Math 256B. Homework 14

Due Thursday 9 May

$1(\mathrm{NC})$. Let k be a field. Find the dualizing sheaf of $X:=V(x y)$ in \mathbb{P}_{k}^{2} (the union of two lines in \mathbb{P}_{k}^{2} intersecting in a point, with reduced induced subscheme structure).

Either express it as the restriction to X of a line sheaf \mathscr{L} on \mathbb{P}_{k}^{2}, or show that no such \mathscr{L} exists.
[Hint: Don't work too hard.]
2. Let A be a ring. Show that $\operatorname{Tor}_{i}^{A}(M, N) \cong \operatorname{Tor}_{i}^{A}(N, M)$ for all A-modules M and N, and for all $i \in \mathbb{N}$ (without looking it up anywhere). Use a spectral sequence.
[Hint: Use the opposite(s) of one or more categories.]
3(NC). Hartshorne III Ex. 8.1.
4. Hartshorne III Ex. 8.4.

For part (b), you may assume that Remark 7.1.1 is true for arbitrary commutative rings. For part (d), assume that Y is a nonsingular variety.

5(NC). Give an explicit example showing that (III, Thm. 8.8) is false if X and Y are allowed to be locally noetherian schemes instead of noetherian schemes.

