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We introduce a nonconforming finite-element method for second
order elliptic interface problems. Our approach applies to problems
in which discontinuous coefficients and singular sources on the
interface may give rise to jump discontinuities in either the solu-
tion or its normal derivative. Given a standard background mesh
and an interface that passes between elements, the key idea is to
construct a singular correction function that satisfies the prescribed
jump conditions, providing accurate subgrid resolution of the dis-
continuities. Utilizing the closest point extension and an implicit
interface representation by the signed distance function, an algo-
rithm is established to construct the correction function. The result
is a function that is supported only on the interface elements, repre-
sented by the regular basis functions, and bounded independently
of the interface location with respect to the background mesh.
In the particular case of a constant second-order coefficient, our
regularization by a singular function is straightforward, and the
resulting left-hand side is identical to that of a regular problem
without introducing any instability. The influence of the regular-
ization appears solely on the right-hand side, which simplifies the
implementation. In the more general case of discontinuous second-
order coefficients, a normalization is invoked which introduces
a constraint equation on the interface. This results in a problem
statement similar to that of a saddle-point problem. We employ
two-level iteration as the solution strategy, which exhibits aspects
similar to those of iterative preconditioning strategies.

nonconforming FEM | elliptic interface problems | interfacial singularities |
level set methods

E lliptic interface problems appear in many physical applica-
tions, including Stefan problems, fluids problems, materials

issues, free boundary problems, and shape optimization (1). In
many moving interface problems, elliptic interface problems often
arise as the interface moves, requiring repeated solutions for
different interface configurations. In such problems, a moving
boundary separates two different regions, such as air and ink in
an ink simulation, ice and water in a crystal growth problem, or
burnt and unburnt gas in a combustion problem. Boundary con-
ditions are often supplied at and across the moving boundary
and link the physics of the two different regions. These bound-
ary conditions require delicate attention when trying to construct
accurate numerical approximation schemes. Fig. 1 shows a generic
example, in which an interface passes between the nodes of a
nonconforming triangulated finite-element mesh.

In the above, as a model problem, we can take a Poisson
equation with piecewise constant coefficient, ai > 0 on each �i;

−∇·(ai∇u) = f on �i for i = 1, 2 [1]

with the boundary data given on ∂�. For well-posedness, we need
additional information on the behavior of the solution on the inter-
face. Let g and h be given functions defined on �. We assume u
satisfies two jump conditions on � given by

[[a∂u/∂ν ]] = g and [2a]
[[u ]] = h. [2b]

Here, with ui being the solution in region i, we define the jump
and average operators on the interface by

[[u ]] = u2 − u1 and {u} = (u2 + u1)/2. [3]

If � is not closed, then �∩∂� �= ∅. We need a compatibility con-
dition between the jump conditions and the boundary conditions.
In this article, we employ the simplest form of compatibility con-
dition, namely that g and h vanish on ∂�, implying that given
boundary data do not exhibit any singular behavior. As an example
of our jump conditions, we note that a prescribed jump discon-
tinuity of the flux given by Eq. 2a frequently appears in physical
phenomena involving a source (force) concentrated on the inter-
face. Popular examples include the surface tension in a two-phase
flow, the surface charge in an electrostatic problem, and latent
heat absorption during dendritic solidification. A prescribed jump
of the solution given by Eq. 2b is less common in applications. One
example is the flow involving volumetric change on the reaction
or phase transition front.

Despite its simplicity, this problem models the general elliptic
interface problem, permitting jump discontinuities in the second-
order coefficient, the solution, and the flux. The key idea of our
approach will remain identical with or without the lower-order
terms, whose coefficient continuity affects only the higher-order
regularity.
Background. How does one construct a numerical scheme to solve
these problems? Because the solution may undergo a jump and
lose regularity in a neighborhood containing the interface, simple
interpolation cannot be done across the interface. One approach is
to use an interface-conforming or body-fitted mesh. However, this
may generate poor elements with bad shape factors, leading to ill-
conditioned matrices and the necessity of small time steps. Worse,
if the interface is moving, an elliptic solve must be performed
at every time step requiring constant remeshing to the evolving
front. This is not straightforward, especially in three dimensions
and under topological change.

To accurately solve such problems without resorting to con-
stant remeshing to the moving interface, a variety of sophisticated
methods have been developed in recent years. These include:

• Peskin’s immersed boundary method (2), its variants (3, 4)
• Immersed interface methods due to LeVeque and Li (5, 6):

which are related to Mayo’s method (7). The finite-element
implementation of the immersed interface method can be
found in Li and Ito (8).

• Extended finite-element methods (X-FEM), in which the fun-
damental idea is to enrich the solution space with additional
basis functions, which allow discontinuities in the solution and
the derivatives (9, 11).
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Fig. 1. Nonconforming interface passing through unstructured mesh.

These are all powerful methods to tackle this class of problems.

The Exact Subgrid Interface Correction Method [ESIC]. In this arti-
cle, we present the Exact Subgrid Interface Correction (ESIC)
scheme, which shares a similar nature with X-FEM in the sense
that we construct and utilize basis functions which permit interfa-
cial singularities. However, compared to that of an X-FEM, the
construction of such basis functions presented in this paper does
not require any geometric information depending on the type of
the specific element employed. The interface is represented in a
purely implicit manner in terms of the signed distance function,
hence, the construction can be easily generalized for a wide variety
of elements. However, the simplicity of the construction renders
our method less robust than X-FEM, for example, our method
currently does not allow crack type interfaces.

Rather than think of our method as an enriched FEM, unlike
X-FEM, no unknown is associated with the constructed singular
functions. Instead, we utilize them to recast the whole problem
into a regular one with enforced singularities, which results in
a better conditioned stiffness matrix. This approach of “regu-
larization by singular correction” is also often found in spectral
methods, which require sufficiently smooth solutions to achieve
spectral accuracy.

To summarize, the ESIC strives to capture the virtue of existing
methods while avoiding some of the drawbacks:

• First, the interface is not explicitly constructed, avoiding prob-
lems with poor shape elements and time-step stability issues.

• Second, the computed solution contains sharp discontinuities,
as expected, rather than reflecting the error associated with
smoothed representations of given boundary, jump, and source
terms.

• Third, the method easily generalizes, and fits naturally within a
level set representation of moving interfaces.

The Main Idea. To motivate our ideas, consider a constant coef-
ficient case with a = 1. Suppose, for just a moment, that we are
given a function with the prescribed jumps. We can then utilize
the function as our correction function. That is, we can rewrite
the solution of the original problem as the sum of the correction
function and a solution without any singularity. Thus, instead of
solving the original singular problem, we can solve the regularized
problem, which is numerically sound. All the terms involving the
correction function are relocated to the right-hand side, resulting
an additional correction source.

The question is: How can we construct a correction function
that satisfies those given jump conditions? The main idea in our
work, explain in detail below, is as follows: Consider an interface
element consisting of nodes x1, . . . , xn with the corresponding

basis functions ϒ1, . . . , ϒn. Suppose x1, . . . , xk belong to �1 , and
xk+1, . . . , xn belong to�2 . Letγ be a given function on the interface
and γ̃ be an extension of γ, that is, the restriction of γ̃ on the inter-
face is γ. With the nodal values γ̃1, . . . , γ̃n of γ̃, we can construct a
piecewise continuous function given by −(γ̃k+1ϒk+1 +· · ·+ γ̃nϒn)
on �1 and γ̃1ϒ1 +· · ·+ γ̃kϒk on �2 . Such a function is discontinu-
ous across the interface and the amount of the jump is γ̃1ϒ1 +· · ·+
γ̃nϒn, which is just the same as the restriction of γ̃ on the interface,
that is, γ . Thus, we can construct a function that has given jump
discontinuity. In addition, if γ̃ is the closest point extension of γ,
hence, γ̃ is constant along the interface normal, then the normal
derivative of the function becomes continuous.

Now, consider the product of the above discontinuous function
and the signed distance function from the interface. Because the
signed distance function vanishes on the interface, the result is a
continuous function. Instead, the normal derivative of the product
exhibits the prescribed jump discontinuity. A linear combination
of the above two functions enables us to construct a correction
function with arbitrary given jump conditions.
Computational Results. Before providing a technical description
of our algorithm, we first demonstrate the value of the ESIC.

Table 1 shows a comparison of our method (ESIC) with other
non-conforming methods. Numerical results for X-FEM, the
immersed interface method (IIM), and the immersed boundary
method (IBM) are taken from Vaughan et al. (table 1, from ref. 12)
and LeVeque and Li (table 1, from ref. 5), which corresponds to
Fig. 4a of this article. We report the maximum error measured
on the interface, ‖T‖∞, for our method and X-FEM (with step
enrichment). For IIM and IBM, we report the maximum error
measured on regular nodes, ‖E‖∞. Notice, in addition to regular
background nodes, X-FEM uses 3.42n ∼ 3.47n more unknowns
for enriched basis function. From the results, in terms of accu-
racy, we can conclude that our method is comparable to X-FEM
and IIM and better than IBM. The authentic advantages of our
method include the simplicity in implementation, purely implicit
treatment of geometry, low degree of the correction function, and
better conditioned matrix.

For piecewise constant a, we normalize the problem in each sub-
domain. This results in an additional constraint equation, which
introduces additional unknowns along the interface as in X-FEM.
The resulting solution strategy is similar to a typical two-level,
iterative preconditioning.
Fundamentals of ESIC: Notation and Setup. An elliptic interface
problem is defined on a domain partitioned into disjoint subdo-
mains by an interface, where the coefficients of the equation, the
flux of the solution, and/or the solution itself may be discontin-
uous (Fig. 2). Let � be a bounded domain in R

d with Lipschitz
boundary. Assume � is partitioned into two disjoint subdomains,
�1 and �2. The common boundary of the subdomains is called
the interface, and is denoted by �. We define the signed distance
function φ from the interface by

φ(x) =
⎧⎨
⎩

−inf
y∈�

|x − y| x ∈ �1

inf
y∈�

|x − y| otherwise . [4]

Table 1. Comparison of various methods (cf. table 1 in ref.12, for X-FEM and IBM and table 1 in ref. 5, for IIM)

ESIC X-FEM IIM IBM

n ‖Tn‖∞ ratio ‖Tn‖∞ ratio ‖En‖∞ ratio ‖En‖∞ ratio

19 8.6325 × 10−3 3.8397 × 10−3 2.3908 × 10−3 3.6140 × 10−1

39 2.3815 × 10−3 3.6248 9.3787 × 10−4 4.0943 8.3461 × 10−4 2.8646 2.6467 × 10−2 12.7939
79 6.1717 × 10−4 3.8587 2.3034 × 10−4 4.0715 2.4451 × 10−4 3.4134 1.3204 × 10−2 2.0045

159 1.6597 × 10−4 3.7186 6.4061 × 10−5 3.5965 6.6856 × 10−5 3.6573 6.6847 × 10−3 1.9753
319 4.1916 × 10−5 3.9596 1.5619 × 10−5 4.1015 1.5672 × 10−5 4.2658 3.3393 × 10−3 2.0018
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Fig. 2. A partitioned domain: subdomains, �1 (gray) and �2 (white), are
separated by their interface, �. The tubular neighborhood, �ε (shaded), is
identified with the union of interface elements. In this example, the closed
component of the interface contacts the boundary of �ε.

We denote by �ε a tubular neighborhood of � such that � ⊂ �̄ε .
Assuming that any point in �̄ε has a unique closest point on �,
it is known that φ on �ε has the same smoothness as the �. Our
construction allows � to touch or even coincide with ∂�ε.

Problems with Constant Coefficients
Regularization by Singular Correction Functions. Without loss of
generality, we can assume a = 1 by scaling. Let U ⊂ H1(�) be the
space of functions whose trace on ∂D� satisfies given Dirichlet
boundary data, and V ⊂ H1(�) be the space of functions with
vanishing trace on ∂D�. We utilize U as the solution space for the
regularized problem, and V acts as the space of test functions. We
denote by L the bilinear form for the Laplacian, that is,

L(u, v) =
∫

�

∇u · ∇v dx, [5]

and by Lε the piecewise version of L defined by

Lε(u, v) =
∫

�ε\�
∇u · ∇v dx. [6]

Note that, for Lε, the gradient is not taken across �, hence, u is not
required to be globally H1. If u is H1 on the entire domain, Lε(u, v)
becomes identical to L(u, v) for any test function v. Suppose Neu-
mann boundary data are given by a function q on ∂N� = ∂�\∂D�.
Then, the functional F corresponding to the regular source and
the Neumann boundary condition is given by

F(v) =
∫

�

fv dx −
∫

∂N �

qv dSx. [7]

Let ug
ε and uh

ε be piecewise H2 functions supported only on �̄ε

satisfying the jump conditions:[[
ug

ε

]] = 0,
[[

∂ug
ε /∂ν

]] = g, [8a][[
uh

ε

]] = h,
[[

∂uh
ε /∂ν

]] = 0. [8b]

Define an additional source term originating from the correction
function uε = ug

ε + uh
ε by

Fε(v) = −Lε(uε , v) −
∫

�

gv dSx

= −Lε

(
uh

ε , v
) − Lε

(
ug

ε , v
) −

∫
�

gv dSx. [9]

Notice, we assume ug
ε and uh

ε are continuous on each subdomain,
but their normal derivatives can be discontinuous across ∂�ε. Let
qg

ε = ∂ug
ε /∂n|∂�ε . By taking the integration by parts for Lε(ug

ε , v),
we derive an alternative representation for Fε,

Fε(v) = −Lε

(
uh

ε , v
) +

∫
�ε\�

	ug
ε v dx +

∫
∂�ε

qg
ε v dSx. [10]

Here, we take the Laplacian of ug
ε in the piecewise manner. The

second representation does not involve any explicit integral over
�. Instead, our functional Fε contains the distribution source qg

ε

on the boundary of �ε. The integration by parts for Lε(uh
ε , v) does

not produce any distribution on �; its flux difference vanishes.
Thus, such Fε corresponds an L2 source supported only on �ε

accompanied by an H−1 distribution supported on ∂�ε, associated
to a flux jump.

Let us find a regular† solution uR ∈ U satisfying, for all v ∈ V ,

L(uR, v) = F(v) + Fε(v). [11]

The problem is well-posed, and the solution uR is continuous on
the entire domain and piecewise H2 in each of �̄ε , �1 \ �ε ,
and �2 \ �ε . This is due to the L2 regularity of the right-hand
side of Eq. 11 in each of those subdomains. We can observe that
u = uR + uε satisfies −	u = f on each �i. The jump conditions
on �, [[ ∂u/∂ν ]] = g and [[ u ]] = h, are enforced by the singu-
lar correction function, uε . In our construction, the role of the
singular correction function is to replace the distributions on �,
given in terms of g and h, with an L2 function supported on �ε

(on interface elements) and a distribution supported on ∂�ε (on
the boundary of those interface elements); hence, the resulting
problem is conforming to the given background mesh.

Note that L and F do not involve any information related to
the location of � ; they remain identical to those from regular
conforming problems. The only interface-dependant term is the
correction source, Fε . Because our uε is supported only on the
interface elements, the computational cost for the evaluation of
Eq. 10 is negligible in the entire procedure. In general, the inte-
grand in Eq. 10 is discontinuous across �, but this adds only minor
difficulty in our method.

Construction of Singular Correction Functions. The remaining ques-
tion is to construct well behaved singular correction functions; that
is, for any given interface jumps on an arbitrary interface � within
any given support �ε, we should construct the correction functions
ug

ε and uh
ε whose H2 norms are well bounded independently of

the location of � within �ε (Fig. 3).
Given a background mesh, we denote by ϒi the basis function

associated to a node xi satisfying

ϒi(xj) = δij and
∑

i

ϒi(x) = 1. [12]

The second condition simply means the basis functions can resolve
a constant function exactly. These requirements are satisfied by
almost every basis function used in practice including all isopara-
metric elements of any order. We use {ϒi} only for the repre-
sentation of the extension of the given interface jumps and for
the construction of the singular correction functions; the regular
solution uR, the regular source f , and the signed distance function
φ can be represented by different basis functions.

We begin with the implicit representation of interfacial func-
tions by the closest point extension (Fig. 3). Let γ be a function

† Even though we call it a regular solution, uR is not globally regular; it has the jump in
the normal derivative across ∂�ε given by −∂uε /∂n|∂�ε . But, the equation is as good as
a globally regular one, because �ε can be chosen to conform to any given background
mesh; that is, for any given fixed background mesh, we choose �ε to be the set of all
elements that contains �, then the mesh is conforming to ∂�ε. Hence, the distribution on
∂�ε can be well treated on a conforming mesh.

9876 www.pnas.org / cgi / doi / 10.1073 / pnas.0707997105 Huh and Sethian
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Fig. 3. The construction of correction functions based on piecewise linear basis functions. (a) Extension of given function γ on the interface in a triangular
element. (c) Piecewise linear function with the prescribed jump. (e) Piecewise quadratic function with the prescribed jump in the normal derivative. (b, d, and
f ) Same operations for a quadrilateral element.

defined on �, its closest point extension γ̃ on �ε is defined by
γ̃ (x) = γ (x∗), where x∗ = x−φ(x)∇φ(x) is the closest point of x on
�. This extension renders γ̃ constant along the normal directions
of �, that is, ∇γ̃ · ∇φ = 0 in �ε. We represent the discretization
of γ̃ by

γ̃ =
∑

i

γ̃iϒi, [13]

Fig. 4. Solutions of an example problem with constant a = 1 for various
interfaces: The exact solution is given by u1 = 1 and u2 = 1 − log(2r). The tri-
angular background mesh is generated from a 40×40 uniform grid. Solutions
exhibit sharp subgrid resolutions of the interfacial singularities.

where γ̃i is γ (x∗
i ). Thus, the first stage of the numerical extension

is to find the closest point x∗
i of a node xi on the interface elements.

Then, the value γ̃i can be obtained by the interpolation associated
with the background mesh. Obviously, the ‖γ̃ ‖�ε,∞ is bounded by
‖γ ‖�,∞.

Functions with Prescribed Jumps and Continuous Fluxes. In this
section, we present a linear mapping A which, from a given func-
tion γ on �, constructs a function with the prescribed jump and
continuous normal derivative. Let �1 be a continuous function on
� such that �1 = 1 on �1\�ε and �1 = 0 on �2\�ε . Assume �1
is sufficiently regular in �ε. Define �2 by �1 + �2 = 1. Consider
a linear mapping A given by

(Aγ )(x) =
{ −γ̃ (x)�2(x) x ∈ �1

γ̃ (x)�1(x) x ∈ �2
. [14]

Then,Aγ is continuous on each�i, vanishes on�\�ε , and satisfies
the jump conditions;

[[Aγ ]] = γ̃ (�1 + �2)|� = γ̃ |� = γ . [15]

Since ∇(�1 + �2) · ∇φ = 0 and ∇γ̃ · ∇φ = 0 on �ε,

[[∂Aγ /∂ν ]] = 0. [16]

Before we present the numerical implementation of A in terms
of {ϒi}, observe that the above aspects are satisfied by the following
construction of �1 and �2:

�1 =
∑
φi<0

ϒi and �2 =
∑
φi≥0

ϒi, [17]

where φi is the signed distance at xi. A naive implementation
of A is just to multiply them by

∑
γ̃iϒi. But, this results in an

increase in the degree of the polynomial. We present the follow-
ing implementation for A which maintains the same degree as
{ϒi}:

(Aγ )(x) =

⎧⎪⎨
⎪⎩

− ∑
φi≥0

γ̃iϒi(x) x ∈ �1∑
φi<0

γ̃iϒi(x) x ∈ �2
. [18]

Notice that, if an interface happens to be conforming to the
background mesh, this algorithm produces an result identical to
the imposition of Dirichlet boundary conditions in standard finite
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element methods. Thus, we consider a solution jump condition
as a generalized Dirichlet condition, which can be imposed on the
interface.

Continuous Functions with Prescribed Flux Jumps. With the mapping
A obtained in the previous section, we consider the linear oper-
ator φA, operator A weighted by the signed distance function.
Since φ vanishes on the interface, so does φAγ. Hence, the result
is a function continuous on the entire domain, supported only on
�ε. Since ∇φ ·∇φ = 1, ∇(φAγ ) ·∇φ = Aγ +φ∇Aγ ·∇φ. Hence,

[[∂(φAγ )/∂ν ]] = [[Aγ ]] = γ. [19]

The linear operators A and φA can be applied to the solu-
tion jump condition and the flux jump condition respectively
and independently. Thus, the correction functions ug

ε and uh
ε are

given by

ug
ε = φAg and uh

ε = Ah. [20]

Recall that {ϒi} depends only on the choice of �ε, independently
of the location of � with respect to �ε . An extended function
shows well bounded behaviors depending only on the original
function on � and the geometric quantities of �, for example,
curvatures. The construction works fine even in the extreme case
that � is a part of ∂�ε. In the finite-element implementation, the
evaluation of the constructed function is interface-implicit; that
is, except for the extension, those procedures do not involve any
explicit computation regarding the location of �. All quantities are
represented by nodal values and the basis functions of the back-
ground mesh, which implies that the idea of our construction can
be applied to a variety meshes in arbitrary dimensions. Thus, our
construction of uε is numerically stable, efficient, and simple in
the implementation.

Implementation: Linear Bases with Quadratic Refinements. Numer-
ical experiments were performed with piecewise linear bases (for
every representation including signed distance functions) on a
triangular mesh. On each interface element, the constructed uh

ε

from piecewise linear {ϒi} is a linear polynomial in each subdo-
main, and the resulting ug

ε becomes a quadratic polynomial in each
subdomain.

Suppose the exact solution is a piecewise linear function. Then,
with g �= 0, the regularized solution uR is a quadratic polynomial
on each interface element. To capture the exact solution in such
a case, we added quadratic basis functions for the solution space
so that the discrete solution space can represent a quadratic poly-
nomial on each interface element. For triangular mesh, this can
be accomplished by adding quadratic hierarchical basis functions
on the edges containing the interface. We can observe that a sim-
ilar local refinement is employed in X-FEM (10). The resulting
stiffness matrix consists of: (i) the stiffness matrix of the linear
background basis, which is always identical independently of the
location of the interface, and (ii) the small auxiliary part which
corresponds to the enriched quadratic basis functions. The refine-
ment does not produce any harmful effect: the matrix remains
symmetric positive definite and well conditioned.

The resulting linear equation can be solved by various meth-
ods: we chose a conjugate gradient method. Preconditioning and
fast solution methods can be applied also as regular problems.
Results show sharp subgrid resolution of interfacial singularities.
The measured convergence is a fraction between 1 and 2, and
approaches to the expected second order as variations in the
geometry and in the interfacial data decrease. We suspect one
major reason of the degradation in the convergence rate is our
choice of a piecewise linear representation for signed distance
functions, where normal vectors are discontinuous and typically
exhibit oscillations. Local errors near the interfaces maintain the
same order of magnitude as the far-field data. This is one preferred

Fig. 5. Results for constant a = 1 (same problem as Fig. 4). (a) �A (circle)
exhibits the most straight convergence with the rate, 1.88. (b) The method
does not produce any peak of large local error near the interface.

characteristic of our method compared with regularization meth-
ods that typically involve a significant loss of accuracy near the
interface and can lose multiple correct digits locally.

Problems with Piecewise Constant a
Normalization. Utilizing the solution scheme derived for problems
with a = 1, we present a solution strategy for a more general class
of problems given by Eq. 1 with piecewise constant a. First, we
introduce a scaled unknown ū defined by

ū = ai

{a}u on �i for i = 1, 2. [21]

Then, we obtain the normalized problem given by

−	ū = f /{a} on �i for i = 1, 2, [22a]
[[∂ū/∂ν ]] = g/{a}, and [22b]

[[ ū/a ]] = h/{a}. [22c]

We can decouple ū and a in Eq. 22c by utilizing

[[ ū/a ]] = [[ ū ]]{1/a} + [[1/a ]]{ū} = {a}
a1a2

(
[[ ū ]] − [[a ]]

{a} {ū}
)

,

9878 www.pnas.org / cgi / doi / 10.1073 / pnas.0707997105 Huh and Sethian
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Fig. 6. Solutions of problems with discontinuous a. a = 1 on {r > 0.5}. The
exact solution is given by 1 − log(3/4 + r2) for r > 0.5 and 1 − log(3/4 + r2)/a
for r < 0.5. GMRES for the outer iteration converged within 10 ∼ 15 itera-
tions depending on a, independently of the mesh size. In (d), because of the
large scaling factor of O(103), the L∞ error on {r < 0.5} appears to be large.
However, its convergence is clear, and the error in the a-weighted (energy)
norm is small.

which results in

[[ ū ]] = h
a1a2

{a}2 + α{ū} where α = [[a ]]
{a} . [23]

The dimensionless constant α is always in (−2, 2) for any posi-
tive a1 and a2. Notice, the right-hand side of Eq. 23 contains the
average trace of the unknown itself. To resolve the difficulty, we
introduce a constraint γ defined on � satisfying γ = {ū}. Then, ū
satisfies

−	ū = f̄ on �i for i = 1, 2, [24a]
[[∂ū/∂ν ]] = ḡ, [24b]

[[ ū ]] = h̄ + αγ , [24c]

where f̄ = f /{a}, ḡ = g/{a}, and h̄ = ha1a2/{a}2. Notice, given
boundary conditions should be scaled appropriately; for Dirichlet
conditions, the scaling factor is ai/{a} on each �i. The scaling fac-
tor for Neumann conditions is 1/{a} on the entire domain (Fig. 5),
and results are given in Fig. 6.

Particular and Homogeneous Problems. It is more comprehensive
to rewrite the normalized solution ū as the sum of the particular
solution ū0 and the homogeneous solution ūγ such that ū0 carries
all the given data: f̄ , ḡ, h̄, and given boundary conditions. That is,
ū0 is the solution of the particular problem:

−	ū0 = f̄ on �i for i = 1, 2, [25a]

[[∂ū0/∂ν ]] = ḡ, [[ ū0 ]] = h̄, [25b]

and given nonhomogeneous boundary conditions. Let γ 0 = {ū0},
then {ū} = γ 0 +{ūγ }. Then, the homogeneous solution ūγ satisfies
homogeneous boundary conditions and

−	ūγ = 0 on �i for i = 1, 2, [26a]
[[∂ūγ /∂ν ]] = 0, [[ ūγ ]] = αγ , [26b]

and the constraint γ satisfies {ūγ } − γ = −γ 0. If α = 0, then
ūγ = 0 is the unique solution of the homogeneous problem, i.e.
ū = ū0.

Structure of Homogeneous Problems. Because homogeneous prob-
lems do not involve any flux jump, the additional source term Fε

has a simpler form,

Fε(v) = −αLε(Aγ, v). [27]

Because of the trivial regular source and the homogeneous Neu-
mann condition, F(v) = 0. Denote by M the linear average trace
operator, which is identical to the usual trace on � for regular
functions. We identify L and Lε with the corresponding linear
operators. Notice, L includes the homogeneous Dirichlet bound-
ary condition. Then, the (discretized) homogeneous problem is
regularized to(

L αLεA
M αMA − I

) (
ūγ

R
γ

)
=

(
0

−γ 0

)
. [28]

Here, we utilize the fact that {ūγ } = {ūγ

R} + α{Aγ }.
Although the stiffness matrix is, in general, not symmetric, we

can use a two-level iteration strategy on the symmetric matrix
Lūγ

R = −αLεAγ , together with a linked associated smaller non-
symmetric constraint equation (I−αMA + αML−1LεA)γ = γ 0;
judicious use of GMRES and preconditioning strategies provides
an efficient algorithm.

We have presented a method for solving elliptic interface prob-
lems on nonconforming unstructured meshes. Our method is
robust, accurate, and does not require an explicit representation
of the subgrid interface geometry. In addition, our method shows
strong stability for both huge and tiny coefficient ratios, and hence
enables application to the solution of boundary value problems on
extended domains, in which we view the virtual boundary as an
interface with given Dirichlet or Neumann conditions imposed as
jump conditions.
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