
Lecture #1

§1. Nevanlinna Theory

Nevanlinna theory is part (most) of value distribution theory of holomorphic functions
Consider the function ez . It has no zeroes or poles, so as a map C → P1(C) it

omits the values 0 and ∞ .

Theorem (Picard). There is no non-constant holomorphic function C → P1(C) omit-

ting three or more values.

[draw (ez)−1(2) ]

Note that (ez)−1(w) =
{ {log w + 2πin : n ∈ Z} w ∈ C \ {0},
∅ w = 0,∞

∴ {z ∈ C : ez = w and |z| ≤ r } =
{ r

π + Ow(1) w ∈ C \ {0},
0 w = 0,∞

From now on assume f(0) 6= 0,∞ .
Let log+ x = max{0, log x} . Also let f : C → C be meromorphic.

Definition. The proximity function is

mf (r) =
∫ 2π

0

log+ |f(reiθ)| dθ

2π
, and

mf (a, r) = m1/(f−a)(r) = −
∫ 2π

0

log− |f(reiθ)− a| dθ

2π
a ∈ C .

Also let mf (∞, r) = mf (r) .

Definition. The counting function is

Nf (r) =
∑
|z|<r

ord+
z (1/f) · log

r

|z|
, and

Nf (a, r) = N1/(f−a)(r) =
∑
|z|<r

ord+
z (f − a) · log

r

|z|
.

Also let Nf (∞, r) = Nf (r) .

Finally, we define the height function by

Tf (r) = mf (r) + Nf (r) .

If f(z) = ez then Nf (∞, r) = 0 and

mf (∞, r) =
∫

log+ er cos θ dθ

2π
= r

∫ π/2

−π/2

cos θ
dθ

2π
=

r

π
.
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Theorem (First Main Theorem (FMT)). For all a ∈ C ,

mf (a, r) + Nf (a, r) = Tf (r) + Of,a(1) .

Since mf (a, r) ≥ 0 , this gives an upper bound on Nf (a, r) .
Compare with Jensen’s formula

log |cλ| =
∫ 2π

0

log |f(reiθ)| dθ

2π
+ Nf (∞, r)−Nf (0, r) .

Theorem (Second Main Theorem (SMT)). Let a1, . . . , aq ∈ P1(C) be distinct. Then

(*)
q∑

i=1

mf (ai, r) ≤exc 2 Tf (r) + O(log+ Tf (r)) + o(log r) ,

where O( ) and o( ) depend only on f and a1, . . . , aq , and ≤exc means that the

inequality holds for all r ∈ (0,∞) outside of a set of finite Lebesgue measure.

Corollary (Picard). If f : C → P1(C) \ {a1, a2, a3} is holomorphic with a1, a2, a3 dis-

tinct, then f is constant.

Proof. Since f never equals ai , we have Nf (ai, r) = 0 , so the First Main Theorem
gives mf (ai, r) = Tf (r) + O(1) . The left-hand side of (*) is therefore 3 Tf (r) + O(1) ,
so (*) becomes Tf (r) ≤exc O(log+ Tf (r)) + o(log r) . But, if f is nonconstant then
Tf (r) ≥ O(log r) , a contradiction. Therefore f is constant. �

One can view the SMT as a lower bound on Nf (a, r) : the left-hand side of (*) is
q Tf (r)−

∑
mf (ai, r) , so (*) is equivalent to

q∑
i=1

Nf (ai, r) ≥exc (q − 2)Tf (r) + O(log+ Tf (r)) + o(log r) .

Advantages:

(1). q − 2 = χ(P1 \ q points) ,
(2). The left-hand side is independent of metrics; and
(3). One can phrase it using truncated counting functions (abc conjecture).
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§2. Number Theory

For a number field k , let Mk be its set of places. This is in one-to-one correspondence
with the disjoint union

{nonzero primes in Ok}
∐
{σ : k ↪→ R}∐

{unordered pairs (σ, σ̄): σ 6= σ̄ : k ↪→ C} .

For v ∈ Mk we define norms ‖ · ‖v by

‖x‖ =


(Ok : p)− ordp(x) if v - ∞, x 6= 0,

|σ(x)| if v is real,

|σ(x)|2 if v is complex.

We then have a product formula
∏

v∈Mk
‖x‖v = 1 for all x ∈ k , x 6= 0 .

Let S∞ denote the set of archimedean (real or complex) places.
Let S ⊇ S∞ be a finite set of places of k ; for x ∈ k we then define

mS(x) = mS(∞, x) =
∑
v∈S

log+ ‖x‖v ,

mS(a, x) = mS

(
1

x− a

)
=

∑
v∈S

log+

∥∥∥∥ 1
x− a

∥∥∥∥
v

,

NS(x) = NS(∞, x) =
∑
v/∈S

log+ ‖x‖v =
∑
v/∈S

ord+
v (1/x) log(Ok : p) ,

NS(a, x) = NS

(
1

x− a

)
=

∑
v/∈S

log+

∥∥∥∥ 1
x− a

∥∥∥∥
v

.

hk(x) = mS(x) + NS(x) =
∑

v∈Mk

log+ ‖x‖v = log
∏
v

max{1, ‖x‖v} .

Corresponding to the FMT, we have

mS(a, x) + NS(a, x) = hk

(
1

x− a

)
= hk(x) + Oa,k(1) ,

a property of heights.

Theorem (Roth). Let k and S be as above, and for all v ∈ S let αv ∈ Q . Let ε > 0 .

Then the inequality ∏
v∈S

min{1, ‖x− αv‖v} ≤
1

Hk(x)2+ε
.
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holds for only finitely many x ∈ k .

This is equivalent to the same statement with αv ∈ k for all v (expand k ).
Equivalently, given k , S , ε , and a1, . . . , aq ∈ k , then the inequality

q∏
i=1

∏
v∈S

min{1, ‖x− ai‖v} ≤
1

Hk(x)2+ε

holds for only finitely many x ∈ k .
Taking − log of both sides, and rearranging the logic, we then have that

q∑
i=1

mS(ai, x) ≤ (2 + ε)hk(x) + O(1)

for almost all x ∈ k .
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§3. Schmidt’s Subspace Theorem and a Theorem of Cartan
We start with Nevanlinna theory. Let H be a hyperplane in Pn(C) ( n > 0 ), defined
by a0x0 + · · · + anxn = 0 . For P ∈ Pn(C) , P /∈ H , with homogeneous coordinates
[z0 : · · · : zn] , let

λH(P ) = −1
2

log
|a0z0 + · · ·+ anzn|2

|z0|2 + · · ·+ |zn|2
,

and for a holomorphic curve f : C → Pn(C) with image not contained in H , define
the proximity function

mf (H, r) =
∫ 2π

0

λH(f(reiθ))
dθ

2π
.

For the counting function, note that f∗H is an analytic divisor on C ; we can then
define

Nf (H, r) =
∑
|z|<r

ordz f∗H · log
r

|z|
.

For the height function, we note that for any hyperplane H not containing the image
of f ,

Tf (r) := mf (H, r) + Nf (H, r)

is independent of H up to O(1) , with an implicit constant depending only on H .

Theorem (Cartan). Let n > 0 and let H1, . . . ,Hq be hyperplanes in Pn(C) in gen-

eral position (i.e., every intersection of r ≤ n of them has codimension r ). Let

f : C → Pn(C) be a holomorphic map whose image is not contained in any hyper-

plane. Then
q∑

i=1

mf (Hi, r) ≤exc (n + 1)Tf (r) + O(log+ Tf (r)) + o(log r) .

In number theory, things are very similar. Let k and S be as above, and let H

be a hyperplane in Pn
k given by a0x0 + · · · + anxn = 0 (with ai ∈ k for all i ). For

P ∈ Pn(k) \ H with homogeneous coordinates [x0 : · · · : xn] (again with xi ∈ k for
all i ), and v ∈ Mk we define

λH,v(P ) = − log
‖a0x0 + · · ·+ anxn‖v

max{‖x0‖v, . . . , ‖xn‖v}
,

and define a proximity function mS(H,P ) =
∑

v∈S λH,v(P ) , a counting function
NS(H,P ) =

∑
v/∈S λH,v(P ) , and a height function

hk(P ) = mS(H,P ) + NS(H,P ) =
∑

v∈Mk

− log
‖a0x0 + · · ·+ anxn‖v

max{‖x0‖v, . . . , ‖xn‖v}

=
∑

v

log max ‖xi‖v

by the product formula.
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Theorem (Schmidt’s Subspace Theorem). Let k , S , ε > 0 , and n > 0 be as above,

and let H1, . . . ,Hq be hyperplanes in Pn
k in general position. Then

q∑
i=1

mS(Hi, x) ≤ (n + 1 + ε)hk(x) + O(1)

for all x ∈ Pn(k) outside of a finite union of proper linear subspaces of Pn
k .

Actually, Schmidt had a collection Hv,0, . . . ,Hv,n for each v ∈ S , in general
position for each v . The union, however, did not need to be in general position. This
is equivalent to:

Theorem (Schmidt’s Subspace Theorem). Let k , S , ε > 0 , and n > 0 be as above,

and let H1, . . . ,Hq be hyperplanes in Pn
k . Then the inequality∑

v∈S

max
J

∑
i∈J

λHi,v(x) ≤ (n + 1 + ε)hk(x) + O(1)

holds for all x ∈ Pn(k) outside of a finite union of proper linear subspaces. Here

J varies over a given collection of subsets of {1, . . . , q} for which {Hi : i ∈ J} lie

in general position.

Theorem (Cartan). Let H1, . . . ,Hq be hyperplanes in Pn(C) and let f : C → Pn be

a holomorphic curve whose image is not contained in any hyperplane. Then∫ 2π

0

max
J

∑
i∈J

λHi(f(re
√
−1θ))

dθ

2π
≤exc (n + 1)Tf (r) + O(log+ Tf (r)) + o(log r)

(where J is as before).
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§4. The Dictionary

• One holomorphic map corresponds to an infinite set of rational points.
• One rational point may correspond to f

∣∣
Dr

.
• r ∈ (0,∞) corresponds to x ∈ k

• θ ∈ [0, 2π] corresponds to v ∈ S

• |f(reiθ)| corresponds to ‖x‖v , v ∈ S

• ordz f ( |z| < r ) corresponds to ordv x , v /∈ S

• log
r

|z|
corresponds to log(Ok : p)

[draw Dr ]
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§5. The Borel Lemma/Unit Theorem

Lemma (Borel). If g1, . . . , gn are entire functions such that

eg1 + · · ·+ egn = 1

then some gi is constant.

Proof. [eg1 : · · · : egn ] gives a holomorphic map f : C → Pn−1 missing the n coordinate
hyperplanes and also the hyperplane x0 + · · ·+ xn = 0 . Therefore

m(Hi, r) = Tf (r) + O(1)

for each of these n + 1 hyperplanes, so f must be linearly degenerate. We can then
eliminate one of the gi and then use induction on n . �

Lemma (Schlickewei, van der Poorten). Given a collection of n-tuples (u1, . . . , un) of

units in Ok satisfying u1 + · · ·+ un = 1 , all but finitely many have the property

that there is a proper subset I of {1, . . . , n} with at least two elements and having

the property that
∑

i∈I ui = 0 .

Proof. NS(Hi, [u1 : · · · : un]) = 0 for the same hyperplanes as before, so the given
points all lie in a finite union of proper linear subspaces. Therefore there is an infinite
subset lying in a hyperplane. �

Why do these theorems correspond?
Proofs of results relying on these two theorems also correspond.
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§6. Weil Functions

There is a unique way (up to a rather involved definition of O(1) ) to assign to each
pair (X, D) , where X is a complete k-variety and D is a Cartier divisor on X , a
Weil function

λD :
∐

v∈Mk

(X \D)(kv) → R ,

such that

(i). normalization: if H ⊆ Pn is the hyperplane at infinity, then

λH,v([x0 : · · · : xn]) = − log
‖x0‖v

max ‖xi‖v
+ O(1) ,

(ii). additivity: λD+D′ = λD + λD′ + O(1) , and
(iii). functoriality: if f : X → Y is a morphism and D is a divisor on Y whose

support does not contain the image of X , then λf∗D(x) = λD(f(x))+O(1) .
(iv). continuity: λD,v is continuous in the v-topology.

Here λD,v means the restriction of λD to (X \D)(kv) , and additivity is only assumed
to hold on the intersection of the domains.

We also have hO(D),k(x) =
∑

v∈Mk
λD,v(x) + O(1) for all x /∈ SuppD . This also

works for points over k , with suitable adjustments.
We can then define a proximity function

mS(D,P ) =
∑

v∈S λD,v(P ) and a counting function
NS(D,P ) =

∑
v/∈S λD,v(P ) for all P ∈ (X \D)(k) .

Again, mS(D,P ) + NS(D,P ) = hO(D),k(P ) + O(1) .

In Nevanlinna theory itself : Let X be a complete complex variety and let D be
a Cartier divisor on X . Choose a hermitian metric on O(D) , and let 1D denote the
canonical section. Then λD := − 1

2 log |1D|2 gives a Weil function (which is a much
simpler notion in this context).

For a holomorphic map f : C → X whose image is not contained in the support
of D , we may then define a proximity function

mf (D, r) =
∫ 2π

0

λD(f(reiθ))
dθ

2π

and counting function Nf (D, r) =
∑

|z|<r ordz f∗D · log r
|z| .
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§7. Integral Points

Let k and S be as above, let X be a complete variety over k , and let D be an
effective divisor on X such that X \ SuppD is affine. Näıvely, a point P ∈ X(k) is a
(D,S)-integral point on X if there is a rational map i : X 99K Pn for some n , defined
and injective on X\SuppD , such that SuppD = i−1({x0 = 0}) and i(P ) ∈ An(Ok,S) .

However, this notion is useful only for infinite sets (for any finite set you can clear
the denominators) (Serre). This definition can be expressed using Weil functions:

Definition. A subset Σ of X(k) is (D,S)-integral if there is a Weil function λD for
D and constants cv ∈ R for all v /∈ S such that cv = 0 for almost all v and
λD,v(P ) ≤ cv for all v /∈ S and all P ∈ Σ .

If D = i∗({x0 = 0}) , then this is easily seen to be equivalent to the earlier naive
definition if i is an actual morphism, by functoriality and normalization of Weil func-
tions. Moreover, by additivity of Weil functions this notion depends only on Supp D .
Indeed, if D and D′ are effective divisors with the same support, then D ≤ mD′ for
some m , and so λD ≤ mλD′ + O(1) . It also depends only on the quasi-projective
variety X \ SuppD .

This definition does not assume that X \D is affine. This is useful, e.g., for Ag,n

(the moduli space of principally polarized abelian varieties of given dimension and level
structure). Also, if D = 0 then the condition is vacuous and all sets of rational points
are integral.

Also, note that this definition is well-behaved with respect to morphisms of X \D :
given morphisms φ : X → X ′ and effective divisors D on X and D′ on X ′ such
that φ(X \ SuppD) ⊆ X ′ \ SuppD′ , then SuppD ⊇ φ−1(SuppD′) , so φ∗D′ ≤ nD .
Therefore, by functoriality and linearity of Weil functions, (D,S)-integral points on X

are mapped to (D′, S)-integral points on X ′ .
Of course, (D,S)-integrality implies that NS(D,P ) is bounded, and this corre-

sponds to Nf (D, r) being bounded in Nevanlinna theory. One important case in which
this holds is when f misses the support of D , and one notes of course that maps to
X \SuppD are also well-behaved with respect to morphisms φ : X → X ′ taking X \D

to X ′ \D′ .
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Lecture #2

§1. Conjectures

Conjecture. Let k be a number field, let S ⊇ S∞ be a finite set of places of k , let X

be a smooth projective variety over k , let D be a normal crossings divisor on X ,

let A be an ample divisor on X , let K denote the canonical line sheaf on X ,

and let ε > 0 . Then there is a proper Zariski-closed subset Z of X , depending

only on the above data, such that

mS(D,x) + hK ,k(x) ≤ ε hA,k(x) + O(1)

for all x ∈ (X \ Z)(k) .

Conjecture. Let X be a smooth projective complex variety, let D be a normal crossings

divisor on X , let A be an ample divisor on X , and let K denote the canonical

line sheaf on X . Then there is a proper Zariski-closed subset Z of X , depending

only on the above data, such that for all holomorphic maps f : C → X with

f(C) * Z ,

mf (D, r) + TK ,f (r) ≤exc O(log+ TA,f (r)) + o(log r) .

These are proved if dim X = 1 , or if X = Pn and D is a sum of hyperplanes.
Limited results have also been shown if X is a certain type of compactification of a
semiabelian variety, or if X is a completion of a Shimura variety.

In other words, we know very little if dim X > 1 .
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§2. Embeddings

For example, consider P2 , and let D be as above. If deg D ≥ 4 then P2 \D should
not have a dense set of integral points (or admit a Zariski-dense holomorphic curve to
it).

If D is smooth of degree ≥ 4 , then there’s no hope (so far). For four lines,
however, we do have results (Schmidt and Cartan).

For three lines and a conic, there are some results; e.g., if L1, L2, L3 are linear
forms defining the lines and Q is a quadratic polynomial defining the conic, then all
L2

i /Q must be units (or nearly so) at integral points, so we can apply the unit lemma
(or Borel’s lemma) (M. Green and V.)

Besides that, how do we get any results for a conic?
Under the 2-uple embedding P2 ↪→ P5 , the image of a conic is contained in a

hyperplane. Under the 3-uple embedding P2 ↪→ P9 , the image of a conic spans a
linear subspace of codimension 3 , so we can get 3 linearly independent hyperplanes
containing it.

More generally, say you have a divisor D of degree d in Pn , and look at its image
under the r-uple embedding

Pn ↪→ P(r+n
n )−1 .

The image of the divisor spans a linear subspace of codimension
(
r+n−d

n

)
, because

there are that many monomials of degree n − d (which then get multiplied by the
form defining D to get homogeneous polynomials of degree n in the original variables,
hence hyperplanes in the image space).

So the inequality we’d get out of applying Schmidt’s Subspace Theorem to P(r+n
n )−1

would look like(
r + n− d

n

)
m(D,x) + · · · ≤

((
r + n

n

)
· r + ε

)
hk(x) + O(1)

for x ∈ Pn(k) outside of a finite union of proper subvarieties of degree ≤ r .
So, as r →∞ , we’re interested in the ratio(

r+n−d
n

)(
r+n

n

)
· r

=
(r − d + n) · · · (r − d + 1)

(r + n) · · · (r + 1)r
=

rn + O(rn−1)
r(rn + O(rn−1))

→ 1
r
→ 0 .

This is not very promising, but we can try harder. We can also consider that some
hyperplanes can be made to contain D twice, or three times, etc. This gives something
like ((

r + n− d

n

)
+

(
r + n− 2d

n

)
+ . . .

)
m(D,x) + . . .

≤
((

r + n

n

)
· r + ε

)
hk(x) + O(1)
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To estimate the factor in front of m(D,x) :(
r − kd + n

n

)
=

(r − kd + n) · · · (r − kd + 1)
n!

=
(r − kd)n + On((r − kd)n−1)

n!

and therefore

[r/d]∑
k=1

(
r − kd + n

n

)
=

(r − d)n + · · ·+ (r − [r/d]d)n + On,d(rn)
n!

.

As r →∞ , the ratio of interest now converges to∑[r/d]
k=1

(
r−kd+n

n

)
r
(
r+n

n

) ≈
rn+1

(n+1)d·n!

rn+1

n!

→ 1
(n + 1)d

.

This would give us something like

d mS(D,x) + · · · ≤ (n + 1 + ε)hk(x) + O(1) .

This is best possible if d = 1 , but is still new and noteworthy if d > 1 .
But there is something wrong with this.
Suppose we have two divisors, and their images under the r-uple embedding span

linear subspaces L1 and L2 of codimensions ρ1 and ρ2 , respectively. We have

codim(L1 ∩ L2) ≤ ρ1 + ρ2

(assuming L1∩L2 6= ∅ ). If this inequality is strict then we have problems to the extent
that m(L1, y) and m(L2, y) come from m(L1 ∩ L2, y) (where y is the image of x

under the r-uple embedding). Say you have ρ1 generic hyperplanes containing L1

and ρ2 generic hyperplanes containing L2 . If these ρ1 +ρ2 hyperplanes are in general
position then this implies

codim(L1 ∩ L2) ≥ ρ1 + ρ2 .

So we need equality. However, the usual computation of Hilbert function using
short exact sequences gives (for sufficiently large n ) that the codimension of the linear
span of D1 ∩D2 is(

n− d1 + r

n

)
+

(
n− d2 + r

n

)
−

(
n− d1 − d2 + r

n

)
,

which is too small by
(
n−d1−d2+r

n

)
.

[Lecture continued on the blackboard.]
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Lecture #4

§1. More abc

One can also get the abc conjecture from the earlier conjecture on rational points (for
varieties of large dimension).

For n large let Xn be the variety in (P2)n in coordinates

([x1 : y1 : z1], . . . , [xn : yn : zn])

given by the equation
∏

xi
i +

∏
yi

i +
∏

zi
i = 0 , and let Γn be the closure of the graph

of the rational map Xn 99K P2 given by

([x1 : y1 : z1], . . . , [xn : yn : zn]) 7→
[∏

xi
i :

∏
yi

i :
∏

zi
i

]
.

Let φ : Γn → P2 be the resulting morphism. The image of φ is a line in P2 , which we
identify with P1 .

Given relatively prime a, b, c ∈ Z with a + b + c = 0 , we get a point Pa,b,c on Γn

by letting
xn =

∏
p

p[ordp a/n] , xi =
∏

ordp a≡i (mod n)

p (i < n) ,

so that a =
∏

xi
i with xn as large as possible. Similarly define the yi using b and

the zi using c . Let D be the divisor x1 · · ·xny1 · · · ynz1 · · · zn = 0 on Γn . It is then
possible to show that

N(D,Pa,b,c) ≤
∑
p|abc

log p +
1
n

N(E, φ(Pa,b,c)) ,

where E is the divisor [0] + [1] + [∞] on the image P1 of φ .
There are additional obstacles to overcome, but basically the conjecture for rational

points applied to a certain desingularization of Γn then gives the abc conjecture.

We also note that the group G2n−2
m acts on Xn , and therefore on Γn , by xi 7→ txi ,

xn 7→ t−ixn ( 1 ≤ i < n ) for the first n− 1 factors, and similarly with the yi for the
remaining factors. This action preserves the divisor D and is faithful.

This implication therefore relies only on the conjecture for rational points for va-
rieties X and divisors D for which there is a semiabelian variety G of dimension
dim X − 1 acting faithfully on X in such a way as to preserve D . In this special case,
the conjecture has been proved in the split function field case and in the Nevanlinna
case.

It’s actually pretty easy to end up in “abc land.”
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§2. The 1 + ε conjecture

Recall that the 1 + ε conjecture states that if X is a smooth projective curve over a
number field k then for all algebraic points x of bounded degree,

hK(x) ≤ (1 + ε)dk(x) + O(1) .

We can prove this in the “split” function field case, as follows (essentially following
de Franchis):

Let C be a smooth projective curve over a ground field F of characteristic 0,
and let k = K(C) . Let X0 be a smooth projective curve over F and D0 a reduced
effective divisor on X0 . Then X := X0 ×F C → C is a model for X0 ×F k , and D0

extends to pr∗1 D0 on X , where pr1 is the projection of X = X0×C to its first factor.
An algebraic point x on Xk corresponds to a nonsingular finite cover E of C of

degree d and a generically injective C-morphism i : E → X . We have

dk(x) = (2g(E)− 2)/d− (2g(C)− 2) ,

which is the degree of the ramification divisor divided by d . Also KX/C = pr∗1 KX0 ,
and the height of x relative to this canonical divisor is

(2g(X0)− 2) deg(pr1 ◦i)
d

≤ 2g(E)− 2
d

= dk(x) + (2g(C)− 2) .
�

A way to look at this proof is that we know the derivative of E , as an element of
the absolute tangent bundle TX/F . Since we’re in the “split” case, TX/F splits into a
product TX/X0×TX/C , and we can project onto the second factor, the relative tangent
bundle.

As I see it, a key aspect of McQuillan’s proof of the 1+ε conjecture in the (general)
function field case of characteristic zero is the observation that although you don’t have
a canonical projection of the absolute tangent bundle to the relative tangent bundle
anymore, you can choose a projection arbitrarily, and for points of large height the
value of the projection doesn’t vary that much with the projection, in proportion with
the tangent vector.
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§3. Derivatives

One of the key tools in Nevanlinna theory is the following:

Theorem (Lemma on the Logarithmic Derivative (LLD)) (Nevanlinna). Let f be a

meromorphic function on C . Then∫ 2π

0

log+

∣∣∣∣f ′(reiθ)
f(reiθ)

∣∣∣∣ dθ

2π
≤exc O(log+ Tf (r)) + o(log r) .

Proof. Omitted (not instructive).

Theorem (Geometric LLD (GLLD) (Wong, McQuillan)). Let X be a smooth projective

complex variety, let D be a normal crossings divisor on X , and let f : C → X be

a holomorphic curve with image not contained in SuppD . Let A be an ample line

sheaf on X . Let |·| be a hermitian metric on the log tangent bundle TX(− log D) ,

and let dDf : C → TX(− log D) denote the canonical lifting of f . Then∫ 2π

0

log+
∣∣dDf(reiθ)

∣∣ dθ

2π
≤exc O(log+ TA ,f (r)) + o(log r) .

Proof. Again omitted. Basically it uses the classical LLD locally and applies compact-
ness.

Remark. The case X = P1 , D = {0,∞} recovers the earlier LLD.

This in turn implies:

Theorem (McQuillan’s “tautological inequality”). Let X , D , f : C → X , and A be

as above. Let f ′ : C → P(Ω1
X(log D)) be the canonical lifting of f , and let O(1)

denote the tautological line sheaf on P(Ω1
X(log D)) . (Here P() is as in EGA.)

Then

TO(1),f ′(r) ≤exc N
(1)
f (D, r) + O(log+ TA ,f (r)) + o(log r) .

Proof (sketch). Let V = V(Ω1
X(log D)) , the total space of TX(− log D) , let

V = P(Ω1
X(log D)⊕ OX) ,

the projective closure of V , let [∞] = V \ V , a divisor on V , let p : P → V be the
blowing-up of V along the zero section of V , let [0] ⊇ P be the exceptional divisor,
and let φ : C → P be the lifting of dDf : C → V .

We have a diagram ... of X-schemes and dDf = p ◦ φ , f ′ = q ◦ φ . In addition,

q∗O(1) ∼= p∗O(1)⊗ O(−[0]) .
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Also (on V ) O(1) ∼= O([∞]) , since [∞] is cut out by the global section (0, 1) of
Ω1

X(log D)⊕ OX .
Therefore

TO(1),f ′(r) = Tq∗O(1),φ(r) = TO(1),dDf (r)− TO([0]),φ(r)

= NdDf ([∞], r) + mdDf ([∞], r)−Nφ([0], r)−mφ([0], r)

≤exc N
(1)
f (D, r) + O(log+ TA ,f (r) + o(log r)− 0− 0 .

Explanation: The first term ≤ N
(1)
D because dDf is bounded except where f hits D ,

and at that point it has a simple pole ( df/f has a simple pole at worst).
The second term is bounded by the GLLD.
The third and fourth terms are ≥ 0 , and can be ignored. �

Applications:
(1) The classical SMT for curves:

N
(1)
f (D, r) ≥exc TK+D,f (r) + S()

Proof. Ω1
X(log D) = O(KX + D) and P(Ω1

X(log D)) = X , with
O(1) = O(KX + D) . Therefore we get the inequality directly. �

(2) Cartan’s theorem (using a modified version with varying D )
(3) Results on holomorphic curves in closed subvarieties of semiabelian varieties

(hoped for, but not yet proved).
(4) The same for open subvarieties of semiabelian varieties (again, hoped for but

not yet proved).
(5) Shimura varieties (again, not yet).

Why is this interesting to number theorists? To push the analogy further, we need
to know what is the analogue of the derivative of a holomorphic function.

Comparing Schmidt’s proof with a proof of Cartan’s theorem by H. Weyl, J. Weyl,
and L. Ahlfors suggests that the analogue should involve Minkowski’s theory of succes-
sive minima, applied on the relative (co)tangent bundle.

Phrased in Arakelov theory, successive minima reduces to line subbundles of max-
imal degree, so we want a line subbundle of TX/Y (− log D) of largest Arakelov degree,
and therefore a quotient subbundle of ΩX/Y (log D) of small degree. This corresponds
to a point in P(ΩX/Y (log D)) lying over P ∈ X(k) ; i.e., a Y -section in P(ΩX/Y (log D))
lying over a section of X → Y for which the corresponding quotient ΩX/Y (log D) � L
has small Arakelov degree. What is L ? It is the restriction of O(1) , so its degree is
the height of this point relative to O(1) .

This leads to...
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Conjecture (“Tautological conjecture”). Let k , S , X , D , and ε be as usual. For all

P ∈ X(k) (or X(k) with [k(P ) : k] bounded) there is a P ′ ∈ P(ΩX/Y (log D))
lying over P with

hO(1),k(P ′) ≤ N
(1)
S (D,P ) + εhA,k(P ) + O(1) .

This makes sense only in the context of infinite sequences, and preferably:

Definition (Zhang). A generic sequence on X is an infinite sequence of points in X(k)
such that all infinite subsequences are Zariski dense.

Proposition (Arithmetic chain rule). Let f : X1 → X2 be a morphism of k-varieties.

Then, for all P ∈ X(k) where f is étale, and for all P ′ ∈ P(ΩX/Y ) lying over P ,

the rational map f∗ : P(ΩX1/Y ) 99K P(ΩX2/Y ) takes P ′ to P ′′ (lying over f(P ) )

for which

hO(1),k(P ′′) ≤ hO(1),k(P ′) + O(1)

where the constant in O(1) depends only on f .

Proof. Extend X1 and X2 to models X1 and X2 over Ok for which f extends as
a morphism, and let i : E → X1 be the section corresponding to P . Then P ′ corre-
sponds to a surjection i∗ΩX1/Ok

� L , and hO(1),k(P ′) is the Arakelov degree of L
divided by [K(E) : k] . We also have a morphism f∗ΩX2/Ok

→ ΩX1/Ok
, isomorphic at

P ′ . Therefore we get a nonzero map (f◦i)∗ΩX2/Ok
→ L , so hO(1),k(P ′′) ≤ hO(1),k(P ′)

(with heights defined using these models). �

A similar result holds for closed immersions (without the assumption on étaleness).
Both Schmidt’s proof of his Subspace Theorem and Ahlfors’ proof of Cartan’s

theorem have two parts—an old part and a new part. The old parts look like the
case for dimension 1 , with some necessary modifications. The new parts both involve
multilinear algebra, and derivatives of the curve in Ahlfors’ case, or successive minima
in Schmidt’s case. Similarities in the latter parts is what suggested the “tautological
conjecture” (as well as McQuillan’s result in Nevanlinna theory).

I’ve been trying for some time to get these two proofs to line up better, but Ahlfors’
proof considered the hyperplanes separately when going up to higher exterior powers,
whereas Schmidt considered them together. In 2006 I got a variant of Ahlfors’ proof
that was more like Schmidt’s in this respect.

This used a modified tautological inequality, with varying D (similar to what was
done with Cartan’s theorem).

Define a function µD on X measuring the improvement when you add D to
McQuillan’s inequality, so that the inequality with D is roughly comparable to

TO(1),f ′(r) +
∫ 2π

0

µD(f(reiθ))
dθ

2π
≤exc S() .
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Then the modified McQuillan inequality is

TO(1),f ′(r) +
∫ 2π

0

max
j

µDj (f(reiθ))
dθ

2π
≤exc S() .

My proof of Cartan’s theorem used that as the only analysis.


