
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 344, Number 2, August 1994 

NONORIENTABLE 6MANIFOLDS  
WITH FUNDAMENTAL GROUP OF ORDER 2  

IAN HAMBLETON, MATTHIAS KRECK, AND PETER TEICHNER 

ABSTRACT.In this paper we classify nonorientable topological closed 4-mani- 
folds with fundamental group 212 up to homeomorphism. Our results give 
a complete list of such manifolds, and show how they can be distinguished by 
explicit invariants including characteristic numbers and the q-invariant associ- 
ated to a normal Pinc-structure by the spectral asymmetry of a certain Dirac 
operator. In contrast to the oriented case, there exist homotopy equivalent 
nonorientable topological 4-manifolds which are stably homeomorphic (after 
connected sum with S2x s 2 )  but not homeomorphic. 

1. INTRODUCTION 
In this paper we classify nonorientable topological closed 4-manifolds with 

fundamental group 212 up to homeomorphism. Our main result is Theorem 
3 which contains a complete list of such manifolds. We also give a simple 
set of invariants, namely the Euler characteristic, the Stiefel-Whitney number 
wf , an Arf-invariant and the Kirby-Siebenmann obstruction, which classify 
these manifolds (Theorem 2). For smooth manifolds the Kirby-Siebenmann 
obstruction can be omitted and it turns out that the Arf-invariant has an analytic 
description as the v-invariant of a Dirac operator (Theorem 1). 

In the oriented case the classification is contained in [9]. The result there is 
that the manifolds are classified by the intersection form on ordinary homology, 
the Kirby-Siebenmann obstruction and the three possibilities for existence of 
spin structures (universal covering not spin, manifold spin or manifold not spin 
but universal covering spin). Since the intersection form is not an interesting 
invariant for nonorientable manifolds, we expected a simpler classification in 
this case. This turned out to be true, although in carrying out the details we 
encountered additional invariants and a new phenomenon. In contrast to the 
oriented case, there exist homotopy equivalent nonorientable topological 4-
manifolds which are stably homeomorphic (after connected sum with S2x S2) 
but not homeomorphic. 

That new invariants exist in the nonoriented case was already known for 
smooth manifolds. All such manifolds admit a (normal) Pinc-structure, where 
PinC is an appropriate 2-fold covering of Ox U(1) (see for example [8, p. 2561) 
and a Pinc-structure cf, is a specific reduction of the normal bundle to P inC.  
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Note that by composing with the projection to U(1) we get a complex line bun- 
dle from a Pinc-structure @ and we denote its first Chern class by c~ . Choose 
such a structure @ on M and a Riemannian metric g . Then there is a cor- 
responding Dirac operator D(M,  g ,@) . It was shown in [8] that the spectral 
asymmetry qD(M, g , @) E R/Z is a Pinc-bordism invariant. We will see in 
35 that up to sign it is actually a homeomorphism invariant of homeomorphisms 
preserving ca (but not a homotopy invariant) and denote it by f v ( M ,  ca) . 
Recall that the two 2-fold coverings Pin+ and Pin- of 0 (compare $2) are 
subgroups of PinC and that a Pink-structure is a reduction of the normal bun- 
dle to these groups. We call a PinC-structure @ primitive if either the structure 
comes from a Pin*-structure or (in case the manifold does not admit a Pin*- 
structure) ca is a primitive cohomology class. 
Theorem 1. Two smooth closed nonorientable 4-manifolds M and M' with 
fundamental group 212 are homeomorphic if and only if they both admit a 
normal Pin+ or Pin- or no such structure and 

e(M) = e(M1), wl ( M ) ~= w , ( M ' ) ~ ,  v(M, ca) = fv(M1, ca,) 
for some primitive Pinc-structure @ and @' . 

If q (M,  q)is a homeomorphism invariant there should be a topological 
formula for it. This is the case and leads to the invariants needed for classify- 
ing all topological 4-manifolds with fundamental group 212. First note that 
in analogy to the smooth category we have a 2-fold covering group TopPinC 
over Top x U(1),  where Top = lim Top(n), and Top(n) is the group of 
homeomorphisms of Rn fixing 0.  Similarly, we have subgroups TopPink . 
As before, a topological manifold as in the title admits a normal TopPinc-
structure. Such a structure @ determines a class c~ and we define primitive 
TopPinc-structures as in the smooth case. The complex line bundle associated 
to ca is classified by a map to CPPN for some N .  The transverse preimage 
of CPN-I has a canonical Pin+-structure on the normal bundle and for sur- 
faces with such structure there is a Z/8-valued Brown-Arf invariant denoted by 
arf(M, cQ) , compare [12]. We will show in 35 that for smooth manifolds 

8v(M, c4) = f arf(M, ca) 
and thus Theorem 1 follows directly from the following result. (Here K S  de- 
notes the Kirby-Sibenmann invariant.) 
Theorem 2. Two topological closed nonorientable 4-manifolds M and M' with 
fundamental group 212 are homeomorphic if and only if they both admit a 
normal TopPinf or TopPin- or no such structure and 

e(M) = e(M1), wl( M ) ~= W I  ( M ' ) ~ ,   
arf(M, ca) = f arf(M1, cat) ,  KS(M) = KS(M1)  

for some primitive TopPinc-structures @ and @' . 
We now give a complete list of all closed nonorientable topological 4-mani- 

folds with fundamental group 212. To give such a list we need two operations. 
Let M be a nonorientable closed 4-manifolds and E8 the simply connected 
manifold with intersection form E8 from [6]. There is a degree 1 normal 
map E8 -,S4 and taking connected sum we obtain a degree 1 normal map 
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M # E 8  + M .  Since the map L4(l)  + L4(Z/2, -) vanishes [15, $13A], by 
the exactness of the topological surgery sequence [6] M # E8 is homeomorphic 
to X # 4(S2 x S2)where X is homotopy equivalent to M . By construction, 
KS(M) # XS(X) and in analogy with [7] we denote any such manifold X 
by * M .  We note that Theorem 3 will imply that except in the case where 
the intersection form on the universal covering is odd and e(M) = 2 ,  *M is 
unique up to homeomorphism. 

For the second operation let MI and M2 be 4-dimensional Pin--manifolds 
with fundamental group 212. Denote the nontrivial 3-dimensional real disc 
bundle over S1by E . Fix a Pin--structure on E . Choose embeddings of E 
into Mi representing the nontrivial element in nl ,such that the first embedding 
preserves the Pin--structure and the second reverses it. Then we define 

Denote the Chern manifolds *@P2from [6] by C H  and the real Hopf bundle 
over RP2 by y . 
Theorem 3. Every closed nonorientable topological 4-manifold with fundamental 
group 212 is homeomorphic to exactly one manifold in the following list: 

(I) RP4# k . @P2, RIP2 x S2# k @P2, *RIP4# C H ,  *RIP4# k . @P2, 
*(RP2x S 2 ) # k . C P 2 ,  RP4#CH,  k 2 1 .  

(11) RIP2 x s 2 # k .  (s2x s2),*(RIP2x s 2 ) # k .  (S2x S2) ,  k 2 0 .  
(111) ~ ( 2 y @ R ) # k . ( S ~x S 2 ) ,  # S I r . R ~ 4 # k - ( ~ 2x s 2 ) ,  * ~ ( 2 y @ R ) # k .  

(S2x S2),*(#S1r RIP4)# k .(S2x S 2 ) ,  1 5 r 5 4,  k 2 0 .  

The noncancellation examples mentioned in the beginning are RIP4# @P2and 
*RP4# C H  . The three cases I, I1 and I11 correspond to admitting no Toppin*-
structure, admitting a TopPinf -structure and admitting a Toppin--structure. 

From the list above we see that all manifolds with K S  = 0 admit a smooth 
structure except perhaps *RP4# C H  . On the other hand, we see from Theorem 
2 that *RP4# C H  # S2x S2is homeomorphic to RP4# CP2# S2x S2and thus 
admits a smooth structure. The problem whether *RP4# C H  admits a smooth 
structure is open. We would like to point out that this is analogous to E8#E8 
which stably admits a smooth structure but unstably does not [5]. 

From our homeomorphism classification one can derive a homotopy clas-
sification. For this we first note that the existence of no normal Toppink-
structure, of a Toppin+-structure or of a TopPin--structure is equivalent to 
w2(vM) # 0 , w2(vM )  = 0 or w2(vM )  = w1(V M)2 resp. (see Lemma 2). 
Thus this is a homotopy condition, and we refer to the three different possi-
bilities by saying that M has w2-type I, 11, or 111. We will see in 52 that for 
TopPin--manifolds, karf(M, cQ) denoted by arf(M) is a Brown-Arf invari-
ant and thus a homotopy invariant. Theorem 3 implies that arf(M) is not a 
homotopy invariant for manifolds with w2-type I. Thus we obtain 
Corollary 1. Let M and MI be closed, nonorientable topological 4-manifolds 
with fundamental group 212. Then M and MI are homotopy equivalent ifand 
only if 

(i) M and MI have the same w2-type. 
(ii) e(M) = e(M1). 
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(iii) wl(M)4= w1 . 
(iv) arf(M) = farf(M1) in w2-type 111. 

In [ l l ] ,  the authors studied the homotopy classification and obtained some 
partial results. In particular they used a quadratic refinement q : n2(M)+ 214 
of the mod 2 intersection pairing on spherical classes in H2(M) to distinguish 
some of the 4-manifolds in our list. We would like to mention that using 
this list one can also prove that the following is a complete set of homotopy 
invariants for nonorientable 4-manifolds with fundamental group 212 : n2 
(as nl-module), S , q . Here S denotes the equivariant intersection form on 
n2 and q carries the same additional information as Wall's self-intersection 
form at the nontrivial group element. This result was conjectured in [ l  11but it 
is clear that the invariants from Corollary 1 are much simpler to compute than 
the triple (n2 ,S ,q) . 

2. A DIGRESSION ON Pin-STRUCTURES 
Recall that by definition Pin* := lim Pink(n) and the groups Pink(n) are 

central extensions 
0 + 212 -,~ i n * ( n )+ O(n) -,0 

classified by w2 for Pinf respectively w2+w? for Pin- . We obtain fibrations 
p*: pin* -, BO. Also PinC := lim Pinc(n) with Pinc(n) := Pinf (n) x 
U(l)/((-1 , -1)) being a central extension 0 + U(1) +Pinc(n)+ O(n) + 0 .  
This gives a fibration pC: BPinC+BO . 

Let t E {c, +, -) . Since a pint-structure on a (stable) vector bundle E 
over a space X is the same as a fibre homotopy class of lifts of a classifying 
map CE:X + BO over pt : BPint + BO, we can conclude the following 
lemma, compare [12, $11for t = k . 
Lemma 1. 

(i) A vector bundle E over X admits a Pint-structure ifand only if 

P(w2(E))= 0 for t = C, 
w2(E)= 0 for t = +, 
w2(E)= W ~ ( E ) ~for t = -, 

where p : H ~ ( X;212) -,H3(X;Z) is the Bockstein operator induced 
from the exact coeficient sequence Z +Z + 212. 

(ii) Pin*-structures are 1-1 correspondence with H1(X;212) and Pinc-
structures are in 1-1 correspondence with H2(X;Z) . 

Proof. Since the above sequences mapping pint onto 0 are central extensions, 
we get group homomorphisms 212 x Pin* -,Pink respectively U(1)x PinC+ 

PinC over 0. Thus there are induced maps BZ/2 x BPin* +BPin* respec-
tively BU(1) x BPinC+BPinC over BO which shows that the projections pt 
are principal fibrations with fibre 

B U ( l ) = K ( Z , 2 )  f o r t = c ,  
BZ/2 = K(Z/2, 1) for t = f. 

Now the result follows from [2, Theorem (1.3.8)]. 
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By a Pint-structure on a smooth manifold M we mean a Pint-structure on 
its (stable) normal bundle v : M -+ BO. Now let M be nonorientable with 
fundamental group 212. Then the above lemma and the exact sequence 

shows that M admits a Pin*-structure if and only if w2M = 0 because 
H2(Z/2;212) is generated by the square of the l-dimensional class correspond-
ing to w l M .  This also proves that for w2M = 0 one has either w2(vM)= 0 
or w2(vM)= w ~ ( M ) ~ .We thus have proved the following 
Lemma 2. Let M n  be a nonorientable manifold with fundamental group 212. 
Then M has w2-type I if and only if M does not admit a Pin*-structure. 
Furthermore, M has w2-type I1 if and only if M admits a Pin+-structureand 
M has w2-type I11 if and only if M admits a Pin--structure. 

Note that a Pin*-structure i7: M + pin* is automatically a 2-equivalence 
because n2(BPink)= 0 and i7 induces an isomorphism on 111 since p* and 
v: M -+ BO both do. Also, there are exactly two Pink-structures if i7 exists, 
namely i7 and i7+ wlM . Here the addition denotes the action of H1( M;212) 
on its affine space of Pink-structures. 

We now turn to Pinc-structures. We defined PinC=Pin+xU(l)/((- 1, -1)), 
so there is a natural projection n+: PinC + U(1) with kernel P in+.  It is 
easy to see that PinC E Pin- x U(l)/((-1, -1)) which gives a projection 
n-: PinC + U(1) with kernel P in- .  In the introduction we talked about 
a complex line bundle with first Chern class c~ induced by a Pinc-structure 
@ = ZE : X + BPinC on some vector bundle E over X . We point out that 
this complex line bundle is constructed via the projection n+ . Since nk induce 
isomorphisms on n2, we see that the map n2(@):n2X -' n2(BPinC)= Z+ is 
an evaluation on ca . 
Lemma 3. If @ is a Pinc-structure on a vector bundle E over X then ca = 
w2(E) (mod 2) .  Moreover, if x E H 2 ( x ;8) is given then c(~+,)= ca + 2x,  
where the addition on the left-hand side denotes the action of H ~ ( M ;Z) on its 
afine space of Pinc-structures. 
Proof. The first claim is easily checked in the universal case and the second 
follows directly from the following commutative diagram (p the multiplication 
maps): 

U(1) x PinC A Pinc 

U(1) x U(1) L U(1) 

We now come back to manifolds with fundamental group 212. 
Lemma 4. Let ( M ,  i7) be a nonorientable Pinc-manifold with fundamental 
group 212. Then nl (i7) is an isomorphism and cr is a primitive cohomol-
ogy class ifand only if n2(i7) is surjective. 

The proof of this lemma is as easy as the former ones, so we skip it. The 
above discussions apply to smooth manifolds, in the topological case we only 
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have a stable normal Gauss-map v :  M + BTop . But since the natural map 
q: BO -,BTop is a 3-equivalence,the above three fibrations pt : pint + BO 
are in fact pullbacks of fibrations BTopPint +BTop via q . In other words, 
there are topological groups ~ o p ~ i n t, t E { c  , + , - 1 ,  constructed from the 
group Top by the same central extensions used for the construction of Pint 
from the group 0 .  Also, the obstruction theoretic considerations (Lemmas 1-
4) do not change due to the fact that q is a 3-equivalence. For example, we 
can deduce from Lemma 1 that a Cdimensional closed nonorientable manifold 
M with fundamental group 212 always admits a TopPinc-structure because 
by Poincare-duality 

Next we list the necessary facts on the topological bordism groups we need (for 
the definition of B-bordism groups compare [14]): 

The B-structures on the generators are standard in the following sense: Firstly, 
any Topspin-structure (e.g., the unique Topspin-structure on E8) induces a 
Topspint-structure since there are canonical homomorphisms Topspin + 

Toppint.  Secondly, by Lemma 1, CP2 has a priori two primitive Pinc-
structures but we will not distinguish these since complex conjugation induces 
a diffeomorphism between them. Finally, by Lemma 2, IRP4 has exactly two 

Toppin-Pin--structures. But one is the inverse of the other in the group R4 
This follows from the following general fact, compare (12, p. 1901: If ( M ,  i7) 
represents an element in the bordism group Rein* then the inverse element is 
represented by ( M ,  i7 + wlM) . This also implies that [E8] has order 2 in 
the above bordism groups R y P i n tand therefore splits the Kirby-Siebenmann 
invariant in all three cases. Moreover, by construction we have the following 

~ o p ~ i n *.relation in R4 

Convention. Without mentioning, we always mean the standard ~ o p ~ i n t -
structures on the above manifolds. 

The computations for R y P ' " *  can be found in [12, $91but note that the 
r6les of Pinf - and Pin--bordism are reversed in that paper because the authors 
consider tangential structures whereas we look at the normal Gauss-maps. The 
extensions 

i*1 - TopPin -TopPinc 2U(1) - 1 

B 
BTopPinC 
BTopPin+ 
BTopPin-

induce Gysin-sequences (compare [14, pp. 354, 2181) 

invariants 
(KS, arf, w4) 

KS 
(KS,  arf) 

Z/2 x Z/8 x Z/2 
212 

212 x 218 

generators 
E8,  CP2 

E8 
E 8 ,  I W P ~  
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Here nc is the homomorphism obtained by taking the transverse preimage (see 
[7, $91)of CPN-I under a map M -,CPN coming from a TopPinc-structure 
on M . Let arf: Q,TOpPinC-,Z/8 be the composition 

where f forgets the map into BU(1) and a is the 2-dimensional Brown-
Arf invariant. Since Q y P i n += 0 and QTOpPin ' (~~(1))E Z/8 x Z/2, our 
result for Q,TOpPinClisted above follows. Note that arf(E8)= arf(CP2)= 0 and 
arf(RP4)= &1 and thus we obtain the following relation in Q Y P i n c: 

arf = wf (mod 2) . 
The homomorphism arf: SZ?~'"--,Z/8 in our table abbreviates the compo-

.-sition ~ : Q p i n - j; *?Pinc arf-,218. It will become important to know that this 
homomorphism is in fact an ordinary Brown-Arf invariant, i.e., comes from a 
quadratic refinement of the Z/2-intersection form on the second cohomology 
of a 4-dimensional topological Toppin--manifold. Such an invariant exists 
by [3, Proposition (1.9)] since 

X ( ~ q 3 ) ( u )= sq2sql(u) = 0 
where u E H0(MTopPin- ; 212) is the Thom class and x is the canonical 
antiautomorphism of the Steenrod algebra. It agrees with the above composi-
tion since it agrees on the generators E8 and RP4 by [3, Example (1.29) and 
Theorem (1.20)(iv)].Arguing again with the generators shows that in Q y P i n -
one has the following relation: 

arf = w4 (mod 2 ) .  

Since the proof of Theorem 2 will make essential use of the manifolds listed 
in Theorem 3, we first give a discussion of this list. We begin by noting that 
our operation # s ~is TopPin--bordant to the disjoint union of two Toppin--
manifolds. Thus for w2-type 111, every Toppin--bordism class appears in our 
list. For w2-type I1 this is clear anyway and for w2-type I it follows from the 
next lemma by noting that the connected sum with CP2 does not change wf 
and arf but it changes w4 . 
Lemma 5. Let z E ; Z) and s E H ~ ( S ~; Z) be generators. Then for all 
positive integers n and ni one has 

(1) arf(CP2,@,,I + n .z) = 2(n2+ n) . 
(2) arf(S2x S 2 ,QS2 X S ~+ (nl -p;(s) + n2 p; (s)))= 4nlnz . 
(3) arf(RP2x S 2 ,@ip2xs2+ n .p;(s)) = k2n .  

Here @ ~ , 2 x , 2  denotes any Pin+-structureon RP2xS2 and @ S 2 X S ~  is the Spin-
structure on S2x S2. (Both structures induce Pinc-structures which are needed 
for the arf-invariant.) 
Proof. The first two formulas follow from the following generalization of 
Rohlin's theorem, compare [12, Theorem 6.31: 

2 . a ( F )  = F o F  - a ( M )  mod 16. 
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Here F is a surface in a smooth oriented Cmanifold M which is dual to 
w2M. F obtains a Pinf-structure from a Spin-structure on M \ F  and thus 
the Brown-Arf invariant a(F)E 218 is defined. If F is the transverse preimage 
of CPN-I under a map M -,CPN coming from a Spinc-structure @ on M 
then by definition arf(M, @) = a(F). 

To obtain formula (I) ,just apply the above equation to ( M ,  @) = (CP2,QCp2+ n . z )  , in other words ( M ,  F) = (@P2,(2, + 1) CP1). For formula (2) 
take M = S2x S2 and F any surface representing the Poincare dual to 
2(n1 .p;(s) + n2 .~ ; ( s ) ) .  

Formula (3) is certainly true for n = 0 since (IRP2x S 2 ,@Rp2xS2) is zero-
bordant. It also follows from the fact that a Pinf -structure on IRP2xS2 induces 
a null-homotopic map IRP2x S2-,CPN and thus the transversal inverse image 
of CPN-I is zero-bordant. Changing this Pinc-structureby the element n.p;(s) 
changes by Lemma 3 this map to the composition 

This shows that the transversal preimage of CPN-I in this case is 2n .IRP2 and 
our formula follows from a(IRP2)= f1 . 

The manifold *RP4# C H  with its primitive TopPinc-structure has arf-
invariant f3.  This follows by applying the topological version of the equa-
tion already mentioned in the above proof (compare [12, Corollary 9.31) to 
M = C H :  

o(M) = F o F - 2 . a ( F ) + 8 - K S ( M )  mod 16. 
The following result will be used for the proof of Theorem 3. 

Proposition 1. Let M be a closed nonorientable topological 4-manifold with 
fundamental group 212. Then the list of Theorem 3 contains exactly one man-
ifold R of the same w2-typeand Euler characteristic as M which is Toppint-
bordant to M for some primitive Toppint-structures on M and R .  Here 
t E {c, +, -) o {I ,  11, 111) encodes the w2-type of M and R . 
Proof. For the arguments below we can assume that KS(M) = 0 and we choose 
a fixed primitive Toppint-structure on M .  We first recall that by Poincare-
duality we always have 

and that e = w4 (mod 2) is a bordism invariant. For our proof, we have to 
consider three different cases corresponding to the possible w2-types of M , the 
easiest being 

w2-type 11. Then our model R is RIP2 x S2# k .(S2x S2)and it is clear 
that since M is Toppin+-zerobordant (and thus e(M) is even), there exists a 
unique k E No such that R satisfies the desired properties. 

w2-type 111. It is clear that there exist a model R from our list with w2-type 
I11 which is TopPin--bordant to M . Let Ro be the corresponding model with 
k = 0 ,  i.e., R = Ro# k.(S2x S2). Then also Ro and M are TopPin--bordant 
and we have to show that we can choose k E No such that e(R) = e(M).  
This will certainly follow once we show that the model Ro has minimal Euler 
characteristic in its TopPin--bordism class. 
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1. Case. W ~ ( R O ) ~# 0 ,  i.e., Ro = #sl -RIP4, r = 1,  3 .  For r = 1 ,  the 
minimality is clear, for r = 3 assume e(Ro)= 3 was not minimal. Then there 
existed a TopPin--manifold Rb with e(Rb) = 1. But this means that the 
Z/2-cohomology ring of Rb is isomorphic to the one of RP4 and thus by [3, 
Theorem (1.20)(iv)]it follows that arf(Rb) = f 1 # arf(Ro). 

2. Case. w ~ ( R o ) ~= 0 .  By the inequality (*) , the only critical case is 
Ro = #sl 4 .RIP4. If 4 = e(Ro) was not minimal, there existed a Toppin--
manifold Rb with arf(Rb) = 4 and e(Rb) = 2 .  Since by assumption we have 

0 # wl(R ; )~= w2(vRb)= v2(Rb) (v2the second Wu-class) 
the intersection form on H ~ ( R ~;212) is odd and thus has in some basis the 
intersection matrix (h  y )  . As above, one has arf((1))= f 1 and thus by addi-
tivity arf(Rb) E (0 ,  k2)  which is again a contradiction. 

w2-typeI .  Then e(M) 2 2 because e(M) = 1 would imply that the degree 
1 map % + S 4 ,  obtained by pinching off the complement of a coordinate 
neighbourhood, is a homotopy equivalence and thus w~(G)= 0 ,  a contradic-
tion to w2-type I. 

1. Case. w ~ ( M ) ~# 0 ,  i.e., arf(M) E { k l  , f 3 )  . Let 

{ RP4# CP2 if arf(M) = f 1,
Ro := *RP4# C H  if arf(M) = k 3  . 

By the computation of the arf invariant before Proposition 1 and the compu-
tation of the corresponding bordism group at the end of $2there is a primitive 
TopPinc-structure on Ro such that arf(Ro) = arf(M) . We can deduce that 
e(M) determines unique numbers k E No and 1 E (0 ,  1) such that 

R :=Ro#l. @P2#k (s2x s2) 
with the standard TopPinc-structure is TopPinc-bordant to M with e(R) = 
e(M) . If 1 or k are not zero then our list in Theorem 3 contains only the 
manifold 

R' :=RP4#(CP2#1.CP2#k. (s2x s2). 
Therefore, we have to show that we can choose a primitive Pinc-structure @' on 
R' such that arf(R1,@I)= f 3 .  For this we take the primitive Pinc-structure 
mo on RP4# CP2 and note that then cPo # @ is primitive for any Pinc-structure 
@ on 1. CP2# k .(S2x S 2 ) .  By Lemma 5 @ can be chosen so that 

arf(1. @P2#k (s2x S 2 ) ,@) = 4 
which proves our claim. 

2. Case. wl ( M ) ~= 0 ,  i.e., arf(M) E (0,  k 2 ,  4) . We first show that 
e(M) = 2 is impossible: w2(%) # 0 implies that w ~ ( v M )= v2(M) is not 
a torsion class. If e(M) = 2 then w t ,  212 would thus form a Z/2-base for 
H2(M;212) with 0 = wf = w: .v2 which contradicts the unimodularity of 
the Z/2-intersection form on M . Let 

(Ro,mRo):= (RIP2x s2#CP2,( @ ~ p z x , 2  + arf(M)/2 .s)#mCp2). 
By Lemma 5 one has arf(Ro)= farf(M) . Since e(Ro)= 3 ,  there exist unique 
numbers k E No and 1 E (0 ,  1) such that 

R := Ro#l. (CP2#k.(s2x s2) 
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with the standard TopPinc-structure is TopPinc-bordant to M with e(R) = 
e (M) .  

To obtain our classification theorem from the above proposition, we have to 
make use of the surgery theory developed in [13]. We recall the basic definitions. 

Let p: B + BTop be a fibration and Ti: M,! + B ,  i = 1 ,  2 ,  a nor-
mal 1-smoothing in B , i.e., i7 is a lift of the normal Gauss map v and 
a 2-equivalence. Suppose that (MI,F l )  and (M2,F2) are bordant in Qf . 
Let (W , i7) be a B-bordism between (MI,Fl )  and (M2,F2) and suppose 
e(Ml) = e(M2). Then there is an obstruction 8(W ,MI)  E lS(nl(B), wl) 
which is zero bordant if and only if W is bordant rel. boundary to an s-
cobordism, implying that Ml and M2 are homeomorphic if 111 is good in 
the sense of [6]. 

lS(nl ,wl) consists of stable equivalence classes of pairs 8 = (H(Ar), V) , 
where H(Ar) is the standard quadratic hyperbolic form on A2r, A = Z[nl], 
and V c A2' is a based free direct summand of rank r . More precisely, we 
stabilizeby orthogonal sum with (H(As),ASx 0) and identify (H(Ar), V) with 
(H(Ar), A( V)j ,where A is any element of RSU(A) = lim RSU(Ar),RSU(Ar) 
the subgroup of the isometry group of H(Ar) generated by the flip (interchang-
ing two standard base elements in a hyperbolic plane) and isometries with de-
terminant 1 in Wh(nl) which preserve Ar x 0 and, restricted to A' x 0 ,  have 
also determinant 1. 

Recall that the ordinary L-group LS,(nl,wl)  is the subgroup of the monoid 
lf(nl,wl) of classes [H(Ar), V] with V c VL and the quadratic refinement 
p vanishes on V. Here 8 E lS(nl,wl)  is called zero bordant if it has a 
representative (H(Ar),V) such that V $ Ar x (0) = A2' and the basis of V 
together with the standard basis of Ar x (0) is equivalent to the standard basis 
of A2' . Since we are only interested in the case nl = 212 where the Whitehead 
group vanishes, we will forget the bases from now on. Let Kn2(M) denote the 
A-valued quadratic form given by intersection and self-intersection numbers on 
ker(F*: n2(M) + n2(B)) and let 8(W , Ml) E 15(n ,w 1 )  be represented by 
[H(Ar),VI . 
Proposition 2. The 15(n1,wl)-obstructions satisfy thefollowing properties: 

(1) There is a surjective isometry of quadratic forms V +Kn2(M1). 
(2) 8 (W,  M2) = [H(Ar),VLl . 
(3) Let Kn2(M1)= K1 IK2 a n d  T/; -+ Ki be surjectionsfrom free A-

modules T/; . Then there are half rank embeddings T/1 c H(AS) and 
& c H(Af) and 19 E L5(n ,wI )  such that 8(W , M1) is equivalent to 
(H(AS), T/1) 1(H(Af), 1I9 in 15(~1,~ 1 ) .  

(4) If L5(n1, wl) = 0 and V possesses a hamiltonian complement in 
H(Ar),  i.e., a based submodule U c H(Ar) such that U = UL,  the 
quadratic rejinement p is zero on U and V$U = A2', then [H(Ar), V] 
is zero bordant. 

Proof. The first two properties follow directly from the construction of 8(w,M,) 
[13]. Property (3) is a purely algebraic consequence of the second property. For 
convenience we indicate the proof. We first consider the special case & = 0 .  
Starting with the surjection p :  V + Kn2(MI)and pl:  fi + Kn2(M1)one 
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constructs a commutative diagram 

Pull the form on Kn2(M1)back by (p +0) and (pl +0) to obtain forms such 
that @ is an isometry. Now 

[H(Ar),Vl = [H(Ar),V l 1  [H(K) ,  61= [H(Ar)I H ( K ) ,  @-'(K @ V)] 
which, since the quadratic form vanishes on 0 - ' (V) ,  is equivalent to 
(H(AS),v )  18 for some isometric embedding 6 into A2S and some 8 
in L;(nl, w l ) .  

For the proof of the general case consider the surjection Vi @ fi + K1 I 
K2 = K ,  and note that under the pull-back form the summands are orthog-
onal. Show by elementary base changes that (H(AS+'), v I fi) is equivalent 
to (H(AS), K )  I(H(At), fi) for appropriate embeddings of v and fi . TO-
gether with the special case this proves part (3). 

To prove part (4) assume that V has a hamiltonian complement U .  The 
nonsingularity of the hyperbolic form implies that there is an isometry which 
maps U onto the standard lagrangian Ar x (0) . Since L5 = 0 ,  this can be stably 
done within the subgroup of all isometries which do not change the equivalence 
class of [H(Ar), V] E Is . It follows that for some s 2 r we have 

[H(Ar), V] = [H(AS), V'] and A2S= ASx (0) @ V' 
and thus [H(Ar), V] is zero bordant. 

Before we state the next proposition, we agree that in the following (B,p)  al-
ways denotes one of thefibrations (B~ o p P i n t,p+)the superscript t E {c,+,-) 
determined by the w2-typeof the manifold in question. 
Proposition 3. Let Ml and M2 be two closed nonorientable topological 4-
manifolds with fundamental group 212 and the same w2-type and Euler charac-
teristic. Then M1 and M2 are homeomorphic if and only if there exist normal 
1-smoothings TMi: Mi 4 B which are B-cobordant. 
Proof. We first recall from 52 (in particular Lemma 4) that by definition of 
B a normal 1-smoothing FM,: Mi + B is the same as a primitive Toppint-
structure on Mi .  By Proposition 1, we can assume that Ml =: R is one of the 
manifolds in the list of Theorem 3. Set M := M2. Again, we have to consider 
three different cases corresponding to the possible w2-types of M ,  the easiest 
being 

w2-type 11. Then our model R is either I W P ~x S2# k . (S2x S2) or 
*(W2 x S2)# k .(S2x S2)depending on KS(M) and e(M) . As described 
above, there is an 1-obstructionfor making a B-cobordism between R and M 
into an h-cobordism via surgery. This I-obstruction can be read off from either 
end of the B-bordism and we clearly prefer to work with the model R . Since 
n2B = 0 ,  the (self-)intersection form on Kn2(R) equals the (self-)intersection 
form on n2(R)2 Z+ @ Z- @ A2k which is Z(Z-)I k .H(A) . Here the inter-
section form 1on Z- @ Z+ takes the values 1(v*, v*) = 0 ,  1(v-, v+) = 1-z 
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(z the nontrivial element in Z/2), if v* generate the Z* summands. The 
self-intersections p are given by p(v-) = z ,  p(v+) = 0 .  (The hyperbolic 
form H(Z-) would satisfy p(v*) = 0 and therefore we write B(z-).) To 
compute the I-obstruction we apply Proposition 2(3) which shows that it is ad- 
ditive under orthogonal sum since L5(Z/2, -) = 0 [15, §13A]. Then parts (a) 
and (b) of the following proposition (which will be proved in $4) show that the 
I-obstruction is zero bordant and thus R and M are homeomorphic. 

Proposition 4. (V ,A, p) E l5 (212, -) is zero bordant if one of the following 
conditions is satisfied 

(a)  V is freely generated by v+ , v- with A(vk , v*) = 0 ,  A(v- , v+) = 
1 - z ,  and at least one of the two elements p(v-) , p(v+) vanishes. 

(b) (V , A) is a hyperbolic form on A2. 
(c)  (V,  A) is the zero form on A.  

We proceed in the proof of Proposition 3 by assuming that M has 
w2-type 111. Then our model R is one of the models described in Theorem 

3(III). As for w2-type 11, we want to show that the I-obstruction for a B-
bordism between R and M is zero bordant. Again the (self-)intersection form 
on Kn2(R) is the one on n2(R) since n2B = 0 .  Let Ro be defined as in the 
proof of Proposition 1. Then 

and by Proposition 2(3) and Proposition 4(b) we can work with Ro . By Lemma 
6 below, we see that we are finished using Proposition 4(a), (b). 

For the proof of Proposition 3, the last case is that M has 
w2-type I .  The following line of argument does not change if we replace M 

by *M and thus we assume KS(M) = 0 .  
1. Case. w ~ ( M ) ~   Then# 0 ,  i.e., arf(M) E {*l, *3). 

and  R : = R o # ( I + 2 k ) . @ ~ 2 ~ R o # I . @ ~ 2 # k - ( S 2x S 2 ) .   
The I-obstruction can thus be computed by resolving  

From Proposition 4 we then see that this obstruction is zero bordant: Use parts 
(b), (c) for I = 0 and parts (a), (b) for I = 1. It follows in particular that 
for I or k not zero R is homeomorphic to RIP4 # @IP2 # 1. @IP2 # k .(S2x S2). 
This means that the choices of different TopPinc-structures destroy the arf- 
invariant except for Euler characteristic 2 where it still can take two values. 

2. Case. w1 (M)4 = 0 ,  i.e., arf(M) E (0 ,  *2, 4) . Let 
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and note that with the standard TopPinc-structuresone has arf(Ro)= arf(M) . 
Again we have 

R := R,,#I. m 2 # k .  (s2x s 2 ) .  
Now we can finish the proof exactly as in the first case by applying Proposition 
4 to a free resolution of Kn2(R).Moreover, since IRIP2 x S2# @IP2 has primi-
tive Pinc-structureswith arf-invariant 0 ,  &2,and 4 ,  R is homeomorphic to 
IRIP2 x S2# 1.@IF2 # k .(S2x S2), independently of the arf-invariant. 

Propositions 1 and 4 together imply our Theorems 2 and 3 from the intro-
duction. 
Lemma 6. Let M4 be a nonorientable manifold with fundamental group 212 
and w2-type 111. Then the hermitian intersection form on n2M is either hyper-
bolic or isometric to H(Z-) IH(Ar). Moreover, at least one of the two elements 
p(v-) , p(v+) vanishes. (Here v, generate Z- $ Z+ .) 
Proof. By [16] n2M is either free or isomorphic to Z+ @ Z- @ F , where F 
is a free module. The intersection form is either a unimodular form S on F 
or it splits as H(Z-) IS ,  see [lo, $61. Since S admits a quadratic refine-
ment it represents an element in L4(Z/2, -) . Recall from [I5, § 13A] that the 
Arf-invariant induces an isomorphism Arf: L4(Z/2, -) + 212. Thus as a her-
mitian form, S is stably hyperbolic. It is easy to prove that this implies that S 
is hyperbolic. 

To prove the last statement of the lemma, we have to show that the Arf-
invariant coming from the self-intersections p on n2M 212 vanishes (note 
that the Arf-invariant on S E J ~ Z / ~is zero). This follows since the Arf-invariant 
is a TopPin--bordism invariant and it vanishes on the generators. 

Since L5(Z/2, -) = 0 [15, §13A],we can use Proposition 2 and have only 
to show that V possesses a hamiltonian complement in H(Ar). 

ad(c). Let v E V c H(A) be a free generator such that A(v ,v) = 0 .  Then 
p(v) = 0 or z and since V is a direct summand, there exists an element 
w c A 2  withA(v,w)=l .Bychanging w to w + I - v ,  l ~ A , w e c a n a s s u m e  
that A(w ,w) = 0 .  If p(v) = 0 then this process also yields p(w) = 0 and thus 
U := (w) is a hamiltonian complement for V . If p(v) = z then A(w ,w) = 
0 automatically implies p(w) = 0 ,  otherwise H(A) = (v , w) would have 
nontrivial Arf-invariant (in the sense of [I51). 

ad(b). If (V ,  A) c H(A2) is a hyperbolic form on A2,  the orthogonal com-
plement VL is stably hyperbolic and thus hyperbolic as in the proof of Lemma 
6. Therefore, we can assume that if el , e2, fi , f2 is a hyperbolic base for 
H(A2) then V = (el , f i )  . Note that we ignored the quadratic refinement p un-
til now but since A ~ ~ ( H ( A ~ ) )= 0 ,  we can assume that either p(ei)= p(J) = 0 
or p(ei) = p(J) = z . It is now easy to check that U := (el + f2 ,  fi - e2) is a 
hamiltonian complement for V . 

ad(a). Let 
H := (A4,H ( A ~ ) ,A, p) 

be the standard hyperbolic form with hyperbolic generators el , e2, fi , f2. 
Furthermore, let v- ,v+ E H be two vectors generating a 2-dimensional free 
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direct summand V in A4 such that A(v- , v+) = (1 - z) and p(v+) = 0 ,  
p(v-) = z . We want to show that V possesses a hamiltonian complement in 
H .  (The cases p(v-) = 0 ,  p(v+) = z and p(v*) = 0 are analogous but do 
not occur in the geometry of 4-manifolds, therefore we have decided to present 
only one case.) The aim of the proof is to move V by isometries of H into 
a position where one can directly read off a hamiltonian complement. For the 
convenience of the reader, these positions will be enumerated by the labels (VO) 
to (V3). Given the vectors 

(vo) V+ and v- E A4, 
we first note that since H is nonsingular and v+ is by assumption A-
unimodular, there exists a vector w E A4 with i ( v + ,w) = 1 . Because 
p(v+)= 0 ,  the vectors v+ and w - 7 .  v+ (with [I] = p(w) E A/{/ - 711E A)) 
generate a hyperbolic summand H(A) in H .  It follows that we can assume 
v+ = el . If 

the equation 1 - z = A(v-, v+) = A(bl fi ,e l )  = bl shows that we have 
(Vl)  v + = e l  and v - = a l - e l + a 2 . e 2 + ( 1 - z ) . f i + b 2 . f 2 .  
Since V is a direct summand of A4, the vector a2 .e2 + (1 - z) .fi+ b2 f2 is 
A-unimodular, in particular there exist r ,  s ,  t E A such that 

It is easy to check that the matrices 
1 r 

1 0 t 
R : = [ o  

:7 :] and T I = ( :  - T I  0 )  

define isometries of H fixing el . The coefficient of el in the vector (RoT)(v-) 
then equals 

where E- : A + Z sends z to -1 . Putting k := E- (-(s + r - 7 ) )  , we can 
therefore assume that 
(V2) v + = e l  and v - = k ( l - 7 ) - e l + a 2 . e 2 + ( 1 - z ) . f i + b 2 - f i .  
The ideal a2 .A+ b2-115 A is a free abelian group of rank 5 2 .  By [4, Chapter 
741 it is then isomorphic as a A-module to Z , Z- , Z@Z- ,or A .  The first three 
cases are impossible since the vector a2 .e2 +(1-z).fi +b2.f2 is A-unimodular. 
This can be checked case by case just by using that this unimodularity means 
that 

a 2 - A + b 2 . A + ( 1- z ) . A = A .  
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Therefore, a2 .A + b2 .A FZ A and thus there exists a nonzero divisor u E A 
such that 

a 2 . A + b 2 - A = u - A  andthus ( 1  - z ) . A + u . A = A .  
From the second equation it follows that there exist z E Z and 1 E A such that 

which is equivalent to the equations 

The addition of these equations leads to 
1 = ( 1 1 ~ 1+ 12242) + ( 1 1 ~ 2+ 1 2 ~ 1 )= (12 + 1 1 )  ' (u2+ u1),  

which finally implies that 

(*) ul = * I  - u2, in particular u .t2= u: - ug = 1 7 2u2 r 1 mod 2 .  

Since u is not a zero divisor and a2, b2 E u .A ,  there exist a ,  p E A such 
that a2 = u a ,  b2 = u .p , and a .A + p A = A .  But since we assumed that 

we can conclude from (*) that 

and 
A ( a . e 2 + P - f 2 , a . e 2 + P . f 2 ) = 0 .  

By the unimodularity of a .e2 + P .f 2  there exists a y E e2 .A + f 2  .A with 
A ( a - e 2 + P . f 2 , y ) = l  and A ( y , y ) = O .  

But since Arf(Hl(e2- A+f2 . A ) )  = 0 ,  it is necessary that p(y)  = 0 .  Therefore, 
there is an isometry y, of HI (e2.A + fi .A )  satisfying 

for some I .  We can now assume that 
(V3)  v+=el  and v- = k ( l  - z ) . e l  +u . e2+(1  - z ) . f i  + I - u e f 2 .  
We claim that the two vectors 

w+ := -2.42- e2 + fi and w- := u2 el + f 2  

generate a hamiltonian complement U for V in H .  The fact that U satisfies 
U L  c U and piu r 0 is obvious and the easiest way to see that U is comple-
mentary to V as in (V3) ,is to compute the determinant ( A  is a commutative 
ring!) of the matrix for the column vectors v+, v- , w+ , w- . This matrix is 
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andit hasdeterminant ( k l  - u 2 ) + u 2 . z + u 2 ( 1  -7 )  = k l .  
Remark. The above proof fails if p(v*) = z . But this is not surprising since if 
Proposition 4 was true also in this case, by taking 3 := 3Top we could prove 
that the manifolds RIP4# @IP2 and *RIP4# C H  are homeomorphic. It should 
therefore be possible to derive an invariant in the terms of I5(Z/2, -) which 
distinguishes these two manifolds. 

5. A TOPOLOGICAL FORMULA FOR THE $'-INVARIANT 

Theorem 4. Let 0 be a Pinc-structureon a smooth 4-manifold M .  Then 

Proof. Since both sides are invariants of Pinc-bordism classes it is enough to 
check the formula on generators. As in 52 one sees that the bordism groupQrincis isomorphic to 218 x 212 via (arf, w4),generated by RIP4 and @IP2 . 
[8, Theorem 3.31 proves that 

$'(RIP4)= kg (mod Z) . 
For orientable Pinc-manifoldsone has the formula 

This follows from the general formula in [8, p. 2541 
q(D) = 4 Index D+ 

and the index formula [ l ]  Index Df = ( ed I2A^(~) ,[MI). 
In particular, for CQ = (2n + l ) z  , z a generator of H2(@IP2; Z) ,we have 

q(@IP2, 0)= $ (n2+ n) (mod Z). 
Since the value of the $'-invariant and the arf-invariant up to sign agree for the 
generators RIP4 and (@IP2,0) with CQ = z (for the arf-invariant see 52 and 
Lemma 5), we are finished. 
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