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Abstract

We develop theory and numerical algorithms to apply level set methods
to problems involving the transport and diffusion of material quantities
in a level set framework. Level set methods are computational techniques
for tracking moving interfaces; they work by embedding the propagating
interface as the zero level set of a higher dimensional function, and then
approximate the solution of the resulting initial value partial differential
equation using upwind finite difference schemes. The traditional level set
method works in the trace space of the evolving interface, and hence dis-
regards any parameterization in the interface description. Consequently,
material quantities on the interface which themselves are transported un-
der the interface motion are not easily handled in this framework. We
develop model equations and algorithmic techniques to extend the level
set method to include these problems. We demonstrate the accuracy of
our approach through a series of test examples and convergence studies.

1 Introduction and Overview

In this paper, we develop numerical algorithms for tracking interfaces in which
material quantities are transported along an evolving front. The algorithms are
designed to be robust, accurate, efficient, handle topological change, and work
in both two and three space dimensions.

Traditionally, interface motion has been characterized by a discrete version
of the differential geometry representation; in this view, a discretization of a
parameterized representation is used to characterize the interface. Known in
different fields with different names, these marker methods (string methods,
point methods) allow accurate characterizations of evolving interfaces. They
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form the backbone of a large collection of everyday simulations, include those
in fluid mechanics, combustion and flame propagation, and materials sciences.
Advantages to this approach include the ability to simultaneously represent the
interface by a collection of marker points that move and allow each marker to
carry variable quantities to be used to solve associated partial differential equa-
tions. This last capability is of considerable importance in a variety of physical
problems, including boundary integral formulations of interface problems, in
which single and double layer distributions must be updated and advanced in
tandem with the moving interface, and problems in semiconductor manufac-
turing under etching and deposition processes, in which associated quantities
such as step coverage are critical in accurately capturing the dynamics of the
evolving profile.

Some possible drawbacks of these marker Lagrangian approaches include
difficulties with evaluating topological change, the need to remove parts of the
evolving front (known as delooping) to correctly characterize the viscosity so-
lution, the need to adaptively add and remove points to provide numerical
resolution and ameliorate strict time step requirements, and complications in
three dimensions.

In response, two alternative Eulerian numerical techniques have been devel-
oped to track interfaces. These include Volume of Fluid techniques (also known
as cell methods) and level set methods. Volume of fluid techniques characterize
the interface by discretizing the computational domain into a collection of cells
that are each assigned a volume fraction denoting the portion of the interface
contained in that cell. Level set methods work by embedding the interface as the
zero level set of a higher dimensional function. Both techniques extend to three—
dimensions and easily handle topological change. Level set techniques have the
additional advantage that they are naturally linked to numerical schemes for hy-
perbolic conservation laws, and can easily provide accurate values for geometric
terms such as the normal direction and curvature.

Nonetheless, these two techniques are not easily applied to problems in which
a material quantity is required to be evaluated along the interface; fundamen-
tally, this is because both methods work in the range space of the domain, and
ignore past information such as tangential stretch. While some extensions of
these techniques have been developed, a general and numerically sound algo-
rithm is not yet available.

This paper presents techniques to design level set methods to accurately
compute the evolution of interfaces which carry material properties. The key
idea involves the use of a single level set function to characterize the interface
position, and an associated field suitably extended off the interface to keep
control of the material quantities. We derive the relevant equations of motion,
and then present our numerical techniques, followed by a series of numerical
convergence tests and model problems to verify the algorithm.



2 Equations of Motion

Consider a problem in which an interface moves under a velocity which depends
on the value of a quantity carried on the surface, as well as location and local
geometric properties such as normal direction and curvature. As an example,
the motion of a fluid interface can depend on the vorticity distribution along
the front. Let G(x) be the value of the surface quantity at a point # on the
interface. Our goal is to characterize the transport of G under the interface
motion.

2.1 Statement of Problem: Lagrangian Formulation

For ease of explanation, we discuss the problem in terms of curves propagating in
two space dimensions; ultimately, the equations we derive will apply to surface
propagation in three space dimensions as well. Consider a curve T'(¢, s) in which
s parameterizes the curve at any fixed time ¢. Associated with this interface 1s
a function G(T'(s,t)), which gives the value of some scalar quantity along the
interface.

We consider the following motions:

e Advection: The interface is passively advected under a velocity field
(u(x,y),v(x,y)). This motion also transports the material quantity G
along with the interface.

e Propagation: The interface propagates normal to itself with speed F'
which may depend on position, normal direction, local curvature, as well
as the solution of some associated partial differential equation. Here, the
solution 1s meant to be the viscosity solution, selected through the appro-
priate entropy condition (see [15, 16, 19]). This motion also propagates
the material quantity in conjunction with the propagating front.

e Diffusion: The material quantity G is allowed to diffuse along the inter-
face according to the standard diffusion model.

The above description is not necessarily complete. We consider two exam-
ples. First, consider a circle with the function G constant along the circle, and
suppose we wish to examine propagation normal to the curve with unit speed.
It seems reasonable to assume that the total amount of G along the curve should
be conserved under this motion, thus G must decrease as the circle expands.
Thus, if we imagine a painted balloon, as the balloon is blown up, the amount
of paint per unit surface area must decrease.

Second, non-smooth fronts pose an additional dilemma. Consider an initial
square with constant (G. Suppose the square moves outwards with unit speed.
The sides should move outwards carrying the material quantity G, and the
expanding corners should be arcs in which G is zero. This conserves the total
amount of G as the front moves, yet it is clear that the distribution of G is
no longer smooth. Similarly, if the front moves inwards, we view (G as a delta
function at the corners.



Thus, we make the following additional assumption: we assume that under
propagation, G is conserved. The implication of this is that in the presence of
corners in the evolving front, we must examine the regularized problem of the
limit of smooth fronts which produce the non-smooth front.

2.2 Level Set Methods

Level set methods, introduced by Osher and Sethian [12], rely in part on the
theory of curve and surface evolution given in [15] and on the link between
front propagation and hyperbolic conservation laws discussed in [16]. These
techniques recast interface motion as a time-dependent Eulerian initial value
partial differential equation, and rely on viscosity solutions to the appropriate
differential equations to update the position of the front, using an interface
velocity that is derived from the relevant physics both on and off the interface.
These viscosity solutions are obtained by exploiting schemes from the numerical
solution of hyperbolic conservation laws. Level set methods are specifically
designed for problems involving topological change, dependence on curvature,
formation of singularities, and host of other issues that often appear in interface
propagation techniques.

The level set method describes the front by defining a function, ¢(z), on all
of space, which embeds the interface as its zero level set. The function is then
evolved according to the equation

(2, t) — F(2,1)|Vé(x,t)] =0 (1)

Here F'(x,t) is the normal speed of the front if # lies on the front. Topological
changes are handled naturally in this setting, and the front can be tracked with
a high degree of accuracy. Terms such as the normal and curvature of the front
can be computed with high accuracy; this will be important for our problem.

We point out that there has been previous work on the description of material
quantities in the context of level set methods. In [3], work on solving diffusion-
type equations on surfaces has been considered in an implicit representation,
and in [6], a level set formulation was used to track the evolution of vortex
sheets, keeping track of the circulation on the evolving interface. We refer the
reader to these papers for background and earlier work.

2.3 Statement of Problem: Implicit Formulation, Two Di-
mensions

We now derive a set of equations for an implicit view of the above transport,
propagation and diffusion of material quantities in association with an evolving
front which corresponds to a curve propagating in two space dimensions. We
combine each term separately using operator splitting.

We begin by supposing that the material function G'f,on¢, defined on the
front, is in fact defined throughout the computational domain, and use the
notation ¢ to represent this function. Thus, G is a function from R? to R



which agrees with Gfron: on the given initial curve I We shall later make
suggestions as to appropriate choices for (G, for now, we shall simply assume
that it can be constructed and is sufficiently smooth.

Following the level set approach, let the initial curve I' be embedded as the
zero level set of some function ¢(x, y,t = 0). We now derive evolution equations
for ¢ and Gz which produce implicit descriptions of the desired action on the
front itself. We do so term by term.

2.3.1 Diffusion

We begin with the diffusion equation in the case of a stationary front. Let
(z,y) be a point on the front, Let G((x,y),t) be the scalar defined in all of
space which agrees with G,on¢ on the stationary interface, and let ¢(z,y) be
the signed distance function from this interface. Finally, let a(s) = (z(s), y(s))
parametrize the front by arc length, such that «(0) = (x,y). Diffusion along
the interface then implies that

Gt(($a y)a t) = UGaa(($a y)a t)
where o is the diffusion constant. Setting ¢ = 1, we have that
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where & is the curvature of the front. Assembling the terms, we have

Gt = |:Gxx I ny T T I K
by o 6] e Gyl
- [G“’L_nyL L~ L "
_ Gea®) = 2Gaybety + Gyt Gads + Cydy
— LZ N L

We now note that this equation may be defined on all of space, and defines the
evolution of the material function G both on and off the front. Additionally, we
note that if (ns, ny) is the value of the normal, the above equation simplifies to

Gy = (Gmnfj — 2Gpyngeny + nyni) — (Gang + Gyny)k

here, Gyn; + Gyny is the dot product of VG with the normal.



2.3.2 Advection

Consider a front with scalar field G which is also undergoing advection by means
of a vector field (u,v) that depends on (z,y). To find how the values change,
we split the advection into two parts, corresponding to passive advection by the
velocity field and to local compression/expansion of the front.

(u(0,0), (0, 0))t + O(t?) (2,9) + (u(z,9), v(z, )t + O(t?)

(z,y)
(0,0)

Figure 1: Two-dimensional advection

To get the scaling of the segment length, we expand everything out to get the
limit as the segment length and the time step go to zero (see Figure 1.

Expanding everything out, we get that the new segment is
(x + u(z, y)t — u(0,0)t, y + v(z,y)t — v(0,0)t) + O(t?)

Define the normal of the line segment as (ns, ny), and s = —ny/ny, so y = sz
as (z,y) go to (0,0). If the length at time ¢ is L(¢) we have that

L) = ||z =+ (u(z,sx) —u(0,0))t, sz + (v(z, sz) — v(0,0))t)]| + O(tz)
] 1(1+ (ue(0,0) + 51y (0,0))t, 5+ (v2(0,0) + s, (0,0))t)|| + O(® +17)

and
L(0) = |z|V1 + 2

Then, omitting the (0,0), we see that

Lt) = |x|\/(1 (g 4 suy )12 + (5 + (ve + 59,)8)2 + O(t? + #2)

Since the integral of Gi(¢) over the rectangle is preserved, letting # — 0, we get
that
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, and hence the rate of change for Gi(¢) is given by

dG Uy + suy + s(vy + svy)
—(0) =— Y G0
o (0) T2 (0)
Using the substitution s = —n,/n,, we have that the magnification factor is
given by
Moo W + suy + s(ve + svy)
1452
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_ 2 2
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Thus, if G(z,y,t) is the value as a function of space and time, then the time
evolution of GG is given by

Gi(z,y) = —(u,v) - VG — (nfjux — ngny(uy + vg) + nivy)G.

This term can be defined in all of space. The term (ny, ny) is the normal, which
can be computed everywhere in space from the gradient of the level set surface.
The velocity field (u,v) is either given everywhere, or gotten from the front by
extending the u and v components [2].

The first term comes from passive advection, and the second from the com-
pression/expansion. The second part is crucial, even if it is a little counter-
intuitive. At first glance, it looks like the advection equation could be easily
written down from a conservation argument, but that will give incorrect results.
A simple example that can be used to test other suggested equations is the one
where a circle is expanding in the velocity field

(u(l‘, y)’ v($’ y)) = (l‘, y)

away from the origin. Start with the scalar defined as 1 in all of space. From

simple conservation arguments, the solution should be given as G(z,y,t) = ™7,

le. G = —-G.

2.3.3 Normal Advection

If w= Fng, v = Fny, where F can be a function of (z,y), we observe that the
term
nfjux — Neny(Uy + v) + nivy

simplifies to K F', where « is the curvature. In this case, the evolution equation
becomes

Gi(z,y) = =F[(N - VG) 4+ (]



2.3.4 Final Equations

Combining the previous equations, we get that if o is the diffusion coefficient,
and the front is moved with a combination of an advection field (u,v) and a
normal speed F'.

Gy = o [(Gmnz — 2Gpyngny + nyni) - &(VG - N)]
- (u,v) VG — (nfjux — Ngny(Uy + vz) —|—nivy)G
— F[(N-VG)+ kG

2.4 Statement of Problem: Implicit Formulation, Three
Dimensions

The equations for three dimensions are similar, and are derived in the Appendix.
We assume a diffusion coefficient o and an advection velocity field (u, v, w).
To simplify the notation, introduce the differential operator

=, 1] = — (vy + w2 )R + (uo + w:) Y + (ue + vy ) P2
S IVO[]? | = (ve + ty)@o®y — (wy + uz) Do ®: — (wy + v:) Dy D,
Using this operator, the mean curvature is given by

E¢[<Dx,<by,<bz]
Vel

Ky —

and the differential equation simplifies to

Gy = 0 [Z6[Ge, Gy, G:] — ke (VG - N
- (u,v,w) VG = Eglu,v,w]CG
— F[N-VG)+ knG]

Expanding out, we note that the first term is equal to

E0lG, Gy, G.] =
—2G 4y No Ny — 2Go. No N, — 2G,. Ny N,

3 Numerical Approximations and Algorithms

3.1 Level Set Methods
3.1.1 Equations of Motion

Level set methods rely on two central embeddings; first the embedding of the
interface as the zero level set of a higher dimensional function, and second, the
embedding (or extension) of the interface’s velocity to this higher dimensional
level set function. More precisely, given a moving closed hypersurface T'(¢), that
is, ['(t = 0) : [0,00) — RY, propagating with a speed F' in its normal direction,



we wish to produce an Eulerian formulation for the motion of the hypersurface
propagating along its normal direction with speed F'; where F' can be a function
of various arguments, including the curvature, normal direction, etc. Let £d be
the signed distance to the interface. If this propagating interface is embedded
as the zero level set of a higher dimensional function ¢, that is, let ¢(z,¢ = 0),
where € RY is defined by

é(a,t=0) = +d, (2)

then an initial value partial differential equation can be obtained for the evolu-
tion of ¢, namely

¢t + FIVo|=0 (3)
¢(x,t =0) given (4)

This is the implicit formulation of front propagation given in [12]. As discussed
n [14, 15, 16], propagating fronts can develop shocks and rarefactions in the
slope, corresponding to corners and fans in the evolving interface, and numer-
ical techniques designed for hyperbolic conservation laws can be exploited to
construct schemes which produce the correct, physically reasonable entropy so-
lution.

There are certain advantages associated with this perspective. First, it is
unchanged in higher dimensions; that is, for surfaces propagating in three di-
mensions and higher. Second, topological changes in the evolving front T' are
handled naturally; the position of the front at time ¢ is given by the zero level set
é(x,y,t) = 0 of the evolving level set function. This set need not be connected,
and can break and merge as ¢ advances. Third, terms in the speed function F
involving geometric quantities such as the normal vector n and the curvature
x may be easily approximated through the use of derivative operators applied
to the level set function, that is, n = % and k = V- |V¢| Fourth, the up-
wind finite difference technology for hyperbolic conservation laws may be used
to approximate the gradient operators.

3.1.2 Approximation Schemes

Entropy-satisfying upwind viscosity schemes for this initial value formulation
were introduced in [12]. One of the simplest first order scheme is given as

¢>Z‘Zl = ¢ip, — At[max(Fijp, 0)VT + min(Fyjx, 0)V ], (5)
where "
- max(Di_jz, 0)? + min(DEx 0)24 T
vt = max(D;Z, 0)? + min(D ik 0)2+
i max(D”z, 0)? + mm(D;"]’z, 0)?
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V™ = | max(D ke 0)? + min(D;?Z, 0)2+
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Higher order schemes are available, see [12].

The above formulation reveals two central embeddings. First, in the initial-
ization step (Eqn. 2), the signed distance function is used to build a function ¢
which corresponds to the interface at the level set ¢ = 0. This step is known as
“initialization”; when performed at some later point in the calculation beyond
t = 0, it is referred to as “re-initialization”.

Second, the construction of the initial value PDE given in Eqn. 3 means
that the velocity F' 1s now defined for all the level sets, not just the zero level
set corresponding to the interface itself. We can be more precise by rewriting
the level set equation as

where F' is some velocity field which, at the zero level set,| equals the given speed
Ftrone. In other words,

F=Fon¢=0.

This new velocity field F' is known as the “extension velocity”.
Both of these issues need to be confronted in order to efficiently apply level
set methods to complex computational problems.

3.1.3 Adaptivity: The Narrow Band Level Set Method

Equation 5 is an explicit scheme, and hence can be solved directly. The time
step requirement depends on the nature of the speed function F'; for an F' that
depends only on position, the time step behaves like %F < 1. In the case
when the speed function F' depends on curvature terms (for example, F' = —k),
the equation has a parabolic component, and hence the time step requirement
resembles that of a non-linear heat equation; the time step depends roughly on
AAJQ. In the level set formulation, both the level set function and the speed
are embedded into a higher dimension. Considerable computational speedup
in the level set method comes from the use of the “Narrow Band Level Set
Method”, introduced by Adalsteinsson and Sethian in [1], which limits work to
a neighborhood (or “narrow band”) of the zero level set.

This is a significant cost reduction; it also means that extension velocities
need only be constructed at points lying in the narrow band, as opposed to
all points in the computational domain. This idea of limiting computation to
a narrow band around the zero level set was introduced in Chopp [4], used in
recovering shapes from images in Malladi, Sethian and Vemuri [10], and explored
in depth in [1]. Details on the accuracy, typical tube sizes, and number of times
a tube must be rebuilt may be found in Adalsteinsson and Sethian [1].

3.1.4 Reinitialization

Reinitialization is the process by which the level set function is periodically re-
calibrated against the front itself in order to reset the signed distance function.
As understood by many practitioners of level set methods (see [19, 22]), reini-
tialization every time step (or close to every time step) is a poor strategy, since
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each reinialization causes error in the position of the front. However, occasional
reinitialization is required when coupled to the Narrow Band method.

Reinitialization, that is, resetting the level set function ¢ to correspond to
the signed distance function, is efficiently and accurate performed using Fast
Marching Methods. Fast Marching Methods, [17], are Dijkstra-like upwind finite
difference algorithms which solve the Eikonal equation

IVT|F(z,y,2)=1 T=0onT.

in ONlog N time, where N 1s the total number of points in the computational
domain. Reinitialization comes as a special case of the Eikonal equation when
F=1.

The central idea is as follows; begin by use an upwind finite difference ap-
proximation to the gradient of the form

max(D; T, —DET,0)%+ 12
max(D; 3T, —DZ»];%T, 0)2;— = Fijk, (7)
maX(Dz’jo’ _DijiT’ 0)

(see, for example, Rouy and Tourin [13].) The key observation in Fast Marching
Methods [17] is that the above contains an ordering on mesh points, obtained
by a sort algorithm which updates the points in ascending value of 7', similar
to Dijkstra’s network path algorithm [5]. This ordering is computed as the
calculation unfolds, and yields an algorithm which avoids all iteration.

The Fast Marching Method has been extended to higher order finite dif-
ference approximations by Sethian in [20], first order unstructured meshes by
Kimmel and Sethian [8], and higher order unstructured meshes by Sethian and
Vladimirsky [23]. Some early applications include photolithography in [18], a
comparison of a similar approach with volume-of-fluid techniques in [7], a fast
algorithm for image segmentation in [11] and computation of seismic travel times
by Sethian and Popovici [21];

A different Dijsktra-like method for the Eikonal equation was developed by
Tsitsiklis [25]; he obtains the viscosity solution through a control-theoretic dis-
cretization which hinges on a causality relationship based on the optimality
criterion. The Fast Marching Method 1s an upwind finite difference techniques,
while Tsitsiklis” method relies on a minimization scheme based on an optimality
criterion. The two techniques use different formulations and different discretiza-
tions; in the case of a first order formulation, it was later observed that they
ultimately invoke the same quadratic formula in the update For details on the
two techniques, see [25, 17]. In addition, we note that Fast Marching Methods
lend themselves to higher order schemes in a natural way. For details on using
the Fast Marching Method to perform reinitialization in the context of level set
methods, see [2]. We also note that in recent work, Sethian and Vladimirsky
have been able to produce general schemes for non-FEikonal anisotropic gen-
eral optimal control problems with the same computational complexity as these
Dijkstra-like methods; for details, see [23, 24].
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3.1.5 Construction of Extension Velocities

In order to construct extension velocities F', we start with the given velocity
Ftrone and choose an appropriate extension velocity. There are several reasons
why one needs to build these extension velocities, including the fact that no
natural velocity may be available off of the front, the need for sub-grid resolu-
tion, the need for accurate representation of front velocities, and the need to
maintain a nice level set representation (see [19, 22] for details). In [9], the
idea of extrapolating the given front velocity along the gradient of the front to
obtain an extension velocity off of the front was introduced, and used in image
segmentation. Mathematically, this means that

VF-Vé=0. (8)

It is straightforward to show that this choice of extension velocity maintains the
signed distance function for the level sets of ¢ for all time (see, for example,

[26)).

In [2], a strategy for constructing these extension velocities was introduced,
using a two-tlered system. Given a level set function at time n, namely ¢7;,
one first constructs a signed distance function QEZ around the zero level set.
Simultaneous with this construction, one then constructs the extension velocity
F.,, satisfying Eqn. 8. This velocity is used to update the level set function ¢”.

For details, see [2].

3.2 Algorithms for Diffusion and Transport of Material
Quantities

The general form of the update equation is

Gy = 0 [Z6[Ge, Gy, G:] + ke (VG - N
+ (u,v,w) VG —Eglu,v,w]CG
+ PN -VG) - kyG]

We update with the discrete value for ¢7; using the upwind schemes in [12].
We update the values of the material quantity G using central differences for
the diffusion terms and upwinding for the advection terms.

4 Numerical Tests of Algorithm: Two Dimen-
sions

In this section, we consider some two-dimensional test cases to analyze the
accuracy of the algorithms.

4.1 Diffusion, Fixed Front

We begin by studying the diffusion of a scalar quantity on a fixed front. As
a simple test, let the front be given by a circle with radius 0.3 in a unit box.
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Define the ¢ surface by computing the signed distance rather than using the
exact distance. The initial value for (G is defined everywhere as

Gz, y) =«
We then evolve the G array according to
Gi=o [(Gmnz — 2Goynany + nyni) + x(VG - N)]

The normal NV is taken from the level surface, and is constant in time since the
surface never moves.

An exact solution may be produced as follows. Parametrizing the front by
arc length, (r cos (%) , 7 Sin (f)), the initial data is given in terms of arc length
by rcos (f) . With unit diffusion coefficient, the exact solution is given by

(5) ot ot
rcos|—)exp| —— | =zexp| ———
r 1% ) 1% 22 + y?

4.1.1 Diffusion, Fixed Front, Simple

Calculations are performed up to time 7' = 1 for three grid sizes, 60 x 60,
120 x 120 and 240 x 240. Initial value for G is G(z,y) = x in all of space. When
you look at the scalar as a function of arc length, this is a wave on the circle,
i.e. the lowest wave number. Stability is ensured by a time step which is scaled
as the square of the step size. The error is evaluated as follows; For a large
number of time values, we compute the exact solution by the above expression
and subtract it from the computed solution that we get by interpolating G onto
uniformly spread points on the interface. We then use trapezoid rule to compute
the integral of the square of this error, and divide through by the total length
of the circle. This gives the average two norm of the error along the front. The
results are shown in Figure 2. From this we see that convergence is second order
overall.

4.1.2 Diffusion, Front fixed, General Case

A more challenging problem occurs when the front is no longer a circle and the
initial value of the scalar is more complicated than a single eigenvector of the
diffusion operator. The initial front that is chosen is a perturbed circle, and the
scalar G is defined for points (x,y) on the front with G(z,y) = x?. Note that if
the scalar is defined only on the front, for example as a function of arc length,
the initialization of G(z,y) will be done by the fast extension method [2].

See Figure 3 for a picture of the front and a plot of G as a function of arc
length. This scalar has a full spectrum of frequencies. We can solve this problem
exactly with a Fourier series method. To find the exact solution at a later time
T, extract the initial scalar as a function of arc length, decompose it into it’s
Fourier modes, scale each mode using the coefficient of diffusion ¢ = 0.05. At
that time 7', the numerical solution is interpolated (bi—cubic) onto the same

13



10" Error for diffusion on a circle, 60x60, 120x120 and 240x240
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Figure 2: Front fixed, values diffused on a circle.

points and subtracted. This will give the error as a function of arc length.
Then compute the Ly norm of that function and divide by the length to get the
average error. This error i1s shown in Figure 4; the run is simulated until time

T7=1.0.

4.2 Advection
4.2.1 Advection - Two dimensions

Next, we consider the advection of the material quantity as the front moves.
Start with an ellipse with major axis 0.4 and 0.3, centered in a unit square box
(Figure 5). The initial value of the scalar is defined as
G(z,y) = x> + 2—L—|—i
R e N
everywhere in space. We consider a flow which rotates this ellipse around the
center a full circle. For this problem, we know the exact solution, since the
values will just rotate with the front. We run this problem for two grid sizes,
h=1/121 and h = 1/241.
We measure the error both for the front evolution as well as the scalar
evolution, presented in the two plots shown in Figure 6. The error is measured
as follows.

e For the front, we compute the contour of the level set. Using the exact
solution, we compute the pointwise difference between the computed and
exact front. This will give us the error along the front. Then we take that
error and compute the average two norm of this error. This gives us a
good indication of what the overall error is for the front evolution. The
infinity norm gives a very similar result, since the pointwise error is fairly
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Figure 3: Diffusion on a more general front. Initial value given by F(x,y) = «*.
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Figure 4: Diffusion on a more general front. Error along the front as a function

of time for the grid sizes 60 x 60,120 x 120 and 240 x 240.

continuous. We do this for two hundred time values and plot the result as
a function of time for both grid resolutions.

e For the scalar values along the front, we interpolate the values from the
scalar field onto the points on the front by using a bi—cubic interpolation.
We then subtract off the exact solution at those points gotten by rotating
the exact values. This gives us the error along the front. Take the average
two norm of this error for the same two hundred time values as before. To
get the relative error size, we note that the maximum value of the scalar
is about 0.4.

A different and equally useful measurement of scheme accuracy is to track

mass conservation. To do so, we compute the path integral of the values along
the front for each of these two hundred time values and plot it as a function of

15



Figure 5: Initial scalar value along the ellipse.

time in Figure 7. Note that for all of these runs, we get a second order reduction
of the error; even on the coarse grid, the error is very small.

Average 2-norm error in front position 10 Average 2-norm error in scalar value along the front
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Figure 6: How accurately the level set method captures the rotation of the front,
and the error along the front.

4.2.2 Advection and diffusion

We now rerun the above problem, but in addition to the rotation we include
diffusion of the values along the surface. We use a diffusion coefficient 0.1 in
order for the scalar to reduce in amplitude by about a factor of 10.

The exact solution can be obtained, since it is a combination of a rotation
and a diffusion on a fixed elliptical front. To compute the exact solution of the
diffusion process on a fixed front, we write the solution in terms of arc length,
and use that in that representation, the scalar satisfies the heat equation with
diffusion constant 0.1, which is solved using Fourier series.

We run the same numerical experiments as in the section before, but in
order to compute the exact solution, we extract the values on the initial front
by arc length (using bi—cubic interpolation), define it on an evenly spaced one
dimensional grid in arc length. We then compute the numerical Fourier series
to provide the exact solution at later times. This i1s then rotated and subtracted
from the computed solution.
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Conservation of mass
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Figure 7: How well mass is conserved along the ellipse. No diffusion, rotated
around the origin.
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Figure 8: How accurately the level set method captures the rotation of the front,
and the error along the front.

5 Numerical Tests of Algorithm: Three Dimen-
sions

We now test the ability of the algorithm to track the evolution to material
quantities in conjunction with three-dimensional interface evolution. In all of
the tests, it is necessary to use cubic interpolation at all time. Lower order
interpolation will cause convergence to stall. In all of the results, the error
should be very smooth. High noise in the error might indicate a problem with
the interpolation routine.

5.1 Diffusion on Sphere
When the front is fixed, and ¢ = 1, the evolution equation becomes

Gy = E@[Gx, Gy, GZ] + KM(VG . N)

In this test we compare the simulation with an exact solution. To find an exact
solution, we look for a solution on a sphere which only depends on the z value.
It can therefore be described as G(x) = G(¢) in terms of spherical coordinates.
The diffusion equation for the sphere; using this symmetry and the fact that
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Figure 9: How well mass is conserved along the ellipse. Rotated around the
origin, and diffused.

diffusion is proportional to the flux gives

Gilp) = lim (2mrsin(p + Ap)) Gy + Ap) /1 — (277 sin(p) )Gy () /7
Ap0 2rr2sin(p)Ap + O((Ap)?)
cos(p) Gy (p) +5in(9) Gy (¢)
r2sin(y)

The function G(p) = cos(yp) is an eigenfunction of this operator with eigenvalue
—2/r?, so with that as the initial condition, we get an exact solution

2t
G(t, p) = cos(p) exp <_r_2)
We can do this on concentric spheres by defining the initial function to be
Gr,y,z) ==

The calculations are run on successive grids of 50 x 50 x 50 and 100 x 100 x 100
on the box [—0.6,0.6] x [-0.6,0.6] x [—0.6,0.6]. Here, the front is initialized as a
sphere with radius 0.4, and the simulation are run up to 7" = 0.25 with diffusion
constant ¢ = 0.5. The results are shown in figures 10 and 11.

5.2 Advection

We now study how well the algorithm tracks the advection of scalar values. We
rotate a sphere with values defined on it. We know the exact solution, and can
compare both the position of the front and the values along the front with the
exact solution. We use a sphere with radius 0.4, centered around (—0.5,0,0)
and rotate the sphere in the zy plane around the origin. The sphere completes
a full circle at 7' = 1. Four time values for this rotation are shown in Figure 12.
Initial values along the surface are given by the expression = + y + z.

To analyze the accuracy, we track three measurements.
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Figure 10: The error along the surface is colored according to value. The plane
slices through those values and the resulting error is shown along the front as a
function of arc length. This is the error at ¢ = 0.25 for the grid spacing 1/100.

e The pointwise error in the position of the front. The error is computed at
each point on the surface, and then the average norm is computed along
the surface. The result is shown in Figure 13.

e Along the surface, compute the error in the value of the scalar. Then
compute the norm of the error over the whole surface. The result is shown
in Figure 14.

e The integral of the scalar over the surface. This should be conserved over
time. The result is shown in Figure 15.

We use a surface integral to compute the average two norm of the error
along the surface. This computation is done for the grid sizes 120 x 120 x 60
and 240 x 240 x 120.

5.3 Advection and Diffusion

Consider the problem where we have simultaneous advection and a diffusion in
three dimensions. We begin with a sphere with center at (—1/5,0,0) and radius
2/5 in the box

[—4/5,3/5] x [-3/5,4/5] x [-1/2,1/2]

and now rotate it a quarter turn in the zy plane to (0, —1/5,0) by the rotata-
tional field 27 (y, —x,0) and final time T' = 1/4. We set the diffusion coefficient
to 1/2 and run two different grid sizes 1/50 and 1/100. The rotation is shown
in Figure 16.
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Figure 11: Diffusion on a stationary sphere. How the error changes over time
for the exact solution. Plot of the average two-norm (L?) of the error as a
function of time for both A = 1/50 and h = 1/100. The error is computed
by interpolating the values onto the front, and subtracting the known solution
there. This defines a function on the surface, and we compute a surface integral
to find the two—norm. Divide by the area to find the average two norm.

6 Appendix: Derivation of Three-Dimensional
Equations

6.1 Diffusion

For a point & on a level surface, let I' be the surface going through that point.
We will derive the rate of change for G at that point, using that flux across
a boundary is proportional to the gradient, with proportionality constant o,
which we will set to 1 for the derivation.

Assume z = 0. Let M be an orthagonal matrix which maps the normal n
at Z into (0,0,1). If @ is the level set function, let ¥ be the rotated level set
function and W the rotated G function.

G(z) = W(Mz), S(z) =¥(Mz)

In this new coordinate system, we can write the z coordinate in terms of the
first two components of the point, i.e. we can parametrize a rectangular patch
with (#,y, z(z,y)) that will satisfy

U(x,y,2(z,y)) =0.

By differentiating this equation with respect to x and y we get

zx(0,0) = 0
z,(0,0) = 0
and a differentiating it twice with respect to z and y, we get
U, (0)
TT 0; 0 = T
202(0,0) -
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Figure 12: Four time values for rotating a sphere.

Figure 13: Error for location of front.

zyy(0,0) = — —\Pyz(())

Take a small region of the zero level set of ¥ around 0. Take the region defined
by the box [0, h] x [0, h] in the azy coordinate plane. We compute the flux out
of this rectangle, and how that will affect the W value, and then let A — 0.

77777
e
SIS
AL
,;5%;25:%:&&

First, take the edges where x = 0 and # = h. The gradient of W in that surface
along the edges is

YWz, y,z(x,y)) - (1,0, 2z (2, y)).
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Figure 16: Advection and Diffusion in three dimensions The motion of the
surface. Initial condition is transparent. Surface is rotated around the origin.
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Figure 17: Advection and Diffusion in three dimensions. Error behavior for
70 x 70 x 50 and 140 x 140 x 100. On the left is a measurement of the error
compared to the exact solution, on the right how close it is to conserving mass.

equations for z, and zy to get

Flux, = /h[Wx(O) + War (0)h + Wiy (0)y + W2 (0) 250 (0, 0)h + W2 (0) 22y (0,0)y

— (W (0) 4 Wiy (0)y + W (0) 204 (0,0)y) + O(h*)]dy

/h[WM(O)h W (0) 200 (0, 0)h]dy + O(h?)
= [VOVM(O) + W2 (0) 20 (0, 0)h% + O (%)
Similar equation holds for the flux through y = 0 and y = &, so the total flux is
(Wra (0) 4 Wy (0) 4+ W2 (0)2s (0, 0) + W2 (0) 2, (0, 0)) 2 + O(4?)
Dividing by the area of the rectangle and taking the limit as h — 0, we get that

Wi(0) = Wira (0) + Wy (0) + W2 (0) (220 (0, 0) + 2 (0, 0)).

We have already derived equations for z,, and zy, in terms of ¥, so

W0) = o [19220) + W2 0) = 5 00 0) 0,0 00

The next step i1s to move this back to an expression in terms of F and ®. We
know that the Laplace operator is independent of rotation, so that AV = AW,
and A® = AW. Therefore

L
el viv

V) = Wi0)=o [AW(O) e 0) = 22O Aoy - \IIZZ(O))]

= 0 [AW(O) — el D*W(0)es — (A¥(0) — e§D2\IJ(0)e3)]

nTvv

= 0 [AV(O) — T D?V(0)n — (A®(0) — nTD2<I>(0)n)]
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The term
AD(0) — nT D*®(0)n

is the mean curvature of the surface at the point. n” VF = [}, so if the F is
computed through an extension algorithm, this is zero. Since it wil not remain
zero, the term should be included as a correction.
The term
AF(0) —n" D*F(0)n

where )
n= Z(q)x,q)y,q)z)

appears for ' = V and F = ® in the above equation. The next step is to
simplify this term, and write it in terms of derivatives that are easy to compute.

1
AF(0) —nTD*F(0)n = Y (@2 (Fyy + Fez) + O (Fow + Fe2) + @2 (Fow + Fyy)
— 98,8, Fyy — 20,8, Fy. — 20,8, F,. |
If the normal N = (ng, ny, n,), this simplifies to

AF(0)—nTD*F(0)n = n2(Fyy+ Foo) + n2(Fop + Fe) + 02 (Fro + Fyy)

—2npnyFry — 2ngn, Fp, — 2nyn, Fy,

6.2 Advection

We begin with a small paralleloid at the origin spanned with two vectors (h, 0, sh),
(0, h,rh) where s = —ng/n,, r = —ny/n,. We compute the rate at which the
area changes, which will give the rate of change for the scalar value V' at that
point (opposite sign). Consider the three points (0,0,0), (h, 0, sh), (0, h,rh). In
a short time ¢, these points map into
(u(0,0,0)¢,v(0,0,0)t,w(0,0,0))
(h+ u(h,0,sh)t,v(h,0,sh)t, sh+ w(h,0,sh)t)
(w(0,h,rh)t A+ v(0, h,rh)t, rh+ w(0, h, rh)t)

The area of these two paralleloids is produced using the cross product. For the
first one, we have that

(0, h,7h) x (h,0,5h) = (sh*, rh?, —h?)

that has length

W21+ 72 4 52

The new paralleloid is spanned by the vectors

(w(0, h, rh)t—u(0,0,0)t, h4+v(0, h, rh)t—v(0,0,0)t, rh4+w(0, h, rh)t—w(0,0,0)?)
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(h+u(h,0,sh)t—u(0,0,0)t,v(h,0,sh)t—v(0,0,0)t, sh+w(h,0,sh)t—w(0,0,0)t)

Expanding them in terms of h around the origin, ignoring O(h?) terms and
dropping (0,0, 0), we have that

(th(uy + rus), h+ th(vy + rv,), rh + th(wy + rw,))
(h 4+ th(ug + su,), th(vy + sv,), sh + th(wy + sw,)).

The length of the cross product of these two vectors is

tD ,
V152472 + 2D+ O(2) = /14 52 + 12 (1+m+0(t ),)
where the value of D is
D= s(we + sw, + s(vy + rv;) — r(ve + sv,))

+  r(r(us + sus) + (wy + rw;) — s(uy + rus))
+  (ug + su; + vy +1ru,)
= (ug + vy) + s(we 4 uz) + r(wy + v,)
+ sz(wz +vy) + rz(ux + w,) — rs(ve + uy)
By computing the ratios of these lengths, we get as before, since s = —n, /n,,
r=—ny/n,, 1+s%+r? =1/n?, the change due to the compression/expansion

is given by
D

_ 2 _ -~
—mv = —nzDV = —[\V

Vi =
where

K = nzD = ng(ux + vy) — e (We + uz) — nyn, (wy + v,)

+ ng(ws +vy) + ng(ue +w:) = nengy (ve + uy)

In addition, we need to passively advect the scalar field. Combining these two
terms gives us the total evolution equation

Vi = —(u,v,w) - VV = KV

6.3 Normal Advection

When (u,v,w) = F(ng, ny, n,), where F' can be a function of space, the above
equation simplifies into

where k37 1s the mean curvature

k= ( O (Dpy + Byy) — 20,P,P,, — 20,0,
X (Dyy + Pon) + PPy + o) — 20,y Pyy)
/(@) + @, + ®2)%°
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6.4 Final Equations

Combining the previous equations, we develop an expression for the case in
which o is the diffusion coefficient and the front is moved with a combination
of an advection field (u, v, w) and a normal speed F. To simplify the notation,
introduce the differential operator

=l v 0] = (vy + w2 )R + (uo + w:) Y + (ue + vy ) P2
TRV | = (vp + )P0 ®y — (wy + 1) Pp D, — (wy + v, )Dy P,

Using this operator, the mean curvature is
Ky = 2o [Py, Dy, D]
and the differential equation simplifies to
Vi = o[Ea[Ve, Vy, Vo] + e (VV - N

- (u,v,w) - VV = Eglu,v,w]V
— FI(N-VV) + sV

, with first term equal to

20| Ve, Vy, Va] = —2VpyNo Ny — 2V, No N, — 2V, Ny N,
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