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1. Introduction

The aim of this notes is to introduce a phase space approach to
microlocal analysis. This is just a beginning, and there are many di-
rections one can take from here.

The main tool in our analysis is the Bargman transform, which is
a phase space transform. In other words, it allows one to represent
functions as smooth superpositions of elementary pieces, or coherent
states. The coherent states are strongly localized both in position and
in frequency, precisely on the scale of the uncertainty principle.

This type of analysis has its origins in physics. On the mathematical
side, a close relative, namely the FBI transform, was successfully used
in the study of partial differential operators with analytic coefficients,
see for instance [10]. For additional information about the FBI trans-
form we refer the reader to Delort’s monograph [2], Folland’s book [5]
and to the author’s article [15]. Also closely related related topics are
discussed in [9], [8]. More recently, phase space transforms were used to
construct parametrices for wave and Schrödinger operators with rough
coefficients in [14], [12], [7].

We note that there is also an alternate approach to phase space anal-
ysis, namely to replace smooth decompositions with discrete decompo-
sitions. This was first outlined in Fefferman [4] and pursued later by
a number of authors. Most notably, we should mention Smith [11]’s
introduction of wave packets in the study of the wave equation. How-
ever, as the reader will see, there is a significant advantage in using
smooth families of coherent states as opposed to any discrete methods.

The road map for this article is as follows. First we introduce the
Bargman transform and some simple properties. Then we use it to give
a simple characterization of S0

00 type pseudodifferential operators.
Next, following [14] and [15], we introduce a higher order calculus

and use it to prove some classical estimates, namely the sharp G̊arding
and the Fefferman-Phong inequality.

Research partially supported by the NSF grant DMS-0301122.
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The last two sections are devoted to Fourier integral operators. First
we introduce S0

00 type Fourier integral operators associated to bilips-
chitz canonical transformations. Then, following in part [7], we study
a class of evolution equations and show that the evolution operators
are Fourier integral operators associated to the Hamilton flow maps.
Finally, an Egorov theorem is also given.

2. The Bargman transform

The Bargman transform of a temperate distribution f is a smooth
function in Cn defined as1

(1) (Tf)(x, ξ) = 2−
n
2 π−

3n
4

∫
e−

1
2
(x−y)2eiξ(x−y)f(y) dy

We note some simple mapping properties of T ,

T : S(Rn) → S(R2n), T : S ′(Rn) → S ′(R2n)

To understand better how it works, consider the L2 normalized func-
tion

fx0,ξ0(y) = π−
n
4 e−

1
2
(y−x0)2ei(y−x0)

which is localized in a neighborhood of size 1 of x0 and frequency
localized in a neighborhood of size 1 of ξ0. Due to the uncertainty
principle this is the best one can do when trying to localize in both
space and frequency. Such functions have been used by physicists, most
notably in quantum mechanics, under the name of coherent states. Its
Bargman transform

(Tf)(x, ξ) = π−
n
2 e−

1
4
[(x−x0)2+(ξ−ξ0)2]e−i

1
2
(x−x0)(ξ+ξ0) .

is concentrated on the unit scale near (x0, ξ0).
In some ways the Bargman transform is similar to the Fourier trans-

form. Most notably, using the Fourier inversion formula and some
Gaussian integration one easily obtains

Proposition 2.1. The Bargman transform T satisfies

T ∗T = I

A consequence of this is that T is an isometry from L2(Rn) to
L2(R2n). An inversion formula also follows,

(2) f(y) = 2−
n
2 π−

3n
4

∫
Φ(z)e−

1
2
(z̄−y)2(Tf)(z) dxdξ .

1An alternative definition uses an additional factor of e
1
2 ξ2

in the integral. This
has the advantage that it makes Tf a holomorphic function of z = x − iξ. It also
accounts for small differences in formulas in various papers on the subject.
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One might find this a more natural starting point for the Bargman
transform; then the idea is to seek a representation of functions as
superpositions of coherent states.

However this is where the similarity ends. A short computation
yields the Cauchy-Riemann type relation

(3) i∂ξTf = (∂x − iξ)Tf

Thus T is not surjective. As it turns out, its range in L2 consists exactly
of those functions which satisfy (3). This also shows that (2) is not the
only possible inversion formula.

3. The S0
00 calculus

Given a temperate distribution a ∈ S ′(R2n) we define the corre-
sponding Weyl operator as

aw(x,D)f(x) =

∫
a(
x+ y

2
, ξ)ei(x−y)ξf(y)dydξ

as an operator mapping

aw : S(Rn) → S ′(Rn)

We consider a class of symbols which satisfy some additional conditions:

Definition 3.1. We say that a ∈ S0
00 if for all multiindices α and β it

satisfies the bounds

|∂αx∂
β
ξ a(x, ξ)| ≤ cαβ

We denote by OPS0
00 the corresponding class of symbols.

The main result of this section establishes the connection between
OPS0

00 type operators and their phase space representation.

Theorem 1. Let A : S(Rn) → S ′(Rn). Then A ∈ OPS0
00 if and only

if the kernel K of TAT ∗ satisfies the bounds

(4) |K(x1, ξ1, x2, ξ2)| ≤ cN(1 + |x1 − x2|+ |ξ1 − ξ2|)−N , N ∈ N

Proof. a) Let a ∈ S0
00. Then the kernel of TawT ∗ has the form

K(x2, ξ2, x1, ξ1) = cn

∫
e−

1
2
(x2−y2)2eiξ2(x2−y2)a(

y1 + y2

2
, η)eiη(y2−y1)

e−
1
2
(x1−y1)2eiξ1(y1−x1)dy1dηdy2
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We change variables zj = yj − xj to obtain

K(x2, ξ2, x1, ξ1) = cn

∫
e−

1
2
z22ei(η−ξ2)z2a(

x1 + z1 + x2 + z2

2
, η)eiη(x2−x1)

e−
1
2
z21ei(ξ1−η)z1dz1dηdz2

The integration with respect to z1, z2 yields

K(x2, ξ2, x1, ξ1) =

∫
b(η − ξ2, η − ξ1, x1 + x2, η)e

iη(x2−x1)dη

where b is a Schwartz function in the first two variables and smooth
and bounded in the last two. Then integration in η yields

K(x2, ξ2, x1, ξ1) = c(ξ1 − ξ2, x1 − x2, ξ1, x1)e
iξ1(x1−x2)

where c is a Schwartz function in the first two variables and smooth
and bounded in the last two.

b) If K is the kernel of TAT ∗ then the kernel of A is

L(y2, y1) = cn

∫
e−

1
2
(x2−y2)2eiξ2(y2−x2)K(x2, ξ2, x1, ξ1)

e−
1
2
(x1−y1)2eiξ1(x1−y1)dx1dx2dξ1dξ2

On the other hand, the Weyl symbol of A is

a(y, η) =

∫
L(y + z, y − z)e−2iηzdz

We substitute L from above,

a(y, η) = cn

∫
e−

1
2
(x2−y−z)2eiξ2(y+z−x2)K(x2, ξ2, x1, ξ1)

e−
1
2
(x1−y+z)2eiξ1(x1−y+z)e−2iηzdx1dx2dξ1dξ2

and do the explicit z integration

a(y, η) = cn

∫
e−

1
4
(x1+x2−2y)2e−

1
4
(ξ1+ξ2−2η)2K(x2, ξ2, x1, ξ1)

e
i
2
(ξ1−ξ2)(x1+x2)eiy(ξ2−ξ1)eiη(x1−x2)dx1dx2dξ1dξ2

To estimate the size of a we take absolute values and integrate directly
using the bound on K. For the derivatives of a we first differentiate
and then take absolute values and integrate.

�

Corollary 3.2. OPS0
00 is an algebra of bounded operators in L2(Rn).
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Proof. Let A1, A2 ∈ OPS0
00. Then

TA1A2T
∗ = (TA1T

∗)(TA2T∗)

The two operators on the right are integral operators with kernels which
decay rapidly away from the diagonal. Then a simple integration shows
that TA1A2T

∗ is also an integral operator with a similar kernel.
For the L2 boundedness we begin with A ∈ OPS0

00 and write

A = T ∗(TAT ∗)T

The left and right factors are L2 bounded. The middle factor is an
integral operators with a rapidly decaying kernel off the diagonal, so it
is also L2 bounded. �

4. A conjugation result

Given a symbol a(x, ξ), in this section we seek to determine an ap-
proximate conjugate Ãw of aw with respect to T ,

TAw ≈ ÃwT + error

Based on the classical vs. quantum correspondence, we expect the main
term in Ãw to be exactly the multiplication by the symbol. Such an
analysis is not so meaningful for S0

00 symbols because the error would
in general have the same size as the principal part. Thus we introduce
some more general classes of symbols:

Definition 4.1. Let k be a nonnegative integer. We say that a ∈ S0,(k)
00

if it satisfies the bounds

|∂αx∂
β
ξ a(x, ξ)| ≤ cαβ, |α|+ |β| ≥ k

We denote by OPS
0,(k)
00 the corresponding class of symbols.

These classes allow for instance symbols which are polynomials in x
and ξ. Such symbols are our first candidates for conjugation.

To take advantage of the Cauchy-Riemann equations (3) it is conve-
nient to introduce complex notations for the cotangent bundle. Thus
we set

z = x− iξ

The complex differentiation operators are

∂ =
1

2
(∂x + i∂ξ), ∂̄ =

1

2
(∂x + i∂ξ)

The Cauchy-Riemann equations (3) have the form

(5) (∂̄ − i

2
ξ)T = 0
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For first order polynomials we easily conjugate

Ty = (x+ (∂ − i

2
ξ))T, TD = (ξ +

1

i
(∂ − i

2
ξ))T ,

which can be rewritten in the form

T (y − iD) = zT, T (y + iD) = [z̄ + 2(∂ − i

2
ξ)]T .

Based on this, one can take a Taylor series expansion of a symbol a
and obtain the formal asymptotics

Taw ≈
∑
α≤β

2|β|−|α|
∂α∂̄βa(x, ξ)

α!(β − α)!
(∂ − iξ)β−αT .

which is an exact formula if a is a polynomial. To gain a better un-
derstanding of the size of the terms in the above series we note the
following estimate proved in [13]:

Lemma 4.2. The following estimate holds:

(6) ‖(∂ − i

2
ξ)αTu‖L2

φ
= cα‖u‖L2 .

For k > 0 define the partial sum

Ãwk =

|α|+|β|<k∑
α≤β

2|β|−|α|
∂α∂̄βa(x, ξ)

α!(β − α)!
(∂ − i

2
ξ)β−αT

Then the main conjugation result is

Theorem 2. Let a ∈ S0,(k)
0,0 . Then

(7) ‖Taw − Ãwk T‖L2→L2 . 1

We note some special cases. If k = 1 then the approximate conjugate
operator is simply the multiplication by the symbol,

Ãw1 = a

For k = 2 we get

(8) Ãw2 = a+ 2∂̄a(∂ − i

2
ξ) .

Using the Cauchy-Riemann equations (3) this can also be replaced by
the more revealing formula

Ãw2 = a+ i(ax∂ξ − aξ(∂x − iξ))
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where we see that the second term is nothing but the Hamilton flow
for the symbol a. For later use we also record the k = 4 case,

Ãw4 = a+ 2∂̄a(∂ − i

2
ξ) + 2∂̄2a(∂ − i

2
ξ)2 +

4

3
∂̄3a(∂ − i

2
ξ)3

+ ∂∂̄a+ 2∂∂̄2a(∂ − i

2
ξ) .(9)

Proof. The operator TAw has the form

(TAwu)(x, ξ) = cn

∫
e−

1
2
(x−ỹ)2eiξ(x−ỹ)a(

y + ỹ

2
, η)ei(ỹ−y)ηu(y)dydη .

Introduce the new complex variable

w =
y + ỹ

2
− iη .

Also use the notation z = x− iξ. Then

(TAwu)(x, ξ) = cn

∫
a(w)eφ(z,w,y)u(y)dwdw̄dy .

where

φ(z, w, y) = −1

2
(z + y − w − w̄)2 +

1

2
(w̄ − w)(w̄ + w − 2y)− 1

2
ξ2

= w̄(z − w)− 1

2
[(z + y − w)2 + w(w − 2y)]− 1

2
ξ2 .

We claim that Ãwk is the operator obtained from this by replacing a(w)
by its k-th Taylor polynomial at z,
(10)

(Ãwk Tu)(z) =
∑

|α|+|β|<k

∂α∂̄βa(z)

α!β!

∫
(w−z)α(w̄−z̄)βeφ(z,w,y)u(y)dwdw̄dy .

To prove this assertion we integrate by parts. Observe that

∂φ

∂w̄
= (z − w), 2(

∂φ

∂z
− i

2
ξ)− ∂φ

∂w
= (w̄ − z̄) .

Then we use the first relation to eliminate all the (w − z) factors and
the second relation to deal with the (w̄ − z̄) factors. We get∫

(w − z)α(w̄ − z̄)βeφ(z,w,y)dwdw̄=
β!

(β − α)!

∫
(w̄ − z̄)β−αeφ(z,w,y)dwdw̄

=
β!

(β − α)!
[2(

∂

∂z
− i

2
ξ)]β−α

∫
eφ(z,w,y)dwdw̄ .

This proves (10). Note that the above computations are rigorous since
the phase function φ is non-positive definite.
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It remains to prove the L2 → L2
φ remainder bound. It is easier to

visualize the analysis in the real setting, where Rk has the form

(Rku)(x, ξ) =

∫
b(x, ξ,

y + ỹ

2
, η)eiξ(x−ỹ)e−

1
2
(x−ỹ)2ei(ỹ−y)ηdỹdη .

and b is the order k remainder in the Taylor series for the symbol a,

b(x, ξ, y, η) = a(y, η)−
∑

|α|+|β|<k

∂αx∂
β
ξ a(x, ξ)

α!β!
(y − x)α(ξ − η)β .

Note that b satisfies the bounds

(11) |∂αy ∂βη b(x, ξ, y, η)| ≤ cα,β(|x− y|+ |ξ − η|)max{k−|α|−|β|,0} .

We can eliminate part of the exponential weight if we observe that

‖Rk‖L2→L2
φ

= ‖e−ixξe−
1
2
ξ2Rk‖L2→L2 .

We write the kernel H(x, ξ, y) of Rk in the form

H(x, ξ, y) = eiξ(x−y)c(x, ξ, y − x)

where

c(x, ξ, y − x) =

∫
b(x, ξ,

y + ỹ

2
, η)e−

1
2
(x−ỹ)2ei(ỹ−y)(η−ξ)dỹdη .

After the change of variable η := η − ξ, ỹ := ỹ − x this becomes

c(x, ξ, y) =

∫
b(x, ξ, x+

y + ỹ

2
, ξ + η)e−

1
2
ỹ2ei(ỹ−y)ηdỹdη .

We claim that c is a Schwartz function in y, uniformly in x, ξ. Given
the bound (11) on b, it suffices to show that the function

c(y) =

∫
b(y + ỹ, η)e−

1
2
ỹ2ei(ỹ−y)ηdỹdη

is a Schwartz function provided that b satisfies

|∂αy ∂βη b(y, η)| ≤ cα,β(|y|+ |η|)max{k−|α|−|β|,0} .

Indeed, the function b(y + ỹ, η)e−
1
2
ỹ2 is a Schwartz function in ỹ of

size at most (|y| + |η|)k. Then integrating with respect to ỹ we get a
Schwartz function in η of size at most |y|k. Finally, integrating with
respect to η we get a Schwartz function in y.

The L2 → L2 boundedness of Rk is equivalent to the L2 boundedness
of RkR

∗
k, whose kernel is

K(x, ξ, x̃, ξ̃) =

∫
c(x, ξ, x− y)c(x̃, ξ̃, x̃− y)eiy(ξ̃−ξ)dη .
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Integrating with respect to y we get

|K(x, ξ, x̃, ξ̃)| ≤ cN(1 + |x− x̃|+ |ξ − ξ̃|)−N

and the L2 boundedness follows. �

5. The Gårding and Fefferman-Phong inequalities

As an immediate application of the phase space representations of
pseudodifferential operators obtained in the previous section one can
provide alternate proofs for the classical G̊arding and Fefferman-Phong
inequalities, see [6], [3], [1]. For this we choose a simple setup which is
adapted to our symbol classes. We begin with

Definition 5.1. An operator A : S(Rn) → S ′(Rn) is semipositive if
there is C > 0 so that

〈Aφ, φ〉 ≥ −C‖φ‖L2

for all φ ∈ S(Rn).

Then the main result we prove, following [15], is

Theorem 3. a) (The sharp G̊arding’s inequality) Let a ∈ S
0,(2)
0,0 be a

real N ×N nonnegative symbol. Then aw(x+y
2
, D) is semipositive.

b) (The Fefferman-Phong inequality) Let a ∈ S
0,(4)
0,0 be a real scalar

nonnegative symbol in T ∗Rn. Then aw(x+y
2
, D) is semipositive.

Proof. a) By Theorem 2 with k = 2 we have

〈awu, u〉 = 〈Tawu, Tu〉 = 〈Ãw2 Tu, Tu〉+O(‖u‖L2)

It remains to prove that Ãw2 is semipositive on the space of L2(R2n)
functions which satisfy the Cauchy-Riemann equations (5). For such
functions v we have

〈Ãw2 v, v〉 = 〈av, v〉+ 〈2∂̄a(∂ − i

2
ξ)v, v〉

= 〈(a− 2∂∂̄a)v, v〉 − 〈2∂̄av, (∂̄ − i

2
ξ)v〉

= 〈(a− 2∂∂̄a)v, v〉
By hypothesis a is nonnegative and ∂∂̄a is bounded, so this concludes
the proof.

b) The classical proof [3] of the Fefferman-Phong inequality, refined
in [1], is based on successive localizations combined on an inductive
argument with respect to the dimension. All this is done at the operator
level. The idea is to successively peel off squares of operators in a
sufficiently localized setting, all while retaining sufficient orthogonality
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to be able to assemble together the localized results. Instead, a simpler
idea is to reduce the problem to a statement about decompositions of
Ċ3,1 nonnegative functions as sums of squares of Ċ1,1 functions:

Proposition 5.2. [15] There exist K,M > 0 depending only on the
dimension n so that for any nonnegative function φ in Rn satisfying

|∇4φ| ≤ 1

there exist functions {φk}k=1...K so that

φ =
K∑
k=1

φ2
k

and

(12)
∑
k

|∇2φk|2 + |(∇3φk)(∇φk)| ≤M .

We rely on [15] for the proof of the Proposition, but show here how
it implies the Fefferman-Phong inequality.

By Theorem 2 with k = 4, the semipositivity of aw is equivalent to
the semipositivity of Ãw4 on the space of functions which satisfy (5),

〈Ãw4 v, v〉 ≥ −c‖v‖2
L2

At this point we discard all the information about the higher order
derivatives of the symbol a and only retain the bound on the fourth
order derivatives. The operator Ãw4 is given by (9). Then, as before,
we integrate by parts all the terms in Ãwl,4 which contain (∂ − i

2
ξ),

〈2∂̄a(∂ − i

2
ξ)v, v〉 = −2〈(∂∂̄a)v, v〉 .

This term in not necessarily bounded in L2
φ since we have no informa-

tion about the second derivatives of a.

〈2∂̄2a(∂ − i

2
ξ)2v, v〉 = 2〈(∂2∂̄2a)v, v〉 .

This is bounded since the fourth derivatives of a are bounded.

〈4
3
∂̄3a(∂ − i

2
ξ)3v, v〉 = −4

3
〈(∂∂̄3a)(∂ − i

2
ξ)2v, v〉 .

This is also bounded by Lemma 4.2.

〈2∂∂̄2a(∂ − i

2
ξ)v, v〉 = −2〈(∂2∂̄2a)v, v〉
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which is also bounded. Summing up all these estimates we obtain the
following simple formula:

(13) 〈Ãw4 v, v〉 = 〈(a− ∂∂̄a)v, v〉+O(‖v‖2
L2) .

By Proposition 5.2 we can assume without any restriction in generality
that a = φ2 where φ satisfies the bounds in (12). Then

a− ∂∂̄a = φ2 − 2(∂φ)(∂̄φ)− 2φ(∂∂̄φ) .

On the other hand we use the same integration by parts procedure to
evaluate the nonnegative quadratic form

Q(v, v) = ‖(φ+ 2∂̄φ(∂ − i

2
ξ) + ∂∂̄φ)v‖2

L2
Ψ

= 〈(φ+ ∂∂̄φ)2v, v〉+ 4<〈(∂φ)(φ+ ∂∂̄φ)v, (∂ − i

2
ξ))v〉

+ 4〈∂̄φ(∂ − i

2
ξ))v, ∂̄φ(∂ − i

2
ξ))v〉

= 〈(φ+ ∂∂̄φ)2v, v〉 − 4<〈[∂̄((∂φ)(φ+ ∂∂̄φ))]v, v〉

+ 4〈1
2
(∂φ)(∂̄φ) + ∂∂̄(∂φ)(∂̄φ)v, v〉

= 〈[φ2 − 2(∂φ)(∂̄φ)− 2φ(∂∂̄φ)]v, v〉
+ 〈[(∂∂̄φ)2 − 4<∂̄(∂φ)(∂∂̄φ) + 4∂∂̄(∂φ)(∂̄φ)]v, v〉2 .

By (12) the second term is bounded, therefore

〈Ãw4 v, v〉 = Q(v, v) +O(‖v‖2
L2) .

Hence the semipositivity of Ãwl,4 follows. �

6. Canonical transformations and S0
00 type Fourier

integral operators

Here we define Fourier integral operators associated to canonical
transformations and study their properties. To keep things simple we
considerably restrict the class of canonical transformations we work
with.

Definition 6.1. χ : T ∗Rn → T ∗Rn is a smooth bilipschitz canonical
transformation if

(i) χ is smooth,

|∂αx∂
β
ξ χ(x, ξ)| ≤ cα,β, |α|+ |β| > 0

(ii) χ is a diffeomorphism.
(iii) Both χ and χ−1 are Lipschitz continuous.
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(iv) χ preserves the symplectic form, i.e. if (y, η) = χ(x, ξ) then
dy ∧ dη = dx ∧ dξ.

To such canonical transformations we want to associate Fourier in-
tegral operators. However, there is no well-defined notion of a symbol
for an S0

00 type Fourier integral operator. Hence it is more efficient to
begin with the phase space representation in the first place.

Definition 6.2. Let χ : T ∗Rn → T ∗Rn be a smooth bilipschitz canon-
ical transformation. An operator A : S(Rn) → S ′(Rn) is an S0

00 type
Fourier integral operator associated to χ if the kernel K of TAT ∗ sat-
isfies

|K(y, η, x, ξ)| ≤ cN(1 + |(y, η)− χ(x, ξ)|)−N

By Theorem 1 this definition is consistent with the corresponding
class of pseudodifferential operators.

Proposition 6.3. The S0
00 type Fourier integral operator associated to

the identity are exactly the S0
00 type pseudodifferential operators.

Another easy consequence of this definition is

Proposition 6.4. S0
00 type Fourier integral operators are L2 bounded.

Also the composition result requires hardly any work at all:

Proposition 6.5. Let χ1, χ2 : T ∗Rn → T ∗Rn be smooth bilipschitz
canonical transformations. Suppose A1, A2 are S0

00 type Fourier integral
operators associated to χ1, respectively χ2. Then A1A2 is an S0

00 type
Fourier integral operator associated to χ1 ◦ χ2.

The interesting part is to return closer to a classical representation of
the Fourier integral operators. The classical representations of Fourier
integral operators rely on parametrizations of the canonical transfor-
mations which are in general not global. Instead here we obtain a phase
space representation. This involves one extra integration, but on the
other hand it is global, has more symmetry and closely mirrors the
canonical transformation.

Theorem 4. Let χ : T ∗Rn → T ∗Rn be a smooth bilipschitz canoni-
cal transformation. An operator A : S(Rn) → S ′(Rn) is an S0

00 type
Fourier integral operator associated to χ if and only if it can be repre-
sented in the form

(14) Au(ỹ) =

∫
e−

1
2
(x−y)2eiξ(x−y)eiψ(x,ξ)e−iξ̃(x̃−ỹ)G(ỹ, x̃, ξ̃)u(y)dxdξdy

where (x̃, ξ̃) = χ(x, ξ), G satisfies

|(y − x)γ∂αx∂
β
ξ ∂

ν
yG(y, x, ξ)| ≤ cγαβν
12



and the phase function ψ is determined modulo constants by

(15) dψ = ξ̃dx̃− ξdx

Proof. It is fairly easy to see that any operator as in (14) is an S0
00 type

Fourier integral operator associated to χ; this only involves testing the

expression e−iξ̃(x̃−ỹ)G(ỹ, x̃, ξ̃) against coherent states.
It is somewhat more difficult to prove the converse. We rewrite (14)

in the form

Au(ỹ) =

∫
eiψ(x,ξ)e−iξ̃(x̃−ỹ)G(ỹ, x̃, ξ̃)Tu(x, ξ)dxdξ

On the other hand,

Au = T ∗TAT ∗TT ∗T

Then we can choose eiφ(x,ξ)e−iξ̃(x̃−ỹ)G(ỹ, x̃, ξ̃) to be the kernel for the
operator TAT ∗TT ∗. It remains to prove the desired bounds for G.

The kernel for TT ∗ is

L(x1, ξ1, x, ξ) = cn

∫
e−

1
2
(x1−y)2ei(x1−y)ξ1e−

1
2
(x−y)2ei(y−x)ξdy

= cne
− 1

4
(x−x1)2e−

1
4
(ξ−ξ1)2e

i
2
(x1−x)(ξ1+ξ)

Hence if K is the kernel of TAT ∗ then we must have

eiψ(x,ξ)e−iξ̃(x̃−ỹ)G(ỹ, x̃, ξ̃) =

∫
e−

1
2
(x2−ỹ)2ei(x2−ỹ)ξ̃2K(x2, ξ2, x1, ξ1)

e−
1
4
(x−x1)2e−

1
4
(ξ−ξ1)2e

i
2
(x1−x)(ξ1+ξ)dx1dξ1dx2dξ2

In the integral on the right we expect no cancellations because we only
have pointwise bounds on K. The decay of G is easy to obtain:

|G(ỹ, x̃, ξ̃)| .
∫
e−

1
2
(x2−ỹ)2(1 + |(x2, ξ2)− χ(x1, ξ1)|)−N

e−
1
4
(x−x1)2e−

1
4
(ξ−ξ1)2dx1dξ1dx2dξ2

.
∫
e−

1
2
(x2−ỹ)2(1 + |(x2, ξ2)− χ(x, ξ)|)−Ndx2dξ2

=

∫
e−

1
2
(x2−ỹ)2(1 + |(x2, ξ2)− (x̃, ξ̃)|)−Ndx2dξ2

. (1 + |y − x̃|)−N

To also bound the derivatives of G we need in addition to control the
regularity of the phase function,

|∂γỹ∂αx∂
β
ξ φ| ≤ cαβγ(1 + |x̃− ỹ|+ |x2 − ỹ|+ |ξ̃ − ξ2|+ |x1 − x|+ |ξ1 − ξ|)

13



where

φ = −ψ(x, ξ) + ξ̃(x̃− ỹ) + (x2 − ỹ)ξ̃2 +
1

2
(x1 − x)(ξ1 + ξ)

We split

φ = φ1 + φ2,

where

φ1 = (ξ̃ − ξ̃2)(ỹ − x2) +
1

2
(x1 − x)(ξ1 − ξ)

φ2 = ξ̃(x̃− x2)− ξ(x− x1)− ψ(x, ξ)

The regularity of φ1 follows directly from the regularity of the canonical
transformation χ. This is also the case with φ2 provided at least one
derivative falls on the ξ̃ in the first term or on the ξ in the last term.
But everything else cancels due to (15). �

7. Evolution equations

A main source of Fourier integral operators in analysis is provided
by evolution operators associated to various evolution equations. The
wave equation and the Schrodinger equation are good examples.

The classical dynamics is described by the Hamilton flow, which
generates the canonical transformations governing the evolution. On
the quantum side the evolution is governed by Fourier integral integral
operators which correspond to these canonical transformations.

The context we choose here is fairly simple, yet it contains many
interesting examples. We study evolution equations of the form

(16) (Dt + aw(t, x,D))u = f u(0) = u0

where t ∈ [0, 1] and x ∈ Rn. We assume that
(i) The symbol a(t, x, ξ) is real.

(ii) a(t, ·, ·) ∈ S0,(2)
00 uniformly in t.

(iii) a(t, x, ξ) is continuous in t.
If the symbol a is real then aw is selfadjoint. Using this one can

easily prove

Proposition 7.1. Under the assumptions (i), (ii), (iii) above the equa-
tion (16) is forward and backward well posed in L2(Rn). Furthermore,
the evolution operators S(t, s) defined by

S(t, s)u(s) = u(t), t, s ∈ [0, 1]

are L2 isometries.
14



The Hamilton flow associated to this evolution is

ẋ = aξ(t, x, ξ), ξ̇ = −ax(t, x, ξ)
We denote the trajectories of the flow by

[0, 1] 3 t→ (xt, ξt)

and the fixed time maps by χ(t, s) : T ∗Rn → T ∗Rn,

χ(t, s)(xs, ξs) = (xt, ξt)

Then we have

Proposition 7.2. Under the assumptions (i), (ii), (iii) above the fixed
time maps χ(t, s) are smooth bilipschitz canonical transformations.

The fact that χ(t, s) is a canonical transformation is a property
shared by all Hamiltonian flows. The smoothness is obtained by study-
ing the linearized flow. We note that the linearization of the flow in-
volves the second derivatives of the symbol a. This justifies our choice
of the symbol class in (ii).

7.1. A parametrix construction. We can take advantage of Theo-
rem 2 with k = 2 to construct a parametrix for the equation (16). The
approximate conjugated operator is

Ã = a(x, ξ) + aξ(
1

i
∂x − ξ)− 1

i
ax∂ξ

and we the error estimate has the form

‖Taw − ÃT‖L2→L2 . 1

We also note the dual bound

‖T ∗Ã− awT ∗‖L2→L2 . 1

The operator Ã is selfadjoint, therefore it generates an isometric evo-
lution operator S̃(t, s) in L2(R2n). Then a natural choice for a forward
parametrix is the operator

K(t, s) = 1t≥sT
∗S̃(t, s)T

Given the above error estimates, it is straightforward to prove that this
provides a good approximate solution in the L2 sense:

Proposition 7.3. Under the assumptions (i), (ii), (iii) above the op-
erator K(t, s) satisfies

‖K(t, s)‖L2→L2 ≤ 1

‖(Dt + aw)K(t, s)‖L2→L2 . 1

lim
t→s+

K(t, s) = 1L2

15



The kernel of the parametrix K is easy to describe. We begin with
the evolution operator S̃(t, s) in the phase space. It corresponds to the
transport type operator

Dt + Ã = −i(∂t + aξ∂x − ax∂ξ) + a(x, ξ)− ξaξ

Solutions are transported along the Hamilton flow for Dt + aw. There
is also a phase shift. We define the real phase function ψ by

(17) ψ̇ = −a+ ξaξ, ψ(0, x̄, ξ̄) = 0

where ψ̇ denotes the differentiation along the flow. Then S̃(t, s) is given
by

(S̃(t, s)u)(xt, ξt) = u(xs, ξs)ei(ψ(t,x,ξ)−ψ(s,x,ξ))

and the parametrix K has the kernel

K(t, y, s, ỹ) = 2−dπ−
3d
2

∫
R2n

e−
1
2
(y−xt)2− 1

2
(ỹ−xs)2+iξt(y−xt)−iξs(ỹ−xs)

ei(ψ(t,x,ξ)−ψ(s,x,ξ))dx dξ.

We note that the phase ψ satisfies the relation

(18) dψ(t) = ξtdxt − ξdx

This is easily verified by writing the transport equations for both sides.
By Theorem 4, it follows that the above parametrix is an S0

00 type
Fourier integral operator associated to χ(t, s).

7.2. The exact solution. Inspired by the above parametrix, here we
obtain a similar representation for the solution.

Theorem 5. The kernel K of the fundamental solution operator Dt +
aw can be represented in the form

K(t, y, s, ỹ) =

∫
R2n

e−
1
2
(ỹ−xs)2e−iξ

s(ỹ−xs)ei(ψ(t,x,ξ)−ψ(s,x,ξ))

eiξ
t(y−xt)G(t, s, x, ξ, y)dx dξ(19)

where the function G satisfies

(20) |(xt − y)γ∂αx∂
β
ξ ∂

ν
yG(t, s, x, ξ, y)| . cγ,α,β,ν

By Theorem 4 we can also conclude that

Corollary 7.4. The evolution operators S(t, s) are S0
00 type Fourier

integral operators associated to the canonical transformation χ(t, s).
16



Proof. Without any restriction in generality take s = 0. We use the
FBI transform to decompose the initial data u0 into coherent states,
and write

u = S(t, 0)T ∗Tu0 =

∫
S(t, s)φx,ξTu(x, ξ)dxdξ

Then we can define the function G by

G(t, x, ξ, y) = 2−
d
2π−

3d
4 e−iξ

t(y−xt)e−iψ(t,x,ξ)(S(t, 0)φx,ξ)(y)

so that (19) holds. It remains to prove that G satisfies the bounds (20).
Suppose that we want to prove (20) at (x0, ξ0). We first note that

the phase of G is essentially linear. Precisely, we have the relation∣∣∣∂αx∂βξ [ξt(y − xt) + ψ(t, x, ξ) + ξ0(x− x0)]
∣∣∣
x=x0,ξ=ξ0

≤ cα,β(1 + |y − xt0|)

which follows from the regularity of the Hamilton flow and the relation
(18). This allows us to replace the function G with

G1(t, x, ξ, y) = e−iξ
t
0(y−xt

0)e−iψ(t,x0,ξ0)
(
S(t, 0)(eiξ0(x−x0)φx,ξ)

)
(y)

Then we translate G1 to the origin by setting

G2(t, x, ξ, y) = G1(t, x0 + x, ξ0 + ξ, xt0 + y)

The x and ξ variables are translated so that they are now centered at
the origin. A routine computation shows that the function G2 solves
the modified equation

(Dt + aw2 (t, y,Dy))G2 = 0, G2(0) = φx,ξ

where

a2(t, y, η) = a(t, xt0+y, ξt0+η)−a(t, xt0, ξt0)−yax(t, xt0, ξt0)−ηaξ(t, xt0, ξt0)

still in S
0,(2)
00 but in addition vanishes of second order at 0 ∈ R2d. To

differentiate it with respect to x, ξ it suffices to differentiate the initial
data. But the functions

∂αx∂
β
ξ φx,ξ(y)|x=0,ξ=0

are Schwartz functions in y. Hence it suffices to consider the problem

(Dt + aw2 (t, y,D))v = 0, v(0) = v0

where the initial data v0 is a Schwartz function, and prove that the
solution v(t) is also a Schwartz function. This follows if we can prove
energy estimates for the functions yα∂βv, which we do by induction
over k = |α|+ |β|. If k = 0 then we trivially have

‖v(t)‖L2 = ‖v(0)‖L2

17



For k = 1 we compute the equations for yv and ∂v:

(Dt + aw2 (t, y,D))(yv) = −i(∂ηa)w(t, y,D)v

(Dt + aw2 (t, y,D))(∂yv) = i(∂ya)
w(t, y,D)v

To bound the right hand side we need the next lemma for the symbol
b = ∂ya2 and b = ∂ξa2. This is a special case of Theorem 3 in [15].

Lemma 7.5. Suppose that the symbol b(x, ξ) satisfies

‖∂αy ∂βη b(y, η)‖ ≤ cα,β |α|+ |β| ≥ 1

and also b(0, 0) = 0. Then

‖bw(y,D)u‖L2 . ‖yu‖L2 + ‖∂u‖L2 + ‖u‖L2

Using Lemma 7.5 and the Gronwall inequality we conclude that

‖yv(t)‖L2 + ‖∂v(t)‖L2 . ‖yv0‖L2 + ‖∂v0‖L2 + ‖v0‖L2

It remains to do the induction step. We denote by Lk all operators of
the form xα∂β with |α|+ |β| = k. Suppose that∑

j≤k

‖Ljv(t)‖L2 ≤ ck
∑
j≤k

‖Ljv0‖L2

The functions Lk+1v solve a weakly coupled system of the form

(Dt−aw2 )Lk+1v = (∂y,ηa2)
wLkv +

i+j≤k+1∑
i≥2

(∂iy,ηa2)
wLjv

For this we use energy estimates and Gronwall’s inequality. The first
right hand side term is estimated using Lemma 7.5 and the second
using the induction hypothesis.

�

7.3. Egorov’s Theorem. Given a pseudodifferential operator B, we
define the family of its conjugates along the flow by

B(t) = S(t, 0)BS(0, t)

Egorov’s theorem states that under reasonable assumptions, B(t) is
also a pseudodifferential operator whose principal symbol is obtained
from the principal symbol of B by transport along the Hamilton flow.

A straightforward consequence of our composition result for Fourier
integral operators is

Proposition 7.6. Assume that B ∈ OPS0
00. Then for each t we have

B(t) ∈ OPS0
00.

18



This is not so satisfactory because in this context it is not meaningful
to talk about the principal symbol of B(t). However, the following
result is considerably more interesting.

Proposition 7.7. Assume that B = bw ∈ OPS
0,(1)
00 . Then for each t

we have B(t) = bw(t) ∈ OPS0,(1)
00 . In addition,

b(t)− b ◦ χ(0, t) ∈ S0
00

Proof. We transport the symbol b along the flow,

b̃(t) = b ◦ χ(0, t)

It is easy to see that b̃ ∈ S0,(1)
00 . It remains to verify that

b(t)− (
¯
t) ∈ S0

00

We seek to obtain some convenient representation for the above differ-
ence.

For a time dependent family of operators C(t) we compute

DtS(0, t)C(t)S(t, 0) = S(0, t)[Dt + aw(t), C(t)]S(t, 0)

Applying this to B(t) the left hand side is zero so we obtain

[Dt + aw(t), B(t)] = 0

Also by integration we have
(21)

S(0, t)C(t)S(t, 0) = C(0) +

∫ t

0

S(0, s)(DtC + [aw(s), C(s)])S(s, 0)ds

We apply (21) to C(t) = bw(t)− b̃w(t). This yields

bw(t)− b̃w(t)) =

∫ t

0

S(t, s)[Dt + aw(s), b̃w(s)]S(s, t)ds

By Proposition 7.6, to conclude we need to show that

[Dt + aw(s), b̃w(s)] ∈ OPS0
0,0

But this is a straightforward commutator estimate since the transport
equation for b̃ yields

b̃t + {a, b̃} = 0.

�
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