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In this work, we consider hydrodynamic problems with cold flame 
propagation by merging a second-order projection method for viscous 
Navier-Stokes equations with modern techniques for computing the 
motion of interfaces propagating with curvature-dependent speeds. 
This is part of our efforts to try and approximate the solution of a sim- 
plified model of turbulent combustion. Results are given for a simple 
model of a flame burning in driven cavities and shear layers. © 1992 
Academic Press, Inc. 

INTRODUCTION 

In this paper, we merge modern techniques for computing 
the solution to the viscous Navier-Stokes equations with 
new techniques for computing the motion of interfaces 
propagating with curvature-dependent speeds. The resulting 
algorithm tracks the motion of an evolving interface in 
a complex flow field and easily handles complex changes in 
the front, including the development of spikes and cusps, 
topological changes, and breaking/merging. As examples, 
we apply the resulting algorithm to interface boundaries in 
a driven cavity and in a shear layer and cold flame propaga- 
tion in a hydrodynamic field. 

At the core of this work are two separate numerical algo- 
rithms. The first is a second-order projection method due to 
Bell, Colella, and Glaz [-1] which extends the original 
projection technique introduced by Chorin [4, 5]. This 
algorithm is used to track the evolving hydrodynamic flow 
field and has produced some dramatic results of evolving 
flow, see Bell and Marcus I-2, 3 ]. The second set of numerical 
algorithms is a new class of schemes to follow the evolution of 
propagating interfaces. These techniques, introduced by 
Osher and Serbian [-12 ], rely on a level se t partial differential 
equation to describe the motion of the propagating interface 
which may be approximated by borrowing technology from 
the numerical solution of hyperbolic conservation laws. The 
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merger of these two techniques results in a robust approach to 
hydrodynamic problems with interfaces. 

The work presented here, in some sense, is the next stage 
in the incorporation of the interface methodology presented 
in [-12] into modern techniques for computational fluid 
mechanics. Starting from the original interface work in 
[-12], the interface equations were coupled to the equa- 
tions of compressible gas dynamics in [-10] to study the 
Ray!eigh-Taylor and Kelvin-Helmholtz instabilities. In 
that work, two approaches were examined. In one 
approach, the interface equation was directly incorporated 
as a fifth conservation law and approximated using 
standard shock technology. Alternatively, the compressible 
flow equations were solved at each time step for the velocity 
field, which was then used to advect the interface. In [10] 
the coupling between the interface and the underlying 
hydrodynamics rested on locating the interface to determine 
the appropriate constant in the y-gas law. 

In this paper, we focus on the application of the level set 
interface methodology to the case of viscous flow. These 
equations are solved by a projection-type method which 
first advances the velocity field by one time step and then 
enforces incompressibility as a constraint by projecting the 
new time step data onto the space of incompressible flows. 
As examples, we consider simulations in which the location 
of the interface may change as a result of both self-propaga- 
tion (due to local geometric properties, for example) and, 
through underlying advection, by the hydrodynamic flow 
field. However, in this paper we do not consider problems in 
which the feedback mechanism is completed and the inter- 
face affects the hydrodynamic field. One such example of 
complex fluid-interface interactions with an extremely 
intricate feedback mechanism between the propagating 
interfaces and an underlying heat diffusion equation applied 
to crystal growth and dendrite solidification was studied 
using the level set methodology in [16]. 

The outline of this paper is as follows. First (Section 1), 
we begin with a description of the second-order projection 
method as developed by Bell, Colella, and Glaz [ 1 ]. Next 
(Section 2), we derive the interface equations for the level 
set approach and discuss numerical approximations. In 
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Section 3, we present the numerical details of our imple- 
mentation and give results of numerical simulations of 
propagating interfaces in driven cavities, shear layers, and 
the numerical simulations of cold flames in hydrodynamic 
fields. 

1. THE SECOND-ORDER PROJECTION METHOD 

1.1. Theory 

In this section we describe a second-order projection 
method for the time-dependent, incompressible Navier-  
Stokes equations developed by Bell, Colella, and Glaz [1 ]. 
The Navier-Stokes equations for incompressible flows are 

u~ + (u. V)u = -Vp +--1 V2u (11) 
Re 

V . u = 0  (1.2) 

on a domain £2, where u is the velocity field, p is the 
pressure, and Re is the Reynolds number. The initial- 
boundary value problems for the Navier-Stokes equations 
include specifying the initial u throughout 12, and the 
boundary condition for u, but not for p on ~12. 

The original projection method for incompressible flows 
was introduced by Chorin [4, 5] to view the incom- 
pressibility condition as a constraint. The central idea is to 
update the velocity by first ignoring the incompressibility, 
marching forward one time step and then projecting onto 
the space of the incompressible flows. It was inspired by the 
Hodge decomposition which states that a vector field v 
defined on a domain 12 can be uniquely decomposed into a 
divergence-free part u, which satisfies the boundary condi- 
tion u - u = 0 ,  where n is the unit normal vector to the 
boundary, and the gradient of some scalar function ~b. We 
shall follow the construction given by Bell, Colella, and 
Glaz [ 1 ]. 

We begin by reorganizing the terms in the Navier-Stokes 
equations in the form 

1 2 
u , + V p  = ~ e  V u -  (u.V)u. (1.3) 

Thus, by the Hodge decomposition, u, is the divergence-free 
component obtained by projection of the right-hand side 
onto the space of incompressible flows. We extend this argu- 
ment to the semi-discrete form, defining u n to be the velocity 
at t = n At, p~ + 1/2 the pressure at t = (n + ½) At. Given u ~, 
pn - 1/2, we hope to find u" + 1 and p" + 1/2 satisfying 

At +VP~+ m Re - 

- ( u . V u )  n+l/2 (1.4) 

V . u  ~ + 1 = 0 .  (1.5) 

While this scheme is second order in time, it is not practical 
because of the poor conditioning of the linear system that 
arises [ 1 ]. The second-order method we describe here, like 
the original first-order method, computes an intermediate 
vector field and then projects it onto the divergence-free 
field. The other two parts of this scheme are the evaluation 
of the non-linear advection term (u-Vu) "+1/2 and the 
projection itself. 

Instead of solving Eq. (1.4) with the incompressibility 
constraint (1.5), we solve the intermediate velocity field u*, 

A- - - -~  + Vp" - 1/2 = R---e 

- (u .Vu)  "+1/2. (1.6) 

Let us project u* onto the divergence-free field and write 

u* =u~+ l + 3 t  Vp*; (1.7) 

then Eq. (1.6) becomes 

U n + l  __U n 
+ V(p" -  1/2 + p . )  

At 

1 v 2 ( u n T n + l ,  ) (u . V u ) n + l / 2  
Re 

+ 2@e V2(VP * ) 

V . u  "+1 = 0 .  

(1.8) 

(1.9) 

In other words, the left-hand side is decomposed into 
the divergence-free part and the gradient of the scalar 
field pn 1/2+p. .  By comparing Eqs.(1.8~(1.9) with 
Eqs. (1.4)-(1.5) we see that 

p,, + 1/2 = pn -- 1/2 "t- p *  (1.10) 

if the term (3 t/2Re) V2(Vp*) vanishes. This can be achieved 
by an iterative process. Namely, we take pn+ 1/2,k and solve 
Eq. (1.6) for u*'k; once we have u *'k we decompose the 
right-hand side of Eq. (1.6) into 

U n + l,k - -  U n 

3 t  
j_ Vpn+ 1/2,k + 1 

Re 
(1.11) 

Then we use this pn+ 1/2,k+1 to repeat the process until we 
have the convergence u *'~ ~ u n + 1,~ ~ u" + 1 and pn + U2,k 
pn+ 1/2. The first guess pn+ 1/2,0 can be taken as pn-1/2 for 
n ~> 1, and for n = 0 we take zero as the first guess. In prac- 
tice, we have found that for 3 t  small enough, iteration is not 
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needed beyond the first time step and the single step process 
in (1.11 ) is sufficient for our purpose. At the initial time step, 
we do not have the exact pressure field, so it is necessary to 
iterate this process more than once. 

1.2. Implementation 

Next, we describe the spatial discretization and the 
evaluation of the non-linear terms. For simplicity, we 
assume a rectangular domain with n x m grid points. First 
we point out that the terms (u-Vu) n+1/2 are determined 
explicitly, based entirely on information at t n. Thus, solving 
Eq. (1.11 ) in time reduces to solving the heat equation with 
a known source term. The discretization is done in the 
following way: the velocity and pressure gradients are 
defined in the centers of all cells and the pressure is defined 
on all corners, The diffusion operator is approximated by 
central difference with special care taken at the boundary 
points. This leads to a five-band linear system which, 
together with the known source terms, can be solved by a 
standard conjugate gradient method. 

Next, we briefly describe the evaluation of the known 
source term (u .Vu) ~+1/2. First, the equation is set on the 
centers of all cells. Thus, (u .Vu) "+1/2 is evaluated at the 
center of a cell. It is approximated by the edge values at 
t n :~ 1/2 in the following way: 

(11" VU)in + 1/2 -~_--1 (igi+ l/2,j -~ bli-- 1/2,j) 
2 

[li+ 1/2,j -- Ui 1/2,j 
X 

A x  

1 
+ ~ (v,.j+ 1/2 + v, ,s-  1/2) 

>( Ui, j + 1/2 -- Ui, j-- 1/2 (1.12) 
Ay 

To illustrate the way of calculating the edge values at t n ÷ 1/2, 
we take u~+ 1/2,j as an example. We can use Taylor expan- 
sion both in time and space and extrapolate either from the 
left cell, 

A x  At  
Lln+l/2'L--bl n 2 - T U , c i j  + . , .  i+l/2, j -- i ]  ~ ~.~ b!t,i,j, (1.13) 

or from the right cell. We choose to approximate values by 
means of an upwinding scheme. In this method we use the 
Godunov scheme. Since the scheme is explicit we require the 
CFL condition 

(lu/j[ _At, ' v~IA t.) (1.14) max ~< 1 
~/ \ A x  

We construct the spatial and temporal derivatives by the 
following steps. For spatial derivatives we compute a linear 
profile within each cell first, and then limit the slopes so new 
maxima and minima are not introduced. For  the temporal 
derivatives we go back to the Navier-Stokes equations to 
obtain an approximation for u, by information at the 
previous time step. Again, we present the algorithm as 
derived by Bell, Colella, and Glaz; details may be found 
in [1].  

The last part of each iteration is the projection itself. The 
direct computation of the divergence-free part of v is based 
on a discrete Galerkin formulation. That is, we find a local 
basis for the finite-dimensional discrete incompressible 
vector field and use the representation in this basis to 
determine the projection of any vector onto this field. To 
guarantee that such a finite-dimensional basis exists we need 
some requirements for the discrete gradient G and the 
discrete divergence D. The Hodge decomposition is based 
on the fact that if we integrate by parts we find that 

f a u .  V~b dx = - fo  ~bV. u dx  = 0. (1.15) 

One crucial part of the numerical formulation is the con- 
struction of the finite difference gradient operator G and the 
divergence operator D to satisfy the discrete analogue 

(u, V~b)= - ( D - u ,  ~b) (1.16) 

for discrete velocity field u and scalar field ~b. This is a sum- 
mation-by-parts procedure and one operator will define the 
other. In our case we define G first at the center of a cell to 
be 

- -~ i+l /2 ,  j 1/2--~i--1/2, j - -1 /2 /  ] 

/ 

for both interior and boundary points. By the summation- 
by-parts of Eq. (1.16) we determine the discrete divergence 
operator implicitly. 

After the derivation of operator D we define the vector 
space 

V a = {u: (Du),+ 1/2,j÷ 1/2 = 0; 

i = 1  ..... n - - l , j = l  ..... m - - l } .  to be satisfied. (1.18) 
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Since the discrete fluid velocity space V is the direct sum of 
V d and the space of discrete potentials, Stephens et al. [ 17 ] 
have shown that the dimension of this' space 

dim V a = dim V -  dim G 

= d i m V - [ ( n + l ) ( m + l ) - d i m ( K e r G ) ] .  (1.19) 

We note that dim V= 2nm and dim(Ker G) = 2, so 

dim V a = (n - 1 ) (m - 1 ). (1.20) 

To look for a basis of V d we need only to look for a basis 
of the discrete stream function field, which is a scalar field. 
Let t) i+1/2"j+1/2= 1 on the corner ( i+  1 /2 , j+  1/2) and 0 
everywhere else; then the velocity field induced by this 
stream function, G±O ~+1/2"j+1/2 is, first of all, divergence 
free and, second, they are linearly independent. Further- 
more, there are exactly ( n - 1 ) ( m - 1 )  interior corner 
points; we conclude that they form a basis of V d. 

Once we have an explicit basis, we write the projection of 
any vector v in the form 

pv=~ei+l/2,j+l/2G±O i+1/2'j+1/2 (1 .21)  
i,j 

and, since v - Pv is perpendicular to V a, we have 

/ \ 
l ;  0~i+ 1/2,j+ I/2G±@ i+ 1/2,.j+ 1/2 G±~li'+ l/2,j'+ 1/2) 

= ( v , G ± O  i'+1/2'./'+1/2) forall  i ' , j ' .  

(1.22) 

These constitute the linear system for the projection. 
The linear system is in fact a discrete form of the vorticity- 

stream function equation -VSO = co, with the inclusion of 
boundary conditions for 0. The stencil is derived from forms 
of the discrete gradient operator G and the divergence 
operator D thus defined through the adjoint relation (1.16), 
and in this case, it is the standard five-point turned by an 
angle of re/4, with mesh size x/2 h for the case A x  = A y  = h. 
This decouples the system into two independent systems; 
which is not surprising, since dim(Ker G) = 2. 

speed and hyperbolic conservation laws discussed in 
[14, 15]. They can be used to track highly complex moving 
interfaces in two and three space dimensions. Because these 
techniques do not rely on a discrete parameterization of the 
front itself, they naturally handle situations in which the 
front may develop cusps and spikes, change topology, and 
break/merge. The equations of motion and numerical 
approximations were discussed in [12]. Recently, these 
techniques have been applied to interface problems in 
the development of singularities in mean curvature flow 
[14, 15], compressible gas dynamics [10], and crystal 
growth and dendrite solidification [16]. In addition, 
theoretical analysis of mean curvature flow based on the 
level set model presented in [12] has recently been 
developed in [9].  Below, we present the basic ideas behind 
these techniques. The most straightforward derivation of 
the basic equations of motion was given in [10], and we 
follow that derivation below. 

2.1. Equat ions  o f  M o t i o n  

Suppose we wish to follow the evolution of an interface 
F( t )  propagating with speed Fnormal  to itself, in either two 
or three dimensions. The essential idea is to construct a 
function ~b(x, t) defined in all of the domain, such that the 
level set {~b = 0} always corresponds to the position of the 
front F(t) .  That is, 

v(t)= { x : ~ ( x ,  t) = 0}.  (2.1) 

Suppose we can smoothly extend F to all of the domain. (In 
fact, we only need to construct F in a neighborhood of the 
zero level set to derive the equation of motion, but the prac- 
tical implementation is easier with a full extension). We can 
then derive a partial differential equation for the evolution 
of ~b. Initialize ~b(x, 0) such that 

~b(x, 0) = distance from x to F(t ) ,  (2.2) 

where the plus (minus) sign is chosen if x is inside (outside) 
the initial front F( t  = 0). Pick any level set ~b = C and let x(t) 
be the trajectory of a particle located on this level set, so that 
for all time we have 

~b(x(t), t ) =  C. (2.3) 

2. P R O P A G A T I N G  INT E RFACE S  BY 
LEVEL SET TECHNIQUE 

In this section, we describe the details of a new class 
of algorithms for the following moving interfaces. These 
techniques were introduced in [ 12] and grew out of a link 
between interfaces propagating with curvature-dependent 

Since the level set moves with speed F normal to itself, we 
must have that 

~X 
- - - n  = F, (2 .4)  
0t 

where n is the normal vector given by n = -V~b/lV~bl. 
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By the chain rule, we have that 

Ox 
(2.5) 

and substitution yields 

~bt - F IV~b] = 0 (2.6) 

~b(x, t = 0 )  = given. (2.7) 

This equation yields the motion of the front F(t) with 
normal velocity F on the level set ~b = 0. We refer to this 
equation as a "Hamilton Jacobi" level set formulation. 
Strictly speaking, it is only a Hamilton-Jacobi equation 
in the case when F is constant, but the flavor of Hamil ton-  
Jacobi equations is present. 

To summarize, we have derived an equation of motion for 
a higher dimensional function ~b for which the level set q) = 0 
always corresponds to the motion of the original front. 
Another way to say this is that we have transformed the 
Lagrangian equation which would have resulted from a 
parameterization of the moving interface into an Eulerian 
equation on a fixed grid of one higher dimension. We 
have traded an (n-1)-dimensional  hypersurface for an 
n-dimensional Eulerian problem. 

Fortunately, the advantages of this exchange far out- 
weigh the additional computational energy required by the 
extra dimension. To begin, we observe that the function 
~b(x, t) always remains a function, even if the level surface 
~b=0 corresponding to the front F(t) changes topology, 
breaks, or merges. In such cases, parameterizations of the 
front often break down. As an example, consider two circles 
in R 2 expanding outwards with normal velocity V= 1. The 
initial function ~b is double-humped. As ~b evolves under the 
Hamilton-Jacobi equation of motion, the topology of the 
front ~b = 0 changes. When the two circles expand, they meet 
and merge into a single closed curve with two corners. This 
is reflected in the change of topology of the level set ~b = 0. 

Thus, the level set approach avoids the complex 
bookkeeping that plagues discrete parameterization tech- 
niques when the interface changes topology. Another 
advantage is that the technique is applicable in any number 
of space dimensions: calculations of interfaces propagating 
in three space dimensions are discussed in detail in [-12]. 

Finally, the central advantage of this approach is that, 
because we have posed an Eulerian problem for the motion 
of the propagating interfaces, fixed grid finite differences 
may be used to approximate the equations of motion. While 
care must be taken to choose difference schemes that satisfy 
an entropy condition for propagating fronts, the most basic 
versions of the schemes presented in [12] are extremely 
straightforward and simple to program. In the next section 
we give the motivation and form of the most basic 
technique. 

2.2. Link between Propagating Interfaces and Hyperbolic 
Conservation Laws 

It is tempting to use a central difference approximation to 
the gradient in Eq. (2.6) and thus produce the obvious 
explicit scheme (central difference in space, forward dif- 
ference in time) for the update ~b n + 1. Unfortunately, such an 
approximation is unworkable, for reasons which we now 
explain. For details, see [12, 14, 15]. 

Consider the simple case of a front propagating with 
speed function F = 1 - e~c, where e is a small parameter and 
K is the local curvature. The equation of motion for the 
propagating function ~b is then given by (see [12-I) 

(2.8) 

here we have used the coordinate-free definition of the cur- 
vature. Numerical evidence in [14, 15], followed by a proof 
in [12] shows that for e > 0 ,  the right-hand side diffuses 
sharp gradients and forces the ~b to stay smooth for all time. 
Conversely, for e = 0, corners develop and a singularity 
develops in the curvature. This situation is analogous to 
solutions of hyperbolic conservation laws, in which the 
absence of viscosity on the right-hand side allows the 
development of shock discontinuities in the propagating 
solution. Indeed, an entropy is required to force the correct 
solution for propagating interfaces which is equivalent to 
the one required for hyperbolic conservation laws. A full 
description of this entropy condition and the link between 
propagating interfaces and hyperbolic conservation laws 
are given in [ 14, 15 ]. 

Thus, an accurate numerical approximation to the equa- 
tion for a propagating interface must pick out the correct 
entropy-satisfying solution and avoid excessive smearing at 
sharp discontinuities. This leads quite naturally to the use of 
schemes borrowed from the numerical solutions of hyper- 
bolic conservation laws, where stable, consistent, entropy- 
satisfying schemes have a rich history. For  an overview of 
shock schemes for solving conservation laws, see [ 11 ]. 

2.3. Numerical Approximation to the Level Set Equations 

Complete explanation of the use of shock schemes for 
approximating the level set equation (2.6) may be found in 
[-12]. Briefly, consider a one-dimensional version of the 
level set equation, and let 

H(~bx) = (~b~) 1/2. (2.9) 

Then a forward time-discrete version of Eq. (2.6) may be 
written as 

~bn + 1 = ~bn + zlt H(~bx). (2.10) 
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Let g be an appropriate numerical flux function 
approximating H. Then we may directly approximate the 
spatial term and write 

~ n +  1 = ~n'-~- A t g ( D ~ -  ~bT, D +  ~bT), (2.11) 

where D + (D2) is the forward (backward) difference 
operator. In multiple space dimensions and the special case 
where H(u)= u 2, a particularly straightforward numerical 
flux function was given in [8, 12], namely, 

(~7 +1 = (~7 + At(F) 

x ((min(DU ~bT, 0)) 2 + (max(D + ~b~, 0))2). (2.12) 

This conservative monotone scheme is an upwind method, 
in that it differences in the direction of propagating charac- 
teristics. Equation (2.12) completely specifies the numerical 
approximation to Eq. (2.6). Details may be found in [,,12]. 

For the Dirichlet problems we choose the driven cavity 
problem because of its distinctive vortex feature and 
literature on the subject. We solve the Navier-Stokes equa- 
tions in the unit box g2 = [,0, 1 ] x ro, 1 ]. The initial condi- 
tion is that u = 0 inside the box with no-slip and no-flow 
boundary condition along the boundaries except at the top, 
where u=  (1, 0). With Reynolds number Re= 1000, the 
flow takes about 50 dimensionless time units to become 
fully developed. We examine the velocity field at this time 
and note that, besides the main eddy, which is located near 
the box center, a little bit above and to the right of the box 
center, there are secondary eddies near the lower corners. 
The strength of these eddies is substantially weaker than 
that of the main eddy. 

In the case of periodic problems, the absence of bound- 
aries eliminates the boundary layers and viscosity plays a 
negligible part in the motion when it is small. For solutions 
to the Navier-Stokes equations with large Reynolds 

2.4. Addition of Underlying Advection 

In the problems under study in this paper, the underlying 
advection plays the key role in the transport of the interface. 
This may be easily incorporated in the level set framework. 
Let U be the velocity field throughout the domain. Then the 
equation of motion for an interface propagating normal to 
itself with speed F and advected by an underlying fluid with 
velocity U is given by 

~ , - F  IVq~l + U.V¢ = 0. (2.13) 

i l l t i l r  

t =54. 

I i 

i I i 

i I I 

t = 6 4 .  

3. NUMERICAL IMPLEMENTATION 
AND RESULTS 

In this section we describe briefly the numerical 
implementation and present our results. The fluid calcula- 
tion part is independent of the front propagation part and 
therefore can be tested before we merge the two parts. This 
part of the algorithm is identical to the one in [ 1 ]. We have 
developed codes to solve both the Dirichlet and the periodic 
boundary values problems. For each case we compute the 
solution on uniform grids with d x - - d y =  ~4, 118 and 
At = min(Ax/2, Atcn), where Aton is the largest time step the 
CFL condition allows. The time stepping is absolutely 
stable, since it is a Crank-Nicholson approximation and 
is done by a straightforward conjugate gradient method. 
The evaluation of the nonlinear terms involves Taylor 
extrapolations and solving Riemann problems. We use the 
Godunov scheme for this purpose. The projection part is the 
most time-consuming part as far as computing time is con- 
cerned. We use a preconditioned conjugate gradient method 
to solve the linear system and choose the incomplete 
Cholesky decomposition to be the preconditioner. 

t =66. 

- .........., 

t =68. 

, , !iii :- 

t =72. 

FIG.  1. 

i:i:iii!i:~ i:i:i:i:!i!i:~:i:i:i:~iiii~:i:ii.*.'iiiiiiii:i~iiiiiii~iil.i!iii!i~i~i 

t = 8 0 .  

C o n s t a n t  ignit ion at  a b o t t o m  point :  F(~z) = 0.01. 
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numbers, the inviscid solutions will provide us with a good 
approximation. Thus, to simplify thecalculation and con- 
centrate on the vortex dynamics and its impact on burning 
flames, we instead solve the Euler equations. The linear 
algebra part for periodic geometry is similar to the Dirichlet 
geometry, except that we need to pay more attention to the 
null space elements. We consider the smoothed jet flow in 
the periodic domain [0, 1 ] x [0, 1 ] and use the same initial 
data as in [ 1 1, where 

Itanh( ) ,or y<.05 
u = (3.1) 

[ t anh  (0"75-  y )  for y > 0 . 5  

v = 6 sin(27zx). (3.2) 

We also choose the parameters p = ~ and ~ = 0.05 to help 
us to compare our results with the results in [ 1 ]. We have 

obtained identical vorticity contours to those in [ 1 ]. As we 
refine the calculations, the vorticity layers become thinner 
and thiner. This agrees with the results in [ 1 ]. 

Next we consider a propagating interface by studying the 
propagation of a cold flame burning with speed F = S - ex, 
where e is a small parameter and ~ is the local curvature, see 
[14]. The equation to be solved now is 

¢ , - s  [V¢l + u . v ¢  

: e  ¢x~¢~- 2~bxyCx¢: + ¢yy¢2 (3.3) 

Here, we repeat the calculations performed in [13], 
obtained using a volume-of-fluid interface technique. Since 
the flame propagation does not affect the fluid calculation in 
this model, we use a first-order explicit scheme to update ¢. 
A second-order version of the level set scheme is derived in 
[-12]. The passive advection part U. V¢ is well known [7] 

i I ~ I ' I i ( 
i L i 

I i I i I i 

t = 5 4 .  t = 0 4 ,  

t =66. 

. . . . .  .. -.. -.3 .:.:.:... .... 

I I I I I 

t = 5 0 . 4  

• ================================ . 
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and we simply use a first-order upwind difference scheme. 
For the hyperbolic part S [V~b[, as we mentioned in 
Section 2, a particularly simple numerical flux function is 
the Enquist-Osher scheme and we use it in our calculations. 
Given a burning speed F = S - - e x ,  the parabolic part 
requires a much smaller time step than the one allowed by 
the fluid calculation. Therefore we introduce another time 
step ~t inside the fluid calculation time step interval, used 
for the updating of (b within a single time step At, while the 
fluid velocity used remains the same for this time period 
calculation. We find that letting ,~t = Ax2/4e is adequate for 
this purpose. For the approximation of x, we use central 
difference for both the first and second derivatives. To avoid 
numerical singularity when [V~bl is close to zero, we smooth 
the expression for x in (3.3), replacing IV~b[ 2 by ]V~I ~ + 6 ~ in 
the denominator where 6 is some small positive constant. 

There are two kinds of ignition: one is to ignite the fluid 
located in the ignition cell only once which we call "sparked 
ignition"; the other is to constantly ignite the cell which we 

call "constant ignition." The difference is that for "constant 
ignition," the ignition point stays burned for ever; while for 
"sparked ignition," this point is ignited only once. In terms 
of the algorithm, the "sparked ignition" is described by 
Eq. (2.12), and the "constant ignition" has to satisfy the 
extra condition that (b(x, t)~>0 for t~>0, where x is the 
ignition point. If we denote the region where ~b ~> 0 is burned 
and ~b < 0 is unburned, a first-order algorithm for "constant 
ignition" is the following: first we solve Eq. (2.12) in one 
time step by the first-order method as in the "sparked" algo- 
rithm and define ~" ÷ 1 to be the updated value; then 

~n +1 : max(~" + 1, ~bo). (3.4) 

In the problem of driven cavity, we take a 64 x 64 grid for 
both the fluid calculation and flame burning. In Figs. (1-5) 
we show the results with the driven cavity flow. In Figs. 1-2 
we constantly ignite the bottom midpoint (0.5, 0.1 ). We run 
the fluid flow until t = 5 0  to let the flow to be fully 
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developed. To capture the fine detail of the flow we choose 
the burning speed S = 0.01. These calculations are similar to 
those in [13]. Figure 1 shows the burning flame at this 
cbnstant burning speed. At t = 64, there is a sharp spike 
appearing, indicating that the flame is being dragged by the 
maximal velocity along the top. We also see the effect of the 
eddy around the lower left corner at this time and later at 
t = 66 and 68. At t = 72 the tip of the flame continues to be 
dragged toward the ignition area and, at t = 74, it has 
merged with the rest of the flame, pushing the flame toward 
the center. In Fig. 2 we include the curvature-dependence 
and let e = 0.01. At t ~< 64 the spike has not formed as in the 
previous case. At t = 66, there is the spike, but not pushed 
as far as the case when e = 0; at t = 68, the situation is 
reversed. This shows the role played by the curvature as the 
positive curvature slows down the burning speed and 
negative curvature speeds up the burning speed. For t ~< 66 
the positive curvature around the tip leads the flame and, 

at the same time, creates a concave side of the flame front 
near the center of the box. The negative curvature starts to 
gain more weight after t = 66 and helps the flame moving 
towards the center. At t = 68, the tip moves further than that 
of the case e = 0, mostly due to the spread of the flame from 
the side near the box center. The merging appears earlier in 
this case than in the previous case, since the flame is pushed 
more toward the center and the negative curvature speeds 
up the burning. At t - -80  we see that the unburned region 
around the center has disappeared. 

In Figs. 3-5 we study the motions of an interface initially 
dividing the box. First (Fig. 3) we show the passive advec- 
tion of this interface; thus F = 0. Then we ignite the upper 
part of the fluid only once and set the burning speed S = 0.1 
(Fig. 4). The flame is approaching from the upper part to 
the lower part. For  the part of the fluid on the right, the fluid 
velocity is in the same direction as the burning and the 
region is quickly burned. In the left part the situation is 
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reversed and there is a competing balance between the fluid 
motion and the burning. The sign of S-ex-u.V~/lV~l 
can help us determine the direction of burning, so that we 
can expect the relative flame front positions for different 
cases through the analysis of this term. The fluid velocity is 
at its maxima halfway between the center and the left 
boundary, so there is an unburned narrow region moving 
into the burned region by the fluid flow, but it is burned 
eventually. We compare the case e = 0 to the case e = 0.01 
and see the shortening and smoothing of this narrow 
region in the latter case. This is caused by the curvature- 
dependence as we expected. 

The final example is the doubly-periodic jet which results 
in two shear layers with opposite signs. Here we take a 
128 × 128 grid for calculations. The burning speed S = 0.2. 
We ignite at the center constantly and, again, compare the 

case e = 0 (Fig. 6) with the case e = 0.01 (Fig. 7). For t ~< 1.8 
there is not much difference. The flame moves to the right 
with the jet first and is pushed down by the formation of the 
fluid vortex later. At t = 2.4 we see that there is a small 
region surrounded by flame and a tip sticking up, in the case 
of no curvature-dependence (Fig. 6), while in the curvature- 
dependence case (Fig. 7) the flame has burned all the inte- 
rior and the tip is much smoother. At t = 3.3 we find that the 
flame is split into two parts due to the strong shear layer in 
Fig. 6, but this does not happen in Fig. 7, since the flame 
does not reach that shear layer region. At t = 3.9 the flame 
branch to the left-lower becomes thinner and continues to 
reach out at t=4 .5  in Fig. 6. In Fig. 7, however, it is 
shrinking (t = 3.9) and finally disappears at t = 4.5. 

We repeat the above calculations for a 256 x 256 grid and 
show the results in Figs. 8 and 9. It is obvious that the 
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burning rate is higher in the refined calculations than the 
coarse ones. For example, the tip of the flame is already 
merged into the ignition region at t = 1.8 in the 256 x 256 
case. The reason is the thinning of the shear layers in 
more refined calculations as shown in [1 ] and our fluid 
calculations. Across the shear layer, the velocity changes 
its direction, with the approximated magnitude 1 in both 
directions. As the shear layer becomes thinner, the tran- 
sition becomes sharper and the magnitude of velocity 
reaches its maxima on both sides of the shear layer in 
shorter distances. In [ 1 ], Bell et al. showed that for a fixed 
time, the kinetic energy increases when calculations are 
refined. Therefore, with the increase of magnitude of the 
velocity, the flame is spread faster. This is what we see in 
the difference between these two calculations with different 
grid sizes. 

To summarize, we have studied the cold flame burning in 
several fluid flows with strong vorticity dominance. Our 
interests are the interplays between the fluid velocity and 
flame burning and the effect of the curvature-dependence. 
We have shown the easy handling of corner formation of 
flames by the level set technique and, consistently, the 
smoothing effect by the curvature-dependence. The next 
stage of the research is to study the complete feedback 
system, with inclusion of volume expansion and baroclinic 
vorticity production along the flame fronts. We can also use 
second-order schemes [12] to improve the accuracy of the 
front position. Finally the methods described here can be 
easily extended to three-dimensional problems and therefore 
will generate many more interesting results. 
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