is fixed. There will be occasions when
we see fit to change the unit, in which case there will be a different number
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line to deal with. Such an occasion will come up soon enough.

The four arithmetic operations have also been interpreted geometrically.
For addition, we have that for any two whole numbers m and n,

m + n = the length of the segment obtained by
concatenating the segments [0, m] and [0, n]

(43)

Geometrically, we have:

︸ ︷︷ ︸
[0,m]

︸ ︷︷ ︸
[0,n]

m + n� -

This way of adding numbers is exactly the principle underlying the slide
rules of yesteryear. (For those who do not know what a “slide rule” is,
perhaps one can describe it as the stone-age version of the calculator.) In
any case, one can do many activities with (43) until this geometric way of
adding numbers become second nature.

Subtraction is next. If m, n are whole numbers and m < n, then we saw
in §3.2 that

n−m = the length of the segment obtained when
a segment of length m is removed from one
end of a segment of length n

(44)

In picture:

� -m
� -n

n−m� -

We wish to go into some of the fine points of the addition and subtraction
of whole numbers, especially with respect to the number line. Suppose we
have two number lines, as indicated below.
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0 1 2

0 1 2 3 4

What do you say to a student if she tells you that she gets 1 + 2 = 2 in the
following way: She takes [0, 1] from the lower number line and [0, 2] from the
upper number line, and concatenate them as shown:

� -1 + 2

︸ ︷︷ ︸
[0,1]

︸ ︷︷ ︸
[0,2]

According to the lower number line, the resulting segment has length 2, and
this is how she gets 2 for her answer. The question is: what is wrong?

In order to explain to her what the mistake is, you would have to recall
for her the fact that all geometric representations of operations on whole
numbers, including (43) and (44), are done on one number line, and there-
fore are done with respect to a fixed unit segment. So what she did wrong
was not to realize that she had changed her unit segment in going from the
upper number line to the lower number line, and subsequently got the two
unit segments mixed up.

This brings up a fundamental issue in the arithmetic operations on whole
numbers concerning

the importance of having the same unit as a fixed reference.

Consider for example the following equations:

9− 2 = 1
8 + 16 = 2
19 + 17 = 3

(45)

Although every equation in (45) is wrong according to the arithmetic of whole
numbers as we know it, it is not as absurd as it appears. What (45) wants
to say is the following:
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9 days − 2 days = 1 week
8 months + 16 months = 2 years
19 eggs + 17 eggs = 3 dozen eggs

The point of (45) is to underline the implicit or explicit role played by
the unit in any addition or subtraction of numbers. The concept of a whole
number is an abstract one: for example, the equation 2 + 3 = 5 could mean
any of the following among numerous other possibilities:

2 apples and 3 apples are the same as 5 apples
2 cups of coffee and 3 cups of coffee are the same as 5 cups of
coffee
2 square inches and 3 square inches are the same as 5 square
inches

Whatever the interpretation of the abstract operations, each addition or
subtraction must refer to the same unit. Thus, the first interpretation of
2 + 3 = 5 is based on taking 1 to be “one apple”, the second on “one cup
of coffee”, and the third on “one square inch”. However, it can never be
interpreted to mean

2 apples and 3 cups of coffee are the same as 5 square inches

It is for the same reason — changing the unit in the middle of addition —
that the student’s reasoning of 1 + 2 = 2 is wrong.

In a mathematical context, what we are saying is this. Suppose a ring R
is isomorphic to the integers Z, and suppose under the isomorphism n̄ ∈ R
corresponds to n ∈ Z. Then although both 2̄ + 5̄ and 2 + 5 make perfect
sense, we cannot perform the addition 2̄ + 5 or 2 + 5̄.

This discussion of units assumes special importance when we discuss
length and area. In this context, we come to understand (43) as the in-
terpretation of 1 as a fixed unit length, so that each addition is nothing but
combining unit lengths of segments. Now suppose we decide that 1 is the
area of a fixed square. Recall the convention that once we decide on a fixed
segment as the unit segment, then the area of the unit square (= the square
with each side of length equal to that of the unit segment) defines the unit
area. So the number “1” will henceforth refer to this unit area. Then the
number 3 is no longer a concatenation of three unit segments but rather the
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total combined area of three unit squares. For convenience, we shall agree to
interpret a whole number n in this context as the area of a rectangle whose
width is a unit segment and whose length is the concatenation of n unit
segments. For instance, 5 would be the area of the following rectangle:

If there is no fear of confusion, we would simply say this is a rectangle
of width 1 and length 5. Again, in this particular context, 2 + 3 would be a
concatenation of the following two rectangles rather than a concatenation of
the segments [0, 2] and [0, 3] as stated in (43):

(46)

What makes this discussion particularly relevant is that we have inter-
preted the multiplication of whole numbers in §2 as area, e.g., 2 × 3 is the
area of the rectangle:

(47)

Therefore 2 × 3 = 6 means that the area of the the rectangle of (47) is the
same as the area of

because the latter is exactly what 6 stands for in this context. (Or, to remind
you of the meaning of the equal sign “=” as explained at the beginning of §2,
the equality 2× 3 = 6 means if we count the number of unit squares on the
left and count the number of unit squares on the right, the two numbers are
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the same.) To drive home this point, we give one possible interpretation of
5+(2×3) = 11: it means that the area obtained by combining the rectangle
of (46) and the rectangle of (47) is the same as the area of the rectangle
whose width is 1 and whose length is 11. We shall be discussing the area
interpretation of numbers extensively in Chapter 2.

Two extra comments would help to clarify the circle of ideas in connec-
tion with the representation of 1 as the area of the unit square.

The first one is that declaring the area of the unit square (recall: this
is the square whose side has length 1) to be 1 is nothing more than a
convention. In fact, we could declare its area to be any number, say, 2.
What could go wrong then? The area formula for the rectangle would be
messed up, as follows. Look at the area of the rectangle with width 5 and
length 7, for example. This rectangle is paved (tiled) by 5× 7 unit squares:

Therefore the area of the rectangle is 2 × (5 × 7), and not (5 × 7) (which
would be the case if each unit square has area equal to 1). More generally,
if a rectangle has width m and length n, then its area would be 2mn intead
of the usual mn. Thus declaring the area of the unit square to be anything
other than 1 would serve no purpose other than messing up otherwise simple
formulas. For this reason, we all agree to set the area of the unit square to
be 1.

A second comment is that the representation of the product of whole
numbers as the area of the corresponding rectangle has a long history be-
hind it. Until the time of Descartes (1596-1650), this was the only way to
understand the multiplication of numbers. In the most influential mathe-
matics textbook of all time, Euclid’s Elements (circa 300 B.C.E.), there was
never any mention of multiplying two numbers m and n. Each time Euclid
wanted to express that idea, he would say: “the rectangle contained by the
line m and the line n” (translation: “the rectangle” in Euclid means “the
area of the rectangle”, “contained by” means “having for its sides”, and “the
line m” means “the line segment of length m”). For this same reason, a prod-
uct of three numbers, such as 12 × 7 × 9, had to be interpreted as volume
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and therefore the product of four or more numbers was almost never consid-
ered until Descartes pointed out that multiplication can also be regarded as
an abstract concept independent of geometry. Nowadays, a (good) college
course on number systems would develop all number concepts in an abstract
setting without reference to geometry. For this monograph, however, the
geometric interpretation of multiplication not only is convenient for our pur-
pose, but has the added advantage in that it is sufficiently similar to the
common manipulative of Base Ten Blocks to make a beginner feel at ease.
The purely algebraic approach to multiplication will be discussed in §7.2 of
Chapter 2 and also §3 of Chapter 5.

At this point, we are in a position to give another interpretation of the
multiplication of whole numbers, one that was mentioned in §2. The product
3×4, for example, can be interpreted as the number 3 on a number line whose
unit 1 is taken to be (the magnitude or size represented by) the number 4;
one can think of 4 as a bag of 4 potatoes, a car full of 4 people, a box of 4
crayons, a bag of 4 marbles, etc. Schematically, in terms of such a choice of
the unit 1, the number 3 is the point on the line represented by the following
3 groups of objects:

• •
• •

• •
• •

• •
• •

In general, if m and n are whole numbers, then mn may be interpreted as
the number m on the number line whose unit 1 is taken to be (the magnitude
or size represented by) the number n. So m in this context is the point on
the line represented by the following m groups of objects:

n objects n objects
· · ·

n objects

︸ ︷︷ ︸
m

For a later need, it would be advantageous to formalize this procedure.
To facilitate the discussion, let us give m and n explicit values, say m = 4
and n = 3, and we shall re-interpret 4 × 3 as the point 4 on a number line
with a new unit. So we start with a number line:
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0 1 2 3 4 5 6 7 8 9 10 11 12

Now introduce new markers on the same line, where the new unit is 3.
To avoid confusion, we shall distinguish the new number markings from the
original one by a bar and place them underneath the line. So 1 is right under
3, 2 is right under 6, etc. In particular, 4 × 3 is four copies of the new unit
and is therefore 4 in the new number line, and 3m would be just m for any
whole number m.

0 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4

This idea of using a new unit to re-interpret the multiplication of numbers
provides an alternative way to understand the multiplication of fractions, as
we shall see in §7.3 of Chapter 2.

Finally, division. For whole numbers a, b, with b always assumed to be
nonzero, let us assume for now that a is a multiple of b, say a = qb for some
whole number q. Then

we write a÷ b = q for a = qb. (48)

In intuitive language, multiplication and division undoes each other. (See
(36) and the discussion surrounding it.) Sometimes, we also say multiplica-
tion and division are inverse operations to express this fact.

Activity: Suppose a fourth grader understands 24 ÷ 3 = 8
only in terms of the measurement interpretation and the partitive
interpretation of division. Explain to her why 24 ÷ 3 = 8 is the
same as 24 = 8× 3.

This is the place to tie up a loose end mentioned in the discussion of the
division algorithm, namely, why one cannot divide by 0. Suppose, division
by zero makes sense for a particular nonzero whole number n, say n÷ 0 = 3.
If one gives a little thought to what m ÷ n = k could mean regardless of
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what m, n, k may be, one would likely conclude (with (48) as guide) that
it means m = nk. In other words, one would require that (48) makes sense
for all m, n, and k. Such being the case, n ÷ 0 = 3 would be the same as
saying n = 0 × 3 = 0, which contradicts our assumption that n is nonzero.
If 3 is replaced by any other whole number, the same argument applies. So
n÷ 0 cannot be equal to any whole number if n is nonzero, which is another
way of saying it cannot be defined. What about 0 ÷ 0 ? We now run the
preceding argument backwards, i.e., m = nk should mean the same thing as
m÷ n = k for all m, n. Thus knowing 0 = 0× 1 means 0÷ 0 = 1 . But it
is also true that 0 = 0×2 , so 0÷0 = 2 . We have therefore shown that the
value of 0÷ 0 is ambiguous; it could be 1, or 2, or in fact any whole number
by the same argument. This shows that 0 ÷ 0 cannot be given a definite
value, i.e., it is also undefinable. We have therefore shown that division by 0
cannot be defined.

It may be instructive to follow literally the partitive and measurement
interpretations of division to see why n÷ 0 cannot be defined for a nonzero
whole number n. Suppose it were definable. By the partitive interpretation,
n÷ 0 would mean the number of objects in a part when n objects are par-
titioned into 0 equal parts (see §3.4). Because we cannot partition anything
into 0 equal parts, this has no meaning. Now suppose n÷ 0 were meaningful
in the measurement sense. Then it is the number of parts when n objects are
partitioned into different parts so that each part has exactly 0 objects. But
if each part has no object, the partition of the n objects cannot be done. So
again, this interpretation has no meaning either.

The fact that division undoes multiplication (always understood in the
sense of (36) or (48)) leads to a geometric interpretation of division that has
already been mentioned at the end of §3.4. Assuming as always that a is a
multiple of b, then a÷ b is the other side of a rectangle whose area is a and
one of whose sides is equal to b:

aa÷ b

b

(49)

To conclude this discussion of division, it remains to point out that al-
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though the restriction that a is a multiple of b imposed here seems too severe,
it will be seen when we come to §8 of Chapter 2 that it is in fact no restric-
tion at all once fractions are at our disposal. The equivalence of division and
multiplication as described in (48) will be seen to be the key to the under-
standing of division in general.

Exercise 4.1 Use the idea of introducing a new unit to represent a whole
number c to re-interpret the distributive law in the form of (a+b)c = ac+bc.

Exercise 4.2 If a rectangle has area 98 and one side equals 14, what is
the other side? If the area is 1431 and one side is 27? And if the area is 7797
and one side is 113?

5 What Is a Number?

Thus far, we have never paused to ask what a whole number is. We took
this concept for granted from the beginning, and subsequently make them
correspond to a collection of equally spaced markers (points) on a line to the
right of a point denoted by 0. We are going to change our viewpoint here
and use a set of markers on a line to define the whole numbers. Before you
ask why we bother, let us do it first. So we start afresh by imposing a set of
markers on a line.

Take a straight line and mark off a point as 0 (zero). Then
fix a segment to the right of 0 and call it the unit segment. Mark
the right endpoint of this segment on the line, thereby generating
the first marker. Slide the unit segment to the right until its
left endpoint is at the first marker; mark the new position of the
right endpoint of the unit segment, thereby generating the second
marker. Now slide the unit segment to the right again until its left
endpoint rests on the second marker, and mark the right endpoint
of the unit segment in its new position. This generates the third
marker, etc. This generates a sequence of equally spaced markers
to the right of 0.

Notice that up to this point, there is no mention of whole numbers. Now
we will formalize the introduction of whole numbers by adopting the follow-
ing definition.
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Definition. A whole number is one of the markers on the line, so that,
starting with the initial number 0, the next one (to the right of 0) is 1, the
one after that is 2, etc., and we continue the naming of the markers in the
same way we did the counting of the whole numbers in §1. This line with
the whole numbers on it is called the number line. A number is by definition
any point on the number line.

As far as whole numbers are concerned, what we have defined is at least
consistent with everything we have done up to this point. In this sense, we are
not by any means trying to attempt a retrograde revision of our knowledge
of the whole numbers. Rather, we are saying that, for the work we do from
now on, we shall agree to change our point of view and base our reasoning
with whole numbers on this definition alone. Thus a whole number is now
something very concrete and explicit: it is among the markers on the number
line which were carefully constructed above. Because we have been using
these markers all along in our work, no revision of anything we have done is
necessary. Whatever we do in the future about whole numbers, however, we
should be able to explain it in terms of these points on the number line.

You must be muttering to yourself at this point and wondering what is
happening here. After all, don’t we know what a whole number is? Let us
define the number 5, for instance. Note that what is required here is not a
description of our intuitive feelings about “5”, but rather a precise definition
analogous to the definition (say) of a triangle as three noncollinear points to-
gether with the line segments joining them. We know “five fingers”. We also
know “five chairs”, or “five apples”, or five of anything we see or touch be-
cause we can count. But five itself, without reference to any concrete object?
So you see that it is difficult. Do not be discouraged, because the general
concept of a number, in the sense defined above as a point on the number
line, baffled the human race for over two thousand years before it was finally
pinned down in the late nineteenth century. What we need for elemetary
mathematics is fortunately nothing very sohpisticated, just the whole num-
bers and some other numbers which come out of whole numbers in a rather
simple-minded fashion. Fractions or rational numbers, for instance. In other
words, we will not scrutinize every point on the number line. Only a small
portion of those points. This definition of numbers is not ideal, but it serves
our pedagogical needs admirably, in the sense that it is accessible and it
lends itself to a reasonable treatment of rational numbers and decimals. See
Chapters 2, 4 and 5.
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A precise definition of whole numbers is not strictly necessary if all we
ever do in mathematics is to stay within the realm of whole numbers. For
example, even if we cannot define precisely what 5 is, we can communicate
the essence of it by putting up one hand with the fingers outstretched; that
should be enough to communicate any kind of “fiveness” needed for con-
ceptual understanding. This is the advantage of whole numbers: each has
(at least in principle) a concrete manifestation such as outstretched fingers
that almost renders abstract considerations about whole numbers unneces-
sary in elementary school. But we cannot stay with whole numbers forever,
because the next topic is fractions. What concrete image can one conjure

in connection with
13

7
or

119

872
? Children need answers to this question in

their quest for knowledge because they need something to anchor the many
concepts related to fractions in the same way a handful of fingers can anchor
any discussion about 5. Amazingly, school mathematics in our country has
contrived to never answer this question. The results are entirely predictable:
when adults abrogate their basic responsibilities, the first victims are the
children. The generic non-learning of fractions among children has become
part of our national folklore, so much so that you can find references to it in
the comic strips of Peanuts and FoxTrot. We want to change this dismal
scenario by adopting the down-to-earth approach of

giving direct answers to direct questions.

We will define fractions, decimals, or any concept we ever take up.

Now you would want to know why not just define fractions abstractly and
leave a nice subject like whole numbers alone. The answer is that in order
for children to understand fractions, fractions cannot be suddenly presented
to them out of the blue. Learning is a gradual process firmly rooted in prior
experiences. If we can convince them that fractions are nothing more than
an natural extension of the whole numbers, then our chances of success in
teaching them fractions would be immeasurably increased. At the moment,
most (or perhaps all) of the school textbooks and professional development
materials would have you believe that whole numbers are simple, but frac-
tions are a completely different breed of animals. Whole numbers are taught
one way, and fractions in a completely different way. There is no continuity
from one to the other. The minute you as a teacher or your students buy
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into this view of numbers, our mathematics education is already in trouble
because this means you have bought into mathematical misinformation.
From the point view of mathematics, whole numbers are on an equal footing
with fractions. They are part of the same family, the real numbers. In fact,
this is where the number line comes in: we already have the whole numbers
there, and the next step is to single out the fractions on this line. For this
reason, it is not possible to only offer a precise definition of fractions and
leave the whole numbers unattended. We must begin with a definition of the
whole numbers that will naturally lead to fractions.

Let us consider the philosophical question of why something as natural as
a whole number should be made into something as cold and formal as “a point
on the number line”. The answer lies in the fact that we are trying to deepen
our understanding of the whole numbers in order to lay the groundwork for
working with fractions. In particular, the geometric interpretations (43)–
(44), (46)–(47) and (49) are part of this groundwork. Now it is in the
nature of human affairs that each time we try to achieve excellence in any
endeavor, doing what is natural is simply not enough. Take running, for
instance. This is about as natural an activity as we are going to get. In
fact, had our ancestors been less good at it, all of them would have been
hunted down by the predators on the African Savannas and we wouldn’t be
here to talk about fractions. Yet, if you talk to an Olympic sprinter, what
you hear from him about running would strike you as extremely unnnatural
if not downright unreal. He would tell you that he calculates exactly how
many strides he takes with each breathe-in, how many he takes with each
breathe-out, exactly how far from the starting block before he can take his
first breath, and where the next spot is before he can take another breath
again. Doesn’t this unnnatural and calculated approach to running remind
you of looking at a whole number as a point on the number line?

But let us not lose our perspective. Whatever the Olympic sprinters do
in a race, it is highly unlikely that they think about “how soon before I can
breathe in and how many strides I should take before then” each time they
run to catch a bus. In the same way, you need not fixate on the number
line every time you count oranges in the supermarket. All you need to do
is to understand decimals and fractions and all the rest, and be good teach-
ers. So please rise to the occasion when there is a need to regard a whole
number as a point on the number line and be willing to work with this con-
cept. If you can accept this reality, then you have already won half the battle.
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