Modular Tensor Categories and invariants
of 3-manifolds

Tensor categories

- $\operatorname{How}(V, w)-\mathbb{C}$ vector spaces (\mathbb{C}-linear additive)
- $\otimes: l \times l \rightarrow l, \quad(V, w) \mapsto V \otimes w$
functor of the tensor product

a - isomorphism of functors, it satifies the pentagon axiom and gives a system of functorial isoonorphisms

$$
\begin{aligned}
& a=\left\{a_{V, U N}\right\} \\
& a_{v, u, w}:(v \otimes u) \otimes W \rightarrow V \otimes(u \otimes w) \\
& \left(\left(V_{1} \otimes V_{2}\right) \odot V_{3}\right) \oplus V_{4} \underset{a}{\longrightarrow}\left(V_{1} \otimes\left(V_{2} \otimes V_{3}\right) \otimes V_{4}\right. \\
& \downarrow a \\
& \left(V_{1} \otimes V_{2}\right) \otimes\left(V_{3} \otimes V_{4}\right) \\
& \left.V_{1} \oplus\left(N_{2} \otimes V_{3}\right) \otimes V_{4}\right) \\
& \text { (1) } \xrightarrow{a} \\
& \downarrow a \\
& V_{1} \otimes\left(V_{2} \otimes\left(V_{3} \otimes V_{4}\right)\right)
\end{aligned}
$$

quaratees that

$$
\left(A_{1} \otimes \cdots \otimes A_{n}\right)_{B} \simeq\left(A_{1} \otimes \cdots \otimes A_{n}\right)_{B^{\prime}}
$$

by compositions of a^{\prime} s.

- An identity object $1 \in O B(l)$

$$
1 \otimes V \simeq V \otimes 1 \simeq V
$$

- commutativity coustraint
$\sigma: V O W \rightarrow W O U$ NOWH W®U

$$
\begin{aligned}
& (v, w) \xrightarrow[\rightarrow]{\rightarrow} \text { row } a, 0, \Delta \\
& (v, w) \xrightarrow{Q_{0}^{r}} W \otimes N
\end{aligned} \ldots .
$$

compativility with a for \otimes is guaranteed by two hexapon axims.
comm. constraint
$c=\left\{c_{v, w}\right\}$ is a system of functovial isomorphisws $c_{V, W}: V \otimes W \stackrel{\sim}{\leftrightarrows} W \otimes V$ hexayon axiows:
$(v \otimes w) \otimes u \xrightarrow{\text { coid }}(w \otimes v) \otimes u$

Thy graroutiee that

$$
\left(A_{\sigma_{1}} \otimes \cdots \not A_{n}\right)_{B_{B}} \simeq\left(A_{1} \otimes \cdots \otimes A_{n}\right)_{B^{\prime}}
$$

For any $\sigma \in S_{n}$ and brackets B, B^{\prime} vi id

- A uglt dual to $v=\left(e v_{v}, z_{v}, v^{*}\right)\left\{d_{\sim}^{v} \uparrow\right.$ ¿ev evV: $V^{*} \otimes V \rightarrow 1,{ }^{*} V: D \rightarrow V \otimes V^{*}$, axion $v^{*} v v^{*} 0 v$ similarly a left dual *V VY g vor"

in queral ${ }^{* * * x} V, V^{* * \cdots}\binom{$ in $V^{* e c t} \mathbb{C}}{V^{* k} \approx V}$
Ribbon catepories

A tensor categong is ribbon if $\exists v$:ide? i.e. $v=\left\{v_{v}: V \rightarrow V\right.$ functorial $\}$ s.t.

$$
v . v_{1}=i d_{0}
$$

$$
\begin{gathered}
v \cdot v_{v \otimes w}=\left(v_{v} \circ v_{w}\right) c_{v w}^{-1} c_{w v}^{-1} \\
v \cdot v_{v}^{*}=v_{v *}^{v} \\
\uparrow: v \rightarrow w
\end{gathered}
$$

Example: Vecte, assume for rads $V, W \in V$ ded-saces Э $R^{V W}$:VOW \rightarrow s.l. $R_{12}^{V W} R_{13}^{V U} R_{23}^{W U}=$ opp. product and R is invertible \& $\left(R^{V, W}\right)^{i d o *}$ is also invertible ($M: \mathbb{C}^{n} \in \mathbb{C}^{(N)} 0, M^{+}, M^{+1}, M^{+2}, M^{-1}=M^{t_{i}+i_{2}}$
M is invertifle. $M^{t_{2}}$ aso invurtible.)
Then $\left(V_{e c}{ }_{C}, R\right)$ is a tentor catepory with $\quad c_{V W}=P^{W W} R^{W}, P^{v W}(\sigma \otimes u)=w$ or
Ribloon structure \Longleftarrow assume certain $\sqrt{\cdots}$ can be consistantly taker.

$$
\text { (R. } 1989 \text {) (Agatra \& Arclasi) }
$$

Examples: H-Hopt algeto. $H_{\text {-mod }}$ is olways a tensor catey. (no comm. conatr.) if $R \in H Q H>\Delta^{\circ p}(a)=R \Delta(a) R^{-1}$

$$
\Rightarrow \quad H \cdot \text { mad is a tevoror cat. RVW }=\left(n^{v} \in n^{v}\right)(R) \text {. }
$$

$$
?(H, R \in H \odot H)
$$

Driffeld double: H-ay (f.d.) Hoof algetra, $D(H)=H \otimes H^{\text {cop. }}$ sh. $R=\sum_{i} e_{i} \otimes e^{i} \rightarrow H \dot{H} \otimes H^{\infty \omega p} \subseteq D \otimes D$ satisfies (above)

$$
" a=i d "
$$

$$
U_{q}(g), \cdots
$$

(quillopt aly. $a \neq i d$)

Invasiants of framed links from ribbon categories

$$
\begin{aligned}
& \omega\left(s^{\prime}\right){\xlongequal[V]{\text { links }} c \mathbb{R}^{3}}_{\text {lich }}^{\text {dic }} \mathbb{R}^{2} c \mathbb{R}^{3} \\
& \begin{array}{l}
v u{ }^{v} \\
\psi \downarrow \nmid \rightarrow \text { id vouow' }
\end{array} \\
& a_{v, u, w}=i d_{v} \otimes u \otimes w \\
& V_{v}^{*} \rightarrow e v_{V}: V^{*} \oplus V \rightarrow 0 \\
& \stackrel{\nu}{*}_{v}^{v}=\underbrace{v^{*}} \sum^{v} \rightarrow \\
& \rightarrow 1{ }^{2} \rightarrow V \otimes V^{*} \xrightarrow{\rightarrow} V^{*} \otimes V \xrightarrow{i d \otimes v} \\
& \rightarrow V^{*}+V
\end{aligned}
$$

Redemeister thu.

$$
D_{L} \underset{\uparrow}{\longrightarrow} D_{L}^{\prime}
$$

a sequence of Red. moves or blade wit

$$
1 / \downarrow, \quad \sim,(1 / \downarrow, \quad)^{1}
$$

Blackboard framiny:

(Turaev, look)
(Tualv, R. 1999) (inv. of tayples) Redemmino
Ravaranal
The composition of sade elem. neorplisws

Gives $\operatorname{inv}\left(L^{v_{1}, \ldots, V_{e}}\right): 1 \rightarrow 1, i ., \operatorname{inv}(L) \in \mathbb{C}$

invariant of
links colored lints colored ty objects of l.
Similarly, invariants of tangles.

$$
V^{* *} \simeq V, \quad v_{v}: V e
$$

N can be used to construct $\mu_{V}: V \stackrel{* *}{\sim} V$

$$
\begin{aligned}
\mu_{v \otimes w}= & \mu_{v} \otimes \mu_{w}, \quad \operatorname{dim} e(v)=\operatorname{Tr}(i d v) \\
& \operatorname{Tr}_{r \otimes w}(f \otimes g)=\operatorname{Tr}_{v}(f) \operatorname{Tr}(g)
\end{aligned}
$$

Duped $1989(A \& A)$ (in central dem.) \rangle
$R_{1} \rightarrow$ in (explain now to $V \rightarrow V^{* K}$)
Modular tensor categories
all our categories are Abelian / \mathbb{C}.
Assume that φ - semisimple tensor category with finitely many simple objects V_{i} / \mathbb{C}

- $\operatorname{Hom}\left(V_{i}, V_{j}\right)=\delta_{i j} \cdot 1-\operatorname{dim}$,
finysens pumbed and any $V \simeq \oplus_{i} V_{i}^{\oplus n_{i}}$ (finite sum) (Gukor) (Kruskal, ...) $\underset{2020}{ }$
Definition A ribbon tensor category is modular
if
(MTG)

An example: $q=e^{\frac{2 n i}{k}}$. The category e_{q}
Simple objects $V_{0}=\mathbb{1}, V_{1, \cdots}, V_{k-1} \quad 0,1, \cdots, k-1 \quad \mathbb{Z}_{k}$,

$$
\text { - } V_{i} \otimes V_{j} \stackrel{\text { def }}{=} V_{i+j} \operatorname{molk}
$$

$$
\begin{aligned}
& \text { - braiding } V_{i} \otimes V_{j} \xrightarrow{c} V_{j} \otimes V_{i} \\
& V_{i+j}^{H /(k)} \rightarrow V_{i+j(k)}^{\prime \prime}, e^{\frac{i \pi}{k}} L_{\text {nat }}^{i j} \\
& V_{i}^{*}=V_{-i}(k), V_{i}^{* *}=V_{i} \\
& \text { - } S_{i j}=\exp \left(\frac{2 \pi i}{K} i j\right),\left(S^{-1}\right)_{i j}=\frac{1}{K} e^{-\frac{2 \pi i}{K} i j}
\end{aligned}
$$ discrete Fourier transform.

Kirby calculus
Let $L \subset S^{3}, L=\prod_{i=1}^{e} L_{i}$

- Remove a tubular ned along each component of L. The usult is a $3 d$ manifold with the boundary $T_{1} \Delta \ldots \Delta T_{e}$
- Glue solid tori back to T_{i} 's twisting by a differomorphism each component.
This is a Dehn surjery.
In particular:
- choose a farming on L

- Framing defines a curve on each T_{i}

It defines the gluing diffeomorphism.

Thu (Lickorish-Wallace, 1960's) Any closed oriented 3d manifold can be obtained by a surgery along a framed link $L \subset S^{3}$.
It follows from V.A. Rochlin (1951) the that each closed oriented 3-manifold bounds a compact oriented 4-Ball.

Kirby calculus.
Thu (Kirby 1978 (Fan, Rourke 1979)) Let M_{L}
and M_{L} ' be two manifolds obtained by a surjery along L and L^{\prime} on J^{3} respectively. $M_{L} \simeq M_{L^{\prime}}$ if and only if L and L^{\prime} are related by a sequence of moves

Corollary. If I_{L} is an invariant of links in S^{3} that satisfied (K), then it is an invariant of 3-manifolds (links are not oriented).

Remank This is a nonlocal construction (1 of 3 -mamifolds.

Local: A trianyclations (Turaev-Viro, (99?)
M-ilosed.

$$
\operatorname{TV}(M)=|\operatorname{RT}(M)|^{2}
$$

Invariauts of closed 3-manifields
We want to construct invariants of 3-manifelds using Kirly calculus.
closed mulds
Them (R. - Turaev, MSRI-pteprint 1989, 1991)

$$
\cdot \sum_{\substack{i_{1} \cdots i_{l}^{\prime} \\ \text { all simple }}} d_{i_{1} \cdots d_{e^{\prime}}} \frac{\operatorname{inv}\left(L^{v_{1} \cdots v_{l}} L^{L_{i_{i}} \cdots v_{i^{\prime}}}\right)}{\text { maricul } f_{e^{\prime}}^{\text {colored lock in }} S^{3}}
$$

$\left|L^{\prime}\right|=$ \# conn. comp. of $L^{\prime}=e^{\prime} ; L, L^{\prime}$ are framed $\sigma\left(L^{\prime}\right)=\operatorname{sign} \operatorname{lk}\left(L^{\prime}\right)$
D - fence $d_{i}=\operatorname{inv}\left(V_{i}\right) \quad D=\sqrt{\sum_{i} d_{i}^{2}}$, dim of l.
$p_{ \pm}=\sum_{i} d_{i} v_{i}^{ \pm 1}, \quad{ }^{" \Theta V_{i}^{\prime \prime}}{ }^{\prime \prime}$

$$
\begin{aligned}
d_{i} & =\operatorname{dow}_{e}\left(V_{i}\right) \\
D^{2} & =\sum_{i} d_{i}^{2} \\
D^{2} & =\operatorname{dm}(k[G])
\end{aligned}
$$

all imeps
appear ones.
Gelfand "model spaces"

$$
C(G / B)
$$

$$
l=\underline{G-m a n d}
$$

invariant with respect to K-moves.

$$
\begin{align*}
& v_{0}, \ldots, v_{k-1}, \stackrel{e_{q}}{i j}, q=e^{\frac{n \sqrt{-1}}{k}} \text {, } \tag{VII}\\
& v_{i}=q^{i^{2}}, \quad P_{ \pm}=\sum_{i=0}^{k-1} q^{i i^{2}}, \quad D=k, \\
& \text { inv }=k^{\left|L^{\prime}\right|}\left(\frac{p_{t}}{p-1}\right)^{\sigma\left(L^{\prime}\right)} \sum_{i, \cdots i l^{\prime}} q^{\left(i, \ldots, i i^{\prime}\right)}\left(\hat{L}^{\prime}\right)\binom{i}{i l^{\prime}}=
\end{align*}
$$

$k \rightarrow \infty$, "semidassical limit".
Witter, 1989, $\int e^{i k(s(A)} \partial A=\sum \tau\left(\lambda_{A}\right) e^{\frac{1}{2} \cdot \operatorname{kscs} / 2}$

How to see His from the coup. side?
ℓ_{q}-inv $\rightarrow U(1)$ chera-Sinoms.

Mattes, Pleat. R.
199...
path int-pert.side.
Axdrod-Singer: perturb. Finite ty pu mu. of 3-namifelds

$$
\frac{\left(\left[M,\left[A_{0}\right]\right)\right.}{M=s^{3} \supset L}
$$

$$
\frac{i s \text { the exp. of }}{\cos k \rightarrow \infty}
$$

Relations (Lusztig, 1989) in $U_{v}\left(s l_{2}\right)$

$$
\begin{aligned}
& E^{(n)} E^{(m)}=\left[\begin{array}{c}
n+m \\
m
\end{array}\right] E^{(n+m)}, \quad\left\{\begin{array}{l}
E^{(\prime)}, F^{(n \prime}- \\
\text { querators }
\end{array}\right. \\
& F^{(n)} F^{(m)}=\left[\begin{array}{c}
n+m \\
m
\end{array}\right] F^{(n+m)}, \quad \\
& E^{(p)} E^{(r)}=\sum_{0 \leq t \leq \min (p, r)} F^{(r-t)}\left[\begin{array}{c}
K ; 2 t-p-r \\
t
\end{array}\right] E^{(p-t)}, \quad p, r \in \mathbb{Z} \geq 0
\end{aligned}
$$

Corollary: For $t \in \mathbb{Z}_{\geqslant 0}, c \in \mathbb{Z}$

$$
\left[\begin{array}{c}
K_{j} c \\
t
\end{array}\right]=\prod_{s=1}^{t} \frac{K_{v}^{c-s+1}-K^{-1} v^{-c+s-1}}{v^{s}-v^{-s}} \in U_{A}\left(d_{z}\right)
$$

Claim: $U_{A}\left(s l_{2}\right)$ is a Hopf subalgebra.

$$
\begin{aligned}
& \cdot R^{v, w}: V \otimes W \rightarrow V \otimes W \cdot \\
& \cdot R^{v, w} \cdot\left(\pi^{v} \otimes \pi^{w}\right)(\Delta(a))=\left(\pi^{v} \otimes \pi^{w}\right)\left(\Delta^{\circ p}(a)\right) \cdot R^{v, w} \\
& \cdot R^{v \otimes w, u}=R_{23}^{w, u} R_{13}^{v, u} \\
& R^{v, w \otimes u}=R_{1,2}^{v, w} R_{13}^{v, u}
\end{aligned}
$$

(ii) Lusztig's integral form (with divided powers)

$$
A=\mathbb{Z}\left[9,1^{-1}\right]
$$

Definition: $U_{A}(f l)<U_{N}(s / 2)$ is the unital A-sultalg.etra generated by

$$
E^{(n)}=\frac{E^{n}}{[n]!}, F^{(n)}=\frac{F^{n}}{[n]!}, n \in \mathbb{Z}_{\geqslant 1}
$$

Relations (Lusztig, 1989) in $U_{v}\left(s l_{2}\right)$

$$
\begin{aligned}
& E^{(n)} E^{(m)}=\left[\begin{array}{c}
n+m \\
m
\end{array}\right] E^{(n+m)}, \quad\left\{\begin{array}{l}
E^{(\prime)}, F^{(n \prime}- \\
\text { querators }
\end{array}\right. \\
& F^{(n)} F^{(m)}=\left[\begin{array}{c}
n+m \\
m
\end{array}\right] F^{(n+m)}, \quad \\
& E^{(p)} E^{(r)}=\sum_{0 \leq t \leq \min (p, r)} F^{(r-t)}\left[\begin{array}{c}
K ; 2 t-p-r \\
t
\end{array}\right] E^{(p-t)}, \quad p, r \in \mathbb{Z} \geq 0
\end{aligned}
$$

Corollary: For $t \in \mathbb{Z}_{\geqslant 0}, c \in \mathbb{Z}$

$$
\left[\begin{array}{c}
K_{j} c \\
t
\end{array}\right]=\prod_{s=1}^{t} \frac{K_{v}^{c-s+1}-K^{-1} v^{-c+s-1}}{v^{s}-v^{-s}} \in U_{A}\left(d_{z}\right)
$$

Claim: $U_{A}\left(s l_{2}\right)$ is a Hopf subalgebra.
(b) $\left.U_{q} \mid s l_{2}\right)$ is geverated by $E, E^{(l)}, F, F^{(l)}$ K, K^{-1}.
(c) $K^{2 l}=1, K^{l}$ is central
(d) $u_{q}\left(\mathrm{ll}_{2}\right) \subset U_{q}\left(s_{2}\right), K^{ \pm 1}, E_{1} F$ is a Hopf subalgebra
$\underline{u_{q}\left(s_{2}\right)-\text { mod }}>$ Proj modules. teusor ideal
Thm

$$
u_{q}\left(R_{2}\right)-\bmod / \text { Projechues }
$$

is a ruodulur teusor category

Conjecture: corresponding invariants of 3 -manifolds when $q=e^{\frac{i n}{K}} \underset{K \rightarrow \infty}{\longrightarrow}$ semiclassical CS series confirmed in cases with only isolated flat connection

- otherwise it is a problem on the semiclassical side.
Fact: Chen, Yang 2015 when $q=e^{\frac{i n}{k} m}$ $m \neq 1$ this is not true instead

$$
\tau_{M} \rightarrow e^{k \operatorname{v\ell l(M)}} \cdots \quad, k \rightarrow \infty
$$

