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K–12 math teachers have a dual obligation:

• They must teach mathematics that respects

its basic characteristics.

• They must also address the needs of the

school classroom, including students’ diverse

background and mathematical maturity.

In the New Math, for example, they

ignored the second.

Until very recently, there was a ten-

dency to slight the first.



Why emphasize that mathematics of the class-

room must respect the basic characteristics of

mathematics? Because:

• Pre-service or in-service professional develop-

ment generally does not address this issue.

• Textbooks for teachers generally do not con-

cern themselves with this issue.

• Mathematics education itself may slight the

importance of the basic characteristics of math-

ematics when distracted by other concerns (eq-

uity, pedagogical strategies, cognitive develop-

ments, . . . )



What are the basic characteristics of mathe-

matics? They are not easy to describe, but

you’d know it when they are not there.

EXAMPLE. The way real numbers are taught

in schools is contrary to the spirit of mathe-

matics.

School mathematics is the mathematics of ra-

tional numbers. Any excursion into irrational

numbers depends on pure extrapolation from

the rationals.

E.g.
3

π
+

√
2

5.1
=

3× 5.1 +
√

2× π

π × 5.1



Implicitly, the computation invokes at every

turn the

Fundamental Assumption of School

Mathematics (FASM): All the infor-

mation about arithmetic operations on

rational numbers can be extrapolated

to all real numbers.

The use of FASM in school mathematics is

good education provided it is made explicit.

The fact that FASM is not mentioned in school

textbooks or college textbooks for teachers ren-

ders the mathematics in those books defective.

It violates the characteristic of precision, to be

discussed next.



The basic characteristics of mathematics

Precision: Mathematical statements are clear

and unambiguous. At any moment, it is clear

what is known and what is not known.

Definitions: Bedrock of the mathematical

structure. No definitions, no mathematics.

Reasoning: Lifeblood of mathematics. The

engine that drives problem solving.

Coherence: Mathematics is a tapestry in

which all the concepts and skills are interwo-

ven.

Purposefulness: Mathematics is goal-oriented.

It solves specific problems.



These characteristics are not independent

of each other.

Students who want to be scientists, engineers,

or mathematicians need to know mathematics

that respects these basic characteristics.

All students need to know this kind of math-

ematics if school mathematics education is to

live up to its educational potential: to provide

the best discipline of the mind in the school

curriculum.



Key Question: Why must our teachers know

this kind of mathematics?

Trivial Answer: If teachers don’t know it,

then their students won’t know it either.

Nontrivial Answer: Teachers who know this

kind of mathematics can make themselves bet-

ter understood, can win students’ trust, and

can open up mathematics to their students.



Students cannot not learn mathematics if the

don’t participate in the doing of mathematics.

They will not participate if they believe math-

ematics is one giant black box to which even

their teachers do not have the key.

Teacher can hope to win their students’ trust

and inspire them to participate only if they can

make transparent what they are talking about

(definitions and precision), and can explain

why students should learn a skill or a concept

(reasoning and purposefulness).



I will discuss four examples to show how teach-

ers who know the basic characteristics of math-

ematics can teach better.

Example 1. Place value.

Example 2. Translations, rotations,

reflections.

Example 3. The equal sign.

Example 4. Fractions, decimals, and

percent.



Example 1. Place value.

Consider the number

7 3 7 5 7

We tell students that the three 7’s are dif-

ferent, but expect them to have conceptual

understanding of place value. The expected

outcome is inconsistent with the input.

Place value is offered as a rule, but it would

help if teachers we can explain the reason for

such a rule (reasoning).

Place value is a consequence of the way

we CHOOSE TO COUNT.



We want to count using only ten symbols: 0,

1, 2, 3, 4, 5, 6, 7, 8, 9. This decision forces us

to use more than one position (place) to count

to large numbers.

Illustrate with THREE symbols: 0, 1, 2. Count-

ing stops after three steps. To continue, one

way is to repeat the three symbols indefinitely:

0 1 2
0 1 2
0 1 2 etc.

But to keep track of the repetitions, we label

each repetition by a symbol to the left:

00 01 02
10 11 12
20 21 22



Adding one symbol to the left of 0 1 2

allows us to count up to nine. Then we are

stuck again. To keep going, we repeat these

nine symbols indefinitely:

00 01 02 10 11 12 20 21 22
00 01 02 10 11 12 20 21 22
00 01 02 10 11 12 20 21 22 etc.

but again label each repetition by a symbol to

the left:

000 001 002 010 011 012 020 021 022
100 101 102 110 111 112 120 121 122
200 201 202 210 211 212 220 221 222



The convention is to omit 0’s on the left:

0 1 2 10 11 12 20 21 22
100 101 102 110 111 112 120 121 122
200 201 202 210 211 212 220 221 222

This way, students get to see the origin of

place value: we use three places only after

we have exhausted what we can do with two

places. Thus the 2 in 201 stands not for 2,

but the third round of counting the NINE two-

digit numbers, i.e., the 2 in 201 signifies the

beginning of the 18th number (18 = 9 + 9).

Therefore, 201 is the 19th number (9+9+1).



In the same way, if we use ten symbols 0, 1,

2, 3, 4, 5, 6, 7, 8, 9, then

the 3 in 324 signifies the 4th round

of counting the 100 two-digit numbers

and therefore stands for 300 (= 100 +

100+100), and 324 is the 300th-and-

20th-and-4th number.

When teachers know the underlying reasoning

of place value, this content knowledge opens

up their pedagogical options. They can ex-

plain place value with greater conviction, and

they can also allow their students to count with

any number of symbols to see place value for

themselves.



Knowing how to count is fundamental to the

teaching of whole numbers.

E.g., A teacher who can explain the definition

of addition as iterated counting (i.e., 412 +

735 is the number we get by counting to 735

if we start with 412) can teach the addition

algorithm as follows:

We already know how to add any two

numbers (just count), but it is hard

work. The addition algorithm is a short-

cut to add any two numbers by count-

ing only single digit numbers.

The same holds for ALL standard algorithms.

This is why they should be taught.



Example 2. Translations, rotations, reflec-

tions.

These basic isometries are usually taught as

means to increase art appreciation: Look for

symmetries in designs! Look for symmetries in

nature! Look for symmetries in tessellations!

Are these basic isometries only good for fun

and games, or do they possess mathematical

substance yet to be unveiled?

A teacher who knows the purposefulness of

mathematics and the importance of definitions

would teach these basic isometries differently,

because she knows mathematically what they

are for.



She would define two figures to be congruent,

NOT if they have the “same size and same

shape”, but if a translation, a rotation, and/or

a reflection bring one on top of the other.

Congruence therefore becomes a tactile and

learnable concept.

She would also use congruence to give correct

definitions of length, area, volume, thereby

exhibiting to her students the fundamental role

of these basic isometries in mathematics (co-

herence).



A teacher who understands the purposefulness

of mathematics would always emphasize the

reasons to learn a concept or skill. Knowing

the reasons facilitates students’ learning pro-

cess.

For example, she would make clear, that

• students learn about rational exponents of

numbers because they have to deal with expo-

nential functions, and

• the importance of learning about axioms and

proofs in geometry is not to do pro forma

proofs of trivial statements, but to establish

conviction about the truth of statements that

are nontrivial.



Example of nontrivial Euclidean theorems that

belong to every high school geometry course.

• The three altitudes of a triangle meet at a

point.

• The line segment joining the midpoints of

two sides of a triangle is parallel to the third

side, and is half the length of the third side.

• Given any three points A, B, C in the plane,

then

dist(A, B) + dist(B, C) ≥ dist(A, C),

and equality holds if and only if A, B, C are

collinear and B is between A and C.



Example 3. The equal sign.

Education research in algebra has decided that

students’ defective understanding of the equal

sign as

an announcement of the result of an

arithmetic operation

rather than as

expressing a relation

is a major reason for their failure to achieve

algebra.

It also decides that the notion of “equal” is

complex and difficult for students to compre-

hend.



However, in mathematics, the concept of equal-

ity is a matter of definition. The notion of

“equal” is unambiguous and NOT difficult to

comprehend.

If teachers can emphasize the importance of

definitions, and always define the equal sign in

different contexts with precision and care, any

misunderstanding of the equal sign would be

the concern of professional development and

not of education research.



Here is the list of definitions of A = B that

arises in school mathematics:

A and B are expressions in whole num-

bers: both count to same number, or

same point on number line (e.g., A =

2 + 5, B = 4 + 3);

A and B are expressions in fractions:

same point on number line (e.g., 1
2 +

1
3 = 2− 11

6);

A and B are expressions in rational

numbers: same point on number line

(e.g., 1
3 −

1
2 = 2− 21

6);

A and B are two sets: A ⊂ B and

B ⊂ A;

A and B are two functions: A and

B have the same domain of definition,

and A(x) = B(x) for all x in their com-

mon domain;



A and B are two abstract polynomi-

als: pairwise equality of the coefficients

of the same power of the indetermi-

nate;

A = (a, a′), B = (b, b′) are ordered

pairs of numbers: a = b and b = b′.



If teachers misuse the equal sign as announce-

ment of an answer, or a “call to action”, stu-

dents will follow suit. We need teachers who

are aware of the characteristics of definitions

and precision in mathematics.

In particular, we need teachers who do not cor-

rupt students’ conception of the equal sign by

writing, as textbooks do,

27÷ 4 = 6 remainder 3

This literally uses the equal sign as “an an-

nouncement of the result of an arithmetic op-

eration.”

We need teachers who write instead:

27 = (6× 4) + 3



Example 4. Fractions, decimals, and per-

cent.

Here we focus on the teaching of these top-

ics in grades 5 and up. This is where infor-

mal knowledge of fractions begins to give way

to a formal presentation, and where students’

drive to achieve algebra begins to take a seri-

ous turn.

Students are told:

a fraction is a piece of pizza, part of a

whole, a division, and a ratio;

a decimal is a number obtained by count-

ing hundreds, tens, ones, tenths, hun-

dredths, thousandths, etc.;

a percent is part of a hundred.



Students are also told to “reason mathemati-

cally” using these concepts to solve problems.

A teacher who knows the basic characteristics

of mathematics would know that the founda-

tion of mathematical reasoning is clear and cor-

rect definitions. She would recognize that

this “definition” of a fraction has too

many components, some of them don’t

make sense, e.g., what is a “ratio”?

and how to multiply two pieces of pizza?

if decimal and percent are as described,

how to compute with them?

if these are all supposed to be numbers,

why are they all different? (issue of

coherence)



The teacher would recognize the need of a ser-

viceable definition of a fraction, e.g., a point

on the number line, and the need to define

decimals and percent as certain kinds of frac-

tions:

a decimal is any fraction with denomi-

nator equal to ten, hundred, thousand,

etc., (so that 3.52 and 0.0067 are, by

definition, 352
100 and 67

10000, respectively),

and

a percent is a fraction of the form N
100,

where N is a fraction.



Such a teacher can now teach percent prob-

lems with ease.

E.g., what percent of 76 is 88?

A similar problem, what fraction of 76 is 88?,

is done by writing down, if k is that fraction,

k × 76 = 88, so k = 88
76 = 22

19.

Since percent is also a fraction, we do the orig-

inal problem the same way: if N% of 76 is 88,

then
N

100
× 76 = 88,

and N = 8800
76 = 11515

19. Thus, the answer is

11515
19%.



Such a teacher can also teach the multiplica-

tion algorithm for decimals and the place value

of decimals with ease.

For example, the multiplication of decimals is

reduced to the multiplication of whole numbers

(coherence), because:

2.6× 0.105 =
26

10
×

105

1000

=
26× 105

10× 1000

=
2730

10000

= 0.2730



She would teach the place value of decimals

on the basis of the place value of whole num-

bers (coherence):

3.712 =
3712

1000

=
3000 + 700 + 10 + 2

1000

=
3000

1000
+

700

1000
+

10

1000
+

2

1000

= 3 +
7

10
+

1

100
+

2

1000



Conclusion: Teachers need more than spe-

cific pieces of skills or concepts to improve

students’ achievement in mathematics. They

need change in their perception of mathemat-

ics as a discipline that embodies the five basic

characteristics.

Such a change cannot be accomplished in two-

day or three-day workshops. It requires sus-

tained effort over a long period of time.


