Letter 7

Construction of a model of NFU*from an inaccessible

ROBERT M. SOLOVAY P. O. Box 5949 EUGENE, OR 97405

email: solovay@math.berkeley.edu

§1 Introduction

We are currently working in the theory **ZFC** + \mathbf{V} = \mathbf{L} + "There is an inaccessible cardinal". We let θ be an inaccessible cardinal. Our goal is to prove the consistency of \mathbf{NFU} *

Our goal in this letter is to carry out the construction of a term model which meets the sufficient conditions of letter 6 and so yields a model of **NFU***.

The construction will proceed in ω stages. At stage i we will define a lbfp $\alpha_i < \theta$ together with an equivalence relation \equiv_i on the closed terms of rank at most (α_i, i) . We will have

$$\alpha_0 < \alpha_1 < \alpha_2 \dots$$

We will let α be the supremum of the α_i 's.

1. 1

Since we will not know the value of α until the end of our construction the following trivial point is important to us. Let $\alpha < \theta$ be a lbfp. So as discussed in letter 4, α determines a term language \mathcal{L} .

Lemma 1.1 Let $\gamma < \alpha$. Let $n \in \omega$. The collection of closed terms of rank at most (γ, n) depends only on γ and n and not on α .

Proof: In fact this collection is just the set of closed terms of the following term language: (Cf. letter 5 section 2.1.)

- 1. It has a constant ξ_i for each i with $|i| \leq n$.
- 2. It has an m-ary function symbol $f_{m,i}$ for each $m, i \in \omega$ with m > 0.
- 3. It has a unary function symbol h_i for each i < n.
- 4. It has a constant symbol $\bar{\beta}$ for each $\beta < \gamma$.

Lemma

1. 2

In order to carry the induction along, we shall need to assume that the equivalence relation \equiv_n is very well instantiated in the sense of the following definition:

Definition 1.2 Let $n \in \omega$. Let $\alpha_n < \theta$ be a lbfp. Let \equiv_n be an equivalence relation on the closed terms of rank at most (α_n, n) . Then \equiv_n is very well instantiated if for every cardinal $\eta < \theta$ there is a (α_n, n) pre-instantiation model $\langle M, Y \rangle$ which well-instantiates \equiv_n and is such that the cardinality of Y is at least η .

1. 3

We let α_0 be the least lbfp. To start things off we need the following lemma; **Lemma 1.3** There is an equivalence relation \equiv_0 on the closed terms of rank at most $(\alpha_0, 0)$ which is very well instantiated.

Proof: An easy application of the Erdös-Rado theorem yields the following claim:

For every cardinal $\eta < \theta$, there is an equivalence relation \equiv_{η} [on the closed terms of rank at most $(\alpha_0, 0)$] which is well-instantiated by an $(\alpha_0, 0)$ pre-instantiation model $\langle M_{\eta}, Y_{\eta} \rangle$ with Y_{η} of cardinality at least η .

Now the number of possible choices of \equiv_{η} clearly is less than θ . Hence there is a fixed equivalence relation \equiv_{0} which is equal to \equiv_{η} for cofinally many $\eta < \theta$. \square_{Lemma}

§2 Continuing the construction

We consider the following situation. We are given the following data:

- 1. A number $n \in \omega$.
- 2. An ordinal $\alpha_n < \theta$ which is a lbfp.
- 3. An equivalence relation \equiv_n on the closed terms of rank at most (α_n, n) which is very well instantiated.

We shall, in this situation, define the following:

- 1. An lbfp α_{n+1} with $\alpha_n < \alpha_{n+1} < \theta$.
- 2. An equivalence relation \equiv_{n+1} on the closed terms of rank at most $(\alpha_{n+1}, n+1)$ which is very well instantiated and which, in an evident sense, prolongs \equiv_n . Of course, once we do this, we will have inductively defined the sequences

$$\langle \alpha_n \mid n \in \omega \rangle$$
 and $\langle \equiv_n \mid n \in \omega \rangle$.

2. 1

We say that an *instantiation function* is a function F with domain θ such that:

- 1. For each $\eta < \theta$, $F(\eta)$ will be an ordered pair $\langle M, Y \rangle$.
- 2. M will be some flavor of model of set-theory. In particular, the "underlying set" of M will be an L_{λ} where λ is a lbfp less than θ .
- 3. Y will be a subset of the underlying set of M consisting of lbfps. The order type of Y will be at least η .

2. 2 Stage 1

We start with an instantiation function F_0 that witness that \equiv_n is very well-instantiated.

If n = 0, we will bypass stage 1.

Suppose that τ is a closed term of rank at most $(\alpha_{n-1}, n-1)$. Then $j(\tau)$ has rank at most (α_n, n) . We say that τ is Cantorian if \equiv_n decrees that $\tau = j(\tau)$.

Let W_n be the set of closed terms τ of rank at most $(\alpha_{n-1}, n-1)$ such that:

- 1. τ is Cantorian.
- 2. \equiv_n "decrees" that τ is an ordinal.

We let W_n^* be the set of equivalence clases of W_n under the equivalence relation on W_n induced from \equiv_n .

We put a well-ordering on W_n^* as follows. Let τ_1 and τ_2 be elements of W_n . Then $[\tau_1] < [\tau_2]$ provided that \equiv_n "decrees" that $\tau_1 < \tau_2$.

2. 3

Let F and G be instantiation functions. We say that G is a *refinement* of F if the following obtains:

For every $\eta < \theta$, there is an $\eta' < \theta$ such that (letting $\langle M, Y \rangle = G(\eta)$ and $\langle M', Y' \rangle = F(\eta')$):

- 1. The underlying sets of M and M' coincide.
- 2. $Y \subset Y'$.
- 3. $H_i^M = H_i^{M'}$.

2. 4

The following lemma will be left "to the reader".

Lemma 2.1 There is a refinement F_1 of F_0 with the following property:

Let $\tau \in W_n$. Let $\eta < \theta$. Then there is an ordinal $\gamma < \theta$ such that if τ has the value γ in any instantiation derived from $F_1(\eta)$.

From now on we work with F_1 [and further refinements of it].

We shall refer to the ordinal γ provided by the lemma as the value of τ in $F_1(\eta)$

2. 5

Let $\tau \in W_n$. τ is divergent if the following obtains:

For every $\eta < \theta$, there is an $\eta' < \theta$ such that the value of τ in $F_1(\eta') > \eta$.

2. 6

We first consider the trivial case that that there are no divergent τ 's in W_n . In that case, we define an instantiation function F_2 as follows.

Let $\eta < \theta$. Suppose that $F_1(\eta) = \langle M, Y, \rangle$. Then we set $F_2(\eta) = \langle M', Y' \rangle$ where:

- 1. Y' = Y.
- 2. The structure M is a reduct of the structure M'. The only additional structure for M' is that a meaning is given to the function symbol h_n . It denotes the identially 0 function with domain the underlying set of M.

2. 7

Let us now take up the more interesting case where there are divergent τ 's.

In the first place, it is clear that whether or not τ is divergent depends only on its equivalence class with respect to \equiv_n .

Second, if τ_1 is divergent, and $[\tau_1] \leq [\tau_2]$ [with repesect to the well-ordering introduced in section 2.2], then τ_2 is divergent. So we can fix $\tau_0 \in W_n$ which has as small as possible equivalence class among divergent τ 's. The divergent τ 's are precisely those whose equivalence classes are $\geq [\tau_0]$.

We can find a refinement $F_{1.5}$ of F_1 with the following property:

Let $\eta < \theta$. Then the value of τ_0 in $F_{1.5}(\eta)$ is greater than the order type of the "Y" of $F_{1.5}(\eta)$.

We now define F_2 , a refinement of $F_{1.5}$, as follows:

Let $\eta < \theta$. Let $F_{1.5}(\eta) = \langle M, Y \rangle$. Then $F_2(\eta) = \langle M', Y' \rangle$ where:

- 1. Y' = Y.
- 2. The structure M is a reduct of the structure M'. The only additional structure for M' is that a meaning is given to the function symbol h_n . It denotes the function with domain the underlying set of M which is 0 except on Y' and which gives the order isomorphism of Y' with its order-type.

2.8

It is clear that there is an ordinal $\theta_0 < \theta$ such that if $\tau \in W_n$ is not divergent, then its value is less than θ_0 . To be definite, we take θ_0 as small as possible with this property.

We are now in a position to define α_{n+1} . It is the least lbfp which is greater than both α_n and θ_0 .

2. 9

We now employ the Erdös-Rado theorem to get the following:

There is a refinement F_3 of F_2 such that for any $\eta < \theta$, there is an equivalence relation \equiv_{η} on the terms of rank at most $(\alpha_{n+1}, n+1)$ such that if we set

$$F_3(\eta) = \langle M, Y \rangle$$

then for any increasing 2n + 3-tuple, $\beta_0, \ldots, \beta_{2n+3}$ chosen from Y instantiates \equiv_{η} .

There are less than θ possibilities for \equiv_{η} . Hence there must be some fixed \equiv' which occurs as \equiv_{η} for θ different η 's. We pick the least such as our \equiv_{n+1} . This completes our description of the successor step of the construction.

2. 10

That the term model constructed by the length ω construction just described meets the requirements of letter 6 will be left as an "exercise for the reader".

I am hoping that I have supplied sufficient detail for you to see your way through the proof of phase A of the converse direction. Of course, the hypothesis used in this proof can be considerably weakened. I shall take that issue up in phase B.

This ends letter 7.