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1 Introdu
tionThis paper explores new approa
hes to the 
onstru
tion and analysis of fra
-tional step methods for solving di�erential-algebrai
 equations (DAEs). Themethod of fra
tional steps, or operator splitting, is often used as an eÆ
ientnumeri
al integration te
hnique for solving initial value problems in ordi-nary di�erential equations (ODEs) [1℄. Operator splitting 
ombines integra-tion s
hemes for subproblems into an eÆ
ient s
heme for the overall problem.For di�erential-algebrai
 equations, whi
h 
ombine algebrai
 
onstraints withODEs, splitting s
hemes separate the algebrai
 
onstraints from the di�eren-tial equations. For example, when the ODEs and 
onstraints arise from distin
tbut 
oupled physi
al phenomena, splitting s
hemes 
an take full advantage ofexisting 
omputer 
odes tuned for ea
h subproblem.This paper examines fra
tional step methods for index-1 DAEs in the mostnatural semi-expli
it form. Common methods for general index-1 DAEs in-
lude one-step impli
it Runge-Kutta (RK) methods [2,3℄ and multistep ba
k-ward di�erentiation formulae (BDF) [2℄. BDF methods require an expensivesimultaneous integration of the ODEs and satisfa
tion of the 
onstraints. Im-pli
it RK methods are even more expensive, as they require solution of non-linear systems whose size is the number of stages multiplied by the originalsize of the DAE. In the spe
ial 
ase of semi-expli
it index-1 DAEs, expli
itRunge-Kutta methods [3℄ eÆ
iently de
ouple the ODEs solver from the alge-brai
 
onstraints. However, these methods are only 
onditionally stable andbe
ome ineÆ
ient for sti� DAEs. Some spe
ial-purpose splitting s
hemes pre-serve the dissipative stru
ture of the DAE [4,5℄. These s
hemes su

essfullyavoid both the expense of fully impli
it s
hemes and the 
onditional stabilityof expli
it Runge-Kutta s
hemes, but la
k generality. All these issues have ledus to explore splitting s
hemes in greater detail than presently available in theliterature.The paper is organized as follows: In se
tion 2, we show that the standardone-pass and two-pass symmetri
 splitting s
hemes whi
h are respe
tively�rst- and se
ond-order a

urate for ODEs, are only �rst-order a

urate forDAEs. In se
tion 3, this \order redu
tion" is illustrated by a two-dimensionalexample. Order redu
tion is over
ome by a new splitting s
heme, based ondeferred 
orre
tion of a �rst-order s
heme, whi
h is introdu
ed and analyzedin se
tion 4. The deferred 
orre
tion paradigm solves an error equation withthe same stru
ture as the original DAE, using the original �rst-order s
heme.The resulting s
heme is simple, eÆ
ient, and se
ond-order a

urate. It 
an beiterated to obtain eÆ
ient s
hemes with third and higher-order a

ura
y. Fi-nally, se
tion 5 presents numeri
al examples demonstrating the performan
eof our se
ond and third-order a

urate splitting s
hemes. In parti
ular, anappli
ation to a large system of index-1 DAEs, arising from ele
tri
al 
ir
uit2



simulation, illustrates eÆ
ien
y of higher order splitting s
hemes over a highlyoptimized, state-of-the-art, �fth order Runge Kutta s
heme{RADAU5.2 Order redu
tion2.1 The ODE 
aseIn this se
tion, we analyze the a

ura
y of operator splitting algorithms forODEs [6℄. Consider a �rst-order ordinary di�erential system written in parti-tioned form 0B� _x_y1CA = 0B�f(x; y)g(x; y)1CA : (1)For many 
oupled problems, the partitioned variables x and y des
ribe di�er-ent physi
al variables; for example in [5,7℄ they denote me
hani
al deforma-tion and an auxiliary �eld, respe
tively.A splitting s
heme approximates the solution of Eqn. (1) by solving the fol-lowing split equations in ea
h time step:0B� _x_y1CA = 0B�f(x; y)0 1CA| {z }� ; 0B� _x_y1CA = 0B� 0g(x; y)1CA| {z }� : (2)For example, we denote by �h Æ �h the one-pass splitting algorithm whi
hevolves the solution from tn to tn+1 = tn+h by (a) solving the �rst split ODEover one time step h with right-hand side �, and (b) solving the se
ond splitODE over one time step h with right-hand side �, starting from the solutionprodu
ed by (a). The other one-pass splitting algorithm �h Æ �h is similarlyde�ned. The two-pass symmetri
 algorithms of [6℄ are �h=2 Æ �h Æ �h=2 and�h=2 Æ�h Æ�h=2. They are symmetri
 be
ause they take alternate half-steps ofthe two one-pass algorithms: for example,�h=2 Æ �h Æ �h=2 = (�h=2 Æ �h=2) Æ (�h=2 Æ �h=2):The 
lassi
al error analysis of one-pass algorithms leads to a splitting error ofO(h2) per time step and �rst-order a

ura
y. The symmetri
 two-pass algo-rithms attain se
ond-order a

ura
y be
ause the splitting error per time stepis O(h3) [8℄.Note 1 For �nite-dimensional ODEs, Lips
hitz 
ontinuity of the split evolu-tion operators � and � implies 
onvergen
e for the split solution. However,3



for in�nite-dimensional ODEs or PDEs, stability requires that � and � gen-erate bounded semi-groups. Un
onditionally stable splitting s
hemes arisingfrom dissipative dynami
al systems [9℄ o

ur in many appli
ations, notably intransient thermome
hani
al problems [5℄.2.2 The DAE 
aseIn this se
tion, splitting and global errors are analyzed for the one-pass andtwo-pass algorithms applied to DAEs of the partitioned form0B�0_y1CA = 0B�f(x; y)g(x; y)1CA := �: (3)The DAEs are assumed to be of index 1 2 [2℄, meaning that the Ja
obianmatrix fx of f(x; y) with respe
t to x is invertible in a neighborhood of thesolution to Eqn. (3). We split the partitioned equations into0B�0_y1CA = 0B�f(x; y)0 1CA| {z }��Algebrai
 and 0B� _x_y1CA = 0B� 0g(x; y)1CA| {z }��ODEs :so � = � + �.2.2.1 One-pass algorithmsThe one-pass algorithm �hÆ�h �rst �nds the algebrai
 variables x = xn+1 thatsatisfy the algebrai
 
onstraint f(x; y) = 0 with y = yn �xed, and then evolvesthe ODE variables y through time h with x = xn+1 �xed. The algorithm�hÆ�his similarly de�ned, with evolution of y through h followed by 
hoosing x tosatisfy the algebrai
 
onstraints.Sin
e the DAE has index 1 by assumption, the impli
it fun
tion theoremimplies that a C1 fun
tion ' exists su
h thatf(x; y) = 0 implies x = '(y) (5)(near a solution (x; y)). Thus y satis�es a pure ODE_y = g('(y); y): (6)2 For 
oupled me
hani
al-auxiliary �eld problems, the index-1 assumption is equiv-alent to the natural assumption that the sti�ness matrix asso
iated with the me-
hani
al degrees of freedom is invertible.4



By Taylor expansion and the 
hain rule, the exa
t solution y(t) satis�esy(tn+1)= y(tn) + h _y(tn) + h22! �y(tn) +O(h3)= y(tn) + hg('(y(tn)); y(tn))+ h22! (gx('(y(tn)); y(tn)) _'(y(tn)) + gy('(y(tn)); y(tn)) _y(tn)) +O(h3)where gx denotes the Ja
obian matrix of partial derivatives of g with respe
tto the 
omponents of x. The exa
t solution x(t) satis�es x(tn+1) = '(y(tn+1)).We now analyze the lo
al error 
ommitted in one time step, starting from theexa
t value y(tn). The one-pass algorithm �h Æ�h generates an approximationv(t) su
h that _v = g(x(tn); v) = g('(y(tn)); v) tn � t < tn+1; (7)and v(tn) = y(tn). Thus by Taylor expansion and the 
hain rule,v(tn+1) = v(tn) + h _v(tn) + h22! �v(tn) +O(h3)= y(tn) + hg('(y(tn)); y(tn))+ h22! gy('(y(tn)); y(tn)) _y(tn) +O(h3): (8)Hen
e the lo
al error isv(tn+1)� y(tn+1) = e(tn+1)h2 +O(h3) (9)where e is a smooth fun
tion.Applying �h yields a numeri
al approximation u to x whi
h satis�esu(tn+1) = '(v(tn+1))= '(y(tn+1) + h2en+1 +O(h3))= '(y(tn+1)) + h2'y(y(tn+1))en+1 +O(h3)= x(tn+1) + h2'y(y(tn+1))en+1 +O(h3): (10)From equations (9) and (10) it follows that kx(tn+1)� u(tn+1)k = O(h2) andky(tn+1)�v(tn+1)k = O(h2). where k�k denotes any 
onvenient error norm. Inother words, the one-pass algorithm �h Æ�h 
ommits se
ond-order lo
al errorswithin a time step, starting from the exa
t solution.First-order 
onvergen
e 
an then be easily proved. Consider the one-pass split-ting algorithm as a one-step method for the ODE equivalent of the DAE, whi
h5



takes in solution values x(tn) = '(y(tn)) and y(tn) and returns the approxi-mation v(tn+1) whi
h solves (6) to order O(h2) within a time step. Assuminga standard Lips
hitz 
ondition kgy('(y); y))k � L, Theorem 3.4 of [10℄, forexample, shows that the global error E = y(t)� v(t) satis�es:kEk � hCL exp[L(t� t0)℄; (11)where t0 is the initial time and C is a 
onstant independent of h. Eqn. (11)proves �rst-order a

urate global 
onvergen
e.For the alternate splitting s
heme �h Æ �h, one obtainsu(tn+1) = x(tn) (updating u(tn+1) by �h): (12)The approximation v then satis�es_v = g(u(tn+1); v)= g(x(tn); v): (13)As above, ku(tn+1)� x(tn+1)k = O(h) and kv(tn+1)� y(tn+1)k = O(h2). Eventhough the lo
al error in x is O(h) in ea
h step, the order of a

ura
y of the�h Æ �h splitting s
heme is also 1. This follows be
ause evolution under �hsimply updates u = '(v) given v, and is therefore 
ontrolled by the errors in valone. Indeed, the sequen
e of fra
tional steps is : : : (�h Æ�h)Æ (�h Æ�h)Æ (�h Æ�h). Sin
e the initial 
onditions satisfy f(u(t0); v(t0)) = 0, the �rst update�h is redundant. Later in the sequen
e, �h simply updates u given v, so thesequen
e is equivalent to: : : (�h Æ �h) Æ (�h Æ �h) Æ (�h Æ �h|{z}1ststep): (14)We have already shown �rst-order global 
onvergen
e for the latter sequen
e,as a 
onsequen
e of whi
h the former sequen
e is also globally 
onvergent with�rst-order. The same 
on
lusions hold even when variable stepsizes h1; h2; : : :are used in ea
h time step. This 
ompletes the proof of �rst-order a

ura
yfor the global error for the �h Æ �h split as well.Before analyzing the order of the two-pass algorithm, we make a few observa-tions.Note 2 The derivation provided here a

ounts only for errors due to operatorsplitting; exa
t time integration of the split 
ow operators is assumed. Theadditional dis
retization error due to approximate time stepping (in the linear
ase) is analyzed in [11℄. 6



Note 3 If the right hand sides g and f depend expli
itly on time, so the DAEis non-autonomous, one 
an 
onvert the system to an equivalent autonomousone by the standard te
hnique: augment the ODEs by the equation _t = 1, withinitial 
onditions t = t0. However, in the later dis
ussion of deferred 
orre
tionthis will not be possible, as the 
orre
tion equations are always non-autonomousDAEs.Note 4 The Lips
hitz assumption is used only to ensure stability of the split-ting s
heme. If the sub-operators � and � are dissipative, stability of the split-ting s
heme is automati
 and the proof extends even to the in�nite dimensional
ase. (Then dissipativity guarantees that � and � generate 
ontra
tive semi-groups [12℄.)2.2.2 Two-Pass AlgorithmsThe main result of this se
tion is that two-pass s
hemes are only �rst-ordera

urate for DAEs, even though they are se
ond-order for ODEs.Consider the two-pass algorithm �h=2 Æ �h=2 Æ �h=2. The starting values for
al
ulating the lo
al trun
ation error are y(tn) and x(tn) = '(y(tn)). Thefra
tional step �h=2 gives u(tn+ 12 ) = '(y(tn)) = x(tn). The fra
tional step �hthen gives _v = g(u(tn+ 12 ); v)= g(x(tn); v) for t 2 [tn; tn+1℄: (15)Finally, the fra
tional step �h=2 for the se
ond pass updates u(tn+1) asu(tn+1) = '(v(tn+1)): (16)Sin
e the �rst fra
tional step �h=2 is redundant, the updates given by (15)and (16) exa
tly 
orrespond to the �h Æ�h 
ase and as before lead to se
ond-order splitting error. Consequently, as for the one-pass algorithm, the two-passsplitting s
heme �h=2 Æ�h Æ�h=2 is only globally �rst-order a

urate. This is insharp 
ontrast to the se
ond-order a

ura
y of two-pass algorithms for ODEs.The more interesting splitting error analysis o

urs for the �h=2 Æ �h Æ �h=2sequen
e. The steps 
an be summarized as:(1) �h=2: Update v(tn+ 12 ) with v(tn) = y(tn) by exa
tly solving_v = g('(y(tn)); v) t 2 [tn; tn+ 12 ℄: (17)Repeating the earlier analysis, we obtainv(tn+ 12 )� y(tn+ 12 ) = h2en+ 12 +O(h3): (18)7



(2) �h: Update u(tn+1) exa
tly, using the impli
it fun
tion theorem.u(tn+1) = '(v(tn+ 12 )): (19)The splitting error is 
al
ulated as follows:u(tn+1) = '(y(tn+ 12 ) + h2en+ 12 +O(h3))= '(y(tn+1)� h2 _y(tn+1) +O(h2))= '(y(tn+1)) +O(h)= x(tn+1) +O(h); (20)implying ku(tn+1)� x(tn+1)k = O(h).(3) �h=2: Update v(tn+1) with v(tn+ 12 ) as the initial value by exa
tly solving,_v = g('(v(tn+ 12 )); v) t 2 [tn+ 12 ; tn+1℄: (21)The splitting error in v(tn+1) is found by expanding the exa
t solutionaround tn+ 12 .y(tn+1) = y(tn+ 12 ) + h2 _y(tn+ 12 ) + h28 �y(tn+ 12 ) +O(h3)= y(tn+ 12 ) + h2g('(y(tn+ 12 )); y(tn+ 12 )) +O(h2): (22)Similarly, expanding the approximate solution,v(tn+1) = v(tn+ 12 ) + h2 _v(tn+ 12 ) + h28 �v(tn+ 12 ) +O(h3)= v(tn+ 12 ) + h2g('(y(tn+ 12 )); y(tn+ 12 )) +O(h2): (23)Using y(tn+ 12 ) = v(tn+ 12 )+h2en+ 12 +O(h3) in Eq. (23), one 
an show thatthe h2 terms do not 
an
el with the 
orresponding terms in the expansionof the exa
t solution. As a result, Eqs. (22) and (23) 
ommit a splittingerror of size kv(tn+1)� y(tn+1)k = O(h2).In order to �nd the global order of 
onvergen
e, we observe that: : : (�h=2 Æ �h Æ �h=2) Æ (�h=2 Æ �h Æ �h=2) Æ (�h=2 Æ �h Æ �h=2) (24)= : : : (�h Æ �h Æ �h Æ �h Æ �h Æ�h Æ �h=2): (25)Consequently, the operation �h=2 in the �rst step 
an be viewed as providinginitial 
onditions a

urate to O(h2) for the sequen
e : : :�hÆ�hÆ�hÆ�hÆ�hÆ�h.From the analysis of the one-pass algorithms, the latter sequen
e is globally�rst-order 
onvergent, so initial 
onditions a

urate to O(h2) will preserve theglobal order. The analysis extends to the variable stepsize 
ase (the details8



are omitted). Thus we have proved that the two-pass algorithms are only�rst-order a

urate, in 
ontrast to their se
ond-order a

ura
y for ODEs.Note 5 An alternate approa
h over
omes order redu
tion in the two-pass byre
asting the DAEs into the equivalent ODEs:f(x; y) = 0 =) fx _x + fy _y = 0 =) 0B� _x_y1CA = 0B�(�fx)�1(fy)gg 1CA : (26)The one-pass and two-pass algorithms for this system of ODEs attain �rstand se
ond order global orders, respe
tively. In pra
ti
e, this te
hnique is ratherexpensive, as higher derivatives of the right-hand side are involved. In addition,the 
onstraints are not satis�ed exa
tly, and thus may drift over many timesteps.
3 Numeri
al ExampleThe orders of a

ura
y derived above are veri�ed through a simple numeri
alexample. Consider the exa
tly-solvable DAE0B�0_y1CA = 0B�x3 � y2x 1CA ; (27)with initial 
onditions x0 = 1 and y0 = 1 at t0 = 0 satisfying x30� y20 = 0. Theequivalent ODE form is 0B� _x_y1CA = 0B� 2y3xx1CA : (28)The exa
t solution satisfying the initial 
onditions is (xex(t); yex(t)) = ((1 +t=3)2; (1 + t=3)3).A single step of the one-pass splitting, �h Æ �h, with exa
t integration, yieldssolutions DAE Split Equivalent ODE Splityn+1 = yn + xnh yn+1 = yn + xnhxn+1 = y 23n+1 xn+1 = (x2n + 4h3 yn+1) 129



10
−8

10
−6

10
−4

10
−2

10
−10

10
−8

10
−6

10
−4

10
−2

Two Pass: Γ°Φ°Γ
Two Pass: Φ°Γ°Φ
One Pass: Φ°Γ

1
1

Log( t)∆

L
og

(E
rr

or
)

Log(∆t)
10

−8
10

−6
10

−4
10

−2

10
−10

10
−8

10
−6

10
−4

10
−2

Two Pass: Γ°Φ°Γ
Two Pass: Φ °Γ°Φ
One Pass: Φ °Γ

L
og

(e
rr

or
)

2
1

1
1

(a) (b)Fig. 1. (a) Order redu
tion in DAE-based splitting vs. (b) no order redu
tion inODE-based splitting.Similarly, the two-pass splitting �h=2 Æ �h Æ �h=2 yields solutionsDAE Split Equivalent ODE Splityn+ 12 = yn + xnh=2 yn+ 12 = yn + xnh=2xn+1 = y 23n+ 12 xn+1 = (x2n + 4h3 yn+ 12 ) 12yn+1 = yn+ 12 + xn+1h=2 yn+1 = yn+ 12 + xn+1h=2Fig. 1 (a) plots the logarithm of the DAE splitting errors versus the logarithmof the uniform stepsize, and exhibits �rst-order 
onvergen
e for both one andtwo-pass algorithms. Fig. 1 (b) shows the errors for the ODE form. First andse
ond-order 
onvergen
e, agreeing with theory, is obtained for both one- andtwo-pass s
hemes.4 Order Improvement by Deferred Corre
tionIn this se
tion, we employ the deferred 
orre
tion paradigm to derive a newsplitting s
heme, and prove its se
ond-order a

ura
y. The general paradigmof deferred 
orre
tion is straightforward: Given an approximate solution v toa problem with exa
t solution y, derive an equation for the error e = v�y andsolve it numeri
ally for an approximate error �. The 
orre
ted solution V =v�� is then more a

urate than v, and the pro
ess 
an be repeated to generates
hemes of arbitrarily high order if the solution is suÆ
iently smooth. Theadvantage of this paradigm is that the error equation has the same stru
tureas the original equation, so any 
onvenient low-order method 
an be used to
ompute both the original solution v and all subsequent approximate errors �.10



4.1 Deferred 
orre
tionConsider the general non-autonomous DAE0B�0_y1CA = 0B�f(t; x; y)g(t; x; y)1CA :We generate a basi
 solution by the analogue of the simple �rst-order splitting�h Æ�h, whi
h applies the 
onstraint and then the ODE solver. The resultingnumeri
al solution v(t) exa
tly satis�es the ODE_v = g(t; '(t; vn); v) tn � t < tn+1 (29)where f(t; '(t; y); y) = 0 and vn = v(tn).Thus the error e = v � y satis�es the exa
t error equation_e = g(t; '(t; vn); v(t))� g(t; '(t; v(t)� e(t)); v(t)� e(t)):The �rst-order splitting s
heme repla
es e(t) by en in the argument of the
onstraint solver ' only, yielding a se
ond-order splitting s
heme 
omposed ofa �rst-order step _v = g(t; '(t; Vn); v(t)); v(tn) = Vnon tn � t < tn+1, followed by a 
orre
tion step_� = g(t; '(t; Vn); v(t))� g(t; '(t; v(t)); v(t)� �(t)); �(tn) = 0 (30)on tn � t < tn+1. Here the 
orre
ted solution is V (t) = v(t) � �(t) andwe are 
orre
ting ea
h time step before pro
eeding to the next. The initialvalue �n = 0 has therefore been omitted in the argument of the se
ond gin the 
orre
tion step (30). The 
orre
tion step retains the simpli
ity of thebasi
 splitting s
heme, be
ause the 
orre
tion equation is a pure ODE forthe 
orre
tion: The 
onstraints are imposed only via the known approximatesolution v.Sin
e the solution � of Eq. (30) is a �rst-order a

urate approximation of eand e is itself O(h), we expe
t � = e+O(h2). In the next subse
tion, we provethat the 
orre
ted solution V (t) = v(t)� �(t) is indeed se
ond-order a

urate.4.2 Convergen
e AnalysisThe 
onvergen
e proof for the �rst-order splitting s
heme 
ontains the basi
idea of the 
onvergen
e proof for the se
ond-order s
heme we have just derived11



by deferred 
orre
tion, so we review it brie
y �rst. The exa
t solution satis�esthe ODE form _y = g(t; '(t; y); y)while the numeri
al solution v satis�es_v = g(t; '(t; vn); v(t)):By subtra
tion, the error e = v � y satis�es_e= g(t; '(tn; v(tn)); v)� g(t; '(t; y); y)= gx'y(vn � y) + gx't(tn � t) + gy(v � y)=�gxf�1x fy(vn � y) + gx't(tn � t) + gye:Here we have denoted di�erentiation by subs
ripts and evaluation of the ele-ments of a matrix or ve
tor at possibly di�erent unknown points by an overbar,in a

ordan
e with the multivariable mean value theorem [13℄. For 
onvenien
ewrite vn � y = vn � yn + yn � y, A = �gxf�1x fy, b = gx't and C = gy to get_e = Aen + A(yn � y) + b(tn � t) + Ce:Assume derivative bounds kAk � �, kbk � � and kCk � 
 and integrate toget ke(t)k= ken + Z ttn Aends+ Z ttn A(yn � y)ds+ Z ttn b(tn � s)ds+ Z ttn Ce(s)dsk�kenk+ �(t� tn)(kenk+ kyn � yk) + �2 (t� tn)2 + 
 Z ttn ke(s)kds:(31)By Gronwall's inequality0 � u(t) � a + b Z t0 u(s)ds =) u(t) � a exp[bt℄and a Taylor expansion of y, this givesken+1k � exp[(� + 
)h℄kenk+ Æh2where Æ bounds (�k _yk+ �=2) exp[
h℄. Iterating this inequality giveskenk � exp[(� + 
)tn℄� 1(� + 
) Æhwhi
h proves 
onvergen
e.This proof resembles a standard 
onvergen
e proof for e.g. Euler's methodfor ODEs [13℄, with the ex
eption that the usual re
urren
e inequality, whi
h12



bounds the a

umulated error at one step in terms of previous errors andlo
al trun
ation errors, be
omes the delay-di�erential inequality (31). ThusGronwall's inequality is required, to derive a bound for en+1 in terms of en.The se
ond-order proof is similar. By Taylor expansion, the error Æ(t) = V (t)�y(t) satis�es the exa
t equation_Æ(t)= g(t; '(t; v(t)); v(t)� �(t))� g(t; '(t; V (t)� Æ(t)); V (t)� Æ(t))=A�(t) + (A+B)Æ(t)where A = gx'y and B = gy. At the same time, the 
orre
tion satis�es_�(t) = A(Vn � v(t)) +B�(t)where kv(t)� Vnk � Z ttn kg(s; '(s; Vn); v(s))dsk � hGwith G a bound for the maximum of kgk. Consequentlyk�(t)k � G�h2 + � Z ttn k�(s)kds � G�h2 exp[�t℄by Gronwall, sokÆ(t)k � kÆnk+ Z ttn �k�(s)kds+ (� + �) Z ttn kÆ(s)kdsand applying Gronwall again giveskÆ(t)k � (kÆnk+G�h3 exp[�h℄) exp[(� + �)h℄:By iteration, global se
ond-order 
onvergen
ekÆnk � O(h2)follows immediately as usual. Thus the se
ond-order splitting based on de-ferred 
orre
tion produ
es a se
ond-order a

urate solution V .A third-order s
heme 
an be 
onstru
ted by repeating the deferred 
orre
tionstep to �nd a se
ond-order error and subtra
ting it. Third-order a

ura
y 
anthen be proved by a very similar analysis. However, the Pi
ard-like viewpointof the next subse
tion permits a simpler proof.4.3 A Pi
ard-like viewpointThe deferred 
orre
tion s
heme above 
omputes a �rst-order solution v andthen a 
orre
tion �, yielding a se
ond-order solution V = v � �. Summing the13



original and 
orre
tion Eqs. (29) and (30) yields a simple se
ond-order s
hemefor V itself: _V = g(t; '(t; v(t)); V (t)) tn � t < tn+1:The 
onstrained variables are simply lagged one iteration behind. Similarly,the jth-order solution vj (where v = v1 and V = v2) produ
ed by j � 1 stepsof deferred 
orre
tion satis�es_vj = g(t; '(t; vj�1(t)); vj(t)) tn � t < tn+1:Using the integral form and Gronwall's inequality as above yields immediatelythat vj(t)� y(t) = O(hj+1)for all j.While the Pi
ard-like version of our approa
h thus yields a simple high-order
onvergen
e proof, the deferred 
orre
tion version above may be more 
onve-nient for pra
ti
al implementation. It produ
es a natural error estimate forstep size adaptation. We also note that all our analysis assumes that both
onstraints and ODEs are solved exa
tly in ea
h timestep; the deferred 
or-re
tion formulation implies that we 
an use a simple �rst-order s
heme su
has expli
it Euler or linearly impli
it Euler without order redu
tion.5 Numeri
al ExamplesIn this se
tion, we present three more examples. First we repeat the orderredu
tion example, using our deferred 
orre
tion s
hemes. Se
ond, we demon-strate that our s
hemes are more eÆ
ient than a standard s
heme, for a high-dimensional transistor example with pra
ti
al appli
ations. Finally, we illus-trate the appli
ation of our s
hemes to a sti� system.5.1 Order 
on�rmationOur se
ond and third-order deferred 
orre
tion splitting s
hemes are appliedto the example 
onsidered in se
tion 3. The global splitting errors of the 2-norm of the two 
omponents at t = 0:2, are plotted as a fun
tion of stepsizein Fig. 2. It is 
lear from the plot that the 
orre
t orders of 
onvergen
e area
hieved{thus providing a simple veri�
ation of the analysis. Note that thedeferred 
orre
tion 
ows are integrated exa
tly in Fig. 2.14
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5.2 Transistor Ampli�er ExampleOne of the primary appli
ations for the te
hniques developed in this paper is inthe simulation of ele
tri
al 
ir
uits. The 
hallenge in simulating 
ir
uits withtransistors, 
apa
itors and resistors as 
ir
uit elements, 
omes from sti� os
il-latory behavior of 
ir
uit potentials when subje
ted to an alternating voltage.The resulting index-1 DAEs are highly nonlinear. Transistor response intro-du
es nonlinearities to alter the response amplitude while 
apa
itors introdu
ethe transient behavior.As an example we 
onsider the ampli�er 
ir
uit shown in Fig. 3, whi
h isrepresentative of 
ir
uits with os
illatory response. This example is a modi�-
ation of an ampli�er example 
onsidered in referen
e [3℄. It is a 
onvenientnumeri
al test 
ase be
ause the total ampli�
ation 
an be 
ontrolled throughparameters for resistan
es, 
apa
itan
es and transistors, while the number oftransistors N 
an be varied systemati
ally. This allows us to demonstrate theeÆ
ien
y of our splitting s
hemes for problems with in
reasing sizes and sim-ilar response 
hara
teristi
s. Response frequen
y in
reases with problem size,making the 
ir
uit more 
hallenging to simulate.The governing equations are in terms of nodal potentials U (i)j . A linear trans-formation re
asts the 
ir
uit equations into a semi-expli
it index-1 form, in15
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 of the Transistor Ampli�er.terms of transformed potentials V (i)j [3℄. They are:0 = UeR0 + UbR � V (1)3R0 � 2R(V (1)3 + V (2)1 ) + (�� 1)f(V (1)3 + V (2)1 � V (2)2 )C _V (n)1 = UbR � 2R(V (n�1)3 + V (n)1 ) + (�� 1)f(V (n�1)3 + V (n)1 � V (n)2 )n = 2; : : : N + 1C _V (n)2 = f(V (n�1)3 + V (n)1 � V (n)2 )� V (n)2R n = 2; : : : N + 10 = 2Ub � V (n)3R � �f(V (n�1)3 + V (n)1 � V (n)2 )+� 2R(V (n)3 + V (n+1)1 ) + (�� 1)f(V (n)3 + V (n+1)1 � V (n+1)2 )n = 2; : : : N0 = Ub � V (N+1)3R � �f(V (N)3 + V (N+1)1 � V (N+1)2 )� V (N+2)1 + V (N+1)3RC _V (N+2)1 = �V (N+2)1 + V (N+1)3R (32)These 3N + 2 equations have 3N + 2 unknown voltages V (i)j . Consistent ini-tial 
onditions for this system of DAEs in terms of the 3N + 2 voltages are:V (1)3 (0) = 0, V (n)3 (0) = Ub n = 2; : : : ; N + 1, V (n)1 (0) = Ub=2 � V (n�1)3 ,V (n)2 (0) = Ub=2 n = 2; : : : ; N + 1, and V (N+2)1 (0) = �Ub. The variablesV (n)3 , n = 2; : : : ; N + 1, and V (1)1 are the algebrai
 variables, while the restare ODE variables. The nonlinear transistor fun
tion f is given by f(v) =�[exp((v=Uf)�1℄. Parameter values are Ub = 6, � = 0:99, � = 10�6, R0 = 103,R = 9 � 103 and, C = 10�6. We 
onsider N = 100; 400; 700; 1000 for ourtest suite of in
reasing problem sizes, with Uf = 2:7 � 10�1 for N = 1000and Uf = 2:6 � 10�1 for the rest. A periodi
 input voltage signal Ue(t) =16
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(
) (d)Fig. 4. Ampli�ed voltage U (N+2)1 = V (N+1)3 + V (N+2)1 for the transistor ampli�er:(a) N = 100, (b) N = 400, (
) N = 700 and (d) N = 1000.0:1 sin(200�t) is 
hosen and the error in the ampli�ed nodal output voltageU (N+2)1 = V (N+1)3 + V (N+2)1 (shown at node O in Fig. 3) is measured.Fig. 4 displays the output voltage at the end node (marked O in Fig. 3) forN = 100; 400; 700; 1000, in the interval t 2 [0; 0:035℄. The response frequen
yin
reases slowly with N , making the already os
illatory equations sti�er andharder to solve.Fig. 5 plots errors in V (N+1)3 +V (N+2)1 vs. CPU time (on a 3.1GHz Intel Pentiumpro
essor with 512MB RAM), on a log-log s
ale. The errors are plotted atTmax = 0:20 for N = 100, Tmax = 0:10 for N = 400, Tmax = 0:07 for N = 700,and Tmax = 0:035 for N = 1000; these values of Tmax result in CPU times ofthe same order of magnitude for all the 
ases.We 
ompare our se
ond- and third-order splitting s
hemes with the highly17
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(
) (d)Fig. 5. Global error in output voltage (V (N+1)3 +V (N+2)1 ) for the transistor-ampli�erexample with (a) N = 100, (b) N = 400, (
) N = 700 and (d) N = 1000.optimized �fth-order impli
it RK 
ode RADAU5 of [14℄. The ODEs are inte-grated by forward Euler (marked Sp2ex and Sp3ex in Fig. 5), and by linearizedimpli
it Euler for the un
orre
ted ODEs (29), 
oupled with forward Euler forthe error equation (30) (marked Sp2imex and Sp3imex in Fig. 5). We haveused 
onstant stepsizes for our simulations. RADAU5 experien
ed frequentand repeated stepsize failures for toleran
es less than 10�9 (probably due toill-
onditioning of the Ja
obian of the full system of equations). Thus the erroris 
al
ulated by 
omparison with our third order splitting solution Sp3imex,a

urate to 10-11 digits. The individual Ja
obians of the 
onstraints and theODEs were well-
onditioned, so splitting s
hemes 
ould obtain 
lose to fulldouble pre
ision a

ura
y.Fig. 5 
learly demonstrates the main advantage of splitting: the de
oupling ofalgebrai
 and di�erential equations. For N = 100, RADAU5 outperforms allour split implementations. At N = 400, with 1202 unknowns, RADAU5 stillperforms better than our split implementations, although the margin has de-
reased. At N = 700, with 2102 unknowns, the error-CPU 
urve of RADAU5
rosses those of the third-order splitting s
heme at errors ranging from 10�4to 10�5 and se
ond-order splitting s
heme at errors ranging from 10�2 to18



10�3. Thus for relaxed error toleran
es, splitting s
hemes 
learly outperformRADAU5. When N = 1000, Sp3imex outperforms RADAU5 for all toler-an
es greater then 10�8, while RADAU5 terminated early due to repeatedstepsize failures for most toleran
es smaller than 10�8. Hen
e over the en-tire range of toleran
es where RADAU5 
an provide a solution to the 1000transistor problem, our third-order s
hemes outperformed RADAU5. For engi-neering a

ura
y of 4 digits, our third-order s
hemes are about twi
e as fast asthe state-of-the-art, highly optimized, adaptive stepsize, �fth-order RADAU5s
heme. These results 
learly demonstrate the eÆ
ien
y gained by using oursplitting s
hemes for large index-1 DAEs from 
ir
uit simulation.5.3 Pendulum ExampleAs a �nal example, a sti� damped pendulum is 
onsidered. This example isinteresting be
ause the �rst-order splitting �h Æ�h is also dissipative. Thus weinvestigate stability and a

ura
y of the splitting s
hemes for large stepsizes.The governing equations presented in Ref. [3℄ are modi�ed to in
lude dampingand an input ex
itation. The index-1 system is given by:_p = u_q = vm _u = �p�� 
u� f(t)m _v = �q�� g � 
v0 = m(u2 + v2)� gq � l2�� p
u� q
v (33)Here, values of mass m = 5 � 10�5, damping 
 = 5 � 10�3, length l = 1,a

eleration due to gravity g = 1 are 
hosen. The tension � in the pendulumrod is an algebrai
 variable, while the position 
oordinates p and q and theirtime derivatives u and v are ODE variables. A periodi
 input ex
itation f(t) =0:2 sin(0:75�t) is 
hosen. The pendulum system is dissipative due to damping.Sin
e the tension � is always positive or zero, repla
ing the 
urrent �(t) with�(tn) � 0 for t 2 [tn; tn+1℄ still renders the system dissipative. This repla
ementexa
tly 
orresponds to the �rst-order split �h Æ �h. The exa
t solution hasan initial transient phase followed by a periodi
 steady state solution. Thesti�ness ratio for the pendulum system is O(102) leading to an initial transientphase for t 2 [0; 0:4℄.Using ba
kward Euler, whi
h is dissipative for the ODE system, one obtains adissipative splitting s
heme with no stepsize restri
tions for stability. On theother hand, numeri
al experiments indi
ate that the se
ond and third orderdeferred 
orre
tion s
hemes are only 
onditionally stable. For the present 
ase,the maximum �xed stepsize for the se
ond-order s
heme is 9 � 10�3, andrequires a CPU time of 0.13 to a
hieve an error of 1:45 � 10�5 at t = 10 in19




omponent p. The third-order s
heme has similar stepsize restri
tions. If 
oarsea

ura
y is required, the �rst-order splitting s
heme performs very well. Forexample, with h = 10�1, one 
an obtain a solution with an error of 5�10�3 in
omponent p in 10�2 CPU se
onds at t = 10 even though the solution is grosslyina

urate in the transient phase. Thus for high sti�ness ratios and situationswhere only 
oarse a

ura
y is required, a �rst-order dissipative splitting isre
ommended. If a dissipative split is not possible, fully impli
it methodsremain the most eÆ
ient approa
h to highly sti� DAE systems.Finally, we remark that the following stepsize sequen
es were 
hosen for the�rst-order and the se
ond-order splitting s
heme, to maintain a 
onstant errorof O(10�5) for t 2 [0; 10℄. In the se
ond-order splitting 
ase, the maximumstepsize is 
lose to the stability limit.First order impli
it split: h = 8>><>>:10�6 0 � t � 0:1210�6 + 10�2�10�60:88 (t� 0:12) 0:12 � t � 110�2 1 � t � 10(34)Se
ond Order Split: h = 8>><>>:1:25� 10�4 0 � t � 0:081:25� 10�4 + 0:0078750:92 (t� 0:0:08) 0:08 � t � 18� 10�3 1 � t � 10(35)Using these values for the stepsize, the CPU time for se
ond-order splittingis 2 � 10�2 se
onds whi
h is about 50 times smaller than the CPU time of�rst-order splitting. Higher order splitting s
hemes are more eÆ
ient whena

ura
y de
ides the stepsizes.6 Con
lusionsWe have analyzed and demonstrated �rst-order 
onvergen
e of standard ODEsplitting s
hemes for semi-expli
it index-1 DAEs, and employed a deferred
orre
tion paradigm to obtain eÆ
ient higher-order a

urate operator splittings
hemes for su
h DAEs.Numeri
al examples exhibit the expe
ted order redu
tion for the standardtwo-pass ODE splitting s
hemes and the theoreti
al orders of a

ura
y of ournew deferred 
orre
tion s
hemes, and show our s
hemes to be eÆ
ient in workand storage. While fully impli
it RK methods like RADAU5 are useful forsmall problems, they be
ome prohibitively expensive for large problems. Ouranalysis yields eÆ
ient methods for large problems where high-order splittingof 
onstraints from di�erential equations 
an be highly e�e
tive.20
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