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Jacobi identities in low-dimensional topology

James Conant, Rob Schneiderman and Peter Teichner

Abstract

The Jacobi identity is the key relation in the definition of a Lie algebra. In the last decade,
it has also appeared at the heart of the theory of finite type invariants of knots, links and
3-manifolds (and is there called the IHX relation). In addition, this relation was recently
found to arise naturally in a theory of embedding obstructions for 2-spheres in 4-manifolds
in terms of Whitney towers. This paper contains the first proof of the four-dimensional
version of the Jacobi identity. We also expose the underlying topological unity between
the three- and four-dimensional IHX relations, deriving from a beautiful picture of the
Borromean rings embedded on the boundary of an unknotted genus 3 handlebody in
3-space. This picture is most naturally related to knot and 3-manifold invariants via the
theory of grope cobordisms.

1. Introduction

The only axiom in the definition of a Lie algebra, in addition to the bilinearity and skew symmetry
of the Lie bracket, is the Jacobi identity

[[a, b], c] − [a, [b, c]] + [[c, a], b] = 0.

If the Lie algebra arises as the tangent space at the identity element of a Lie group, the Jacobi
identity follows from the associativity of the group multiplication. Picturing the Lie bracket as a
rooted Y -tree with two inputs (the tips) and one output (the root), the Jacobi identity can be
encoded by the diagram in Figure 1.
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Figure 1. The Jacobi identity.

One should read this tree from top to bottom, and note that the planarity of the tree (together
with the counterclockwise orientation of the plane) induces an ordering of each trivalent vertex
which can thus be used as the Lie bracket. A change of this ordering just introduces a sign due
to the skew symmetry of the bracket. This will later correspond to the antisymmetry relation for
diagrams. Changing the input letters a, b, c to 1, 2, 3 and labeling the root 4, Figure 1 may be
redrawn with the position of the labeled univalent vertices fixed as shown in Figure 2.
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Figure 2. The IHX relation.

This (local) relation is an unrooted version of the Jacobi identity, and is well known in the theory
of finite type (or Vassiliev) invariants of knots, links and 3-manifolds. Because of its appearance it
is called the IHX relation. The precise connection between finite type invariants and Lie algebras is
very well explained in many references, see e.g. [BarN95].

Garoufalidis and Ohtsuki [GO98] were the first to prove a version of a three-dimensional IHX
relation. It was needed to show that a map from trivalent diagrams to homology 3-spheres was
well defined. Habegger [Hab01] improved and conceptualized their construction. Moving to the
techniques of claspers (clovers), Garoufalidis, Goussarov and Polyak [GGP01] sketch a proof of
Theorem 7 below, a theorem of which Habiro was also aware (private communication). Our proof
is completely new, and, we believe, more conceptual. Moreover, it serves as a bridge between the
three- and four-dimensional worlds.

1.1 A Jacobi identity in four dimensions
In § 2 of this paper we will rediscover the Jacobi relation in the context of intersection invariants
for Whitney towers in 4-manifolds. It is actually a direct consequence of a beautifully symmetric
picture, Figure 3. The expert will see three standard Whitney disks whose Whitney arcs are drawn
in an unconventional way (to be explained in § 2.3 below). Ultimately, the freedom of choosing the
Whitney arcs in this way forces the Jacobi relation upon us.

The reader will recognize the three-component link in the figure as the Borromean rings. Each
component consists of a semicircle and a planar arc (solid, dashed, dotted respectively), exhibiting
the Borromean rings as embedded on the boundary of an unknotted genus 3 handlebody in 3-space.

The Jacobi relation for Whitney towers plays a key role in the obstruction theory for embedding
2-spheres into 4-manifolds developed in [ST04]. However, it was not proven in that reference and
the main purpose of this paper is to give a precise formulation and proof of this Jacobi relation;
see Theorem 1 below. In §§ 2.1, 2.2 and 2.3 of this paper, no background is required of the reader
beyond a willingness to try to visualize surfaces in 4-space, and our elementary construction can
also serve as an introduction to Whitney towers.

Roughly speaking, a Whitney tower is a 2-complex in a 4-manifold, formed inductively by
attaching layers of Whitney disks to pairs of intersection points of previous surface stages; see
§ 2.1. A Whitney tower has an order which measures how many layers were used. Moreover, for
any unpaired intersection point p in a Whitney tower W of order n, one can associate a tree
t(p) embedded in W; see Figure 7. The tree t(p) is a trivalent tree with n trivalent vertices, each
representing a Whitney disk in the tower. Each univalent vertex of t(p) lies on a bottom stage
(immersed) sphere Ai and is labeled by the index i.

Orientations of the surface stages in W give vertex orientations of t(p), i.e. cyclic orderings of
the trivalent vertices, and they also give a sign εp. We define the geometric intersection tree τ̃n(W)
as the disjoint union of signed vertex-oriented trees, one for each unpaired intersection point p:

τ̃n(W) :=
∐
p

εp · t(p).
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Figure 3. The geometric origin of the Jacobi identity in dimension 4.

Properly interpreted, this union represents an obstruction to the existence of an order (n + 1)
Whitney tower extending W. (Note that essentially the same geometric intersection tree is denoted
by tn(W) in [ST04].) The main result of this paper can now be formulated as follows.

Theorem 1 (Four-dimensional Jacobi relation). There exists an order 2 Whitney tower W on four
immersed 2-spheres in the 4-ball such that τ̃2(W) = (+I) � (−H) � (+X), where I, H and X are
the trees shown in Figure 2.

This result comes from the fact alluded to before, namely that Whitney towers have the inde-
terminacy of choosing the Whitney arcs! The local nature of Theorem 1 enables geometric realiza-
tions of Jacobi relations via controlled manipulations of Whitney towers, an essential step in the
obstruction theory described in [ST04]. It should be mentioned that there is also a four-dimensional
geometric Jacobi relation which uses a Whitney move to locally replace an I-tree by an H-tree and
an X-tree (see [Sch06]).

In the easiest case n = 0, a Whitney tower (of order 0) is just a union of immersed 2-spheres
A1, . . . , A� : S2 � M4, and its geometric intersection tree τ̃0(

⋃
i Ai) is a disjoint union of signed

edges, one for each intersection point among the Ai. The endpoints of the edges are labeled by the
2-spheres, or better by elements of the set {1, . . . , �}, organizing the information as to which Ai are
involved in the intersection. Edges with index i on both ends correspond exactly to self-intersections
of Ai.

In this case we know how to extract an invariant, namely by just summing all the order 0 trees
(= edges) in τ̃0(

⋃
i Ai), each signed edge of τ̃0 thought of as an integer ±1, to get exactly the

intersection numbers among the Ai. Actually, if M is not simply connected, these ‘numbers’ should
be evaluated in the group ring of π1M , rather than in Z, leading to Wall’s intersection invariants
[Wal70]. This corresponds to putting orientations and group elements on the edges of each t(p), and
has been worked out in [ST04] for higher order Whitney towers. Note that for identical indices at
the ends of an edge, the two possible orientations on the edge give isomorphic pictures, leading to
the usual relations in the group ring when measuring self-intersections:

w1(g) · g = g−1, for all g ∈ π1M.

In the present paper our constructions are local so that we may safely ignore these group elements.
If τ̃0(

⋃
i Ai) sums to zero then all the intersections can be paired up by Whitney disks, i.e. there

is a Whitney tower W of order 1 with the Ai as bottom stages. Then τ̃1(W) is a disjoint union
of signed (vertex-oriented) Y -trees, and again the univalent vertices have labels from {1, . . . , �}. It
was shown in [ST01] (and in [Mat78, Yam79] for simply connected 4-manifolds) that a summation
as above leads to an invariant τ1(W) which vanishes if and only if there is a Whitney tower W of
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order 2 with the Ai as bottom stages. In fact, if defined in the correct target group, τ1(W) only
depends on the regular homotopy classes of the Ai and hence is a well-defined higher obstruction
for representing these classes by disjoint embeddings.

Theorem 1 only becomes relevant for τ̃2 and higher, and we next give a proper formulation of
some necessary notation and terminology for intersection trees.

Definition 2. We define the order of a trivalent tree to be the number of trivalent vertices, and
the degree to be one more than that number. The degree is also one-half of the total number of
vertices, or one less than the number of univalent vertices. This definition is consistent with the
theory of finite type invariants, where the degree goes back to Vassiliev.

Definition 3. Consider pairs (ε, t) where ε ∈ {±} and t is a vertex-oriented trivalent tree of degree
n, with univalent vertices labeled from {1, . . . , �}.
(i) An AS (antisymmetry) relation is of the form

(ε, t) = (−ε, t′),

where t′ is isomorphic to t and its orientation differs from that of t by changing the cyclic
orientation at a single vertex. All AS relations generate an equivalence relation, and we let
B̃t

n(�) be the commutative monoid with unit generated by the set of equivalence classes of such
pairs (ε, t). We think of the monoid operation as disjoint union, �, and we write ε · t for the
equivalence class of (ε, t).

(ii) The abelian group B̂t
n(�) is obtained by dividing the monoid B̃t

n(�) by all relations of the form

(ε · t) � (−ε · t) = 0,

where 0 is the unit of the monoid B̃t
n(�). This clearly introduces inverses and the monoid

operation � becomes a group addition which we write as ‘+’.
(iii) The abelian group Bt

n(�) is obtained from B̂t
n(�) by dividing out all Jacobi (IHX) relations.

Remark 4. Definition 3(i) can be spelled out more concretely at two points: the equivalence relation
generated by AS relations as above is just given by relations of the form

(ε, t) = ((−1)kε, t′),

where t′ is isomorphic to t and its orientation differs from that of t by changing the cyclic orientation
at exactly k vertices. Moreover, the commutative monoid B̃t

n(�) generated by such equivalence classes
can be described by working with (equivalence classes of) finite unions of vertex-oriented trees,
with each connected component labeled by a sign ε. Then the disjoint union really gives a monoid
structure on this set which is clearly commutative and generated by trees. Its unit is given by the
empty graph.

Let W(n−1)(�) denote the set of Whitney towers of order (n − 1) on bottom stages A1, . . . , A�.
We have been discussing a map τ̃n−1 which we can now write as

τ̃n−1 : W(n−1)(�) → B̃t
n(�).

Working modulo the relations in definition (ii) above, we get a summation map

τ̂(n−1) : W(n−1)(�) −→ B̂t
n(�).

More explicitly, if τ̃n−1(W) =
∐

p εp · t(p) is the geometric intersection tree of an order (n − 1)
Whitney tower W we set

τ̂(n−1)(W) :=
∑

p

εp · t(p) ∈ B̂t
n(�).
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It is a consequence of the AS relation that only orientations of the bottom stages Ai are relevant
for the definition of τ̃(n−1)(W); see Lemma 14. From our geometric point of view, this is the main
reason for introducing AS relations.

The question arises as to whether τ̂(n−1)(W) can be made into an obstruction for representing
the bottom stages Ai, up to homotopy, by disjoint embeddings. The punchline of the first part of this
paper is that this can only be possible if we quotient the groups B̂t

n(�) by all Jacobi relations. This
gives the above-mentioned groups Bt

n(�), containing elements τ(n−1)(W), which are more customary
in the theory of finite type invariants. In fact, in the general finite type theory the superscript ‘t’,
for tree, does not appear because one uses all trivalent graphs instead of just unions of trees.

Theorem 1 implies that one needs to study these quotients if one wants to obtain invariants
of the bottom spheres Ai from the intersection trees associated to Whitney towers. As shown in
[ST04], the vanishing of τ(n−1)(W) in Bt

n(�) is sufficient for finding a next order n Whitney tower
on the Ai (up to homotopy). However, it is an open problem what precise further quotient of Bt

n(�)
is necessary to get a well-defined invariant which only depends on the homotopy classes of the Ai

(and not on the order (n − 1) Whitney tower) and gives the complete obstruction to the existence
of an order n Whitney tower.

1.2 From four- to three-dimensional Jacobi relations
In § 3 we connect the geometric Jacobi relation explained above to a three-dimensional setting via a
correspondence between capped grope concordances and Whitney towers. This translation becomes
important because, to date, there is no useful definition of a Whitney tower in three dimensions. On
the other hand, two of us have introduced in [CT04a] a theory of (capped) grope cobordisms between
knots in 3-space, and the third member in our group [Sch06] has worked out a four-dimensional
correspondence between capped grope concordances and Whitney towers.

A grope is a certain 2-complex, built out of layers of surfaces. The number of these layers is
measured by the class of the grope, later corresponding to the degree of a tree. A grope contains a
specified bottom stage surface, usually with one or two boundary circles, depending on whether it
is used to relate string links or links. This is explained in detail in § 3.1 and we shall introduce the
notation that:

(a) a grope cobordism is an embedding of a grope into 3-space (see § 3.2);

(b) a grope concordance is an embedding of a grope into 4-space (more precisely, the embedding
is into B3 × [0, 1]; see § 3.5).

We shall also explain the notions of capped grope cobordism and concordance. The caps are embed-
ded disks whose boundaries lie on the top stages of the grope. The (interiors of the) caps are allowed
to intersect the grope only in the bottom stage surface. The punchline is that these intersections
are going to be:

(a) arcs, from one part of the boundary to another, in the bottom stage of a grope cobordism;

(b) points in the bottom stage of a grope concordance.

These statements are the generic case in dimension 4 and need certain cleaning up operations in
dimension 3. In any case, when pushing a grope cobordism into 4-space, the arcs become points,
and one loses the information of the order in which the arcs hit the boundary. More precisely, in
§ 3.5 we shall explain in full detail the following commutative diagram.

Gc
n(�)

τ̃c
n

��

push-in �� W(n−1)(�)

τ̃(n−1)

��

Ãt
n(�)

pull-off �� B̃t
n(�)

(1)
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Here Gc
n(�) is the set of class n capped grope cobordisms of �-string links. The set W(n−1)(�) is a

quotient of W(n−1)(�) by the relation equating Whitney towers which are assigned the same element
by τ̃(n−1). The map push-in takes a capped grope, pushes it slightly into the 4-ball, and then surgers
the resulting grope concordance into a Whitney tower (of order (n − 1)). This procedure has some
non-uniqueness which is why we need the space W(n−1)(�) as opposed to W(n−1)(�). The monoid
Ãt

n(�) is just like its B analogue, except that the univalent vertices of the trees are attached to �
numbered strands (which form a trivial string link). More precisely, we have the following definition.

Definition 5. Consider pairs (ε, t) where ε ∈ {±}, and t is a vertex-oriented trivalent tree of degree
n whose tips are attached to the trivial �-string link.

(i) As in Definition 3, AS (antisymmetry) relations of these pairs generate an equivalence relation,
and we let Ãt

n(�) be the abelian monoid generated by the equivalence classes. As before, the
monoid operation is given by disjoint union and we write ε · t for (ε, t).

(ii) The abelian group Ât
n(�) is obtained from Ãt

n(�) by dividing by all relations of the form

(ε · t) � (−ε · t) = 0,

where 0 is the trivial �-string link with the ‘empty graph’ attached. The monoid operation �
becomes the group addition ‘+’.

(iii) The abelian group At
n(�) is obtained from Ât

n(�) by dividing out all Jacobi (IHX) relations.

The homomorphism pull-off in diagram (1) pulls each tree off the strands of the trivial
�-string link, just remembering their indices in {1, . . . , �}. Thus the diagram above says exactly
what information is lost when one moves from three to four dimensions, namely the orders in which
the caps hit the bottom stages.

The map τ̃ c
n is defined precisely in Definition 24 using a notion of geometric intersection trees

for gropes (Definition 16), and, just as in the case of Whitney towers, leads to maps τ̂ c
n and τ c

n.
By re-interpreting our central picture, Figure 3, in terms of capped gropes in 3-space, τ̃ c

n will
be used to show that the four-dimensional Jacobi relation from Theorem 1 can be lifted to a three-
dimensional version, as follows.

Theorem 6 (Three-dimensional Jacobi relation). Suppose tI , tH , tX are the three terms in any IHX
relation in Ãt

3(�). Then there is a class 3 simple grope cobordism Gc, which takes the �-component
trivial string link to itself, such that τ̃ c

3(Gc) = (+tI) � (−tH) � (+tX).

We should remark that, by a main theorem of [CT04a], we can think of Gc
n(�) as being the

set of degree n capped (or simple) claspers in the complement of some �-component (string) link.
The map τ̃ c

n is then the obvious map which sends a clasper to its tree type, with univalent vertices
attached to the link components which link with the corresponding tips. However, τ̃ c

n can also be
directly defined for capped gropes, as we explain in Definition 24. One consequence of our work is
the following theorem.

Theorem 7 (Three-dimensional Jacobi relation for claspers). Suppose three tree claspers Ci differ
locally by the three terms in the Jacobi relation. Given an embedding of C1 into a 3-manifold, there
are embeddings of C2 and C3 inside a regular neighborhood of C1, such that the leaves are parallel
copies of the leaves of C1, and the edges avoid any caps that C1 may have. Moreover, surgery on
C1 ∪ C2 ∪ C3 is diffeomorphic (rel boundary of the handlebody neighborhood) to doing no surgery
at all.

This theorem was stated and utilized in [CT04b], although the fact that the claspers must be
tree claspers was accidentally omitted. The theorem was needed to prove Lemma 3.11(c) in [CT04b].
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We re-prove this lemma as Lemma 40 of the current paper, as a simple consequence of our general
machinery. The map τ c

n is relevant to the theory of Vassiliev invariants. Given a simple grope
cobordism between two links, it records the difference in the Vassiliev invariants of degree n between
the two links. Thus, similar in spirit to τn for Whitney towers, τ c

n could represent an obstruction to
two links being isotopic. However, again the question remains on how it depends on the particular
choice of the given grope cobordism.

1.3 Grope cobordism of string links
In § 5, we shall use the techniques developed in this paper to obtain new information about string
links. Let L(�) be the set of isotopy classes of string links in D3 with � components (which is a monoid
with respect to the usual ‘stacking’ operation). Its quotient by the relation of grope cobordism of
class n is denoted L(�)/Gn; compare Definition 18. The quotient by the relation of capped grope
cobordism of class n is denoted by L(�)/Gc

n. The submonoid of L(�) consisting of those string links
which cobound a class n grope with the trivial string link is denoted by Gn(�), and similarly the
submonoid consisting of those string links which cobound a class n capped grope with the trivial
string link is denoted by Gc

n(�). The relation of capped (respectively not capped) grope cobordism
of class n coincides with the relation that two string links differ by a sequence of simple (respectively
rooted) clasper surgeries of degree n. Using this connection and results of Habiro [Hab00] we show
the following theorem.

Theorem 8. The quotients L(�)/Gn+1 and L(�)/Gc
n+1 are finitely generated groups and the iterated

quotients Gn(�)/Gn+1 and Gc
n(�)/Gc

n+1 are central subgroups. As a consequence, L(�)/Gn+1 and
L(�)/Gc

n+1 are nilpotent.

In the case of knots, � = 1, results of [Hab00] and also [CT04b] imply that Gc
n(1)/Gc

n+1 is
rationally isomorphic to the space Bn ⊗ Q appearing in the theory of Vassiliev invariants. (Indeed,
we alluded to Bn = Bn(1) a few paragraphs after Definition 3.)

For the case of � � 2 no such theorem is known, but we show that, if one relaxes the requirement
that the gropes be capped (which is the same as relaxing the requirement that all leaves of the
clasper bound disjoint disks to the requirement that only one leaf does), then one does get such a
statement. Using our geometric IHX relations, we will construct a surjective homomorphism from
diagrams to string links modulo grope cobordism,

Φn : Bg
n(�) � Gn(�)/Gn+1,

where Bg
n denotes the usual abelian group of trivalent graphs, modulo IHX and AS relations, but

graded by the grope degree (which is the Vassiliev degree plus the first Betti number of the graph);
compare § 4.2.

Theorem 9. The map Φn ⊗ Q : Bg
n(�) ⊗ Q

∼=−→ Gn(�)/Gn+1 ⊗ Q is an isomorphism.

This extends a result in [CT04b] from knots to string links and it relies on the existence of
the Kontsevich integral for string links, which serves as an inverse to the above map. Although
Theorem 9 is an elementary modification of the argument in [CT04b], we found it to be quite
surprising in light of the fact that the corresponding statement for capped gropes and simple claspers
is unknown.

The map Φn comes from a map τ̂ g
n defined in § 4.2, which assigns a linear combination of vertex-

oriented unitrivalent graphs of grope degree n to any grope cobordism of class n. This map is a
technical improvement of our methods in [CT04b], and is necessary for us to realize the IHX relation
in the uncapped case. To define the map in that paper, we first turned a grope cobordism into a
sequence of simple clasper surgeries, and then read off the unitrivalent graphs from the graph types
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of the claspers. In this paper, we read off the graphs directly from the (genus one) grope itself.
The proof that this map induces an isomorphism still requires the techniques of [CT04b], and,
in particular, still requires the passage to claspers, since the Kontsevich integral’s behavior with
respect to claspers is well understood.

In Appendix A we define the map τ̂ g
n for arbitrary grope cobordisms, which is more general than

the genus one gropes used in the body of the paper. This is logically not necessary but included for
completeness and possibly for future use.

2. A Jacobi identity in dimension 4

In this section we prove Theorem 1, but we first explain some background material and state an
important corollary which is used in [ST04]. For more details on immersed surfaces in 4-manifolds
we refer to [FQ90]; for more details on Whitney towers compare [Sch06], [Sch05] and [ST04].

2.1 Whitney towers

Using local coordinates R3 × (−ε,+ε), Figure 4 shows a pair of disjoint local sheets of oriented
surfaces A1 and A2 in 4-space. We think of the fourth coordinate as ‘time’, so the sheet A2 lies
completely in the present t = 0, whereas A1 moves through time and thus also forms a two-
dimensional sheet represented by an arc which extends from past into future. Figure 5 shows the
result of applying a (Casson) finger move to the sheets of Figure 4, with A1 having been changed
by an isotopy supported near an arc from A1 to A2, creating a pair of transverse intersection points
in A1 ∩A2 ⊂ R3 × {0}. Such a pair of intersection points is called a canceling pair since their signs
differ and they can be paired by a Whitney disk as illustrated in Figure 6. Note that the boundary of
the Whitney disk is a pair of arcs, one in each sheet, connecting the canceling pair of intersections.
A Whitney disk guides a motion (of either sheet) called a Whitney move that eliminates the pair
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Figure 6. Left: A canceling pair of intersections p±. Right: A Whitney disk pairing p±.
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Figure 7. Part of an order 2 Whitney tower on order 0 surfaces Ai, Aj , Ak, and Al, and the labeled
tree t(p) of order 2 = Vassiliev degree 3, associated to the order 2 intersection point p.

of intersection points [FQ90]. A Whitney move guided by a Whitney disk whose interior is free of
singularities can be thought of as an ‘inverse’ to the finger move since it eliminates a canceling pair
without creating any new intersections. In general, Whitney disks may have interior self-intersections
and intersections with other surfaces so that eliminating a canceling pair via a Whitney move may
also create new singularities. Pairing up ‘higher order’ interior intersections in a Whitney disk by
‘higher order’ Whitney disks leads to the notion of a Whitney tower, as follows.

Definition 10 (Compare [Sch06], [Sch05] and [ST04]).

(i) A surface of order 0 in a 4-manifold M is an oriented surface in M with boundary embedded
in the boundary and interior immersed in the interior of M . A Whitney tower of order 0 is
a collection of order 0 surfaces. These are usually referred to as the bottom stage surfaces or
underlying surfaces, and a (higher order) Whitney tower is built on these surfaces.

(ii) The order of a (transverse) intersection point between a surface of order n and a surface of
order m is n + m.

(iii) The order of a Whitney disk is (n + 1) if it pairs intersection points of order n.

(iv) For n � 1, a Whitney tower of order n is a Whitney tower W of order (n − 1) together
with order n Whitney disks pairing all order (n − 1) intersection points of W (see Figure 7).
These order n Whitney disks are allowed to self-intersect, and/or intersect each other, as well
as lower order surfaces.

The boundaries of the Whitney disks in a Whitney tower are required to be disjointly embedded
and the Whitney disks themselves are required to be framed.

Framings of Whitney disks will not be discussed here (see e.g. [FQ90]). In the construction of
an order 2 Whitney tower (proof of Theorem 1) the reader familiar with framings can check that
the Whitney disks are correctly framed.
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2.2 Intersection trees for Whitney towers
For each order n intersection point p in a Whitney tower W there is an associated labeled trivalent
tree t(p) of order n (Figure 7). The order of a tree is the number of trivalent vertices (which is
one less than the Vassiliev degree). This tree t(p) is most easily described as a subset of W which
‘branches down’ from p to the order 0 surfaces, bifurcating in each Whitney disk: the trivalent
vertices of t(p) correspond to Whitney disks in W, the labeled univalent vertices of t(p) correspond
to the labeled order 0 surfaces of W, and the edges of t(p) correspond to sheet-changing paths
between adjacent surfaces in W.

Fixing orientations on the surfaces in W (including Whitney disks) endows each intersection
point p with a sign εp ∈ {±}, determined as usual by comparing the orientations of the intersecting
sheets at p with that of the ambient manifold. These orientations also determine a cyclic orientation
for each of the trivalent vertices of t(p) via a bracketing convention which will be illustrated explicitly
during the proof of Theorem 1 below. We shall henceforth assume that our Whitney towers come
equipped with such orientations.

The order n intersection points are the ‘interesting’ intersection points in an order n Whitney
tower W, since these points may represent an obstruction to the existence of an order (n + 1)
Whitney tower on the order 0 surfaces of W. (In fact, all intersections of order greater than n can
be eliminated by finger moves on the Whitney disks.)

Recall B̃t
n+1 from Definition 3.

Definition 11. For an oriented order n Whitney tower W, define τ̃n(W) ∈ B̃t
n+1(�), the order n

geometric intersection tree of W, to be the disjoint union of signed labeled vertex-oriented trivalent
trees

τ̃n(W) :=
∐
p

εp · t(p)

over all order n intersection points p ∈ W.

We emphasize that τ̃n(W) is a collection of signed trees of order n, possibly with repetitions,
without cancellation of terms. (The geometric intersection tree is denoted by tn(W) in [ST04], as is
an unoriented version in [Sch06].)

Note that there is a natural map π : B̃t
n+1(�) → B̂t

n+1(�) given by sending the monoid operation
to the group addition.

Definition 12. Given an oriented order n Whitney tower W, define τ̂n(W) = π(τ̃n(W)).

It turns out (see Lemma 14 below) that, for any fixed Whitney tower W, the AS antisymmetry
relations correspond exactly to the indeterminacies coming from orientation choices on the Whitney
disks in W, so that the element τ̃n(W) ∈ B̃t

n+1 only depends on the orientations of the bottom
stage surfaces. On the other hand, by fixing the bottom stage surfaces and varying the choices of
Whitney disks, we are led to the IHX relations, as we describe in the next section.

Since the ultimate goal of studying Whitney towers is to extract homotopy invariants τn of the
underlying order 0 surfaces from the geometric intersection tree, such an element should vanish for
any Whitney tower W on immersed 2-spheres into 4-space since all such spheres are null-homotopic.
Theorem 1 from the Introduction (proven below) and its corollary (Corollary 13) illustrate the
necessity of the IHX relation in the target of τn. Since Theorem 1 is a local statement (taking place
in a 4-ball) it can be used to ‘geometrically realize’ all higher degree IHX relations for Whitney
towers in arbitrary 4-manifolds, a key part of the obstruction theory described in [ST04]. The
following corollary of Theorem 1 is proved in [ST04].
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Figure 8. The clean order 1 Whitney tower W0 is shown on the right.

Corollary 13. Let W be an order n Whitney tower on surfaces Ai. Then, given any order n
trivalent trees tI , tH and tX differing only by a local IHX relation, there exists an order n Whitney
tower W ′ on A′

i homotopic (rel boundary) to the Ai such that

τ̃n(W ′) = τ̃n(W) � (+tI) � (−tH) � (+tX).

The idea of the proof of Corollary 13 is that by applying finger moves to surfaces in a Whitney
tower one can create clean Whitney disks which are then tubed into the spheres in Theorem 1. This
construction can be done without creating extra intersections since finger moves are supported near
arcs and the construction of Theorem 1 is contained in a 4-ball.

2.3 Proof of the main result (Theorem 1)
The four-dimensional IHX construction starts with any four disjointly embedded oriented 2-spheres
A1, A2, A3 and A4 in 4-space. Perform finger moves on each Ai, for i = 1, 2, 3, to create a canceling
pair of order 0 intersection points p±(i,4) between each of the first three 2-spheres (still denoted
Ai) and A4 as pictured on the left-hand side of Figure 8, where A4 appears as the ‘plane of the
paper’ with the standard counterclockwise orientation, sitting in the ‘present’ slice R3×{0} of local
coordinates R3 × (−ε,+ε) in 4-space. Choose disjointly embedded oriented order 1 Whitney disks
W(3,4), W(2,4) and W(4,1) for the canceling pairs p±(i,4) as on the right-hand side of Figure 8. Here the
bracket subscript notation corresponds to the following orientation convention: the bracket subscript
(i, j) on a Whitney disk indicates that the boundary ∂W(i,j) of the Whitney disk is oriented from
the negative intersection point to the positive intersection point along Ai and from the positive
to the negative intersection point along Aj. This orientation of ∂W(i,j) together with a second
‘inward pointing’ tangent vector induces the orientation of W(i,j). We have constructed an order 1
Whitney tower W0 which is clean, meaning that W0 has no unpaired intersection points and hence
is in fact a Whitney tower of order n for all n. As illustrated in Figure 8, the three order 1 Whitney
disks of W0 all lie in the present slice of local coordinates. In the following construction, these three
Whitney disks will be modified to create the three terms in the IHX relation. The modified W(3,4)

will remain entirely in the present, while most of W(2,4) will be perturbed slightly into the future,
and most of W(4,1) will be perturbed slightly into the past. These perturbations are essential for
keeping the Whitney disks disjoint!
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Figure 10. The construction of the I-tree. Both sides (a) and (b) of this figure show the same
present slice of local coordinates.

Continuing with the construction, change W(3,4) by isotoping its boundary ∂W(3,4) along A4 and
across p+

(2,4) and p−(2,4) as indicated in Figure 9 and extending this isotopy to a collar of ∂W(3,4). Note
that a canceling pair of order 1 intersection points p±(2,(3,4)) has been created between A2 and the
interior of the ‘new’ W(3,4) (still denoted by W(3,4)). The pair p±(2,(3,4)) is indicated in Figure 9 by
the small dashed circles near p±(2,4) and, since the orientation of A4 is the standard counterclockwise
orientation of the plane, the sign of p+

(2,(3,4)) (respectively p−(2,(3,4))) agrees with the sign of p+
(2,4)

(respectively p−(2,4)). By perturbing most of W(2,4) into the future, we may assume that p±(2,(3,4)) lie
near, but not on, ∂W(2,4). Specifically, the only part of W(2,4) that we do not push into the future
is a small collar of the arc of ∂W(2,4) which lies on A4. For now, W(3,4) has intersections with the
other first order Whitney disks in and near its boundary on A4, but these will be removed later in
the construction.

A Whitney disk W(2,(3,4)) (of order 2) for the canceling pair p±(2,(3,4)) can be constructed by
altering a parallel copy of W(2,4) in a collar of its boundary as indicated in Figure 10(a). Note that
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W(2,(3,4)) sits entirely in the present. The part of the boundary of W(2,(3,4)) that lies on W(3,4) is
indicated by a dashed line in Figure 10(a). The other arc of ∂W(2,(3,4)) runs along A2 where there
used to be an arc of ∂W(2,4) before most of W(2,4) was pushed into the future.

Take the orientation of W(2,(3,4)) that corresponds to its bracket subscript via the above conven-
tion, i.e. that induced by orienting ∂W(2,(3,4)) from p−(2,(3,4)) to p+

(2,(3,4)) along A2 and from p+
(2,(3,4))

to p−
(2,(3,4))

along W(3,4) together with a second inward pointing vector.

Note that W(2,(3,4)) has a single positive intersection point p1234 (of order 2) with A1 (in the
present). By pushing most of W(4,1) into the past, we can arrange that W(2,(3,4)) (which sits entirely
in the present) is disjoint from W(4,1). Specifically, the only part of W(4,1) that is not pushed
into the past is a small collar on the arc of ∂W(4,1) which lies in A4. To the point p1234 we associate
the positively signed labeled I-tree (of order 2) as illustrated in Figure 10(b). This I-tree, t(p1234),
is embedded in the construction with the trivalent vertices lying in the interiors of the Whitney
disks, W(2,4) and W(2,(3,4)), and each i-labeled univalent vertex lying on Ai. Each trivalent vertex of
t(p1234) inherits a cyclic orientation from the ordering of the components in the bracket associated
to the corresponding oriented Whitney disk. Note that the pair of edges which pass from a trivalent
vertex down into the lower order surfaces paired by a Whitney disk determine a ‘corner’ of the
Whitney disk which does not contain the other edge of the trivalent vertex. If this corner contains
the positive intersection point paired by the Whitney disk, then the vertex orientation and the
Whitney disk orientation agree [ST04]. Our figures are all drawn to satisfy this convention.

We have described how to construct (from the original W(3,4) of W0) Whitney disks W(2,(3,4))

and W(3,4) (both lying entirely in the present) such that W(2,(3,4)) pairs A2 ∩ W(3,4) and such that
A1∩W(2,(3,4)) consists of a single point p1234 whose associated tree is the I term in the IHX relation.
In fact, a parallel version of this construction can be carried out simultaneously on all of the original
Whitney disks in W0 yielding additional order 2 intersection points p2341 ∈ A2 ∩ W(3,(4,1)) (with
negative sign and associated labeled trivalent tree H) and p3124 ∈ A3 ∩ W(1,(2,4)) (with positive
sign and associated labeled trivalent tree X). Here W(3,(4,1)) pairs A3 ∩ W(4,1) and W(1,(2,4)) pairs
A1 ∩ W(2,4) and it can be arranged that all the Whitney disks have pairwise disjointly embedded
interiors and pairwise disjointly embedded boundaries. To see this, first observe that the boundaries
of the first order Whitney disks W(3,4), W(4,1) and W(2,4) can be disjointly embedded in the present,
as pictured in Figure 3, which shows how collars on the parts of the Whitney disk boundaries
that lie on A4 can be simultaneously changed in the same way that we previously changed W(3,4).
Recall that, in the above construction, the part of W(4,1) that was pushed into the past was exactly
the complement of a collar on the boundary arc of ∂W(4,1) which lies on A4. Thus, (a collar on) the
boundary arc of ∂W(4,1) which lies on A4 as pictured in Figure 3 can be extended (without creating
any new intersections) to connect to the rest of W(4,1) which has been perturbed into the past,
and the −H term can be created by a parallel construction to the construction of the I term, as
illustrated in Figure 11, which shows the relevant past slice of local coordinates. Specifically, the
second order Whitney disk W(3,(4,1)) sits entirely in the past, and is made from a parallel copy of
W(3,4) by pushing a collar to create the intersection p2341 with A2. Note that since A4 sits entirely
in the present, it does not appear in Figure 11, which shows exclusively the past. The signs of all
intersection points can be determined from the signs of the original intersections in Figure 8 using our
orientation conventions: the vertex orientations of the embedded H-tree in Figure 11(b) agree with
the orientations of the Whitney disks, and the sign of the intersection point p2341 is −1, as desired.

The X-tree term is created similarly by extending a collar of the boundary arc of ∂W(2,4)

as pictured in Figure 3 into the future and performing a parallel construction as illustrated in
Figure 12. The resulting order 2 Whitney tower W has exactly three order 2 intersection points with
τ̃2(W) = (+I)� (−H)� (+X). The correspondence between the Whitney disks in this construction
and the trivalent vertices in the IHX relation is indicated in Figure 13.
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Figure 11. The construction of the H-tree. Both sides (a) and (b) of this figure show the same
slice of local coordinates, just in the past of Figure 10.
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Figure 12. The construction of the X-tree. Both sides (a) and (b) of this figure show the same
slice of local coordinates, just in the future of Figure 10.

The proof of Theorem 1 is now complete, but before moving on to connections with the three-
dimensional Jacobi relations we note here a lemma which can now be appreciated by the reader
who has carefully kept track of the orientations in the above constructions.

Lemma 14. For a fixed order n Whitney tower W, the geometric intersection tree τ̃n(W) ∈ B̃t
n+1(�)

only depends on the orientations of the order 0 surfaces.

Proof. Recall that τ̃n(W) is a disjoint union of signed vertex-oriented trees associated to the order n
intersection points in W, and the AS relations change the sign of a tree whenever a vertex orientation
is changed. Each tree t(p) is most easily defined as a subset of W which bifurcates down through the
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Figure 13. The correspondence between the trivalent vertices in the IHX relation and the (oriented)
Whitney disks in the construction. (The trivalent orientations are all counterclockwise.)

Whitney disks, with each trivalent vertex of t(p) lying in a Whitney disk. Each trivalent vertex has
two descending edges which pass into the lower order sheets paired by the Whitney disk, and one
ascending edge which either passes through the intersection point p or passes into a higher order
Whitney disk. Assuming fixed orientations on all the surfaces in W (including Whitney disks), our
orientation convention for t(p) can be summarized as follows: the descending edges of a trivalent
vertex determine a corner of the corresponding Whitney disk which does not contain the ascending
edge. If this corner encloses the positive intersection point (of the intersections paired by the Whitney
disk), then the vertex orientation is the same as that induced by the orientation of the Whitney disk.
If this corner encloses the negative intersection point, then the vertex orientation is the opposite of
the orientation induced by the Whitney disk.

We remark here that in practice the geometric intersection tree τ̃n(W) usually sits as an embedded
subset of W, as can be arranged easily by ‘splitting’ the Whitney tower [Sch06, ST04]. However, in
general τ̃n(W) will not be embedded if any Whitney disks contain self-intersections and/or multiple
(pairs of) intersections.

To check that each signed tree εp · t(p) in τ̃n(W) only depends, modulo antisymmetry, on the
orientations of the underlying order 0 surfaces, it is enough to consider the effect of changing any
single Whitney disk orientation. There are two cases to consider.

First consider a Whitney disk W containing a trivalent vertex v of a signed tree εp · t(p), where
the ascending edge of v passes into a higher order Whitney disk W ′ containing an adjacent trivalent
vertex v′ of t(p). Changing the orientation of W changes the vertex orientation of v, and also changes
the vertex orientation at v′ because the signs of the intersection points (in W ) which are paired by
W ′ are reversed. Thus, the signed tree εp · t(p) does not change.

Now consider a Whitney disk W containing a trivalent vertex v of a signed tree εp ·t(p), where the
ascending edge of v passes through the intersection point p. In this case, changing the orientation of
W changes the vertex orientation of v and changes the sign of the intersection point p, provided p
is not a self-intersection point of W , so that εp · t(p) is changed exactly by an antisymmetry relation
at v. In the case that p is a self-intersection point of W , then changing the orientation of W changes
both trivalent vertices adjacent to p, namely v and another trivalent vertex of t(p) which also sits
in W . This completes the proof of Lemma 14.

3. Connecting four- and three-dimensional Jacobi relations

In this section we explain in detail the commutative diagram (1) in § 1.2 of the Introduction.
But first we need to introduce some background material.
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3.1 Gropes and their associated trees
For technical simplicity, we will use only genus 1 gropes, which are sufficient for our purposes. We
will not specify the genus 1 assumption in the body of this paper but we note that there is a grope
refinement procedure [CT04a, § 2.3] that allows one to replace an arbitrary grope by a genus 1
grope. In fact, we allow here the bottom stage surface to have arbitrary genus, which is why we do
not need sequences of genus 1 gropes as in [CT04a]. In Appendix A we deal with general gropes,
and the reader is referred to [CT04a] for their definition.

Definition 15. A (genus 1) grope g is constructed by the following method.

(i) Start with a compact oriented connected surface of any genus, the bottom stage of g, and
choose a symplectic basis of circles on this bottom stage surface.

(ii) Attach punctured tori to any number of the basis circles and choose hyperbolic pairs of circles
on each attached torus.

Iterating the second step a finite number of times yields the grope g. The attached tori are the
higher stages of g. The basis circles in all stages of g that do not have a torus attached to them
are called the tips of g. Attaching 2-disks along all the tips of g yields a capped grope (of genus 1),
denoted gc. In the case of an (uncapped) grope, it is often convenient to attach an annulus along
one of its boundary components to each tip. These annuli are called pushing annuli, and every tame
embedding of a grope in a 3-manifold can be extended to include the pushing annuli.

Let gc be a capped grope. We define a rooted trivalent tree t(gc) as follows.

Definition 16. Assume first that the bottom stage of gc is a genus 1 surface with boundary. Then
define t(gc) to be the rooted trivalent tree which is dual to the 2-complex gc; specifically, t(gc) sits
as an embedded subset of gc in the following way. The root univalent vertex of t(gc) is a point in the
boundary of the bottom stage of gc; each of the other univalent vertices are points in the interior
of a cap of gc; each higher stage of gc contains a single trivalent vertex of t(gc); and each edge of
t(gc) is a sheet-changing path between vertices in adjacent stages or caps (here ‘adjacent’ means
‘intersecting in a circle’), see Figure 14(b).

In the case where the bottom stage of gc has genus greater than 1, then t(gc) is defined by
cutting the bottom stage into genus 1 pieces and taking the disjoint union of the trees just described.
In the case of genus 0, t(gc) is the empty tree.

We can now define the relevant complexity of a grope.

Definition 17. The class of gc is the minimum of the Vassiliev degrees of the connected trees in
t(gc). The underlying uncapped grope g (the body of gc) inherits the same tree, t(g) = t(gc), and
the same notion of class. If the grope consists of a surface of genus 0, we regard it as a grope of class
n for all n. The non-root univalent vertices of t(g) are called tips and each tip of t(g) corresponds
to a tip of g.

We will assume throughout this paper that all surface stages in our gropes contribute to the
class of the grope, i.e. we ignore surface stages that can be deleted without changing the class.

3.2 Grope cobordism
Definition 18. A class n grope cobordism between �-component string links σ and σ′ is defined
as follows. For each 1 � i � �, let σi, respectively σ′

i, be the ith string link component of σ,
respectively σ′. Suppose that, for each i, there is an embedding of a class n grope gi into the 3-ball
whose (oriented) boundary is decomposed into two arcs representing the (oriented) isotopy classes
of σi and −σ′

i. This collection of gropes is called a grope cobordism G from σ to σ′ if the gropes
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gi are embedded disjointly. We sometimes also say that G is a grope cobordism of σ and note the
asymmetry coming from the above orientation convention.

If all the tips of each gi bound embedded caps whose interiors are disjoint from each other and
disjoint from all but the bottom stages of the gi, then G together with these caps form a (class n)
capped grope cobordism Gc from σ to σ′ (or of σ).

Note that this definition does not specify the relative embedding of σ and σ′.

Remark 19. The above definition is a generalization of the one given in [CT04a] for knots. By
considering disjointly embedded gropes in 3-space, each with two boundary circles, one also gets a
notion of grope cobordism of links. The arguments of [CT04a] adapt to show that grope cobordism
(of links or string links) is an equivalence relation.

Let Gc be a capped grope cobordism from σ to σ′. It turns out that one can assume that the
intersections of the caps with the bottom stages are arcs from σ to σ′. This can be accomplished
by finger moves of the caps across the boundary of the bottom stages. Also, by applying Krushkal’s
splitting technique (as adapted to three dimensions in [CT04a]) it can be assumed that each cap
contains just a single intersection arc.

Definition 20. The following notions will be used for capped grope cobordisms.

(i) A capped grope cobordism which has been simplified as described in the previous paragraph
will be referred to as a simple grope cobordism.

(ii) Denote by Gc
n(�) the set of class n simple grope cobordisms of �-component string links.

(iii) Denote by Gn(�) the set of class n grope cobordisms (that is, grope cobordisms which are not
required to have caps).

3.3 Claspers and gropes
Definition 21. The following definitions can be found in [Hab00] and/or [CT04a].

(i) A clasper is a surface embedded in the complement of a link or string link in a 3-manifold,
formed by gluing together edges, nodes and leaves. An edge is homeomorphic to I × I,
and each end I × {0} or I × {1} is glued to a node or a leaf. A node is homeomorphic to
D2 and must have three edges glued to its boundary. A leaf is homeomorphic to S1 × I and
must have a single edge glued to one of its boundary components.

(ii) A clasper is said to be capped if all of (the cores of) its leaves bound disjoint disks (called caps)
which may hit the link or string link, but only intersect the clasper along their boundaries.

(iii) A clasper is said to be simple if it is capped and if the caps each only hit the link or string
link in a single transverse intersection.

(iv) Given a clasper C, we can form an oriented graph by collapsing each edge to a one-dimensional
edge, each node to a trivalent vertex, and each leaf to a univalent vertex. The vertex orientation
of the graph is somewhat subtle, especially when the resulting graph is not a tree, and we refer
the reader to [CT04b] for details.

(v) A tree clasper is a clasper whose associated graph is a tree.
(vi) A tree clasper is said to be rooted if there is at least one leaf which has a cap that hits the link

or string link in a single transverse intersection.
(vii) Given a clasper, there is a way of producing an embedded framed link, and surgery on the

clasper is defined to be surgery on this framed link. If the clasper is rooted (which is implied by
‘simple’ and ‘capped’) then the surgery does not change the ambient manifold and can instead
be regarded as changing the link or string link.
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Definition 22. The (Vassiliev) degree of a clasper is half the total number of vertices of the
associated graph. The grope degree of a clasper is the (Vassiliev) degree plus the first Betti number
of the associated graph.

Claspers and gropes are closely related, as discussed in detail in [CT04a]. Here are some impor-
tant results, which were stated for knots, but hold true for links and string links as well.

Theorem 23. The following statements can be proven by the techniques of [CT04a].

(i) Two links or string links in a 3-manifold differ by a sequence of simple clasper surgeries of
Vassiliev degree n if and only if they are related by a simple grope cobordism of class n.

(ii) Two links or string links in a 3-manifold differ by a sequence of rooted tree clasper surgeries
of Vassiliev degree n if and only if they are related by a grope cobordism of class n.

(iii) Two links or string links in a 3-ball differ by a sequence of simple clasper surgeries of grope
degree n if and only if they are related by a grope cobordism of class n.

Habiro [Hab00] has shown that two knots share the same Vassiliev invariants up to degree n if
and only if they differ by a sequence of simple clasper surgeries of degree (n+1). Together with the
above theorem, this implies that two knots have the same Vassiliev invariants up to degree n if and
only if they cobound a simple grope cobordism of class (n + 1). The corresponding statements for
string links are not known, but see § 5.

3.4 Geometric intersection trees for grope cobordisms
Let Gc ∈ Gc

n(�) be a class n simple grope cobordism of a string link σ, and let gc
i be a capped grope

component of Gc. Each cap of gc
i contains only a single arc of intersections, which can be with any

bottom stage surface in gc
j ⊂ Gc. The bottom stage surface of gc

i inherits an orientation from its
boundary, and we now describe how to orient the higher stages of the grope cobordism, up to a
certain indeterminacy.

Each surface stage or cap is attached to a previous stage along a circle, which hits the attaching
region for one other surface stage or cap in a point. Near this point, the 2-complex is modeled by
the following subset of R3:

{(x, y, z) : z = 0} ∪ {(x, y, z) : x = 0, z � 0} ∪ {(x, y, z) : y = 0, z � 0}.
Distinguish two of the quadrants as positive, namely the quadrants where both x, y > 0, respectively
where both x, y < 0; see Figure 14(a), where the two positive quadrants are indicated. Now suppose
that the lower stage (z = 0) has an orientation and choose one of the two positive quadrants. The
orientation of the surface induces an orientation of a small triangle in the positive quadrant which
has a vertex at the origin and two edges contained in the axes. This then induces an orientation
of the boundaries of the two higher surface stages, and hence induces an orientation of the higher
surface stages. If we use the other positive quadrant instead, this has the effect of flipping the
orientation of both higher surface stages, and this is the indeterminacy that we allow.

The above orientations of the surface stages in a capped grope gc induce vertex orientations
of the trivalent vertices of t(gc) by taking each trivalent vertex of t(gc) to lie in a chosen positive
quadrant; see Figure 14(b). Here, also, the pairs of edges that cross into the next stages are required
to do so through that positive quadrant.

Recall that t(gc
i ) is a disjoint union

∐
r tri of trees tri , each of which sits as an embedded subset of

gc
i , with the root of tri lying on the ith strand of σ (in ∂gc

i ) and each tip of tri lying inside a cap. The
interior of each cap intersects the cobordism in a single intersection arc which corresponds to some
strand of σ. Hence we can regard these tips as actually lying on a jth strand of σ at an intersection
point between a cap of gc

i and that jth strand (see left-hand side of Figure 15). Associate to each
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(a) (b)

Figure 14. (a) Positive quadrants and orientation. (b) A trivalent vertex of t(gc).

tip of tri the sign of the corresponding intersection point (between the cap and the jth strand) and
denote by εr

i ∈ {+,−} the product of these signs.
The vertices of t(gc

i ) can be oriented by regarding the tree as a subset of gc
i where the two edges

emanating from a trivalent vertex must pass to the higher stages in a positive quadrant, as depicted
in Figure 14.

Recall Ãt
n(�) from Definition 5.

Definition 24. Let Gc be a capped class n grope cobordism of �-string links. The geometric
intersection tree τ̃ c

n(Gc) ∈ Ãt
n(�) is defined to be the disjoint union

∐
i

∐
r εr

i · tri of all the vertex-
oriented signed trees associated to all the gc

i . Note that each tree should avoid the intersections
between caps and the bottom stage, and this forces the roots to attach to the strands of σ in a
specific ordering.

Lemma 25. The geometric intersection tree τ̃ c
n(Gc) is well defined.

Proof. The issue is whether the choice of positive quadrants can affect τ̃ c
n(Gc). Choosing a different

positive quadrant does not change the cyclic order of the corresponding vertex, but it does change
the orientations of all of the higher stages, including the caps. This has the effect of switching the
cyclic orders at each of the vertices representing these higher stages, as well as switching the sign of
all of the tips representing these caps. In other words a sign is introduced for every vertex (both uni-
and trivalent) lying above the vertex we started with. A simple induction shows that there must be
an even number of these. Hence, we arrive at the same signed tree, modulo AS relations.

Definition 26.

(i) Let ρ : Ãt
n(�) → Ât

n(�) be the natural map sending the monoid operation to the group addition.
(ii) Let τ̂ c

n : Gc
n(�) −→ Ât

n(�) be defined by τ̂ c
n(Gc) = ρ(τ̃ c

n(Gc)).

Remark 27. If one translates a simple grope into a union of simple tree claspers, the map τ̂ c
n can be

regarded as the map which sums over the set of claspers, collapsing each clasper to its underlying
tree, with univalent vertices attaching to the � strands according to where the caps of the clasper
meet the string link. This was the point of view taken in [CT04b].

3.5 From grope cobordism to Whitney concordance
Definition 28. A singular concordance between string links σ and σ′ is a collection of properly
immersed 2-disks Di in the product B3 × I of the 3-ball with the unit interval I = [0, 1], with
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Figure 15. Left: A top stage of a capped grope cobordism. Right: The corresponding part of a
Whitney concordance after pushing into 4-space and surgering a cap.

∂Di equal to the union of the ith strands σi ⊂ B3 × {0} and σ′
i ⊂ B3 × {1} together with their

endpoints crossed with I. For instance, any generic homotopy between σ and σ′ defines such a
singular concordance. A singular concordance of σ induces the orientation of σ.

An (order n) Whitney tower whose bottom stages form a singular concordance is called an
(order n) Whitney concordance. Denote by Wn(�) the set of order n Whitney concordances of
�-component string links.

Let Gc be a simple grope cobordism (from σ to σ′) in Gc
n(�). Think of Gc as sitting in the

middle slice B3 × {1/2} of B3 × I. Extending σ ⊂ Gc to B3 × {0}, via the product with [0, 1/2],
and extending σ′ ⊂ Gc to B3 × {1}, via the product with [1/2, 1], yields a collection of class n
capped gropes properly embedded in B4 = B3 × I, i.e. a grope concordance, from σ to σ′. After
perturbing the interiors of the caps slightly, we may assume that all caps are still disjointly embedded
and that a cap which intersected the jth string link component in the grope cobordism now has
a single transverse intersection point with the interior of a bottom stage of the jth grope in the
grope concordance. By fixing the appropriate orientation conventions, this construction preserves
the signs of these intersection points.

Consider the effect of the construction on the (degree n) trees t(gc
i ) which were embedded in the

original Gc and are now sitting in the class n capped gropes in the 4-ball. Any root vertex that was
lying on an ith string link strand is now in the interior of the ith bottom stage, and any tip that
corresponded to an intersection between a cap and a jth strand now corresponds to an intersection
between a cap and a jth bottom stage. These are exactly the labeled trees associated to gropes in
4-manifolds as described in [Sch06], and Theorem 6 of [Sch06] describes how to surger such gropes
to an order (n− 1) Whitney concordance W while preserving trees, meaning that the labeled trees
associated to the gropes become the order (n − 1) geometric intersection tree τ̃n−1(W). Although
signs and orientations are not discussed in [Sch06], the notation there is compatible with the sign
conventions of this paper and a basic case of the compatibility is illustrated in Figure 15 which
shows a ‘push and surger’ step in the modification of a three-dimensional grope cobordism to a
Whitney concordance applied to a top stage. The modification in general involves ‘hybrid’ grope
towers but reduces essentially to this case as explained in [Sch06].

Definition 29. The commutative diagram (1) in the Introduction is explained as follows.

(i) Let W(n−1) be the set of order (n − 1) Whitney concordances modulo the relation that two
Whitney towers with the same geometric intersection tree are the same.
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(ii) The above constructions define the map push-in : Gc
n(�) −→ W(n−1)(�) which pushes a grope

into B3 × I and surgers it into a Whitney tower. It is used in our main diagram (1) in the
Introduction. The Whitney tower produced from a grope is not unique, as it depends on
the choice of caps one uses to surger, which is why we need to divide W(n−1)(�) by an appro-
priate equivalence relation.

Remark 30. The only information contained in the original geometric intersection tree τ̃ c
n(Gc) that

is lost by the map (induced by) push-in is the ordering in which the univalent vertices of the trees in
τ̃ c
n(Gc) were attached to the string link components. Thus, pushing a class n grope cobordism into

four dimensions, surgering to an order (n − 1) Whitney concordance and applying the map τ̃(n−1)

is the same as the composition of the map τ̃ c
n with the homomorphism

pull-off : Ât
n(�) −→ B̂t

n(�)

that pulls the trees off the string link components and labels the univalent vertices accordingly.
Notice that the map pull-off is very different from the rational PBW-type isomorphism

σ : A⊗ Q → B ⊗ Q as defined in [BarN95].

4. Jacobi identities in dimension 3

As a consequence of our work so far, IHX relations appear in B̃t
n, and hence B̂t

n, as the image under
τ̃(n−1) (respectively τ̂(n−1)) of Whitney concordances from any string link to itself (e.g. tube the
2-spheres in Theorem 1 into a product concordance). In §§ 4.1 and 4.2 we show that this phenomenon
pulls back to the three-dimensional world: there are capped grope cobordisms from any string link
to itself whose images under τ̃ c

n (and τ̂ c
n) give all IHX relations. We will also realize all IHX relations

in a group generated by unitrivalent graphs by defining a more general map τ̂ g
n on uncapped class

n grope cobordisms. In Appendix A, we will show how to interpret this map for grope cobordisms
where genus is allowed at all stages.

4.1 The IHX relation for string links
The geometric IHX construction for string links contained in Theorem 6 will play a key role in
all subsequent IHX constructions. At the heart of the proof of Theorem 6 is a three-dimensional
interpretation of Figure 3 which leads to the following construction of a capped grope cobordism
that is (slightly) singular – these singularities will be removed in subsequent constructions.

Construction 31. Consider a trivial three-component string link in the 3-ball. We will construct
a singular capped grope ḡc of class 3 with an unknotted boundary component on the surface of the
ball. Its bottom stage is of genus 3 and embedded. The second stage surfaces of ḡc are of genus 1 and
are each embedded. The interiors of the second stage surfaces intersect each other but are disjoint
from the bottom stage of ḡc. Only the caps of ḡc intersect the three trivial string link strands. Denote
by Ḡc the union of ḡc together with trivial cobordisms of the strands of the string link (embedded
2-disks traced out by perturbations of the interiors of the strands). Then the key property of ḡc is
that τ̃ c

3(Ḡc) ∈ Ãt
3(4) is equal to the three terms of the IHX relation in Figure 2. Here the strands of

the trivial string link are labeled by 1, 2, 3 and ḡc is interpreted as a null bordism of its unknotted
boundary which is labeled 4. Note that τ̃ c

3 still makes sense as a disjoint union of subtrees of ḡc

whose tips are attached to intersections with caps, even though ḡc is singular.
To begin the construction of ḡc, consider Figure 3 again. Think of it as taking place inside a 3-ball

B, so that the horizontal plane has an unknotted boundary on ∂B. The arcs that each puncture the
plane twice are the three strands of a trivial string link. Add tubes around the arcs to turn the plane
into a genus 3 surface Σ. This surface Σ is the bottom stage of our singular grope ḡc. We construct
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Figure 16. The construction of the capped surface s1 for the singular capped grope ḡc in
Construction 31.

a symplectic basis for Σ as follows. Three of the curves are meridians to the tubes. To get the other
three basis curves, connect the endpoints of each of the three pictured arcs in the plane (formerly
Whitney arcs) by an untwisted arc that travels once over a tube. (Exercise: these three curves form
a Borromean ring.) We fix surfaces bounding these latter three basis curves in the following way.
Consider Figure 9, where a Whitney disk W(3,4) is pictured. Thinking of the figure as being in a
3-ball (rather than a three-dimensional slice of 4-space), the Whitney disk has two intersections with
an arc in strand 2 of the trivial string link, and adding a tube around this arc yields a surface s1 as
illustrated in Figure 16(a). This surface has a pair of dual caps, whose boundaries are indicated by
the dashed loops in Figure 16. One of these caps intersects the upper right strand 2, and the other
intersects the bottom strand 1; these caps also have circles of intersection (not shown in the figure)
with the tubes of Σ around these strands (but these circles of intersections will be eliminated during
later applications of this construction). The curve dual to the attaching curve of s1 is a meridian to
the strand 3 and so bounds a cap hitting strand 3 once. The tree structure for the stage s1 and its
dual cap is [[1, 2], 3], as shown in Figure 16(b).

Symmetrically, we can construct s2 and s3, with trees [1, [2, 3]] and [[3, 1], 2]], by interpreting
Figures 11 and 12 as both being in the 3-ball. Adding these three capped surfaces s1, s2, s3 to the
surface Σ we get the desired singular capped grope ḡc bounded by strand 4. Including strand 4 as
the root, the associated three trees give exactly the terms of the IHX relation. With a little extra
effort in analyzing the orientations, one can verify that the signs of these three terms are correct.

Proof of Theorem 6. First consider the case where � = 4 and (+tI)�(−tH)�(+tX) is as in Figure 2.
We will construct Gc as a grope cobordism of strand 4 together with trivial cobordisms (disks) of
the other three strands. Take the 3-ball B from the above Construction 31 and remove regular
neighborhoods of the three strands of the trivial string link in B to get a handlebody M which
contains the uncapped body ḡ of the singular capped grope ḡc. Let mi be a meridian to the ith
strand on the surface of M . Now in the complement of a trivial four-component string link, embed
M so that mi is a meridian to strand i. Connect a parallel copy of the fourth strand by a band to
the unknot ∂ḡ on the boundary surface of M calling the resulting strand 4′. The embedding of M
extends (by attaching disks to the mi) to an embedding of B into the 3-ball containing the four-
component string link. Thus, 4 and 4′ cobound the singular capped grope ḡc from Construction 31
which sits inside B, where, by abuse of terminology, we let ḡc also denote the grope that has 4 and
4′ as its boundary.
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Figure 17.

Pick arcs α and β contained in the bottom stage of ḡc and sharing endpoints with 4 and 4′

such that α ∪ β splits ḡc into three capped grope cobordisms gc
1, gc

2 and gc
3. If we number them

appropriately, gc
1 modifies strand 4 to the strand α, gc

2 modifies α to β, and gc
3 modifies β to 4′.

Note that each of these three capped grope cobordisms is non-singular.
Examining the way in which the caps hit the strands, we see that∐

j

τ̃ c
3(Gc

j) = (+tI)
∐

(−tH)
∐

(+tX),

where each Gc
j is just gc

j together with trivial cobordisms on the first three strands.
In order to get the desired Gc, we wish to glue these cobordisms Gc

i back together so that the
resulting grope is embedded. To do this, we use the transitivity argument from [CT04a], which is
easily adapted to the current situation of arcs rel boundary (as opposed to knots). In that argument
the individual gropes that are being glued together are homotoped inside the ambient 3-manifold
until they match up. However, the homotopies are always isotopies when restricted to individual
gropes (except in the framing correction move where some twists are introduced, which will not
affect τ̃ c(Gc)). Thus τ̃ c

3(Gc) = (+tI) � (−tH) � (+tX) is not changed during this procedure.
Now consider the case where � = 4 but the univalent vertices of the trees in the IHX relation are

attached to strands j1, j2, j3 and j4 which are not necessarily distinct. Then the only modification
needed in the above proof is to embed M so that the mi are meridians to the jith strand arranged in
the correct ordering (i = 1, 2, 3), and make sure that the band from ∂ḡ attaches to the j4th strand
in the right place.

Finally, if there are more than four strands, add the rest of the strands to the picture away from
the above construction.

More generally, let us consider grope cobordisms of higher class.

Theorem 32. Let tI , tH and tX be three trees which differ by the terms in an IHX relation in
Ât

n(�). Then there is a class n simple grope cobordism Gc, from the �-component trivial string link
to itself, such that τ̃ c

n(Gc) = (+tI) � (−tH) � (+tX).

Proof. As in the proof of Theorem 6, we will construct a cobordism of one of the strands, extending
the others by disks. As argued at the end of the proof, it is sufficient to assume that no two tips of
any one tree are attached to the same component. Hence we may assume that � � n + 1. Further,
as in that proof, we may assume that � = n + 1 on the nose.

Decompose tI into rooted trees I,A,B,C,R, where I represents the ‘I’ in the IHX relation, a
chosen root of I is connected to R, and the tips of I connect to the roots of the trees A, B and C.
Let the rooted tree given by the union of I, A, B and C be called t as illustrated in Figure 17.
Think of the ball containing (n + 1) strands as a boundary-connected sum Bt#BR, where Bt is
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a ball with strands which inherit the (distinct) labels of t and BR is a ball with strands labeled
distinctly from the rest of {1, 2, . . . , n + 1}.

Consider a capped grope gc
t with one boundary component having geometric intersection tree

equal to the tree t and contained in Bt. (To see that such a grope exists, note that a regular neigh-
borhood of a grope is a handlebody, which can be thought of as a ball with a tubular neighborhood
of some arcs removed. The tips are part of a spine for the handlebody, so that there is a bijection
between tips and arcs, with each arc going through a single tip once. Thus, the tips bound disks
that are punctured by distinct arcs. Now there is an embedding of this ball with arcs to Bt that
takes the arcs to strands in Bt according to any bijection.)

Pruning the “I” part gc
I of gc

t , we get three capped gropes realizing the trees A, B, C, denoted gc
A,

gc
B , gc

C respectively. As in Theorem 6, consider the genus 3 handlebody M which is the complement
of a trivial three-strand string link with mi meridians to the strands on ∂M . Taking M to be a
regular neighborhood of gc

I , there is an embedding of M into Bt such that the mi map to ∂gc
A, ∂gc

B

and ∂gc
C . Now, by Construction 31, there is a singular grope ḡ of class 3 inside M which bounds an

unknot on the boundary of M such that the tips of ḡ bound parallel copies of gc
A, gc

B and gc
C . (Note

that these parallel copies intersect each other because the second stages of ḡ intersect each other,
and because parallel gropes in dimension 3 intersect.)

Let gc
R be a capped grope realizing the tree R inside BR, such that the tip T0 of gc

R corresponding
to the tip of t that connects to the root of I bounds a cap that does not intersect any strands. Note
that gc

R can be surgered into a disk, so that its boundary is unknotted.
Tube the cap on the (unknotted) tip T0 of gc

R to the (unknotted) ∂ḡ on the boundary of M .
Connect sum the (unknotted) ∂gc

R to (a push-off of) the strand in BR corresponding to the root of R.
We get a singular capped grope cobordism Ḡc taking the trivial (n + 1)-component string link

to itself. The connected grope cobordism of the strand corresponding to the root of R is genus 3
at one stage and is embedded at that and all lower stages (the ‘R part’). Higher stages (the ‘A, B,
and C parts’) that lie above different genus 1 subsurfaces of the genus 3 stage (in the ‘I part’) may
intersect. Splitting the grope via Proposition 16 of [CT04a], we get three grope cobordisms, each
separately embedded, which can then be reglued by transitivity, as in the proof of Theorem 6, to
get a non-singular grope cobordism, Gc, with τ̃ c

n(Gc) = (+tI)� (−tH)� (+tX). This completes the
proof of Theorem 32.

The previous theorem can be rephrased in the language of claspers and implies Theorem 7 of
the Introduction.

A picture of three claspers of degree 3 as in Theorem 7 is given in Figure 9 of [CT04b]. This was
derived from Theorem 6 using a mixture of claspers and gropes in the following way. First (using
the notation in the proof of Theorem 6) the clasper representing gc

1 was drawn. Next, we modified
strand 1 by gc

1 to the new position α. We then drew in the clasper representing gc
2. This clasper

intersects the grope gc
1, but using the usual pushing-down argument we pushed all the intersections

down to the bottom stage. We then pushed them off the strand 0 boundary component of the grope,
which is an isotopy in the complement of α. This gave rise to two disjoint claspers, surgery on which
moves strand 0 to the arc β. The process was repeated for the clasper representing gc

3: it was pushed
out of the trace of the first two grope cobordisms/clasper surgeries. We double-checked the result
by performing surgery along these three claspers and verified that the result was isotopic to the
original trivial four-component string link.

4.2 General IHX relations and the map τ̂ gn

Next, we extend the realization of IHX relations from trees to arbitrary diagrams. Extending the
map τ̂ c

n to uncapped grope cobordisms involves some new wrinkles. First of all, in the absence of
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caps bounding the grope tips, it will not be possible to attach the tips of the grope trees to � strands
with a meaningful ordering; however, tips will still be associated to components of the string link
according to the linking between the components and the corresponding tips. Secondly, non-trivial
linking between certain tips will lead to the construction of graphs with non-zero Betti number
which result from gluing together the corresponding tips.

The reader may wonder why we do not introduce a map τ̃ g
n at the monoid level at this point.

The reason is that τ̃ g
n is well defined at the group level, by Proposition 36 below, but is not well

defined at the monoid level, unless the choice of tips is included as part of the grope data.

Definition 33. Consider the abelian group generated by connected diagrams (vertex-oriented
unitrivalent graphs) whose univalent vertices are labeled by the string link components 1, . . . , �
(possibly with repeats), modulo the AS antisymmtery relations. Also divide by the relation setting
any diagram with a loop at a vertex to zero. Let B̂g

n(�) be the subgroup generated by such diagrams
of grope degree n. (Recall that the grope degree is half the number of vertices plus the first Betti
number.)

Remark 34. The fact that a loop at a vertex must be zero is a consequence of IHX relations, provided
that n � 3. In the case n = 2, an AS relation implies that such a diagram is 2-torsion, and hence is
zero over any ring where 2 is invertible.

Now we define τ̂ g
n : Gn(�) −→ B̂g

n(�). Let G be a grope cobordism of class n. First, choose a grope
component g ⊂ G. As before, each genus 1 branch of g has an associated vertex-oriented trivalent
rooted tree t whose tips Li correspond to tips Ti of g. For each such Ti, choose either a component
xj of the string link, or another tip Tj of g, and label the corresponding tip Li of t by (Li, xj), or
(Li, Tj) respectively. The root of t is labeled by the string link component that the boundary of g
meets. Now sum over all choices to get a formal sum of labeled trees denoted T (G).

Now we proceed to glue together some of the tips on each of these labeled trees, based on
the geometric information of how the tips link each other and the string link. Let t be a labeled
tree. It has tips Li labeled (Li, Tj) or labeled (Li, xj), where each tip Lk corresponds to the tip Tk.
A matching of such a labeled tree t is a partition of the set of all the tips of t labeled by tips (and not
string link components) into pairs, such that the labels on each pair are of the form (Li, Tj), (Lj , Ti).
A matching determines a labeled connected graph Γ, obtained by gluing together matched tips of
t, where each edge resulting from such a gluing assumes the coefficient lk(Ti, Tj) = lk(Tj , Ti). Each
of the remaining univalent vertices Li is labeled by some component xj, and assumes the coeffi-
cient lk(Ti, xj). Each such Γ determines a multiple of a generating diagram of B̂g

n(�), where the
coefficient of the diagram is the product of the coefficients on the tips and edges of Γ. Define 〈t〉 as
the sum of these elements in B̂g

n(�) over all matchings of t. If there are no matchings, then 〈t〉 = 0
by definition. Extend 〈·〉 to linear combinations of trees linearly. Now define τ̂ g

n(G) to be 〈T (G)〉.
Remark 35.

(i) If G extends to a simple grope cobordism G ⊂ Gc, then τ̂ g
n(G) is just the image of τ̂ c

n(Gc)
under the map pull-off : Ât

n(�) −→ B̂g
n(�) that pulls the trees off the components of � and labels

their univalent vertices accordingly.

(ii) If one translates a grope cobordism into a union of rooted clasper surgeries, the map τ̂ g
n can be

calculated as follows. Instead of T (G), consider the associated tree of each clasper with root
labeled by the strand linked by the clasper’s root, and then apply 〈·〉 as before. Then sum over
all of the claspers. If the rooted clasper, C, can be turned into a simple clasper, C ′, by turning
Hopf pairs of tips into edges, then τ̂ g

n(C) is the diagram which is the associated graph of C ′,
with univalent vertices labeled according to where the capped tips of C ′ meet the string link.
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Proposition 36. The map τ̂ g
n is well defined.

We prove this in Appendix A, where we consider the more general situation of gropes which
may not be of genus 1.

Finally, we show that the IHX relation can be realized in the world of graphs by uncapped
gropes.

Theorem 37. Let DI ,DH ,DX ∈ B̂g
n(�) be diagrams differing by the terms in an IHX relation. Then

there is a grope cobordism G, from the trivial �-string link to itself, such that τ̂ g
n(G) = DI−DH+DX .

Proof. First, cut some edges (not contained in the ‘I’ part) of DI to make a tree Dt
I . Pick a

univalent vertex that did not come from a cut as the root. Let � be the number of tips. As before,
think of the complement of a trivial �-string link as a handlebody, M , with special curves {mi}�

i=1

on its boundary. Let the tips of Dt
I be placed in correspondence with the curves mi. Embed M in

the complement of a trivial string link, such that, if a tip Li of Dt
I is labeled by a component x

of the string link, then the corresponding mi links x exactly once. Also, tips resulting from cuts of
DI should have the corresponding mi linking exactly once. Take a trivial subarc of the component
of the string link corresponding to the root of Dt

I and perform a finger move so that it goes through
M as a trivial subarc η. Now the proof of Theorem 32 yields a ‘weak’ capped grope cobordism gc̄

(with g ⊂ M) which modifies η, where the weakness comes from the fact that here the linking pairs
of tips have intersecting caps. Ignoring this defect, gc̄ extends (as in the proof of Theorem 32) to a
(weak) capped grope cobordism Gc̄ of the trivial string link such that τ̂ g

n(Gc̄) = DI − DH + DX .
This can be seen as follows. Note that in this case τ̂ g behaves just like τ̂ c, except that it identifies
tips corresponding to Hopf-linked tips (where the caps intersect), and hence glues the cut edges
back together. The three different genus 1 pieces of Gc̄ link with each other in rather a complicated
way but this is not seen by the map τ̂ g

n . Also note that the tips of G are parallel to the curves mi,
so that the map τ̂ g

n labels the univalent vertices appropriately.

5. Grope cobordism of string links

Let L(�) be the set of isotopy classes of string links in D3 with � components (which is a monoid
with respect to the usual ‘stacking’ operation). Its quotient by the relation of grope cobordism (re-
spectively capped grope cobordism) of class n is denoted L(�)/Gn (respectively L(�)/Gc

n); compare
Definition 18. The submonoid of L(�) consisting of those string links which cobound a class n grope
(respectively capped grope) with the trivial string link is denoted by Gn(�) (respectively Gc

n(�)).

Proof of Theorem 8. Let us begin with the statements for the capped case. Then L(�)/Gc
n can be

identified with the quotient of L(�) modulo the relation of simple clasper surgery of class n. This
translation works just like for knots where it was explained in [CT04a]. All the results then follow
from [Hab00, Theorem 5.4]. For example, the fact that the iterated quotients are central is proven
by showing that ab = ba, modulo simple clasper surgery of class (n + 1), if a is a string link that is
simple clasper n-equivalent to the trivial string link. This follows by sliding the claspers (that turn
the trivial string link into a) past another string link b.

In the absence of caps one has to translate into rooted clasper surgery of grope degree n instead,
as explained in [CT04a]. Just as above, all results follow from the techniques of Habiro [Hab00].

This result makes it possible to try to compute the abelian iterated quotients in terms of dia-
grams, which we proceed to do. We shall first define the map from diagrams to string links modulo
grope cobordism:

Φn : Bg
n(�) → Gn(�)/Gn+1.
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Indeed, we defined this for � = 1 in [CT04b] in the following way. Given a diagram D ∈ B̂g
n(�),

find a grope cobordism G of class n, corresponding to a simple clasper, such that τ̂ g
n(G) = D. Then

define

Φ̂n(D) = ∂1G(∂0G)−1,

where ∂G = ∂0G∪∂1G. One must show that the map is well defined, i.e. that the choice of embedding
of the simple clasper does not matter. The argument given in [CT04b] works with little modification
for all � � 1.

The next proposition implies that we can take any grope cobordism G satisfying τ̂ g
n(G) = D in

the above definition, not having to restrict to those corresponding to simple claspers.

Proposition 38. Given any grope cobordism G of class n, ∂1G(∂0G)−1 = Φ̂n◦τ̂ g
n(G) ∈ Gn(�)/Gn+1.

Proof. Any grope cobordism can be refined to a sequence of genus 1 grope cobordisms by Propo-
sition 16 of [CT04a] and this refinement evidently commutes with τ̂ g

n. Then, using Theorem 35 of
[CT04a], each of these cobordisms can be refined into a sequence of simple clasper surgeries and
clasper surgeries of higher degree, and this refinement commutes with τ̂ g

n. (To see this it suffices to
notice that the ‘zip construction’ commutes with τ̂ g

n.) Thus

∂1G(∂0G)−1 = (∂1G)(Lk)−1(Lk)(Lk−1)−1 · · · (L1)(∂0G)−1,

where the Li are string links modified by successive simple clasper surgeries. Note that we can omit
any pairs (Li)(Li−1)−1 corresponding to clasper surgeries of higher degree, since this product is
trivial in L(�)/Gn+1. On the other hand, we know that for pairs differing by simple claspers Ci of
degree n, (Li)(Li−1)−1 = Φ̂n(τ̂ g

n(Ci)), by definition of Φ̂n. Thus

∂1G(∂0G)−1 = #
i

Φ̂n(τ̂ g
n(Ci))

= Φ̂n

(
τ̂ g
n

( ∑
Ci

))
= Φ̂n(τ̂ g

n(G)),

which completes the proof.

We next show that Φ̂n vanishes on all IHX relations and hence descends to a well-defined
map Φn.

Theorem 39. The map Φn : Bg
n(�) → Gn(�)/Gn+1 is a well-defined surjective homomorphism.

Proof of Theorem 39. By Theorem 37, any IHX relation, RIHX, is the image under τ̂ g
n of a grope

cobordism, G, from a trivial string link to another trivial string link, denoted 1�. So by Proposi-
tion 38,

Φ̂n(RIHX) = Φ̂n(τ̂ g
n(G))

= (∂1G)(∂0G)−1

= 1�#1−1
�

= 1�.

Next we consider surjectivity of Φn. The elements of Gn(�) are by definition of the form ∂1G where
G is a class n grope cobordism with ∂0G = 1�. By Proposition 38, ∂1G = Φn ◦ τ̂ g

n(G).

Using the Kontsevich integral as a rational inverse, we are now able to prove Theorem 9, which
says that Φn turns into an isomorphism after tensoring with Q.
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Sketch of proof of Theorem 9. This was proven in full detail in [CT04b] for the case when � = 1.
One sets up the (logarithm of the) Kontsevich integral as an inverse. Using the Aarhus integral
[BGRT02], it is easy to show that the bottom degree term of the Kontsevich integral coincides with
our map τ̂ g

n. More precisely, if G is a grope cobordism, then Aarhus surgery formulae show that

(log Z)n(∂1G(∂0G)−1) = τ̂ g
n(G),

where (log Z)n is of grope degree n. Thus we get Φn((log Z)n(∂1G(∂0G)−1)) = ∂1G(∂0G)−1, or
Φn ◦ (log Z)n = id. On the other hand (log Z)n(Φn(D)) = (log Z)n(∂1G(∂0G)−1) for a grope G
satisfying τ̂n(G) = D. But then, by the above highlighted formula we can conclude that (log Z)n ◦
Φn = id.

Also, the Kontsevich integral of grope cobordisms of class (n + 1) will lie in degree (n + 1), so
that the Kontsevich integral indeed factors through Gn(�)/Gn+1 ⊗ Q. (Here we use the fact that
the Kontsevich integral of string links preserves the loop (and hence grope) degree.) The fact
that log Zn is a homomorphism is straightforward using the Aarhus formula. (In [CT04b] we used
the Wheeling isomorphism to show this for knots, but that was unnecessary. The lowest degree part
of the Wheeling isomorphism is just the identity.)

It is unknown whether the analogous statements for the relation of capped grope cobordism of
string links are true. There are two difficulties. One is the question of whether one can realize the
STU relations in An(�) by capped grope cobordisms. The other is the question of whether Habiro’s
main theorem [Hab00] generalizes from knots to string links. Does the Vassiliev filtration of string
links agree with the relation generated by simple clasper surgery? It follows from the techniques of
[CT04a] that the latter agrees with capped grope cobordism.

We conclude this section by carefully proving Lemma 3.11(c) from [CT04b], which we restate
here for convenience.

Lemma 40. Let U be the unknot. Suppose three claspers Ci of grope degree n on U differ according
to the IHX relation. Then UC1#UC2#UC3 ∈ Gn+1(1).

Proof. Let K = UC1#UC2#UC3 . The union of the three claspers corresponds to a grope cobor-
dism, g, of class n between the unknot and K, where the bottom stage is of genus 3. By Proposi-
tion 38, we have that K = Φn ◦ τ̂ g

n(g). However τ̂ g
n(g) is an IHX relator, and so, by Theorem 39, Φn

vanishes on it. Thus K is trivial in Gn(1)/Gn+1, implying that K ∈ Gn+1(1).
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Appendix A. Associating a linear combination of graphs to an arbitrary grope

In this appendix we consider the set of class n grope cobordisms of �-string links, which may not
be of genus 1. Let this set be denoted Ĝn(�).

Now we define τ̂ g
n : Ĝn(�) −→ B̂g

n(�). Let G be a grope cobordism of class n. First, choose a grope
component g ⊂ G. Choose tips for the grope component. Associate a linear combination of trees
to g as follows. Each stage of g has a set of hyperbolic pairs of basis elements which bound further
stages of the grope, or are tips. A branch of the grope is defined to be a choice of such a pair at
the bottom stage, followed by a choice of hyperbolic pair at each stage which is bounded by the
first pair, and so on. Each branch of the grope has an evident tree associated with it, whose tips Li

correspond to the tips Ti of the branch of the grope. As in the construction after Definition 33 in
§ 4.2, for each such Ti, choose either a component xj of the string link, or another tip Tj of g, and
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label the corresponding tip Li of t by (Li, xj) or (Li, Tj) respectively. The root of t is labeled by the
component of the string link that the boundary of g meets. Now sum over all choices, including all
choices of branch of g, to get a formal sum of labeled trees denoted T (G).

Now define τ̂ g
n(G) to be 〈T (G)〉, as before.

Proposition A1. The map τ̂ g
n is well defined.

Proof. The first ambiguity is the orientation. As in Lemma 25, changing a positive quadrant results
in a change of orientation all of the higher stages, including pushing annuli. Changing the orientation
of a pushing annulus changes the sign of every term in τ̂ g

n, either by reversing the sign of the linking
number with another tip, or by changing the sign of the linking number with a string link component.
Thus, as in the proof of Lemma 25, there are an even number of sign changes.

The second ambiguity is the choice of pushing annuli. Every tamely embedded grope can be
extended to include pushing annuli, but this extension may not be unique. At a top stage of the
grope, there will be two choices for every hyperbolic pair of tips, according to whether a given
annulus extends ‘up’ or ‘down’ from the surface stage. Changing the choice of pushing annuli at a
hyperbolic pair of tips has the effect of switching which quadrants are positive. However, the cyclic
order of the vertex does not change. The induced orientations of the pushing annuli are either the
same, or they are both reversed, resulting in no net change in sign.

The third ambiguity arises from choosing different tips for a grope component g ⊂ G. Notice
that τ̂ g

n never sees the linking of tips on the same stage of g. Either they belong to different branches
and hence will be part of different tree summands, or they are dual to each other, in which case a
graph with a loop at a vertex would result. Thus on a single surface stage, the linking number with
objects ci is all that matters, where ci is either a component of the string link or another tip of g
on a different stage.

Suppose we are not at a top stage. Then at least one curve in every hyperbolic pair bounds a
higher surface stage. Removing a regular neighborhood of the higher surface stages, we get a planar
surface. The tips become arcs joining some pairs of boundary components. Different choices of tips
are related by Dehn twists on curves in the planar surface. Note that the boundary components
of the planar surface are all null-homologous in the complement of

⋃
ci. (They bound surfaces, and

if the surfaces are slightly perturbed, they avoid ci.) Hence choices of tips differ by multiples of
curves which link the ci trivially and hence do not change the contribution of g to τ̂ g

n(G).
Now suppose we are at a top stage of genus m. Any two choices of tips = symplectic bases

(α1, β1, . . . , αm, βm) are related by an element of Sp(2m, Z), which is generated by the following
automorphisms:

(a) for some i, αi �→ αi + βi and everything else is fixed;

(b) for some i, βi �→ αi + βi and everything else is fixed;

(c) for some i �= j,

{
αi �→ αi + αj

βj �→ −βi + βj

and everything else is fixed;

(d) for some i �= j,

{
αi �→ αi + βj

αj �→ βi + αj

and everything else is fixed;

(e) for some i �= j,

{
βi �→ βi + αj

βj �→ αi + βj

and everything else is fixed;

(f) for some i �= j,

{
βi �→ βi + βj

βj �→ −αi + αj

and everything else is fixed.
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Let us adopt the following notation for expressing the contribution T (g) of g to T (G). Compute
the disjoint union of trees where the tips correspond to the tips of g, and label each tip Li by a
linear combination

∑
r nrcr where the labels cr correspond to components of the string link and

tips Tj of g with j �= i (and nr is the corresponding linking number with Ti). This represents T (g)
by expanding the trees linearly in the labels. Note that if any labeled trees in T (g) represent zero
modulo AS or IHX relations, then these relations will still be present upon gluing, so that the
corresponding contribution to τ̂ g

n(G) = 〈T (G)〉 will also be zero.
The trees in T (g) before and after applying the first automorphism (a) above only differ in

a subtree isomorphic to a ‘Y’, which we can represent by a bracket [ , ]. The difference is then
represented by[∑

r

lk(αi, cr)cr,
∑

r

lk(βi, cr)cr

]
−

[∑
r

lk(αi + βi, cr)cr,
∑

r

lk(βi, cr)cr

]
.

Breaking the second summand into two terms, we see that[∑
r

lk(βi, cr)cr,
∑

r

lk(βi, cr)cr

]
= 0

is sufficient to show that T (g), and hence τ̂ g
n(G), remains unchanged. The fact that [x, x] = 0

corresponds to the statement that a loop at a vertex is zero. The case of the second automorphism
(b) is handled in the same way.

Let us consider the third automorphism (c). Abbreviate the notations
∑

r lk(α, cr)cr by lk(α, c).
Then notice that the difference in T (g) only occurs in the i and j trees, and this difference is

[lk(αi, c), lk(βi, c)] + [lk(αj , c), lk(βj , c)] − [lk(αi + αj , c), lk(βi, c)] − [lk(αj , c), lk(−βi + βj , c)],

which is easily seen to be zero. The cases of the last three automorphisms (d)–(f) are handled
identically.

We remark that Proposition 38 is still true for this extended definition of τ̂ g
n.
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