Letter 5

The term model as a model of set theory

ROBERT M. SOLOVAY P. O. BOX 5949 EUGENE, OR 97405 email: solovay@math.berkeley.edu

§1 Introduction

We are currently working in the theory $\mathbf{ZFC} + \mathbf{V} = \mathbf{L} +$ "There is an inaccessible cardinal". We let θ be an inaccessible cardinal. Our goal is to prove the consistency of \mathbf{NFU} *

Let $\alpha < \theta$ be a lbfp. In the previous letter, we have associated to α a term language \mathcal{L} .

A term model [say \mathcal{M}] is given by putting an equivalence relation [say \equiv] on the closed terms of \mathcal{L} which satisfies the analogues of the usual axioms of equality. [This is fully discussed in letter 4.] The goal of this letter is to describe a condition on \mathcal{M} [being *well-instantiated*] which allows us to make \mathcal{M} into a model of set-theory.

To be quite pedantic, we will construct a model of a certain version of set-theory, T [to be described precisely in a moment] whose underlying set is the collection of equivalence classes of the equivalence relation \equiv . But we shall, in the future, abuse notation, and refer to the model thus created as \mathcal{M} also.

1. 1 The theory T

The theory T will have the following axioms:

- 1. The extensionality, foundation, infinity, union, power set, choice and pairing axioms.
- 2. The Σ_1 replacement axiom. This says that if $\phi(x, y)$ is a Σ_1 relation which is "functional" [that is, if $\phi(x, y_1)$ and $\phi(x, y_2)$ then $y_1 = y_2$] and A is a set then $\{y \mid (\exists x \in A)\phi(x, y)\}$ is a set. [Notice we do *not* require that $\forall x \in A \exists y \phi(x, y)$.]

3. V=L.

4. There are arbitrarily large lbfp's.

This is a fairly strong set-theory. [Though it is much weaker than **ZFC**.] Certainly, almost all of mathematics as it is done by the "mathematician in the street" can be carried out in this theory.

1. 2 An addition to letter 4

In letter 4 we made intuitive remarks about the purposes of the various function symbols of the language \mathcal{L} . We wish to make the following additional remark: **Remark 1.1** It is our intention that the functions h_i will have the following properties.

1. If x is not an ordinal, then $h_i(x) = 0$.

2. If β is an ordinal, $h_i(\beta) \leq \beta$.

The purpose of this condition will be to insure that the ξ_i are cofinal in the ordinals of the term model \mathcal{M}

$\S 2$ Well-instantiated term models

Let \mathcal{M} be a term model of \mathcal{L} . We are going to introduce the notion of \mathcal{M} being *well-instantiated*. This will serve to insure that \mathcal{M} does indeed conform to the intuitive remarks of the preceding letter 4.

2. 1

We begin with a series of preliminary definitons. Let $\alpha_1 < \alpha$. Let $n \in \omega$. We say that a closed term τ of \mathcal{L} has rank at most (α_1, n) iff:

1. If $\bar{\gamma}$ occurs in τ , then $\gamma < \alpha_1$.

- 2. If h_i occurs in τ , then i < n.
- 3. If ξ_i occurs in τ , then $|i| \leq n$.

2. 2

An (α_1, n) instantiation model M consists of the following:

- 1. The underlying set of M is L_{λ} for some lbfp λ such that $\alpha_1 < \lambda$.
- 2. There are lbfps $\beta_{-n} \dots \beta_n$ such that:

$$\alpha_1 < \beta_{-n} < \ldots < \beta_n < \lambda.$$

3. For i < n there is a map $H_i : L_{\lambda} \mapsto L_{\lambda}$ which satisfies the requirements discussed in Remark 1.1. 2. 3

Suppose that τ is a closed term of \mathcal{L} of rank at most (α_1, n) . We show how to associate a value to τ , τ^M , lying in L_{λ} .

For this it suffices to give the interpretation of all the function symbols and constants appearing in τ . We do this as follows:

1. If $\gamma < \alpha_1$, then the interpretation of $\bar{\gamma}$ is γ .

2. The interpretation of ξ_i is β_i (for $-n \leq i \leq n$).

3. The interpretation of $f_{n,i}$ is as discussed in letter 4.

4. Let i < n. Then the interpretation of h_i is given by H_i .

2.4

Let $\alpha_1 < \alpha$. Let $n \in \omega$. Let M be an (α_1, n) instantiation model. Then M instantiates \mathcal{M} if the following holds:

Let τ_1 and τ_2 be closed terms of \mathcal{L} of rank at most (α_1, n) . Then $\tau_1^M = \tau_2^M$ iff $\tau_1 \equiv \tau_2$ in the term model \mathcal{M} .

2. 5

We now define what it means for $\langle M, Y \rangle$ to be an (α_1, n) pre-instantiation model.

- 1. *M* is a first-order structure for the language of set-theory. The underlying set of *M* is L_{λ} for some lbfp λ such that $\alpha_1 < \lambda$.
- 2. Y is a subset of λ consisting of lbfps. The order-type of Y is a limit ordinal.
- 3. For i < n there is a map $H_i : L_{\lambda} \mapsto L_{\lambda}$ which satisfies the requirements discussed in Remark 1.1.

2. 6

Finally, we can say what it means for \mathcal{M} to be well-instantiated:

For every limit ordinal $\alpha_1 < \alpha$, for every $n \in \omega$, there is a (α_1, n) preinstantiation model $\langle M_1, Y \rangle$ such that if

$$\beta_{-n} < \ldots < \beta_n$$

are an increasing 2n + 1-tuple of elements of Y, then $\langle M_1, \beta_{-n}, \ldots, \beta_n \rangle$ instantiates \mathcal{M} .

§3 Making \mathcal{M} into a model of set-theory.

Some terminology: I shall refer to the $f_{n,i}$'s as *local functions*. As I have already remarked this conflicts with my terminology in my proof that NFUA yields *n*-Mahlos.

We are going to associate a model of the theory T to the term model \mathcal{M} . We have already said that the underlying set of this model will be the set of \equiv equivalences classes.

3. 1

Next, we have to define the ϵ -relation of the model. Let g_1 be the binary function [one of the $f_{2,i}$'s] that does the following: If $x \in y$, then $g_1(x, y) = 1$. Otherwise, $g_1(x, y) = 0$.

Let τ be a closed term of \mathcal{L} . We let $[\tau]$ be the equivalence class of τ with respect to the relation \equiv of \mathcal{M} . The various function symbols of \mathcal{L} determine, in an obvious way, functions which act on the set of equivalence classes. We use the same notation for these derived functions as for the corresponding symbols.

Let τ_1 and τ_2 be closed terms. We put $[t_1]\epsilon_{\mathcal{M}}[\tau_2]$ iff $g_1([\tau_1], [\tau_2]) = 1$. [By abuse of language, for $\gamma < \alpha$, we write γ for $[\bar{\gamma}]$.]

3. 2

It will take us a while to establish that T holds in the model just described. Before taking the first step along the way, we need to nail down precisely what we mean by Σ_0 -formulas. These are the class of formulas inductively defined by the following requirements:

- 1. If v and w are variables then " $v \in w$ " and "v = w" are Σ_0 formulas.
- 2. If ψ is a Σ_0 formula, then so is $\neg \psi$.
- 3. If ψ_1 and ψ_2 are Σ_0 formulas so is $\psi_1 \lor \psi_2$.
- 4. If v and w are distinct variables and ψ is a Σ_0 formula, then so is $(\exists v \in w)\psi$.

It is no real loss of generality to require in clause 4 that neither v or w appears bound in ψ . We shall assume this in what follows. 3. 3

Lemma 3.1 Let \mathcal{M} be well-instantiated. Let $\psi(v_0, \ldots, v_m)$ be a Σ_0 formula. Let α_1 be a limit ordinal less than α and let $n_1 \in \omega$.

We suppose that τ_0, \ldots, τ_r are closed terms of \mathcal{L} of rank at most (α_1, n) . Let M be an (α_1, n_1) instantiation model for \mathcal{M} .

Then the following are equivalent:

- 1. $\mathcal{M} \models \psi([\tau_0], \ldots, [\tau_r]).$
- 2. $M \models \psi(\tau_0^M, \dots, \tau_r^M)$.

Proof: The proof proceeds by induction on the length of ψ . We shall only consider the case when ψ has the form $(\exists v \in v_0)\chi(v, v_0, v_1, \ldots, v_r)$. The other cases [when ψ is atomic or a boolean combination of shorter formulas] will be left to the reader.

We fix $\alpha_1 < \alpha$ and $n_1 \in \omega$. Let τ_0, \ldots, τ_r be closed subterms of \mathcal{L} of rank at most (α_1, n_1) . Let M be an (α_1, n_1) instantiation model for \mathcal{M} .

This case reduces to two subclaims.

Claim 3.1.A Suppose that
$$M \models \psi(\tau_0^M, \ldots, \tau_r^M)$$
. Then $\mathcal{M} \models \psi([\tau_0], \ldots, [\tau_r])$.

Proof: Let $g_2(x_0, \ldots, x_r)$ be a local function with the following property:

1. If $(\exists x \in a_0)\chi(x, a_0, \ldots, a_r)$ then $g_2(a_0, \ldots, a_r)$ is the *L*-least such *x*.

2. Otherwise, $g_2(a_0, ..., a_r) = 0$.

Let τ^* be the term $g_2(\tau_0, \ldots, \tau_r)$. Then clearly τ^* has rank at most (α_1, n_1) . Moreover, by the hypothesis of this claim and the definition of g_2 we have

$$M \models [\chi(\tau^{\star}, \tau_0, \dots, \tau_r) \land \tau^{\star} \in \tau_0].$$

Using our inductive hypothesis, we conclude that

$$\mathcal{M} \models [\chi([\tau^{\star}], [\tau_0], \dots, [\tau_r]) \land [\tau^{\star}] \in [\tau_0]].$$

Hence $\mathcal{M} \models \psi([\tau_0], \ldots, [\tau_r])$. \square ^{Claim}

Claim 3.1.B Suppose that $\mathcal{M} \models \psi([\tau_0], \dots, [\tau_r])$. Then $\mathcal{M} \models \psi(\tau_0^M, \dots, \tau_r^M)$. **Proof:** Let τ^* be a closed term such that

$$\mathcal{M} \models [\chi(\tau^{\star}, \tau_0, \dots, \tau_r) \land \tau^{\star} \in \tau_0].$$

We choose $\alpha_2 < \alpha$ and $n_2 \in \omega$ such that $\tau^*, \tau_0, \ldots, \tau_n$ are closed terms of rank at most (α_2, n_2) . Let M_2 be an (α_2, n_2) instantiation model for \mathcal{M} .

Let $g_3(x_0, \ldots, x_r)$ be a local function with the following properties:

- 1. $g_3(x_0, ..., x_r) \in \{0, 1\}$ for any choice of $x_0, ..., x_r$.
- 2. $g_3(x_0, \ldots, x_r) = 1$ iff $\psi(x_0, \ldots, x_r)$. Let $\tau^{\#}$ be the closed term $g_3(\tau_0, \ldots, \tau_r)$. Then $\tau^{\#}$ has rank at most (α_1, n_1) . By our inductive hypothesis, $M_2 \models [\chi(\tau^{\#M_2}, \tau_0^{M_2}, \ldots, \tau_r^{M_2}) \land \tau^{\#M_2} \in \tau_0^{M_2}]$. Hence $M_2 \models \psi(\tau_0^{M_2}, \ldots, \tau_r^{M_2})$. It follows that in $M_2, g_3((\tau_0^{M_2}, \ldots, \tau_r^{M_2}) = 1$. Since M_2 is an (α_2, n_2) instantiation model for \mathcal{M} , we have $g_3(\tau_0^{M_2}, \ldots, \tau_r^{M_2}) \equiv \overline{1}$ in \mathcal{M} .

Since M is an (α_1, n_1) instantiation model for \mathcal{M} we have, in M,

$$g_3(\tau_0^M, \ldots, \tau_r^M) = 1.$$

Hence, $M \models \psi(\tau_0^M, \dots, \tau_r^M)$. \Box ^{Claim}

3.4

The proofs of the following lemmas will be left to the reader. Their proofs employ both the statement of Lemma 3.1 and ideas used in its proof. [Using local functions as Skolem functions; checking assertions by using auxiliary models [like M_2 in the proof of Claim 3.1.B.]]

Lemma 3.2 The axioms of foundation, extensionality, pairing, union, power set and infinity hold in \mathcal{M} .

3.5

It is well-known that there is a sentence σ such that:

- 1. If λ is an uncountable cardinal, then L_{λ} models σ .
- 2. If x is a transitive set such that σ holds in x, then x has the form L_{λ} for some limit ordinal λ .

Remark. I have stated a version of this result which suffices for our applications and which is easy to prove. In fact, one can arrange that the transitive models of σ are precisely the sets L_{λ} for some ordinal $\lambda > 0$. But this takes considerably more delicate arguments.

When I say $\mathbf{V}=\mathbf{L}$ in the following lemma, I mean: every set x is a member of a transitive set y such that y models σ .

Lemma 3.3 V=L holds in \mathcal{M} .

Corollary 3.4 The axiom of choice holds in \mathcal{M} .

3.6

In checking that an ordinal β is a lbfp, it suffices to see that a certain sentence [which we will not construct in detail] holds in the power set of L_{β} . Using this and Remark 1.1, the following is easy to prove:

Lemma 3.5 The elements $[\xi_i]$ (for $i \in \omega$) are lbfp's in \mathcal{M} and are cofinal in the ordinals of \mathcal{M} .

3. 7

Using the previous lemmas and the fact that for β , β' bfp's with $\beta < \beta'$, Σ_1 formulas are absolute between L_{β} and $L_{\beta'}$, it is easy to prove the following lemma:

Lemma 3.6 Σ_1 -replacement holds in \mathcal{M} .

We have proved:

Theorem 3.7 \mathcal{M} is a model of T.

This ends letter 5.