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1 Introduction

A link is a finite family of disjoint, smooth, oriented or unoriented, closed
curves in R3 or equivalently S3. A knot is a link with one component. The
Jones polynomial VL(t) is a Laurent polynomial in the variable

√
t which

is defined for every oriented link L but depends on that link only up to
orientation preserving diffeomorphism, or equivalently isotopy, of R3. Links
can be represented by diagrams in the plane and the Jones polynomials of
the simplest links are given below.

V = 1

V = −(
1√
t

+
√

t)

V = t + t3 − t4
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V =
√

t (1 + t2)

V =
1

t2
− 1

t
+ 1− t + t2

The Jones polynomial of a knot (and generally a link with an odd number
of components) is a Laurent polynomial in t.

The most elementary ways to calculate VL(t) use the “linear skein theory”
ideas of [7]. Indeed it is not hard to see by induction that VL(t) is defined
by its invariance under isotopy, the normalisation V (t) = 1 and the skein

formula
1

t
VL+ − tVL

−

= (
√

t +
1√
t
)VL0

which holds for any 3 oriented links having diagrams which are identical ex-
cept near one crossing where they differ as below.

L L L+ 0

As such the Jones polynomial resembles the Alexander polynomial ∆L(t) of
[1] which can be calculated in exactly the same manner as VL(t) except that
the skein relation becomes

∆L+ −∆L
−

= (
√

t +
1√
t
) ∆L0 .

A two variable generalisation PL of both ∆L and VL, sometimes called
the HOMFLYPT polynomial, was found in [16] and [34]. It satisfies the most
general skein relation

xPL+ + yPL
−

+ zPL0 = 0
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for homogeneous variables x, y and z.
The other skein-like definition of VL was found in [23]. Begin with un-

oriented link diagrams up to planar istotopy. The Kauffman bracket 〈L〉 of
such a diagram is calculated using

〈 〉 = A 〈 〉+ A−1〈 〉
where the 〈·〉 notation means that the relation may be applied to that part of
the link diagrams inside the bracket, the rest of the diagrams being identical.
If 〈L〉 were to be an invariant of three-dimensional isotopy it is easy to see
that

〈 〉 = −A2 − A−2

which further implies

〈 〉 = A−3 〈 〉

Thus 〈L〉 cannot be a 3-dimensional isotopy invariant as such. However if L

is given an orientation (then called ~L), a simple renormalisation solves the
problem and it is true that

(∗) V~L(A4) = A−3 writhe (~L)〈L〉
where writhe (~L) is the sum over the crossings of ~L of +1 for a positive

crossing

( )

and −1 for a negative crossing

( )

.

The formula (*) is readily proved by induction but a more structural
proof will be discussed later on, connected with physics. If the crossings in
a link alternate between over and under as one follows the string around,
the highest and lowest degree terms in the Kauffman bracket can readily
be located. This led to the proof of some old conjectures about alternating
knots in [32],[23] and [38].

The Kauffman 2-variable polynomial FL(a, x) is defined in [24] by con-
sidering the linear skein relation involving all four possibilities at a crossing:
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L L L+ 0
L 8 .

This polynomial contains VL(T ) as a specialisation but not the Alexander
polynomial.

The above polynomials are quite powerful at distinguishing links one from
another, including links from their mirror images, which corresponds for the
Jones polynomial to replacing t by t−1. More power can be added to the
polynomials if simple geometric operations are allowed. “Cabling” entails
replacing a single strand with several parallel copies and the polynomials of
cables of a link are also isotopy invariants if attention is paid to the writhe
of a diagram.

The following problem, however, is open at the time of writing this article:

“Does there exist a knot in R3, different from the unknot , whose

Jones polynomial is equal to 1?”
For links with more than one component it is known ([39], [10]) that the

answer to the corresponding question is yes, the simplest example being:

One of the reasons that the question above has not been answered is
presumably that, unlike with the Alexander polynomial, we have little intu-
itive understanding of the meaning ot the “t” in VL(t). Perhaps the most
promising theory in this context is in [25] where a complex is constructed
whose Euler characteristic, in an appropriately graded sense, is the Jones
polynomial. The homology of the complex is a finer invariant of links known
as “Khovanov homology”.
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2 Braids

A braid (see [5]) on n strings is a collection of curves in R3 joining n
points in a horizontal plane to the n points directly below them on another
horizontal plane. If the end points of the braid are on a straight line the
braid can be drawn as in the example below (where n = 4).

The crucial property of a braid is that the tangent vector to the curves
can never be horizontal. Braids are considered up to isotopies which are
supported between the top and bottom planes.

Braids on n strings form a group, called Bn, under concatenation (plus
some isotopy) as below:

α =

β =

→ αβ =

Let σ1, σ2, . . . , σn−1 be the braids below:

σ1 = , σ2 = ,

· · · , σn−1 =

5



Artin’s presentation ([5]) of the braid group is on the generators σ1, σ2, . . . , σn−1

with the relations
{

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2
σiσj = σjσi if |i− j| ≥ 2

(3)

Thus to find linear representations of Bn it suffices to find matrices ρ1, ρ2, . . . , ρn−1

satisfying (3) (with σ replaced by ρ). One such representation (of dimen-
sion n) called the (non-reduced) Burau representation is given by the row-
stochastic matrices

ρ1 =















1− t t 0 0 . . .
1 0 0 0 . . .
0 0 1 0 . . .
...

...
...

...
. . .

0 0 0 . . . 1















ρ2 =



















1 0 0 0 . . .
0 1− t t 0 . . .
0 1 0 0 . . .
0 0 0 1 . . .
...

...
...

...
. . .

0 0 0 . . . 1



















, . . .

ρn−1 =















1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 . . . 1− t t
0 . . . 1 0















this representation is known not to be faithful for n ≥ 5 but faithful for
n ≤ 3. The case n = 4 remains open. (See [30], [28], [4].)

Braids can be viewed in several ways, which lead to several generalisa-
tions. For instance, identifying the vertical axis for a braid with time and
taking the intersection of horizontal planes with the braids shows that ele-
ments of Bn can be thought of as motions of n distinct points in the plane.
Thus it is natural that

Bn
∼= π1({Cn \∆}/Sn)

when ∆ is the set {(z1, . . . , zn)|zi = zj for some i 6= j} and the symmetric
group Sn acts freely on Cn \ ∆ by permuting coordinates. But ∆ is the
zero-set of the frequently encountered function

∏

i<j

(zi − zj)
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so the braid group may naturally be generalised as the fundamental group
of Cn minus the singular set of some algebraic function ([5]). Or, motions of
points can be extended to motions of the whole plane and a braid defines a
diffeomorphism of the plane minus n points. Thus the braid group may be
generalised as the mapping class group of a surface with marked points ([5]).

3 The Temperley–Lieb algebra

If τ ∈ C one may define the algebra TL(n, τ) with identity 1 and gener-
ators e1, e2, . . . , en−1 subject to the following relations:

e2
i = ei

eiei±1ei = τei

eiej = ejei if |i− j| ≥ 2.

Counting reduced words on the ei’s shows that dim{TL(n, τ)} ≤ 1
n+1

(

2n
n

)

and in [19] it is shown that these numbers, the Catalan numbers, are in-
deed the dimensions of the Temperley–Lieb algebras. In the obvious way,
TL(n, τ) ⊆ TL(n + 1, τ). If τ−1 is not in the set {4 cos2 qπ; q ∈ Q}, TL(n, τ)
is semisimple and its structure is given by the following Bratelli diagram:

3

2

5

1

1

1

1

95 1

1

1

1

2

5 4

where the integers on each row are the dimensions of the irreducible represen-
tations of TL(n, τ) and the diagonal lines give the restriction of representa-
tions of TL(n, τ) to TL(n−1, τ). These representations are naturally indexed

by Young diagrams with n boxes and at most two rows: with
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the diagonal lines in the Bratelli diagram corresponding to removal/addition
of a box. The dimension of the representation corresponding to the diagram

whose second row has r boxes (r ≤ n), is

(

n

r

)

−
(

n

r − 1

)

.

One may attempt to make TL(n, τ) into a C*-algebra and look for Hilbert
space representations (with ei 6= 0), by imposing e∗i = ei. From [41] this is
only possible (for all n) when

(i) τ ∈ R, 0 < τ ≤ 1/4, or
(ii) τ−1 ∈ {4 cos2 π/m, m = 3, 4, 5, . . .}.

The proof uses the fact that fn, inductively defined by

fn+1 = fn −
[2]q[n + 1]q

[n + 2]q
fnen+1fn,

must be an orthogonal projection with eifn = fnei = 0 for i ≤ n. These fn

are sometimes called Jones–Wenzl idempotents. (Here τ−1 = 2+q2 +q−2 and

for this and later formulae we define the quantum integer [n]q =
qn − q−n

q − q−1
.)

When τ−1 = 4 cos2(π/m), the Hilbert space representations decompose
according to Bratteli diagrams obtained by truncating—eliminating the 1 on
the m-th row, and all representations below and to the right of it, so that for
m = 7 we would obtain

4

1

5

1

1

1

1

1

1

95

51414

2

2 3

5

In terms of Young diagrams this corresponds to only taking those those
diagrams whose row lengths differ by at most m− 2. The existence of these
Hilbert space representations is from [19].
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The Temperley-Lieb algebras arose in [19] as orthogonal projections onto
subfactors of II1 factors. As such the Hilbert space structure was manifest.
The trace on a II1 factor also yielded a trace on the TL(n, τ).

To be precise, there is for each m a unique linear map tr : TL(n, τ)→ C

with:

(i) tr(1) = 1

(ii) tr(ab) = tr(ba)

(iii) tr(xen+1) = τ tr(x) for x ∈ TL(n + 1, τ).

This trace may be calculated either from (i), (ii) and (iii), or using the
representations, as a weighted sum of ordinary matrix traces. The weight for
the representation of TL(n, τ), the second row of whose Young diagram has
r boxes, is

[n− r + 1]q
([2]q)n

. Thus if x ∈ TL(n, τ) and πr is the
(

n
r

)

−
(

n
r−1

)

dimensional irreducible
representation then

tr(x) =
1

(q + q−1)n

[ n
2
]

∑

r=0

[n− r + 1]q trace (πr(x)).

One also has tr(fn) =
[n + 2]q
([2]q)n+1

so that the disappearance of the “1”

from the Bratteli diagram is mirrored by the vanishing of the trace of the
corresponding projection.

Positivity of tr, tr(a∗a) ≥ 0, is responsible for all the Hilbert space struc-
ture. To explicitly construct the Hilbert space representations one may use
the GNS construction: take the quotient of the ∗-algebra by the kernel of
the form 〈a, b〉 = tr(b∗a) which makes this quotient a Hilbert space on which
TL(n, τ) will act with the ei’s as orthogonal projections. Explicit bases can
be obtained easily if desired, using paths on the Bratteli diagram, or Young
tableaux.

A useful diagrammatic presentation of TL(n, τ) was discovered in [23]. A
(Kauffman) TL diagram (for non-negative integers m and n) is a rectangle
with n marked points on the top and m on the bottom with non-intersecting
smooth curves inside the rectangle connecting the boundary points as illus-
trated below.
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A (5,7)-diagram

Two Kauffman TL diagrams are considered the same if they connect the
same pairs of boundary points.

The vector space TL(m, n, δ) with basis the set of (m, n) diagrams, and
δ ∈ C, becomes a category with this concatenation together with the rule
that closed curves may be removed, each one counting a (multiplicative)
factor of δ. We illustrate their product in TL(m, n, δ) below:

× = = δ2

Of special interest is the algebra TL(n, n, δ). If we define Ei to be the
diagram below:

1 2 i i

i i1 2 +1

+1

then E2
i = δEi, EiEi±1Ei = Ei and EiEj = EjEi for |i − j| ≥ 2. Thus

provided δ 6= 0 we have an isomorphism between TL(n, δ−2) and TL(n, n, δ)
by mapping ei to 1

δ
Ei.

One of the nicest features of the Kauffman diagrams is that they yield
simple explicit bases for the irreducible representations. To see this, call a
curve in a diagram a “through-string” if it connects the top of the rectangle to
the bottom. Then all (m, n) diagrams are filtered by the number of through-
strings and if we let TL(m, n, k, δ) be the span of (m, n) diagrams with at
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most k through-strings, we have TL(k, n, δ)TL(n, m, k, δ) ⊆ TL(k, m, k, δ).
Thus Vn,m = TL(n, m, m, δ)/TL(n, m, m − 1, δ) is a TL(n, δ−2)-module, a
basis of which is given by (m, n)-diagrams with m through-strings (m ≤ n).
The number of such diagrams is

(

n
m

)

−
(

n
m−1

)

and it follows from [19] that all
these representations are irreducible for “generic” δ (i.e. δ 6∈ {2 cos Qπ}) and
that they may be identified with those indexed by Young diagrams as below:

Vn,m ←→
← m

← n−m

The invariant inner product on Vn,m is defined by 〈v, w〉 = w∗v for the
natural identification of Vm,m with C (∗ is the obvious involution from (m, n)
diagrams to (n, m) diagrams.)

4 The original definition of VL(t)

Given a braid β ∈ Bn one may form an oriented link β̂ called the closure
of β by tying the top of the braid to the bottom as illustrated below:

β = −→ β̂ =

All oriented links occur in this way ([5]) but if α ∈ Bn, αβα−1 and βσ±1
n (in

Bn+1) have the same closure.

Theorem 1 (Markov, [5]) Let ∼ be the equivalence relation on
∐∞

n=1 Bn

(all braids on any number of strings) generated by the two “moves” β ∼ βσ±1
n

and β ∼ αβα−1. Then β1 ∼ β2 if and only if the links β̂1 and β̂2 are the
same.

It is easily checked that, if 1, e1, e2, e3, . . . satisfy the TL relations of §3
then sending σi to (t+1)ei−1 (with τ−1 = 2+t+t−1) defines a representation
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ρn of Bn inside TL(n, τ) for each n. The representation is unitary for the C*-
algebra structure when τ−1 = 4 cos2 π/n, n = 3, 4, 5, . . . (and t = e±2πi/n).
It is an open question whether ρn is faithful for all n. It contains the Burau
representation as a direct summand.

Combining the properties of the trace tr defined on TL with Markov’s
theorem one obtains immediately that, for α ∈ Bn, the following function of
t depends only on α̂:

(

−
√

t− 1√
t

)n−1√
t

−e
tr(ρn(α))

(here e ∈ Z is the “exponent sum” of α as a word on σ1, σ2, . . . , σn−1).
A simple check using the (oriented) skein theoretic definition of the Jones

polynomial shows that this function of t is precisely Vα̂(t). This is how VL(t)
was first discovered in [20].

Although less elementary, this approach to VL(t) does have some advan-
tages. Let us mention a few.

(I) One may use representation theory to do calculations. For instance
using the weighted sum of ordinary traces to calculate tr as in §3 one
obtains readily the Jones polynomial of a torus knot (i.e. α̂ where
α = (σ1σ2 · · ·σp−1)

q ∈ Bp if p and q are relatively prime). It is

t
(p−1)(q−1)

2

1− t2
(1− tp+1 − tq+1 − tp+q).

(II) If one restricts attention to links realisable as α̂ for α ∈ Bn for fixed
n, the computation of Vα̂(t) can be performed in polynomial time as a
function of the number of crossings in α̂. Thus one has computational
access to rather complicated families of links.

(III) Unitarity of the representation when t = e±
2πi
n can be used to bound

the size of |VL(t)|. For instance if α ∈ Bk and Vα̂(t) = (−
√

t − 1√
t
)k−1

then α is in the kernel of ρn, and |Vβ̂(e±
2πi
n )| ≤ (2 cos π/n)k−1 for any

other β ∈ Bk.

The representation of the braid group inside the TL algebra should be
thought of as an extension of the Jones polynomial to “special knots with
boundary”. The coefficients of the words in the ei’s (or equivalently the
Kauffman TL diagrams) are all invariants of the braid. We can further
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remove the braid restriction and consider arbitrary knots and links with
boundary, known as “tangles” ([7]).

A 3-tangle

Tangles may be oriented or not and their invariants may be evaluated
either by reduction to a system of elementary tangles using skein relations
or by organising the tangle and representing it in an algebra. See [42].

A similar algebraic approach is available for the HOMFLYPT and Kauff-
man two-variable polynomials. The algebra playing the role of the TL-
algebra is the Hecke algebra for HOMFLYPT ([16], [21]) and the BMW
algebra ([6], [31]) for the Kauffman polynomial. The BMW algebra was dis-
covered after the Kauffman polynomial in order to provide an analogue of
the TL and Hecke algebras. For detailed analysis of the Hilbert space and
other structures for both Hecke and BMW algebras see [45] and [46].

5 Connections with statistical mechanics

One might say that turning a knot into a braid organizes the knot by
“putting it on a lattice”, thereby creating a physical model with the crossings
of the knot as interactions. Taking the trace of the braid is evaluating the
partition function with periodic (vertical) boundary conditions.

The previous paragraph is more than wishful thinking. The Temperley-
Lieb algebra arose from transfer matrices in both the Potts and ice-type
models in two dimensions ([37]) and each “ei” implements the addition of one
more interaction to the system. (The same ei’s as in the ice-type models were
rediscovered in the subfactor context in [33].) Thus the Jones polynomial of
a closed braid is the partition function for a statistical mechanical model on
the braid. In [19] it is observed that knowledge of the Jones polynomial for a
family of links called French sinnets would constitute a solution of the Potts
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model in 2 dimensions.
In [37] the TL relations are used to establish the mathematical equivalence

of the Potts and ice-type (6-vertex) models. In [3] Chapter 12 this equivalence
is shown for Potts models on an arbitrary planar graph. In view of this it
is not surprising that statistical mechanical models can be defined directly
on link diagrams to give explicit formulae for VL(t) (and other invariants) as
partition functions. This works most easily for the Q-state Potts model.

Given an unoriented link diagram D, shade the regions of the plane black
and white and form the planar graph Γ whose vertices are the black regions
and whose edges are the crossings as below

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���

���
���
���

���
���
���
���

���
���
���
���

D

−→

Γ
Assign + and − to each edge according to the following scheme:

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

−→ +

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

−→ −

Fix Q ∈ N and 2 symmetric matrices w±(a, b) for 1 ≤ a, b ≤ Q. The
partition function of the diagram is then

ZD =
∑

states

∏

edges of Γ

w±(σ, σ′)

where a “state” is a function from the vertices of Γ to {1, 2, ..., Q} and, given
an edge of Γ and a state, σ and σ′ denote the values of the state at the ends
of that edge (w+ and w− are used according to the sign of the edge).
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The Potts model is defined by the property that the “Boltzmann weights”
w±(σ, σ′) depend only on whether σ = σ′ or not. It is a miracle that the
choice (with Q = 2 + t + t−1)

w±(σ, σ′) =

{

t±1 if σ = σ′

−1 otherwise

gives the Jones polynomial of the link defined by D as its partition function
(up to a simple normalisation). See [22] for details.

It is natural to look for other choices of w± which give knot invariants.
The Fateev-Zamolodchikov model ([15]) gives a classical knot invariant but
besides that (and some variants on the Jones polynomial) there is only one
other known choice of any interest, discovered in [17]. In this case Q = 100
and the Boltzmann weights are symmetric under the action of the Higman-
Sims group on the Higman-Sims graph with 100 vertices. The knot invariant
is a special value of the Kauffman two-variable polynomial.

The other side of Temperley Lieb equivalence is the “ice-type” model
which is a vertex model. That is to say the “spins” reside on the edges of
a graph and the interactions occur at the vertices. To use vertex models
in knot theory the knot projection D itself is the (four-valent) graph. The
ice-type model has two spin states per edge so that a state of the system is
a function from the edges of the graph to the set {±}. And the Bolzmann
weights are given by two 4× 4 matrices w±(σ1, σ2, σ3, σ4) where the σ’s are
±1 and w+ and w− are the contributions of

2

σ

σσ

σ 1  3

4

and

3
σσ

σσ

 1

 2 4

to the partition function respectively. Furthermore we may think of a state
as a locally constant function σ on D so for any f : {±1} → R we may form
the term

∫

D
f(σ) dθ corresponding to interaction with an external field (dθ

is the curvature or change of angle form on D). Then the partition function
is

ZD =
∑

states

(

∏

crossings of D

w±(σ1, σ2, σ3, σ4)

)

e
R

D
f(σ) dθ.

A (non-physical) specialization of the 6-vertex model yields values of f and
w± for which ZD is a link invariant equal to VL(t). See [22].
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As with the Potts model one may try to generalise to more general w±
and f . This is much more successful for these “vertex” models than it was
for models like the Potts model. The theory of quantum groups ([18],[9],[35])
allows one to obtain link invariants (as partition functions for vertex models)
for each simple finite dimensional Lie algebra A and each assignment of an
irrreducible representation of A to the components of the link. The images
of the braid generators σi in the corresponding braid group representations
are called “R-matrices”. It is the Yang-Baxter equation that gives isotopy
invariance of the partition function. In this way one obtains (by an infinite
family of one-variable specialisations) the HOMFLYPT polynomial (sln) and
the Kauffman polynomial (orthogonal and symplectic algebras) and more
polynomials. The geometric operation of cabling corresponds to the tensor
product of representations.

6 Connections with quantum field theory.

Conformal Field Theory. (CFT)

If ϕ is a (multicomponent) field in one chiral half of a 2-dimensional CFT,
the correlation functions

〈ϕ(z1)ϕ(z2)...ϕ(zn)〉
(where zi ∈ C) are expected to be singular if zi = zj for some i 6= j,
holomorphic otherwise and satisfy a linear differential equation. Thus an-
alytic continuation should determine a unitary monodromy representation of
π1(Cn \ {(z1, z2, ..., zn)|zi = zjfor some i 6= j}) on the vector space of solu-
tions to the differential equation near a point. In [40] these representations
were calculated for the SU(2) WZW model where the differential equation
is know as the Khniznik-Zamolodchikov equaiton. The corresponding braid
group representations were shown to be those obtained in section 4 and ca-
blings thereof.

Topological quantum field theory. (TQFT)

In [47] the following formula appears:

VL(e
2πi
k+2 ) =

∫

A

exp{ i

~

∫

S3

tr(A∧dA+2/3A∧A∧A)}
∏

j

Tr(Pexp

∮

j

A) [DA]

Where A ranges over all functions from S3 to the Lie algebra su(2),
modulo the action of the gauge group SU(2). Also ~ = π/k and j runs over
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the components of the link L, to each of which is assigned an irreducible
representation of SU(2). Parallel transport around a component j using
A yields the linear map Pexp

∮

i
A whose trace is constant modulo gauge

transformations. And [DA] is a fictitious diffeomorphism invariant measure
on all A’s modulo gauge transformation.

There are at least two ways to interpret this formula.
1) As a solvable TQFT in 2 + 1 dimensions, according to [48],[2]. One is

then obliged to expand the context and conclude that VL(e
2πi
n ) is defined for

(possibly empty) links in an arbitrary 3-manifold. The TQFT axioms then
provide an explicit formula for the invariant if the 3-manifold is obtained
from surgery on a link. in particular the invariant of a 3-manifold without
a link is a statistical mechanics type sum over assignments of irreducible
representations of SU(2) to the components of the surgery link. The key
condition making this sum finite is that only representations up to a certain
dimension (determined by n) are allowed. This is the vanishing of the Jones-
Wenzl idempotent of section 3. This explicit formula was rigourously shown
to be a manifold invariant in [36]. For a more simple treatment see [27] and
for the whole TQFT treatment see [14].

2) As a perturbative QFT. The stationary phase Feynmann diagram tech-
nique may be applied to obtain the coefficients of the expansion of Witten’s
formula in powers of ~ or equivalently 1/n. These coefficients are known to
be “finite type” or Vassiliev invariants and have expressions as integrals over
configurations of points on the link-see [43],[26].

Algebraic Quantum Field Theory.
In the Haag-Kastler operator algebraic framework of quantum field theory

([13]), statistics of quantum systems were interpreted in [8] (DHR) in terms of
certain representations of the symmetric group corresponding to permuting
regions of space-time. To obtain the symmetric group the dimension of space-
time needs to be sufficiently large. It was proposed in [11] that the DHR
theory should also work in low dimensions with the braid group replacing
the symmetric group, and that unitary braid group reprsentations defined
above should be the ones occurring in quantum field theory. The “statistical
dimension” of DHR theory turns up as the square root of the index of a
subfactor (this connection was clearly established in [29]). The mathematical
issue of the existence of quantum fields with braid statistics was established
in [44] using the language of loop group reprsentations. Actual physical
systems with non-abelian braid statistics have not yet been found but have
been proposed in [12] as a mechanism for quantum computing.

The author would like to thank Florence Tsou for her help in preparing
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