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Introduction

Gromov-Witten theory

Among 2D topological quantum field theories studied in the past decade,
Gromov-Witten theory has enjoyed enduring interest.

GW assigns to a compact symplectic manifold X a space of states H∗(X ).
Surfaces with points labeled by states give correlators (numbers) counting
pseudo-holomorphic maps to X with incidence conditions.

Varying the surfaces refines these numbers to cohomology classes on the
Deligne-Mumford spaces Mn

g .
(Topological: cohomology of the parameter space replaces the functions.)

These invariants could contain enormous information; a structural
classification is still missing in general.

Mirror symmetry (Lerche, Vafa, Warner and refined by many others)
reduces GW theory to more standard computations in the complex
geometry of a conjectural mirror manifold X∨.
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Introduction

Homological mirror symmetry

was introduced by Kontsevich to spell out the structure of the invariants.

Key idea: include open as well as closed strings, surfaces with corners, and
boundary conditions (branes) forming a linear category with structure.
This category should determine all invariants.

On the symplectic side (X , ω): Fukaya’s A∞ category F(X );
on the complex side: DbCoh(X∨), with its Yoneda structure, (plus ?).

HMS, the conjectural match of the two categories, is known in many cases:
elliptic curves (Polishchuk-Zaslow); K 3 (Seidel); del Pezzos, weighted
projective spaces (Auroux, Katzarkov, Orlov); toric Fanos (FO3+Abouzaid
+others); Calabi-Yau hypersufaces (Sheridan)

The mirror of a toric variety X with torus TC is the dual torus T∨C ,
plus a super-potential Ψ, a Laurent polynomial.
The associated category of Ψ-Matrix factorizations is Z/2-graded.
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Hamiltonian Lie group actions

Group actions and Hamiltonian quotients

Many GW computations involve Hamiltonian quotients of simpler varieties.
Thus, projective toric varieties are quotients of vector spaces by tori.

Example (Givental-Hori-Vafa mirror; simplified)

The best-known case is Pn−1 = Cn//U(1), with mirror

(C∗)n−1 = {(z1, . . . , zn)|z1z2 · · · zn = q} ,Ψ = z1 + · · ·+ zn

For Y = Cn, with standard (C∗)n action, declare the mirror to be

Y ∨ = (C∗)n, Ψ = z1 + · · ·+ zn.

For KC ⊂ (C∗)n and X = Cn//K :

X∨q = fiber over q ∈ K∨C of the dual surjection (C∗)n � K∨C ,
the super-potential is the restricted Ψ.

The Novikov variables q track degrees of holomorphic curves.
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Hamiltonian Lie group actions

Mirror of a Lie group action. Langlands dual group

Addressing HMS in relation to Hamiltonian quotients raises the following

Basic Questions

1 Find the mirror structure on X∨ for a Hamiltonian group action on X .

2 In terms of this structure, describe the mirror to the quotient.

Basic Answers (Torus case; 0th order approximation)

1 The mirror to a T -action on X is a holomorphic map X∨ → T∨C .

2 The mirror of X//T is the fiber of X∨ over 1.

Basic Answers (Compact, connected G ; (−1)st order approximation)

1 The mirror to a G -action on X is a holomorphic map from X∨ to the
space of conjugacy classes in the Langlands dual group G∨C .

2 Cannot state just yet ... (the fiber over 1 is wrong).
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Hamiltonian Lie group actions

Problem with the answers

They are wrong: pursuing them within HMS leads to paradoxes.

Thus, in the GHV mirror, the original Ψ has no critical points on Y , so its
matrix factorization category is zero.

We can’t get the Fukaya category of a toric variety from the zero category;
and indeed, GHV tell us to first restrict Ψ to the fiber of (C∗)n → K∨C and
then compute MF.

However, this operation is not defined in terms of categories.
So we have just destroyed the raison d’être of HMS.

The right answers can be found using arguments from 4D QFT; the tour
covers some beautiful geometry. (I learnt these ideas from Ed Witten.)

This beautiful story is a fairy-tale for two reasons:
1 it is not rigorous, 2 history did not happen this way.

(But it is more entertaining than the actual answer.)
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Monopoles and 4D gauge theory

SU(2) magnetic monopoles

are solutions of the Bogomolny equation F = ∗Dφ on R3.

F = dA + A ∧ A is the curvature of an su(2)-connection D = d + A,
and the Higgs field φ is valued in the ad-bundle.

They correspond to time-invariant ASD connections D + φ dt on R4.
Finiteness of the energy breaks the symmetry to U(1) on the sphere at ∞,
leading to a discrete invariant, the monopole charge n ≥ 0.

The moduli spaces are hyper-Kähler manifolds; studied by Atiyah,
Donaldson, Hitchin, Hurtubise, Manton, Nahm, Taubes ... .
The charge n moduli space was described in many ways; among them,

1 A specific Zariski-open subset of the nth Hilbert scheme of C∗ × C.
This is a resolution of singularities of T ∗(C∗)n/Sn,
and is naturally associated to the group U(n).

2 The space of solutions of Nahm’s equations dTi
ds + εjki TjTk = 0,

Ti (s) ∈ u(n), simple poles with Ress=0,2Ti giving the irrep of SU(2).
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Monopoles and 4D gauge theory

3D reduction of Yang-Mills theory

Seiberg and Witten studied the 3D reduction of 4D quantum Yang-Mills
theory for SU(2) (a cousin of the Donaldson invariants).

They described the low-energy limit as a Σ-model in the space of vacua,
which they identified with the Atiyah-Hitchin moduli space of charge 2
monopoles.

They identified the resulting 3-dimensional SU(2) gauge theory with the
Rozansky-Witten theory of the hyper-Kähler Atiyah-Hitchin manifold.

Later, Argyres-Farragi described SU(n) gauge theory in terms of the
charge n monopole space.
Martinec-Warner related a general G to the periodic Toda system,
revealing a first connection to the Langlands dual Lie algebra g∨.

But what does this have to do with gauged GW theory?
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Monopoles and 4D gauge theory

Equivalent field theories admit the same branes

Branes for the 3D pure gauge theory are general 2D gauged TQFTs.
Mathematical description: categories with locally trivial G -action.

Branes for RW theory were recently described by Kapustin and Rozansky.

Their 2-category is contains smooth holomorphic Lagrangians L.
Locally, the category End(L) is the tensor category DbCoh(L).
An L′ near L is the graph of a dΨ; Hom(L, L′) = MF(L,Ψ), lives on L∩ L′.
(The global description is deformed by the ambient symplectic manifold.)

Better: localized branes at L are O-linear categories on L.
Kapustin and Rozansky assert that these local descriptions patch together.

Example (Cotangent bundle T ∗L)

The matrix factorizations for Ψ ∈ O(L) constitute Hom(L; Γ(dΨ)).
This micro-localization of the MF category circumvents the paradox of a
zero category having a non-zero restriction.
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Mirror of a group action revisited

Key features of an A-model group action

Theorem (Connected groups)

1 A Hamiltonian G -action on (X , ω) induces a locally trivial action of G
on the Fukaya category F(X ).

2 This is described (up to homotopy) by a morphism of E2-algebras

C∗(ΩG )→ HCH∗(F(X ));

or, a module category structure of F(X ) over (C∗(ΩG )-modules,⊗).

3 The invariant part F(X )G is the fiber over 0 ∈ Spec C∗(ΩG ) of F(X ).

4 The latter “gauged category” should be equivalent to F(X//G ).

Remark

H∗(ΩG ; C) is a (Laurent) polynomial ring, and is truly commutative (E∞).
The same is true of HH∗(F(X )) when ∼= H∗(X ).
But an E2 morphism between commutative algebras has more information
than the underlying morphism of algebras.
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Mirror of a group action revisited

The monopole and Rozansky-Witten connection

Theorem (Bezrukavnikov-Finkelberg-Mirkovic)

1 Spec HG
∗ (ΩG ) is an affine resolution of singularities of (T ∗T∨C )/W .

2 Spec H(ΩG ) ⊂ Spec HG
∗ (ΩG ) is the fiber over Z (G∨) ⊂ (T ∗T∨C )/W .

3 Spec HG
∗ (ΩG ) is algebraic symplectic, and Spec H∗(ΩG ) Lagrangian.

Completed there, HG (ΩG ) = E2 Hochschild cohomology of H∗(ΩG )
(a.k.a. the cotangent bundle.)

Remark

1 This E2HH∗ controls the formal E2 deformations of H∗(ΩG ).
Algebras with E2-action of H∗(ΩG ) micro-localize to Spec(E2HH∗),
defining germs of branes for the Rozansky-Witten theory.
The above BFM space provides a natural uncompletion.

2 The BFM space for SU(n) is the SU(2)−monopole space of charge n.
General: solns. to Nahm’s equations in g∨ with principal sl(2) poles.
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Mirror of a group action revisited

Pictures instead of thousands of words

The BFM space with the trivial and
the regular representations

Invariant category and underlying
category
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Mirror of a group action revisited

Decategorification: the space of states

A general construction (Costello, Kontsevich-Soibelman, Hopkins-Lurie)
yields a 2D partial TQFT from a category F with a perfect cyclic trace.

The input states are in HH∗(F), outputs in HH∗(F) ∼= HH∗(F)∨.
If lucky: HH∗ = HH∗ and we get a full TQFT.

Conjecture

For compact symplectic X , HH∗(F) ∼= HH∗(F) ∼= H∗(X ).

This may well fail, but Fukaya has indicated a way around it:
the TQFT maps factor through H∗(X ) anyway.

A G -Hamiltonian X gives GW invariants on H∗G (X ), but the GW (X//G )
maps factor through a smaller space. Woodward defined an A∞ quantum
Kirwan map H∗G (X )→ QH∗(X//G ), expected onto for projective X and
orbifold X//G . This fails in general, e.g.

1 X = ∗, space is H∗G (G ), we get string topology of BG ;
2 X = T ∗(G/F ), F finite: the space is C[F ]F (twisted sectors).

C. Teleman (Berkeley) Gauges, mirrors and Langlands Luminy, 5.7.12 13 / 17



Mirror of a group action revisited

Several TQFT’s are read off the brane B associated to a G -Hamiltonian X .
Call E = Spec H∗ΩG and T the cotangent fiber in BFM.

1 The GW theory of X , defined from F(X ) = HomBFM(E ,B).
The space of input states is HH∗(F) (factors through H∗(X )).

2 Givental’s equivariant GW theory, with ground ring H∗(BG ) = C[t]W .
Defining category: Γ(B) as an H∗(BG )-linear category,

space of states: HH
H∗(BG)
∗ Γ(B) ∼= HHG

∗ (F).

3 The gauged GW theory, generated by F(X )G ∼= HomBFM(T ,B), and
conjectured to be F(X//G ) (if X//G orbifold).

There is a G -equivariant local system HH∗ over G with fiber HH∗(F(X )),
whose RΓ is HH∗(F(X )G ).
Heuristically, LG acts on H∞/2(LX ) ∼= HH∗F(X ), and BLG = G/G .

Conjecture

If X is projective and X//G an orbifold, Woodward’s quantum Kirwan
map is HHG

∗ (F(X ))→ RΓG (G ;HH∗F(X )), defined by 1 ∈ G .
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Mirror of a group action revisited

Theorem (Sort of; description of gauge theory via BFM space)

The BFM un-completion “governs A-models gauged by G ”.
Specifically, a G -action on a Fukaya category gives the germ of a brane in
the RW theory of Spec HG

∗ (ΩG ), near the Lagrangian H∗(ΩG ).
Gauging the theory requires extending this brane to the ambient space.

Remark

1 This theorem is partially a definition. We are refining the notion of a
locally trivial G -action on a linear category enough to specify the
gauged theory (the fixed-point category).

2 This un-completion strictifies a homotopy G -action to a “genuine”
G -action, and is analogous to passing from K (BG ) to KG (∗).

3 The 2-category of linear categories with locally trivial G -action has a
forgetful underlying category functor.
Unlike the case of G -action on vector spaces, this is not faithful.
So the description as a (locally trivial, up to coherent homotopy)
group action on a category was only a starting point.

C. Teleman (Berkeley) Gauges, mirrors and Langlands Luminy, 5.7.12 15 / 17



Mathematical complements

Underlying category and invariant category

In the RW model, we must describe geometrically two functors from the
(2-)category of linear categories with G -action to linear categories:

1 The forgetful functor, remembering the underlying category;
this describes the original, pre-gauged TQFT.

2 The invariant category; this generates the gauged TQFT.

They are co-represented by the regular, resp. trivial representations of G ,
among categories with locally trivial action.

Theorem (Sort of)

1 The regular representation is the Lagrangian Spec H∗(ΩG ).

2 The trivial representation is the Lagrangian tC/W = T ∗1 T∨C /W .

(I mean the categories of coherent sheaves over these Lagrangians.)
1 is clear: it describes H∗(ΩG )-modules as a module category over itself.
2 is a key part to the BFM description of gauge theory.
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Mathematical complements

Deformations by H∗(BG ) and the bulk of BFM space

The Fukaya category F(X ) carries deformations parametrized by H∗(X ).
The gauged category F(X )G should carry deformations parametrized by
H∗G (X ), in particular, by H∗(BG ).

In fact, these deformations can be explained intrinsically:

1 As TQFT deformations: an α ∈ H∗(BG ) transgresses to a t(α) on
the moduli of G -bundles over a surface. The TQFT correlator
deforms by twisting the path integrand by exp t(α).

2 As deformations of the G -action on F(X ): H∗(BG ) parametrizes
Z/2-graded deformations of the locally trivial G -action on Vect.
The deformed F(X )G is the invariant part of the twisted category.

This deformation has a clean geometric interpretation in the BFM space:
projection to tC/W turns α into a Hamiltonian, and we use its flow.

The twisted representation Vectα is the flow of the identity fiber tC/W .
This allows one to access any part of brane in the BFM bulk.
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