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form the bakbone of a large olletion of everyday simulations, inlude thosein uid mehanis, ombustion and ame propagation, and materials sienes.Advantages to this approah inlude the ability to simultaneously represent theinterfae by a olletion of marker points that move and allow eah marker toarry variable quantities to be used to solve assoiated partial di�erential equa-tions. This last apability is of onsiderable importane in a variety of physialproblems, inluding boundary integral formulations of interfae problems, inwhih single and double layer distributions must be updated and advaned intandem with the moving interfae, and problems in semiondutor manufa-turing under ething and deposition proesses, in whih assoiated quantitiessuh as step overage are ritial in aurately apturing the dynamis of theevolving pro�le.Some possible drawbaks of these marker Lagrangian approahes inludediÆulties with evaluating topologial hange, the need to remove parts of theevolving front (known as delooping) to orretly haraterize the visosity so-lution, the need to adaptively add and remove points to provide numerialresolution and ameliorate strit time step requirements, and ompliations inthree dimensions.In response, two alternative Eulerian numerial tehniques have been devel-oped to trak interfaes. These inlude Volume of Fluid tehniques (also knownas ell methods) and level set methods. Volume of uid tehniques haraterizethe interfae by disretizing the omputational domain into a olletion of ellsthat are eah assigned a volume fration denoting the portion of the interfaeontained in that ell. Level set methods work by embedding the interfae as thezero level set of a higher dimensional funtion. Both tehniques extend to three{dimensions and easily handle topologial hange. Level set tehniques have theadditional advantage that they are naturally linked to numerial shemes for hy-perboli onservation laws, and an easily provide aurate values for geometriterms suh as the normal diretion and urvature.Nonetheless, these two tehniques are not easily applied to problems in whiha material quantity is required to be evaluated along the interfae; fundamen-tally, this is beause both methods work in the range spae of the domain, andignore past information suh as tangential streth. While some extensions ofthese tehniques have been developed, a general and numerially sound algo-rithm is not yet available.This paper presents tehniques to design level set methods to auratelyompute the evolution of interfaes whih arry material properties. The keyidea involves the use of a single level set funtion to haraterize the interfaeposition, and an assoiated �eld suitably extended o� the interfae to keepontrol of the material quantities. We derive the relevant equations of motion,and then present our numerial tehniques, followed by a series of numerialonvergene tests and model problems to verify the algorithm.2



2 Equations of MotionConsider a problem in whih an interfae moves under a veloity whih dependson the value of a quantity arried on the surfae, as well as loation and loalgeometri properties suh as normal diretion and urvature. As an example,the motion of a uid interfae an depend on the vortiity distribution alongthe front. Let G(x) be the value of the surfae quantity at a point x on theinterfae. Our goal is to haraterize the transport of G under the interfaemotion.2.1 Statement of Problem: Lagrangian FormulationFor ease of explanation, we disuss the problem in terms of urves propagating intwo spae dimensions; ultimately, the equations we derive will apply to surfaepropagation in three spae dimensions as well. Consider a urve �(t; s) in whihs parameterizes the urve at any �xed time t. Assoiated with this interfae isa funtion G(�(s; t)), whih gives the value of some salar quantity along theinterfae.We onsider the following motions:� Advetion: The interfae is passively adveted under a veloity �eld(u(x; y); v(x; y)). This motion also transports the material quantity Galong with the interfae.� Propagation: The interfae propagates normal to itself with speed F ,whih may depend on position, normal diretion, loal urvature, as wellas the solution of some assoiated partial di�erential equation. Here, thesolution is meant to be the visosity solution, seleted through the appro-priate entropy ondition (see [15, 16, 19℄). This motion also propagatesthe material quantity in onjuntion with the propagating front.� Di�usion: The material quantity G is allowed to di�use along the inter-fae aording to the standard di�usion model.The above desription is not neessarily omplete. We onsider two exam-ples. First, onsider a irle with the funtion G onstant along the irle, andsuppose we wish to examine propagation normal to the urve with unit speed.It seems reasonable to assume that the total amount of G along the urve shouldbe onserved under this motion, thus G must derease as the irle expands.Thus, if we imagine a painted balloon, as the balloon is blown up, the amountof paint per unit surfae area must derease.Seond, non-smooth fronts pose an additional dilemma. Consider an initialsquare with onstant G. Suppose the square moves outwards with unit speed.The sides should move outwards arrying the material quantity G, and theexpanding orners should be ars in whih G is zero. This onserves the totalamount of G as the front moves, yet it is lear that the distribution of G isno longer smooth. Similarly, if the front moves inwards, we view G as a deltafuntion at the orners. 3



Thus, we make the following additional assumption: we assume that underpropagation, G is onserved. The impliation of this is that in the presene oforners in the evolving front, we must examine the regularized problem of thelimit of smooth fronts whih produe the non-smooth front.2.2 Level Set MethodsLevel set methods, introdued by Osher and Sethian [12℄, rely in part on thetheory of urve and surfae evolution given in [15℄ and on the link betweenfront propagation and hyperboli onservation laws disussed in [16℄. Thesetehniques reast interfae motion as a time-dependent Eulerian initial valuepartial di�erential equation, and rely on visosity solutions to the appropriatedi�erential equations to update the position of the front, using an interfaeveloity that is derived from the relevant physis both on and o� the interfae.These visosity solutions are obtained by exploiting shemes from the numerialsolution of hyperboli onservation laws. Level set methods are spei�allydesigned for problems involving topologial hange, dependene on urvature,formation of singularities, and host of other issues that often appear in interfaepropagation tehniques.The level set method desribes the front by de�ning a funtion, �(x), on allof spae, whih embeds the interfae as its zero level set. The funtion is thenevolved aording to the equation�t(x; t)� F (x; t)jr�(x; t)j= 0 (1)Here F (x; t) is the normal speed of the front if x lies on the front. Topologialhanges are handled naturally in this setting, and the front an be traked witha high degree of auray. Terms suh as the normal and urvature of the frontan be omputed with high auray; this will be important for our problem.We point out that there has been previous work on the desription of materialquantities in the ontext of level set methods. In [3℄, work on solving di�usion-type equations on surfaes has been onsidered in an impliit representation,and in [6℄, a level set formulation was used to trak the evolution of vortexsheets, keeping trak of the irulation on the evolving interfae. We refer thereader to these papers for bakground and earlier work.2.3 Statement of Problem: Impliit Formulation, Two Di-mensionsWe now derive a set of equations for an impliit view of the above transport,propagation and di�usion of material quantities in assoiation with an evolvingfront whih orresponds to a urve propagating in two spae dimensions. Weombine eah term separately using operator splitting.We begin by supposing that the material funtion Gfront, de�ned on thefront, is in fat de�ned throughout the omputational domain, and use thenotation G to represent this funtion. Thus, G is a funtion from R2 to R4



whih agrees with Gfront on the given initial urve �. We shall later makesuggestions as to appropriate hoies for G, for now, we shall simply assumethat it an be onstruted and is suÆiently smooth.Following the level set approah, let the initial urve � be embedded as thezero level set of some funtion �(x; y; t = 0). We now derive evolution equationsfor � and Gext whih produe impliit desriptions of the desired ation on thefront itself. We do so term by term.2.3.1 Di�usionWe begin with the di�usion equation in the ase of a stationary front. Let(x; y) be a point on the front, Let G((x; y); t) be the salar de�ned in all ofspae whih agrees with Gfront on the stationary interfae, and let �(x; y) bethe signed distane funtion from this interfae. Finally, let �(s) = (x(s); y(s))parametrize the front by ar length, suh that �(0) = (x; y). Di�usion alongthe interfae then implies thatGt((x; y); t) = �G��((x; y); t)where � is the di�usion onstant. Setting � = 1, we have thatGt((x; y)) = ��s � ��s [G(�(s))℄� = ��s [Gx(�(s))x0(s) +Gy(�(s))y0(s)℄= [Gxx(�(s))x0(s) +Gxy(�(s))y0(s)℄x0(s) + Gx(�(s))x00(s)+ [Gxy(�(s))x0(s) +Gyy(�(s))y0(s)℄y0(s) +Gy(�(s))y00(s)The equations for x0; x00; y0; y00 are given by(x0; y0) = (��y; �x)=L L =q�2x + �2yx00 = ��xL � y00 = ��yL � � = �2y�xx � 2�x�y�xy + �2x�yyL3where � is the urvature of the front. Assembling the terms, we haveGt = �Gxx�yL � Gxy�xL � �yL � Gx�xL �� �Gxy�yL � Gyy�xL � �xL � Gy�yL �= Gxx�2y � 2Gxy�x�y +Gyy�2xL2 � Gx�x + Gy�yL �We now note that this equation may be de�ned on all of spae, and de�nes theevolution of the material funtion G both on and o� the front. Additionally, wenote that if (nx; ny) is the value of the normal, the above equation simpli�es toGt = (Gxxn2y � 2Gxynxny +Gyyn2x) � (Gxnx + Gyny)�here, Gxnx +Gyny is the dot produt of rG with the normal.5



2.3.2 AdvetionConsider a front with salar �eld G whih is also undergoing advetion by meansof a vetor �eld (u; v) that depends on (x; y). To �nd how the values hange,we split the advetion into two parts, orresponding to passive advetion by theveloity �eld and to loal ompression/expansion of the front.(x; y)(x; y) + (u(x; y); v(x; y))t +O(t2)(u(0; 0); v(0; 0))t+ O(t2)(0; 0)Figure 1: Two-dimensional advetionTo get the saling of the segment length, we expand everything out to get thelimit as the segment length and the time step go to zero (see Figure 1.Expanding everything out, we get that the new segment is(x+ u(x; y)t� u(0; 0)t; y+ v(x; y)t � v(0; 0)t) + O(t2)De�ne the normal of the line segment as (nx; ny), and s = �nx=ny, so y = sxas (x; y) go to (0; 0). If the length at time t is L(t) we have thatL(t) = jj(x+ (u(x; sx)� u(0; 0))t; sx+ (v(x; sx)� v(0; 0))t)jj+ O(t2)= jxj � jj(1 + (ux(0; 0) + suy(0; 0))t; s+ (vx(0; 0) + svy(0; 0))t)jj+ O(x2 + t2)and L(0) = jxjp1 + s2Then, omitting the (0; 0), we see thatL(t) = jxjq(1 + (ux + suy)t)2 + (s + (vx + svy)t)2 + O(t2 + x2)Sine the integral of G(t) over the retangle is preserved, letting x! 0, we getthatG(t)=G(0) = limx!0L(0)=L(t)= p1 + s2p(1 + (ux + suy)t)2 + (s + (vx + svy)t)2 + O(t2)= 1�p1 + s2(1 + s2)�3=2(ux + suy + s(vx + svy)) + O(t2)6



, and hene the rate of hange for G(t) is given bydGdt (0) = �ux + suy + s(vx + svy)1 + s2 G(0)Using the substitution s = �nx=ny, we have that the magni�ation fator isgiven by M = ux + suy + s(vx + svy)1 + s2= n2yux � nxnyuy � nx(nyvx � nxvy)n2y + n2x= n2yux � nxny(uy + vx) + n2xvyThus, if G(x; y; t) is the value as a funtion of spae and time, then the timeevolution of G is given byGt(x; y) = �(u; v) � rG� (n2yux � nxny(uy + vx) + n2xvy)G:This term an be de�ned in all of spae. The term (nx; ny) is the normal, whihan be omputed everywhere in spae from the gradient of the level set surfae.The veloity �eld (u; v) is either given everywhere, or gotten from the front byextending the u and v omponents [2℄.The �rst term omes from passive advetion, and the seond from the om-pression/expansion. The seond part is ruial, even if it is a little ounter-intuitive. At �rst glane, it looks like the advetion equation ould be easilywritten down from a onservation argument, but that will give inorret results.A simple example that an be used to test other suggested equations is the onewhere a irle is expanding in the veloity �eld(u(x; y); v(x; y)) = (x; y)away from the origin. Start with the salar de�ned as 1 in all of spae. Fromsimple onservation arguments, the solution should be given as G(x; y; t) = e�t,i.e. G0 = �G.2.3.3 Normal AdvetionIf u = Fnx, v = Fny, where F an be a funtion of (x; y), we observe that theterm n2yux � nxny(uy + vx) + n2xvysimpli�es to �F , where � is the urvature. In this ase, the evolution equationbeomes Gt(x; y) = �F [(N � rG) + �G℄7



2.3.4 Final EquationsCombining the previous equations, we get that if � is the di�usion oeÆient,and the front is moved with a ombination of an advetion �eld (u; v) and anormal speed F .Gt = � �(Gxxn2y � 2Gxynxny + Gyyn2x) � �(rG �N )�� (u; v) � rG� (n2yux � nxny(uy + vx) + n2xvy)G� F [(N � rG) + �G℄2.4 Statement of Problem: Impliit Formulation, ThreeDimensionsThe equations for three dimensions are similar, and are derived in the Appendix.We assume a di�usion oeÆient � and an advetion veloity �eld (u; v; w).To simplify the notation, introdue the di�erential operator��[u; v; w℄ = 1jjr�jj2 � (vy +wz)�2x + (ux +wz)�2y + (ux + vy)�2z�(vx + uy)�x�y � (wx + uz)�x�z � (wy + vz)�y�z �Using this operator, the mean urvature is given by�M = ��[�x;�y;�z℄jjr�jjand the di�erential equation simpli�es toGt = � [��[Gx; Gy; Gz℄� �M (rG �N )℄� (u; v; w) � rG� ��[u; v; w℄G� F [(N � rG) + �MG℄Expanding out, we note that the �rst term is equal to��[Gx; Gy; Gz℄ = � (Gyy +Gzz)N2x + (Gxx + Gzz)N2y + (Gxx +Gyy)N2z�2GxyNxNy � 2GxzNxNz � 2GyzNyNz �3 Numerial Approximations and Algorithms3.1 Level Set Methods3.1.1 Equations of MotionLevel set methods rely on two entral embeddings; �rst the embedding of theinterfae as the zero level set of a higher dimensional funtion, and seond, theembedding (or extension) of the interfae's veloity to this higher dimensionallevel set funtion. More preisely, given a moving losed hypersurfae �(t), thatis, �(t = 0) : [0;1)! RN , propagating with a speed F in its normal diretion,8



we wish to produe an Eulerian formulation for the motion of the hypersurfaepropagating along its normal diretion with speed F , where F an be a funtionof various arguments, inluding the urvature, normal diretion, et. Let �d bethe signed distane to the interfae. If this propagating interfae is embeddedas the zero level set of a higher dimensional funtion �, that is, let �(x; t = 0),where x 2 RN is de�ned by �(x; t = 0) = �d; (2)then an initial value partial di�erential equation an be obtained for the evolu-tion of �, namely �t + F jr�j= 0 (3)�(x; t = 0) given (4)This is the impliit formulation of front propagation given in [12℄. As disussedin [14, 15, 16℄, propagating fronts an develop shoks and rarefations in theslope, orresponding to orners and fans in the evolving interfae, and numer-ial tehniques designed for hyperboli onservation laws an be exploited toonstrut shemes whih produe the orret, physially reasonable entropy so-lution.There are ertain advantages assoiated with this perspetive. First, it isunhanged in higher dimensions; that is, for surfaes propagating in three di-mensions and higher. Seond, topologial hanges in the evolving front � arehandled naturally; the position of the front at time t is given by the zero level set�(x; y; t) = 0 of the evolving level set funtion. This set need not be onneted,and an break and merge as t advanes. Third, terms in the speed funtion Finvolving geometri quantities suh as the normal vetor n and the urvature� may be easily approximated through the use of derivative operators appliedto the level set funtion, that is, n = r�jr�j and � = r � r�jr�j Fourth, the up-wind �nite di�erene tehnology for hyperboli onservation laws may be usedto approximate the gradient operators.3.1.2 Approximation ShemesEntropy-satisfying upwind visosity shemes for this initial value formulationwere introdued in [12℄. One of the simplest �rst order sheme is given as�n+1ijk = �nijk ��t[max(Fijk; 0)r+ +min(Fijk; 0)r�℄; (5)where r+ = 24 max(D�xijk; 0)2 +min(D+xijk; 0)2+max(D�yijk; 0)2 +min(D+yijk; 0)2+max(D�zijk; 0)2 +min(D+zijk; 0)2 351=2r� = 24 max(D+xijk; 0)2 +min(D�xijk; 0)2+max(D+yijk; 0)2 +min(D�yijk; 0)2+max(D+zijk; 0)2 +min(D�zijk; 0)2 351=29



Higher order shemes are available, see [12℄.The above formulation reveals two entral embeddings. First, in the initial-ization step (Eqn. 2), the signed distane funtion is used to build a funtion �whih orresponds to the interfae at the level set � = 0. This step is known as\initialization"; when performed at some later point in the alulation beyondt = 0, it is referred to as \re{initialization".Seond, the onstrution of the initial value PDE given in Eqn. 3 meansthat the veloity F is now de�ned for all the level sets, not just the zero levelset orresponding to the interfae itself. We an be more preise by rewritingthe level set equation as �t + F jr�j = 0; (6)where F is some veloity �eld whih, at the zero level set, equals the given speedFfront. In other words, F = F on � = 0:This new veloity �eld F is known as the \extension veloity".Both of these issues need to be onfronted in order to eÆiently apply levelset methods to omplex omputational problems.3.1.3 Adaptivity: The Narrow Band Level Set MethodEquation 5 is an expliit sheme, and hene an be solved diretly. The timestep requirement depends on the nature of the speed funtion F ; for an F thatdepends only on position, the time step behaves like �t�xF � 1. In the asewhen the speed funtion F depends on urvature terms (for example, F = ��),the equation has a paraboli omponent, and hene the time step requirementresembles that of a non-linear heat equation; the time step depends roughly on�t�x2 . In the level set formulation, both the level set funtion and the speedare embedded into a higher dimension. Considerable omputational speedupin the level set method omes from the use of the \Narrow Band Level SetMethod", introdued by Adalsteinsson and Sethian in [1℄, whih limits work toa neighborhood (or \narrow band") of the zero level set.This is a signi�ant ost redution; it also means that extension veloitiesneed only be onstruted at points lying in the narrow band, as opposed toall points in the omputational domain. This idea of limiting omputation toa narrow band around the zero level set was introdued in Chopp [4℄, used inreovering shapes from images in Malladi, Sethian and Vemuri [10℄, and exploredin depth in [1℄. Details on the auray, typial tube sizes, and number of timesa tube must be rebuilt may be found in Adalsteinsson and Sethian [1℄.3.1.4 ReinitializationReinitialization is the proess by whih the level set funtion is periodially re-alibrated against the front itself in order to reset the signed distane funtion.As understood by many pratitioners of level set methods (see [19, 22℄), reini-tialization every time step (or lose to every time step) is a poor strategy, sine10



eah reinialization auses error in the position of the front. However, oasionalreinitialization is required when oupled to the Narrow Band method.Reinitialization, that is, resetting the level set funtion � to orrespond tothe signed distane funtion, is eÆiently and aurate performed using FastMarhing Methods. Fast Marhing Methods, [17℄, are Dijkstra-like upwind �nitedi�erene algorithms whih solve the Eikonal equationjrT jF (x; y; z) = 1 T = 0 on �:in ON logN time, where N is the total number of points in the omputationaldomain. Reinitialization omes as a speial ase of the Eikonal equation whenF = 1.The entral idea is as follows; begin by use an upwind �nite di�erene ap-proximation to the gradient of the form24 max(D�xijkT;�D+xijkT; 0)2+max(D�yijkT;�D+yijkT; 0)2+max(D�zijkT;�D+zijkT; 0)2 351=2 = Fijk; (7)(see, for example, Rouy and Tourin [13℄.) The key observation in Fast MarhingMethods [17℄ is that the above ontains an ordering on mesh points, obtainedby a sort algorithm whih updates the points in asending value of T , similarto Dijkstra's network path algorithm [5℄. This ordering is omputed as thealulation unfolds, and yields an algorithm whih avoids all iteration.The Fast Marhing Method has been extended to higher order �nite dif-ferene approximations by Sethian in [20℄, �rst order unstrutured meshes byKimmel and Sethian [8℄, and higher order unstrutured meshes by Sethian andVladimirsky [23℄. Some early appliations inlude photolithography in [18℄, aomparison of a similar approah with volume-of-uid tehniques in [7℄, a fastalgorithm for image segmentation in [11℄ and omputation of seismi travel timesby Sethian and Popovii [21℄;A di�erent Dijsktra-like method for the Eikonal equation was developed byTsitsiklis [25℄; he obtains the visosity solution through a ontrol-theoreti dis-retization whih hinges on a ausality relationship based on the optimalityriterion. The Fast Marhing Method is an upwind �nite di�erene tehniques,while Tsitsiklis' method relies on a minimization sheme based on an optimalityriterion. The two tehniques use di�erent formulations and di�erent disretiza-tions; in the ase of a �rst order formulation, it was later observed that theyultimately invoke the same quadrati formula in the update For details on thetwo tehniques, see [25, 17℄. In addition, we note that Fast Marhing Methodslend themselves to higher order shemes in a natural way. For details on usingthe Fast Marhing Method to perform reinitialization in the ontext of level setmethods, see [2℄. We also note that in reent work, Sethian and Vladimirskyhave been able to produe general shemes for non-Eikonal anisotropi gen-eral optimal ontrol problems with the same omputational omplexity as theseDijkstra-like methods; for details, see [23, 24℄.11



3.1.5 Constrution of Extension VeloitiesIn order to onstrut extension veloities F , we start with the given veloityFfront and hoose an appropriate extension veloity. There are several reasonswhy one needs to build these extension veloities, inluding the fat that nonatural veloity may be available o� of the front, the need for sub-grid resolu-tion, the need for aurate representation of front veloities, and the need tomaintain a nie level set representation (see [19, 22℄ for details). In [9℄, theidea of extrapolating the given front veloity along the gradient of the front toobtain an extension veloity o� of the front was introdued, and used in imagesegmentation. Mathematially, this means thatrF � r� = 0: (8)It is straightforward to show that this hoie of extension veloity maintains thesigned distane funtion for the level sets of � for all time (see, for example,[26℄).In [2℄, a strategy for onstruting these extension veloities was introdued,using a two-tiered system. Given a level set funtion at time n, namely �nij,one �rst onstruts a signed distane funtion ��nij around the zero level set.Simultaneous with this onstrution, one then onstruts the extension veloityFext satisfying Eqn. 8. This veloity is used to update the level set funtion �n.For details, see [2℄.3.2 Algorithms for Di�usion and Transport of MaterialQuantitiesThe general form of the update equation isGt = � [��[Gx; Gy; Gz℄ + �M (rG �N )℄+ (u; v; w) � rG� ��[u; v; w℄G+ F [(N � rG)� �MG℄We update with the disrete value for �nij using the upwind shemes in [12℄.We update the values of the material quantity Gnij using entral di�erenes forthe di�usion terms and upwinding for the advetion terms.4 Numerial Tests of Algorithm: Two Dimen-sionsIn this setion, we onsider some two-dimensional test ases to analyze theauray of the algorithms.4.1 Di�usion, Fixed FrontWe begin by studying the di�usion of a salar quantity on a �xed front. Asa simple test, let the front be given by a irle with radius 0:3 in a unit box.12



De�ne the � surfae by omputing the signed distane rather than using theexat distane. The initial value for G is de�ned everywhere asG(x; y) = xWe then evolve the G array aording toGt = � �(Gxxn2y � 2Gxynxny +Gyyn2x) + �(rG �N )�The normal N is taken from the level surfae, and is onstant in time sine thesurfae never moves.An exat solution may be produed as follows. Parametrizing the front byar length, �r os � sr � ; r sin � sr ��, the initial data is given in terms of ar lengthby r os � sr � : With unit di�usion oeÆient, the exat solution is given byr os�sr� exp���tr2� = x exp�� �tx2 + y2�4.1.1 Di�usion, Fixed Front, SimpleCalulations are performed up to time T = 1 for three grid sizes, 60 � 60,120�120 and 240�240. Initial value for G is G(x; y) = x in all of spae. Whenyou look at the salar as a funtion of ar length, this is a wave on the irle,i.e. the lowest wave number. Stability is ensured by a time step whih is saledas the square of the step size. The error is evaluated as follows; For a largenumber of time values, we ompute the exat solution by the above expressionand subtrat it from the omputed solution that we get by interpolating G ontouniformly spread points on the interfae. We then use trapezoid rule to omputethe integral of the square of this error, and divide through by the total lengthof the irle. This gives the average two norm of the error along the front. Theresults are shown in Figure 2. From this we see that onvergene is seond orderoverall.4.1.2 Di�usion, Front �xed, General CaseA more hallenging problem ours when the front is no longer a irle and theinitial value of the salar is more ompliated than a single eigenvetor of thedi�usion operator. The initial front that is hosen is a perturbed irle, and thesalar G is de�ned for points (x; y) on the front with G(x; y) = x2. Note that ifthe salar is de�ned only on the front, for example as a funtion of ar length,the initialization of G(x; y) will be done by the fast extension method [2℄.See Figure 3 for a piture of the front and a plot of G as a funtion of arlength. This salar has a full spetrum of frequenies. We an solve this problemexatly with a Fourier series method. To �nd the exat solution at a later timeT , extrat the initial salar as a funtion of ar length, deompose it into it'sFourier modes, sale eah mode using the oeÆient of di�usion � = 0:05. Atthat time T , the numerial solution is interpolated (bi{ubi) onto the same13



Error for diffusion on a circle, 60x60, 120x120 and 240x240
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Figure 2: Front �xed, values di�used on a irle.points and subtrated. This will give the error as a funtion of ar length.Then ompute the L2 norm of that funtion and divide by the length to get theaverage error. This error is shown in Figure 4; the run is simulated until timeT = 1:0.4.2 Advetion4.2.1 Advetion - Two dimensionsNext, we onsider the advetion of the material quantity as the front moves.Start with an ellipse with major axis 0:4 and 0:3, entered in a unit square box(Figure 5). The initial value of the salar is de�ned asG(x; y) = x2 + y2 � xypx2 + y2 + 110everywhere in spae. We onsider a ow whih rotates this ellipse around theenter a full irle. For this problem, we know the exat solution, sine thevalues will just rotate with the front. We run this problem for two grid sizes,h = 1=121 and h = 1=241.We measure the error both for the front evolution as well as the salarevolution, presented in the two plots shown in Figure 6. The error is measuredas follows.� For the front, we ompute the ontour of the level set. Using the exatsolution, we ompute the pointwise di�erene between the omputed andexat front. This will give us the error along the front. Then we take thaterror and ompute the average two norm of this error. This gives us agood indiation of what the overall error is for the front evolution. Thein�nity norm gives a very similar result, sine the pointwise error is fairly14
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Figure 12: Four time values for rotating a sphere.
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The term ��(0)� nTD2�(0)nis the mean urvature of the surfae at the point. nTrF = Fn, so if the F isomputed through an extension algorithm, this is zero. Sine it wil not remainzero, the term should be inluded as a orretion.The term �F (0)� nTD2F (0)nwhere n = 1L (�x;�y;�z)appears for F = V and F = � in the above equation. The next step is tosimplify this term, and write it in terms of derivatives that are easy to ompute.�F (0)� nTD2F (0)n = 1L2 ��2x(Fyy + Fzz) + �2y(Fxx + Fzz) + �2z(Fxx + Fyy)� 2�x�yFxy � 2�x�zFxz � 2�y�zFyz ℄If the normal N = (nx; ny; nz), this simpli�es to�F (0)� nTD2F (0)n = n2x(Fyy + Fzz) + n2y(Fxx + Fzz) + n2z(Fxx + Fyy)�2nxnyFxy � 2nxnzFxz � 2nynzFyz6.2 AdvetionWe begin with a small paralleloid at the origin spanned with two vetors (h; 0; sh),(0; h; rh) where s = �nx=nz, r = �ny=nz. We ompute the rate at whih thearea hanges, whih will give the rate of hange for the salar value V at thatpoint (opposite sign). Consider the three points (0; 0; 0), (h; 0; sh), (0; h; rh). Ina short time t, these points map into(u(0; 0; 0)t; v(0; 0; 0)t;w(0; 0; 0)t)(h+ u(h; 0; sh)t; v(h; 0; sh)t; sh+ w(h; 0; sh)t)(u(0; h; rh)t; h+ v(0; h; rh)t; rh+w(0; h; rh)t)The area of these two paralleloids is produed using the ross produt. For the�rst one, we have that(0; h; rh)� (h; 0; sh) = (sh2; rh2;�h2)that has length h2p1 + r2 + s2The new paralleloid is spanned by the vetors(u(0; h; rh)t�u(0; 0; 0)t; h+v(0; h; rh)t�v(0; 0; 0)t; rh+w(0; h; rh)t�w(0; 0;0)t)24



(h+u(h; 0; sh)t�u(0; 0; 0)t; v(h; 0; sh)t�v(0; 0;0)t; sh+w(h; 0; sh)t�w(0;0;0)t)Expanding them in terms of h around the origin, ignoring O(h2) terms anddropping (0; 0; 0), we have that(th(uy + ruz); h+ th(vy + rvz); rh+ th(wy + rwz))(h+ th(ux + suz); th(vx + svz); sh+ th(wx + swz)):The length of the ross produt of these two vetors isp1 + s2 + r2 + 2tD + O(t2) =p1 + s2 + r2�1 + tD1 + s2 + r2 + O(t2);�where the value of D isD = s(wx + swz + s(vy + rvz) � r(vx + svz))+ r(r(ux + suz) + (wy + rwz)� s(uy + ruz))+ (ux + suz + vy + rvz)= (ux + vy) + s(wx + uz) + r(wy + vz)+ s2(wz + vy) + r2(ux + wz) � rs(vx + uy)By omputing the ratios of these lengths, we get as before, sine s = �nx=nz,r = �ny=nz, 1 + s2 + r2 = 1=n2z, the hange due to the ompression/expansionis given by Vt = � D1 + s2 + r2V = �n2zDV = �KVwhere K = n2zD = n2z(ux + vy)� nxnz(wx + uz) � nynz(wy + vz)+ n2x(wz + vy) + n2y(ux +wz) � nxny(vx + uy)In addition, we need to passively advet the salar �eld. Combining these twoterms gives us the total evolution equationVt = �(u; v; w) � rV �KV6.3 Normal AdvetionWhen (u; v; w) = F (nx; ny; nz), where F an be a funtion of spae, the aboveequation simpli�es into Vt = �F [(N � rV ) + �MV ℄where �M is the mean urvature�M = ( �2z(�xx + �yy) � 2�x�z�xz � 2�y�z�yz+ �2x(�yy +�zz) + �2y(�xx +�zz) � 2�x�y�xy)=(�2x +�2y +�2z)3=225
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