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tWe develop theory and numeri
al algorithms to apply level set methodsto problems involving the transport and di�usion of material quantitiesin a level set framework. Level set methods are 
omputational te
hniquesfor tra
king moving interfa
es; they work by embedding the propagatinginterfa
e as the zero level set of a higher dimensional fun
tion, and thenapproximate the solution of the resulting initial value partial di�erentialequation using upwind �nite di�eren
e s
hemes. The traditional level setmethod works in the tra
e spa
e of the evolving interfa
e, and hen
e dis-regards any parameterization in the interfa
e des
ription. Consequently,material quantities on the interfa
e whi
h themselves are transported un-der the interfa
e motion are not easily handled in this framework. Wedevelop model equations and algorithmi
 te
hniques to extend the levelset method to in
lude these problems. We demonstrate the a

ura
y ofour approa
h through a series of test examples and 
onvergen
e studies.1 Introdu
tion and OverviewIn this paper, we develop numeri
al algorithms for tra
king interfa
es in whi
hmaterial quantities are transported along an evolving front. The algorithms aredesigned to be robust, a

urate, eÆ
ient, handle topologi
al 
hange, and workin both two and three spa
e dimensions.Traditionally, interfa
e motion has been 
hara
terized by a dis
rete versionof the di�erential geometry representation; in this view, a dis
retization of aparameterized representation is used to 
hara
terize the interfa
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form the ba
kbone of a large 
olle
tion of everyday simulations, in
lude thosein 
uid me
hani
s, 
ombustion and 
ame propagation, and materials s
ien
es.Advantages to this approa
h in
lude the ability to simultaneously represent theinterfa
e by a 
olle
tion of marker points that move and allow ea
h marker to
arry variable quantities to be used to solve asso
iated partial di�erential equa-tions. This last 
apability is of 
onsiderable importan
e in a variety of physi
alproblems, in
luding boundary integral formulations of interfa
e problems, inwhi
h single and double layer distributions must be updated and advan
ed intandem with the moving interfa
e, and problems in semi
ondu
tor manufa
-turing under et
hing and deposition pro
esses, in whi
h asso
iated quantitiessu
h as step 
overage are 
riti
al in a

urately 
apturing the dynami
s of theevolving pro�le.Some possible drawba
ks of these marker Lagrangian approa
hes in
ludediÆ
ulties with evaluating topologi
al 
hange, the need to remove parts of theevolving front (known as delooping) to 
orre
tly 
hara
terize the vis
osity so-lution, the need to adaptively add and remove points to provide numeri
alresolution and ameliorate stri
t time step requirements, and 
ompli
ations inthree dimensions.In response, two alternative Eulerian numeri
al te
hniques have been devel-oped to tra
k interfa
es. These in
lude Volume of Fluid te
hniques (also knownas 
ell methods) and level set methods. Volume of 
uid te
hniques 
hara
terizethe interfa
e by dis
retizing the 
omputational domain into a 
olle
tion of 
ellsthat are ea
h assigned a volume fra
tion denoting the portion of the interfa
e
ontained in that 
ell. Level set methods work by embedding the interfa
e as thezero level set of a higher dimensional fun
tion. Both te
hniques extend to three{dimensions and easily handle topologi
al 
hange. Level set te
hniques have theadditional advantage that they are naturally linked to numeri
al s
hemes for hy-perboli
 
onservation laws, and 
an easily provide a

urate values for geometri
terms su
h as the normal dire
tion and 
urvature.Nonetheless, these two te
hniques are not easily applied to problems in whi
ha material quantity is required to be evaluated along the interfa
e; fundamen-tally, this is be
ause both methods work in the range spa
e of the domain, andignore past information su
h as tangential stret
h. While some extensions ofthese te
hniques have been developed, a general and numeri
ally sound algo-rithm is not yet available.This paper presents te
hniques to design level set methods to a

urately
ompute the evolution of interfa
es whi
h 
arry material properties. The keyidea involves the use of a single level set fun
tion to 
hara
terize the interfa
eposition, and an asso
iated �eld suitably extended o� the interfa
e to keep
ontrol of the material quantities. We derive the relevant equations of motion,and then present our numeri
al te
hniques, followed by a series of numeri
al
onvergen
e tests and model problems to verify the algorithm.2



2 Equations of MotionConsider a problem in whi
h an interfa
e moves under a velo
ity whi
h dependson the value of a quantity 
arried on the surfa
e, as well as lo
ation and lo
algeometri
 properties su
h as normal dire
tion and 
urvature. As an example,the motion of a 
uid interfa
e 
an depend on the vorti
ity distribution alongthe front. Let G(x) be the value of the surfa
e quantity at a point x on theinterfa
e. Our goal is to 
hara
terize the transport of G under the interfa
emotion.2.1 Statement of Problem: Lagrangian FormulationFor ease of explanation, we dis
uss the problem in terms of 
urves propagating intwo spa
e dimensions; ultimately, the equations we derive will apply to surfa
epropagation in three spa
e dimensions as well. Consider a 
urve �(t; s) in whi
hs parameterizes the 
urve at any �xed time t. Asso
iated with this interfa
e isa fun
tion G(�(s; t)), whi
h gives the value of some s
alar quantity along theinterfa
e.We 
onsider the following motions:� Adve
tion: The interfa
e is passively adve
ted under a velo
ity �eld(u(x; y); v(x; y)). This motion also transports the material quantity Galong with the interfa
e.� Propagation: The interfa
e propagates normal to itself with speed F ,whi
h may depend on position, normal dire
tion, lo
al 
urvature, as wellas the solution of some asso
iated partial di�erential equation. Here, thesolution is meant to be the vis
osity solution, sele
ted through the appro-priate entropy 
ondition (see [15, 16, 19℄). This motion also propagatesthe material quantity in 
onjun
tion with the propagating front.� Di�usion: The material quantity G is allowed to di�use along the inter-fa
e a

ording to the standard di�usion model.The above des
ription is not ne
essarily 
omplete. We 
onsider two exam-ples. First, 
onsider a 
ir
le with the fun
tion G 
onstant along the 
ir
le, andsuppose we wish to examine propagation normal to the 
urve with unit speed.It seems reasonable to assume that the total amount of G along the 
urve shouldbe 
onserved under this motion, thus G must de
rease as the 
ir
le expands.Thus, if we imagine a painted balloon, as the balloon is blown up, the amountof paint per unit surfa
e area must de
rease.Se
ond, non-smooth fronts pose an additional dilemma. Consider an initialsquare with 
onstant G. Suppose the square moves outwards with unit speed.The sides should move outwards 
arrying the material quantity G, and theexpanding 
orners should be ar
s in whi
h G is zero. This 
onserves the totalamount of G as the front moves, yet it is 
lear that the distribution of G isno longer smooth. Similarly, if the front moves inwards, we view G as a deltafun
tion at the 
orners. 3



Thus, we make the following additional assumption: we assume that underpropagation, G is 
onserved. The impli
ation of this is that in the presen
e of
orners in the evolving front, we must examine the regularized problem of thelimit of smooth fronts whi
h produ
e the non-smooth front.2.2 Level Set MethodsLevel set methods, introdu
ed by Osher and Sethian [12℄, rely in part on thetheory of 
urve and surfa
e evolution given in [15℄ and on the link betweenfront propagation and hyperboli
 
onservation laws dis
ussed in [16℄. Thesete
hniques re
ast interfa
e motion as a time-dependent Eulerian initial valuepartial di�erential equation, and rely on vis
osity solutions to the appropriatedi�erential equations to update the position of the front, using an interfa
evelo
ity that is derived from the relevant physi
s both on and o� the interfa
e.These vis
osity solutions are obtained by exploiting s
hemes from the numeri
alsolution of hyperboli
 
onservation laws. Level set methods are spe
i�
allydesigned for problems involving topologi
al 
hange, dependen
e on 
urvature,formation of singularities, and host of other issues that often appear in interfa
epropagation te
hniques.The level set method des
ribes the front by de�ning a fun
tion, �(x), on allof spa
e, whi
h embeds the interfa
e as its zero level set. The fun
tion is thenevolved a

ording to the equation�t(x; t)� F (x; t)jr�(x; t)j= 0 (1)Here F (x; t) is the normal speed of the front if x lies on the front. Topologi
al
hanges are handled naturally in this setting, and the front 
an be tra
ked witha high degree of a

ura
y. Terms su
h as the normal and 
urvature of the front
an be 
omputed with high a

ura
y; this will be important for our problem.We point out that there has been previous work on the des
ription of materialquantities in the 
ontext of level set methods. In [3℄, work on solving di�usion-type equations on surfa
es has been 
onsidered in an impli
it representation,and in [6℄, a level set formulation was used to tra
k the evolution of vortexsheets, keeping tra
k of the 
ir
ulation on the evolving interfa
e. We refer thereader to these papers for ba
kground and earlier work.2.3 Statement of Problem: Impli
it Formulation, Two Di-mensionsWe now derive a set of equations for an impli
it view of the above transport,propagation and di�usion of material quantities in asso
iation with an evolvingfront whi
h 
orresponds to a 
urve propagating in two spa
e dimensions. We
ombine ea
h term separately using operator splitting.We begin by supposing that the material fun
tion Gfront, de�ned on thefront, is in fa
t de�ned throughout the 
omputational domain, and use thenotation G to represent this fun
tion. Thus, G is a fun
tion from R2 to R4



whi
h agrees with Gfront on the given initial 
urve �. We shall later makesuggestions as to appropriate 
hoi
es for G, for now, we shall simply assumethat it 
an be 
onstru
ted and is suÆ
iently smooth.Following the level set approa
h, let the initial 
urve � be embedded as thezero level set of some fun
tion �(x; y; t = 0). We now derive evolution equationsfor � and Gext whi
h produ
e impli
it des
riptions of the desired a
tion on thefront itself. We do so term by term.2.3.1 Di�usionWe begin with the di�usion equation in the 
ase of a stationary front. Let(x; y) be a point on the front, Let G((x; y); t) be the s
alar de�ned in all ofspa
e whi
h agrees with Gfront on the stationary interfa
e, and let �(x; y) bethe signed distan
e fun
tion from this interfa
e. Finally, let �(s) = (x(s); y(s))parametrize the front by ar
 length, su
h that �(0) = (x; y). Di�usion alongthe interfa
e then implies thatGt((x; y); t) = �G��((x; y); t)where � is the di�usion 
onstant. Setting � = 1, we have thatGt((x; y)) = ��s � ��s [G(�(s))℄� = ��s [Gx(�(s))x0(s) +Gy(�(s))y0(s)℄= [Gxx(�(s))x0(s) +Gxy(�(s))y0(s)℄x0(s) + Gx(�(s))x00(s)+ [Gxy(�(s))x0(s) +Gyy(�(s))y0(s)℄y0(s) +Gy(�(s))y00(s)The equations for x0; x00; y0; y00 are given by(x0; y0) = (��y; �x)=L L =q�2x + �2yx00 = ��xL � y00 = ��yL � � = �2y�xx � 2�x�y�xy + �2x�yyL3where � is the 
urvature of the front. Assembling the terms, we haveGt = �Gxx�yL � Gxy�xL � �yL � Gx�xL �� �Gxy�yL � Gyy�xL � �xL � Gy�yL �= Gxx�2y � 2Gxy�x�y +Gyy�2xL2 � Gx�x + Gy�yL �We now note that this equation may be de�ned on all of spa
e, and de�nes theevolution of the material fun
tion G both on and o� the front. Additionally, wenote that if (nx; ny) is the value of the normal, the above equation simpli�es toGt = (Gxxn2y � 2Gxynxny +Gyyn2x) � (Gxnx + Gyny)�here, Gxnx +Gyny is the dot produ
t of rG with the normal.5



2.3.2 Adve
tionConsider a front with s
alar �eld G whi
h is also undergoing adve
tion by meansof a ve
tor �eld (u; v) that depends on (x; y). To �nd how the values 
hange,we split the adve
tion into two parts, 
orresponding to passive adve
tion by thevelo
ity �eld and to lo
al 
ompression/expansion of the front.(x; y)(x; y) + (u(x; y); v(x; y))t +O(t2)(u(0; 0); v(0; 0))t+ O(t2)(0; 0)Figure 1: Two-dimensional adve
tionTo get the s
aling of the segment length, we expand everything out to get thelimit as the segment length and the time step go to zero (see Figure 1.Expanding everything out, we get that the new segment is(x+ u(x; y)t� u(0; 0)t; y+ v(x; y)t � v(0; 0)t) + O(t2)De�ne the normal of the line segment as (nx; ny), and s = �nx=ny, so y = sxas (x; y) go to (0; 0). If the length at time t is L(t) we have thatL(t) = jj(x+ (u(x; sx)� u(0; 0))t; sx+ (v(x; sx)� v(0; 0))t)jj+ O(t2)= jxj � jj(1 + (ux(0; 0) + suy(0; 0))t; s+ (vx(0; 0) + svy(0; 0))t)jj+ O(x2 + t2)and L(0) = jxjp1 + s2Then, omitting the (0; 0), we see thatL(t) = jxjq(1 + (ux + suy)t)2 + (s + (vx + svy)t)2 + O(t2 + x2)Sin
e the integral of G(t) over the re
tangle is preserved, letting x! 0, we getthatG(t)=G(0) = limx!0L(0)=L(t)= p1 + s2p(1 + (ux + suy)t)2 + (s + (vx + svy)t)2 + O(t2)= 1�p1 + s2(1 + s2)�3=2(ux + suy + s(vx + svy)) + O(t2)6



, and hen
e the rate of 
hange for G(t) is given bydGdt (0) = �ux + suy + s(vx + svy)1 + s2 G(0)Using the substitution s = �nx=ny, we have that the magni�
ation fa
tor isgiven by M = ux + suy + s(vx + svy)1 + s2= n2yux � nxnyuy � nx(nyvx � nxvy)n2y + n2x= n2yux � nxny(uy + vx) + n2xvyThus, if G(x; y; t) is the value as a fun
tion of spa
e and time, then the timeevolution of G is given byGt(x; y) = �(u; v) � rG� (n2yux � nxny(uy + vx) + n2xvy)G:This term 
an be de�ned in all of spa
e. The term (nx; ny) is the normal, whi
h
an be 
omputed everywhere in spa
e from the gradient of the level set surfa
e.The velo
ity �eld (u; v) is either given everywhere, or gotten from the front byextending the u and v 
omponents [2℄.The �rst term 
omes from passive adve
tion, and the se
ond from the 
om-pression/expansion. The se
ond part is 
ru
ial, even if it is a little 
ounter-intuitive. At �rst glan
e, it looks like the adve
tion equation 
ould be easilywritten down from a 
onservation argument, but that will give in
orre
t results.A simple example that 
an be used to test other suggested equations is the onewhere a 
ir
le is expanding in the velo
ity �eld(u(x; y); v(x; y)) = (x; y)away from the origin. Start with the s
alar de�ned as 1 in all of spa
e. Fromsimple 
onservation arguments, the solution should be given as G(x; y; t) = e�t,i.e. G0 = �G.2.3.3 Normal Adve
tionIf u = Fnx, v = Fny, where F 
an be a fun
tion of (x; y), we observe that theterm n2yux � nxny(uy + vx) + n2xvysimpli�es to �F , where � is the 
urvature. In this 
ase, the evolution equationbe
omes Gt(x; y) = �F [(N � rG) + �G℄7



2.3.4 Final EquationsCombining the previous equations, we get that if � is the di�usion 
oeÆ
ient,and the front is moved with a 
ombination of an adve
tion �eld (u; v) and anormal speed F .Gt = � �(Gxxn2y � 2Gxynxny + Gyyn2x) � �(rG �N )�� (u; v) � rG� (n2yux � nxny(uy + vx) + n2xvy)G� F [(N � rG) + �G℄2.4 Statement of Problem: Impli
it Formulation, ThreeDimensionsThe equations for three dimensions are similar, and are derived in the Appendix.We assume a di�usion 
oeÆ
ient � and an adve
tion velo
ity �eld (u; v; w).To simplify the notation, introdu
e the di�erential operator��[u; v; w℄ = 1jjr�jj2 � (vy +wz)�2x + (ux +wz)�2y + (ux + vy)�2z�(vx + uy)�x�y � (wx + uz)�x�z � (wy + vz)�y�z �Using this operator, the mean 
urvature is given by�M = ��[�x;�y;�z℄jjr�jjand the di�erential equation simpli�es toGt = � [��[Gx; Gy; Gz℄� �M (rG �N )℄� (u; v; w) � rG� ��[u; v; w℄G� F [(N � rG) + �MG℄Expanding out, we note that the �rst term is equal to��[Gx; Gy; Gz℄ = � (Gyy +Gzz)N2x + (Gxx + Gzz)N2y + (Gxx +Gyy)N2z�2GxyNxNy � 2GxzNxNz � 2GyzNyNz �3 Numeri
al Approximations and Algorithms3.1 Level Set Methods3.1.1 Equations of MotionLevel set methods rely on two 
entral embeddings; �rst the embedding of theinterfa
e as the zero level set of a higher dimensional fun
tion, and se
ond, theembedding (or extension) of the interfa
e's velo
ity to this higher dimensionallevel set fun
tion. More pre
isely, given a moving 
losed hypersurfa
e �(t), thatis, �(t = 0) : [0;1)! RN , propagating with a speed F in its normal dire
tion,8



we wish to produ
e an Eulerian formulation for the motion of the hypersurfa
epropagating along its normal dire
tion with speed F , where F 
an be a fun
tionof various arguments, in
luding the 
urvature, normal dire
tion, et
. Let �d bethe signed distan
e to the interfa
e. If this propagating interfa
e is embeddedas the zero level set of a higher dimensional fun
tion �, that is, let �(x; t = 0),where x 2 RN is de�ned by �(x; t = 0) = �d; (2)then an initial value partial di�erential equation 
an be obtained for the evolu-tion of �, namely �t + F jr�j= 0 (3)�(x; t = 0) given (4)This is the impli
it formulation of front propagation given in [12℄. As dis
ussedin [14, 15, 16℄, propagating fronts 
an develop sho
ks and rarefa
tions in theslope, 
orresponding to 
orners and fans in the evolving interfa
e, and numer-i
al te
hniques designed for hyperboli
 
onservation laws 
an be exploited to
onstru
t s
hemes whi
h produ
e the 
orre
t, physi
ally reasonable entropy so-lution.There are 
ertain advantages asso
iated with this perspe
tive. First, it isun
hanged in higher dimensions; that is, for surfa
es propagating in three di-mensions and higher. Se
ond, topologi
al 
hanges in the evolving front � arehandled naturally; the position of the front at time t is given by the zero level set�(x; y; t) = 0 of the evolving level set fun
tion. This set need not be 
onne
ted,and 
an break and merge as t advan
es. Third, terms in the speed fun
tion Finvolving geometri
 quantities su
h as the normal ve
tor n and the 
urvature� may be easily approximated through the use of derivative operators appliedto the level set fun
tion, that is, n = r�jr�j and � = r � r�jr�j Fourth, the up-wind �nite di�eren
e te
hnology for hyperboli
 
onservation laws may be usedto approximate the gradient operators.3.1.2 Approximation S
hemesEntropy-satisfying upwind vis
osity s
hemes for this initial value formulationwere introdu
ed in [12℄. One of the simplest �rst order s
heme is given as�n+1ijk = �nijk ��t[max(Fijk; 0)r+ +min(Fijk; 0)r�℄; (5)where r+ = 24 max(D�xijk; 0)2 +min(D+xijk; 0)2+max(D�yijk; 0)2 +min(D+yijk; 0)2+max(D�zijk; 0)2 +min(D+zijk; 0)2 351=2r� = 24 max(D+xijk; 0)2 +min(D�xijk; 0)2+max(D+yijk; 0)2 +min(D�yijk; 0)2+max(D+zijk; 0)2 +min(D�zijk; 0)2 351=29



Higher order s
hemes are available, see [12℄.The above formulation reveals two 
entral embeddings. First, in the initial-ization step (Eqn. 2), the signed distan
e fun
tion is used to build a fun
tion �whi
h 
orresponds to the interfa
e at the level set � = 0. This step is known as\initialization"; when performed at some later point in the 
al
ulation beyondt = 0, it is referred to as \re{initialization".Se
ond, the 
onstru
tion of the initial value PDE given in Eqn. 3 meansthat the velo
ity F is now de�ned for all the level sets, not just the zero levelset 
orresponding to the interfa
e itself. We 
an be more pre
ise by rewritingthe level set equation as �t + F jr�j = 0; (6)where F is some velo
ity �eld whi
h, at the zero level set, equals the given speedFfront. In other words, F = F on � = 0:This new velo
ity �eld F is known as the \extension velo
ity".Both of these issues need to be 
onfronted in order to eÆ
iently apply levelset methods to 
omplex 
omputational problems.3.1.3 Adaptivity: The Narrow Band Level Set MethodEquation 5 is an expli
it s
heme, and hen
e 
an be solved dire
tly. The timestep requirement depends on the nature of the speed fun
tion F ; for an F thatdepends only on position, the time step behaves like �t�xF � 1. In the 
asewhen the speed fun
tion F depends on 
urvature terms (for example, F = ��),the equation has a paraboli
 
omponent, and hen
e the time step requirementresembles that of a non-linear heat equation; the time step depends roughly on�t�x2 . In the level set formulation, both the level set fun
tion and the speedare embedded into a higher dimension. Considerable 
omputational speedupin the level set method 
omes from the use of the \Narrow Band Level SetMethod", introdu
ed by Adalsteinsson and Sethian in [1℄, whi
h limits work toa neighborhood (or \narrow band") of the zero level set.This is a signi�
ant 
ost redu
tion; it also means that extension velo
itiesneed only be 
onstru
ted at points lying in the narrow band, as opposed toall points in the 
omputational domain. This idea of limiting 
omputation toa narrow band around the zero level set was introdu
ed in Chopp [4℄, used inre
overing shapes from images in Malladi, Sethian and Vemuri [10℄, and exploredin depth in [1℄. Details on the a

ura
y, typi
al tube sizes, and number of timesa tube must be rebuilt may be found in Adalsteinsson and Sethian [1℄.3.1.4 ReinitializationReinitialization is the pro
ess by whi
h the level set fun
tion is periodi
ally re-
alibrated against the front itself in order to reset the signed distan
e fun
tion.As understood by many pra
titioners of level set methods (see [19, 22℄), reini-tialization every time step (or 
lose to every time step) is a poor strategy, sin
e10



ea
h reinialization 
auses error in the position of the front. However, o

asionalreinitialization is required when 
oupled to the Narrow Band method.Reinitialization, that is, resetting the level set fun
tion � to 
orrespond tothe signed distan
e fun
tion, is eÆ
iently and a

urate performed using FastMar
hing Methods. Fast Mar
hing Methods, [17℄, are Dijkstra-like upwind �nitedi�eren
e algorithms whi
h solve the Eikonal equationjrT jF (x; y; z) = 1 T = 0 on �:in ON logN time, where N is the total number of points in the 
omputationaldomain. Reinitialization 
omes as a spe
ial 
ase of the Eikonal equation whenF = 1.The 
entral idea is as follows; begin by use an upwind �nite di�eren
e ap-proximation to the gradient of the form24 max(D�xijkT;�D+xijkT; 0)2+max(D�yijkT;�D+yijkT; 0)2+max(D�zijkT;�D+zijkT; 0)2 351=2 = Fijk; (7)(see, for example, Rouy and Tourin [13℄.) The key observation in Fast Mar
hingMethods [17℄ is that the above 
ontains an ordering on mesh points, obtainedby a sort algorithm whi
h updates the points in as
ending value of T , similarto Dijkstra's network path algorithm [5℄. This ordering is 
omputed as the
al
ulation unfolds, and yields an algorithm whi
h avoids all iteration.The Fast Mar
hing Method has been extended to higher order �nite dif-feren
e approximations by Sethian in [20℄, �rst order unstru
tured meshes byKimmel and Sethian [8℄, and higher order unstru
tured meshes by Sethian andVladimirsky [23℄. Some early appli
ations in
lude photolithography in [18℄, a
omparison of a similar approa
h with volume-of-
uid te
hniques in [7℄, a fastalgorithm for image segmentation in [11℄ and 
omputation of seismi
 travel timesby Sethian and Popovi
i [21℄;A di�erent Dijsktra-like method for the Eikonal equation was developed byTsitsiklis [25℄; he obtains the vis
osity solution through a 
ontrol-theoreti
 dis-
retization whi
h hinges on a 
ausality relationship based on the optimality
riterion. The Fast Mar
hing Method is an upwind �nite di�eren
e te
hniques,while Tsitsiklis' method relies on a minimization s
heme based on an optimality
riterion. The two te
hniques use di�erent formulations and di�erent dis
retiza-tions; in the 
ase of a �rst order formulation, it was later observed that theyultimately invoke the same quadrati
 formula in the update For details on thetwo te
hniques, see [25, 17℄. In addition, we note that Fast Mar
hing Methodslend themselves to higher order s
hemes in a natural way. For details on usingthe Fast Mar
hing Method to perform reinitialization in the 
ontext of level setmethods, see [2℄. We also note that in re
ent work, Sethian and Vladimirskyhave been able to produ
e general s
hemes for non-Eikonal anisotropi
 gen-eral optimal 
ontrol problems with the same 
omputational 
omplexity as theseDijkstra-like methods; for details, see [23, 24℄.11



3.1.5 Constru
tion of Extension Velo
itiesIn order to 
onstru
t extension velo
ities F , we start with the given velo
ityFfront and 
hoose an appropriate extension velo
ity. There are several reasonswhy one needs to build these extension velo
ities, in
luding the fa
t that nonatural velo
ity may be available o� of the front, the need for sub-grid resolu-tion, the need for a

urate representation of front velo
ities, and the need tomaintain a ni
e level set representation (see [19, 22℄ for details). In [9℄, theidea of extrapolating the given front velo
ity along the gradient of the front toobtain an extension velo
ity o� of the front was introdu
ed, and used in imagesegmentation. Mathemati
ally, this means thatrF � r� = 0: (8)It is straightforward to show that this 
hoi
e of extension velo
ity maintains thesigned distan
e fun
tion for the level sets of � for all time (see, for example,[26℄).In [2℄, a strategy for 
onstru
ting these extension velo
ities was introdu
ed,using a two-tiered system. Given a level set fun
tion at time n, namely �nij,one �rst 
onstru
ts a signed distan
e fun
tion ��nij around the zero level set.Simultaneous with this 
onstru
tion, one then 
onstru
ts the extension velo
ityFext satisfying Eqn. 8. This velo
ity is used to update the level set fun
tion �n.For details, see [2℄.3.2 Algorithms for Di�usion and Transport of MaterialQuantitiesThe general form of the update equation isGt = � [��[Gx; Gy; Gz℄ + �M (rG �N )℄+ (u; v; w) � rG� ��[u; v; w℄G+ F [(N � rG)� �MG℄We update with the dis
rete value for �nij using the upwind s
hemes in [12℄.We update the values of the material quantity Gnij using 
entral di�eren
es forthe di�usion terms and upwinding for the adve
tion terms.4 Numeri
al Tests of Algorithm: Two Dimen-sionsIn this se
tion, we 
onsider some two-dimensional test 
ases to analyze thea

ura
y of the algorithms.4.1 Di�usion, Fixed FrontWe begin by studying the di�usion of a s
alar quantity on a �xed front. Asa simple test, let the front be given by a 
ir
le with radius 0:3 in a unit box.12



De�ne the � surfa
e by 
omputing the signed distan
e rather than using theexa
t distan
e. The initial value for G is de�ned everywhere asG(x; y) = xWe then evolve the G array a

ording toGt = � �(Gxxn2y � 2Gxynxny +Gyyn2x) + �(rG �N )�The normal N is taken from the level surfa
e, and is 
onstant in time sin
e thesurfa
e never moves.An exa
t solution may be produ
ed as follows. Parametrizing the front byar
 length, �r 
os � sr � ; r sin � sr ��, the initial data is given in terms of ar
 lengthby r 
os � sr � : With unit di�usion 
oeÆ
ient, the exa
t solution is given byr 
os�sr� exp���tr2� = x exp�� �tx2 + y2�4.1.1 Di�usion, Fixed Front, SimpleCal
ulations are performed up to time T = 1 for three grid sizes, 60 � 60,120�120 and 240�240. Initial value for G is G(x; y) = x in all of spa
e. Whenyou look at the s
alar as a fun
tion of ar
 length, this is a wave on the 
ir
le,i.e. the lowest wave number. Stability is ensured by a time step whi
h is s
aledas the square of the step size. The error is evaluated as follows; For a largenumber of time values, we 
ompute the exa
t solution by the above expressionand subtra
t it from the 
omputed solution that we get by interpolating G ontouniformly spread points on the interfa
e. We then use trapezoid rule to 
omputethe integral of the square of this error, and divide through by the total lengthof the 
ir
le. This gives the average two norm of the error along the front. Theresults are shown in Figure 2. From this we see that 
onvergen
e is se
ond orderoverall.4.1.2 Di�usion, Front �xed, General CaseA more 
hallenging problem o

urs when the front is no longer a 
ir
le and theinitial value of the s
alar is more 
ompli
ated than a single eigenve
tor of thedi�usion operator. The initial front that is 
hosen is a perturbed 
ir
le, and thes
alar G is de�ned for points (x; y) on the front with G(x; y) = x2. Note that ifthe s
alar is de�ned only on the front, for example as a fun
tion of ar
 length,the initialization of G(x; y) will be done by the fast extension method [2℄.See Figure 3 for a pi
ture of the front and a plot of G as a fun
tion of ar
length. This s
alar has a full spe
trum of frequen
ies. We 
an solve this problemexa
tly with a Fourier series method. To �nd the exa
t solution at a later timeT , extra
t the initial s
alar as a fun
tion of ar
 length, de
ompose it into it'sFourier modes, s
ale ea
h mode using the 
oeÆ
ient of di�usion � = 0:05. Atthat time T , the numeri
al solution is interpolated (bi{
ubi
) onto the same13



Error for diffusion on a circle, 60x60, 120x120 and 240x240
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Figure 2: Front �xed, values di�used on a 
ir
le.points and subtra
ted. This will give the error as a fun
tion of ar
 length.Then 
ompute the L2 norm of that fun
tion and divide by the length to get theaverage error. This error is shown in Figure 4; the run is simulated until timeT = 1:0.4.2 Adve
tion4.2.1 Adve
tion - Two dimensionsNext, we 
onsider the adve
tion of the material quantity as the front moves.Start with an ellipse with major axis 0:4 and 0:3, 
entered in a unit square box(Figure 5). The initial value of the s
alar is de�ned asG(x; y) = x2 + y2 � xypx2 + y2 + 110everywhere in spa
e. We 
onsider a 
ow whi
h rotates this ellipse around the
enter a full 
ir
le. For this problem, we know the exa
t solution, sin
e thevalues will just rotate with the front. We run this problem for two grid sizes,h = 1=121 and h = 1=241.We measure the error both for the front evolution as well as the s
alarevolution, presented in the two plots shown in Figure 6. The error is measuredas follows.� For the front, we 
ompute the 
ontour of the level set. Using the exa
tsolution, we 
ompute the pointwise di�eren
e between the 
omputed andexa
t front. This will give us the error along the front. Then we take thaterror and 
ompute the average two norm of this error. This gives us agood indi
ation of what the overall error is for the front evolution. Thein�nity norm gives a very similar result, sin
e the pointwise error is fairly14
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0.08Figure 3: Di�usion on a more general front. Initial value given by F (x; y) = x2.Later value at T = 1. Both values are drawn as fun
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 length.
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Conservation of scalar
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0.0562Figure 4: Di�usion on a more general front. Error along the front as a fun
tionof time for the grid sizes 60� 60,120� 120 and 240� 240.
ontinuous. We do this for two hundred time values and plot the result asa fun
tion of time for both grid resolutions.� For the s
alar values along the front, we interpolate the values from thes
alar �eld onto the points on the front by using a bi{
ubi
 interpolation.We then subtra
t o� the exa
t solution at those points gotten by rotatingthe exa
t values. This gives us the error along the front. Take the averagetwo norm of this error for the same two hundred time values as before. Toget the relative error size, we note that the maximum value of the s
alaris about 0:4.A di�erent and equally useful measurement of s
heme a

ura
y is to tra
kmass 
onservation. To do so, we 
ompute the path integral of the values alongthe front for ea
h of these two hundred time values and plot it as a fun
tion of15
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alar value along the ellipse.time in Figure 7. Note that for all of these runs, we get a se
ond order redu
tionof the error; even on the 
oarse grid, the error is very small.
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6Figure 6: How a

urately the level set method 
aptures the rotation of the front,and the error along the front.4.2.2 Adve
tion and di�usionWe now rerun the above problem, but in addition to the rotation we in
ludedi�usion of the values along the surfa
e. We use a di�usion 
oeÆ
ient 0:1 inorder for the s
alar to redu
e in amplitude by about a fa
tor of 10.The exa
t solution 
an be obtained, sin
e it is a 
ombination of a rotationand a di�usion on a �xed ellipti
al front. To 
ompute the exa
t solution of thedi�usion pro
ess on a �xed front, we write the solution in terms of ar
 length,and use that in that representation, the s
alar satis�es the heat equation withdi�usion 
onstant 0:1, whi
h is solved using Fourier series.We run the same numeri
al experiments as in the se
tion before, but inorder to 
ompute the exa
t solution, we extra
t the values on the initial frontby ar
 length (using bi{
ubi
 interpolation), de�ne it on an evenly spa
ed onedimensional grid in ar
 length. We then 
ompute the numeri
al Fourier seriesto provide the exa
t solution at later times. This is then rotated and subtra
tedfrom the 
omputed solution. 16



Conservation of mass
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Average 2-norm error in front position

0 0.2 0.4 0.6 0.8 1

10 -4

0

1

2

3

4

5

6

7
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4Figure 8: How a

urately the level set method 
aptures the rotation of the front,and the error along the front.5 Numeri
al Tests of Algorithm: Three Dimen-sionsWe now test the ability of the algorithm to tra
k the evolution to materialquantities in 
onjun
tion with three-dimensional interfa
e evolution. In all ofthe tests, it is ne
essary to use 
ubi
 interpolation at all time. Lower orderinterpolation will 
ause 
onvergen
e to stall. In all of the results, the errorshould be very smooth. High noise in the error might indi
ate a problem withthe interpolation routine.5.1 Di�usion on SphereWhen the front is �xed, and � = 1, the evolution equation be
omesGt = ��[Gx; Gy; Gz℄ + �M(rG �N )In this test we 
ompare the simulation with an exa
t solution. To �nd an exa
tsolution, we look for a solution on a sphere whi
h only depends on the z value.It 
an therefore be des
ribed as G(x) = G(') in terms of spheri
al 
oordinates.The di�usion equation for the sphere, using this symmetry and the fa
t that17



Conservation of mass
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Figure 9: How well mass is 
onserved along the ellipse. Rotated around theorigin, and di�used.di�usion is proportional to the 
ux givesGt(') = lim�'!0 (2�r sin(' +�'))G'('+�')=r � (2�r sin('))G'(')=r2�r2 sin(')�'+O((�')2)= 
os(')G'(') + sin(')G''(')r2 sin(')The fun
tion G(') = 
os(') is an eigenfun
tion of this operator with eigenvalue�2=r2, so with that as the initial 
ondition, we get an exa
t solutionG(t; ') = 
os(') exp��2tr2�We 
an do this on 
on
entri
 spheres by de�ning the initial fun
tion to beG(x; y; z) = zThe 
al
ulations are run on su

essive grids of 50� 50� 50 and 100� 100� 100on the box [�0:6; 0:6℄� [�0:6; 0:6℄� [�0:6;0:6℄. Here, the front is initialized as asphere with radius 0:4, and the simulation are run up to T = 0:25 with di�usion
onstant � = 0:5. The results are shown in �gures 10 and 11.5.2 Adve
tionWe now study how well the algorithm tra
ks the adve
tion of s
alar values. Werotate a sphere with values de�ned on it. We know the exa
t solution, and 
an
ompare both the position of the front and the values along the front with theexa
t solution. We use a sphere with radius 0:4, 
entered around (�0:5; 0; 0)and rotate the sphere in the xy plane around the origin. The sphere 
ompletesa full 
ir
le at T = 1. Four time values for this rotation are shown in Figure 12.Initial values along the surfa
e are given by the expression x+ y + z.To analyze the a

ura
y, we tra
k three measurements.18
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1.5Figure 10: The error along the surfa
e is 
olored a

ording to value. The planesli
es through those values and the resulting error is shown along the front as afun
tion of ar
 length. This is the error at t = 0:25 for the grid spa
ing 1=100.� The pointwise error in the position of the front. The error is 
omputed atea
h point on the surfa
e, and then the average norm is 
omputed alongthe surfa
e. The result is shown in Figure 13.� Along the surfa
e, 
ompute the error in the value of the s
alar. Then
ompute the norm of the error over the whole surfa
e. The result is shownin Figure 14.� The integral of the s
alar over the surfa
e. This should be 
onserved overtime. The result is shown in Figure 15.We use a surfa
e integral to 
ompute the average two norm of the erroralong the surfa
e. This 
omputation is done for the grid sizes 120 � 120 � 60and 240� 240� 120.5.3 Adve
tion and Di�usionConsider the problem where we have simultaneous adve
tion and a di�usion inthree dimensions. We begin with a sphere with 
enter at (�1=5; 0; 0) and radius2=5 in the box [�4=5; 3=5℄� [�3=5; 4=5℄� [�1=2; 1=2℄and now rotate it a quarter turn in the xy plane to (0;�1=5; 0) by the rotata-tional �eld 2�(y;�x; 0) and �nal time T = 1=4. We set the di�usion 
oeÆ
ientto 1=2 and run two di�erent grid sizes 1=50 and 1=100. The rotation is shownin Figure 16. 19
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Figure 11: Di�usion on a stationary sphere. How the error 
hanges over timefor the exa
t solution. Plot of the average two-norm (L2) of the error as afun
tion of time for both h = 1=50 and h = 1=100. The error is 
omputedby interpolating the values onto the front, and subtra
ting the known solutionthere. This de�nes a fun
tion on the surfa
e, and we 
ompute a surfa
e integralto �nd the two{norm. Divide by the area to �nd the average two norm.6 Appendix: Derivation of Three-DimensionalEquations6.1 Di�usionFor a point �x on a level surfa
e, let � be the surfa
e going through that point.We will derive the rate of 
hange for G at that point, using that 
ux a
rossa boundary is proportional to the gradient, with proportionality 
onstant �,whi
h we will set to 1 for the derivation.Assume �x = 0. Let M be an orthagonal matrix whi
h maps the normal nat �x into (0; 0; 1). If � is the level set fun
tion, let 	 be the rotated level setfun
tion and W the rotated G fun
tion.G(�x) = W (M �x); �(�x) = 	(M �x)In this new 
oordinate system, we 
an write the z 
oordinate in terms of the�rst two 
omponents of the point, i.e. we 
an parametrize a re
tangular pat
hwith (x; y; z(x; y)) that will satisfy	(x; y; z(x; y)) = 0:By di�erentiating this equation with respe
t to x and y we getzx(0; 0) = 0zy(0; 0) = 0and a di�erentiating it twi
e with respe
t to x and y, we getzxx(0; 0) = �	xx(0)L20



Figure 12: Four time values for rotating a sphere.
0 0.2 0.4 0.6 0.8 1

10 -3

0.5

1Figure 13: Error for lo
ation of front.zyy(0; 0) = �	yy(0)L.Take a small region of the zero level set of 	 around 0. Take the region de�nedby the box [0; h℄� [0; h℄ in the xy 
oordinate plane. We 
ompute the 
ux outof this re
tangle, and how that will a�e
t the W value, and then let h! 0.
First, take the edges where x = 0 and x = h. The gradient of W in that surfa
ealong the edges is rW (x; y; z(x; y)) � (1; 0; zx(x; y)):21
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e between 
omputed and exa
t.
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-1.005Figure 15: The integral over the s
alar 
hanges.The edge is parametrized by (x; y; z(x; y)) as y goes from 0 to h. Using thatthe 
ux is � times the gradient integrated along the edge (and � = 1), the 
uxthrough the edges with x = 0 and x = h isFluxx = Z h0 rW (h; y; z(h; y)) � (1; 0; zx(h; y))j(0; 1; zy(h; y))jdy� Z h0 rW (0; y; z(0; y)) � (1; 0; zx(0; y))j(0; 1; zy(0; y))jdyWe then take ea
h term, and expand it up to O(h2). We need to use the above
Figure 16: Adve
tion and Di�usion in three dimensions The motion of thesurfa
e. Initial 
ondition is transparent. Surfa
e is rotated around the origin.22
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0Figure 17: Adve
tion and Di�usion in three dimensions. Error behavior for70 � 70 � 50 and 140 � 140 � 100. On the left is a measurement of the error
ompared to the exa
t solution, on the right how 
lose it is to 
onserving mass.equations for zx and zy to getFluxx = Z h0 [Wx(0) +Wxx(0)h+Wxy(0)y +Wz(0)zxx(0; 0)h+Wz(0)zxy(0; 0)y�(Wx(0) +Wxy(0)y +Wz(0)zxy(0; 0)y) + O(h2)℄dy= Z h0 [Wxx(0)h+Wz(0)zxx(0; 0)h℄dy+ O(h3)= [Wxx(0) +Wz(0)zxx(0; 0)℄h2+ O(h3)Similar equation holds for the 
ux through y = 0 and y = h, so the total 
ux is(Wxx(0) +Wyy(0) +Wz(0)zxx(0; 0) +Wz(0)zyy(0; 0))h2 +O(h3)Dividing by the area of the re
tangle and taking the limit as h! 0, we get thatWt(0) =Wxx(0) +Wyy(0) +Wz(0)(zxx(0; 0) + zyy(0; 0)):We have already derived equations for zxx and zyy in terms of 	, soWt(0) = � �Wxx(0) +Wyy(0)� Wz(0)L (	xx(0) + 	yy(0)))�The next step is to move this ba
k to an expression in terms of F and �. Weknow that the Lapla
e operator is independent of rotation, so that �V = �W ,and �� = �	. ThereforeVt(0) = Wt(0) = � ��W (0)�Wzz(0)� Wz(0)L (�	(0)� 	zz(0))�= � ��W (0)� eT3D2W (0)e3 � eT3rWL (�	(0) � eT3D2	(0)e3)�= � ��V (0)� nTD2V (0)n � nTrVL (��(0)� nTD2�(0)n)�23



The term ��(0)� nTD2�(0)nis the mean 
urvature of the surfa
e at the point. nTrF = Fn, so if the F is
omputed through an extension algorithm, this is zero. Sin
e it wil not remainzero, the term should be in
luded as a 
orre
tion.The term �F (0)� nTD2F (0)nwhere n = 1L (�x;�y;�z)appears for F = V and F = � in the above equation. The next step is tosimplify this term, and write it in terms of derivatives that are easy to 
ompute.�F (0)� nTD2F (0)n = 1L2 ��2x(Fyy + Fzz) + �2y(Fxx + Fzz) + �2z(Fxx + Fyy)� 2�x�yFxy � 2�x�zFxz � 2�y�zFyz ℄If the normal N = (nx; ny; nz), this simpli�es to�F (0)� nTD2F (0)n = n2x(Fyy + Fzz) + n2y(Fxx + Fzz) + n2z(Fxx + Fyy)�2nxnyFxy � 2nxnzFxz � 2nynzFyz6.2 Adve
tionWe begin with a small paralleloid at the origin spanned with two ve
tors (h; 0; sh),(0; h; rh) where s = �nx=nz, r = �ny=nz. We 
ompute the rate at whi
h thearea 
hanges, whi
h will give the rate of 
hange for the s
alar value V at thatpoint (opposite sign). Consider the three points (0; 0; 0), (h; 0; sh), (0; h; rh). Ina short time t, these points map into(u(0; 0; 0)t; v(0; 0; 0)t;w(0; 0; 0)t)(h+ u(h; 0; sh)t; v(h; 0; sh)t; sh+ w(h; 0; sh)t)(u(0; h; rh)t; h+ v(0; h; rh)t; rh+w(0; h; rh)t)The area of these two paralleloids is produ
ed using the 
ross produ
t. For the�rst one, we have that(0; h; rh)� (h; 0; sh) = (sh2; rh2;�h2)that has length h2p1 + r2 + s2The new paralleloid is spanned by the ve
tors(u(0; h; rh)t�u(0; 0; 0)t; h+v(0; h; rh)t�v(0; 0; 0)t; rh+w(0; h; rh)t�w(0; 0;0)t)24



(h+u(h; 0; sh)t�u(0; 0; 0)t; v(h; 0; sh)t�v(0; 0;0)t; sh+w(h; 0; sh)t�w(0;0;0)t)Expanding them in terms of h around the origin, ignoring O(h2) terms anddropping (0; 0; 0), we have that(th(uy + ruz); h+ th(vy + rvz); rh+ th(wy + rwz))(h+ th(ux + suz); th(vx + svz); sh+ th(wx + swz)):The length of the 
ross produ
t of these two ve
tors isp1 + s2 + r2 + 2tD + O(t2) =p1 + s2 + r2�1 + tD1 + s2 + r2 + O(t2);�where the value of D isD = s(wx + swz + s(vy + rvz) � r(vx + svz))+ r(r(ux + suz) + (wy + rwz)� s(uy + ruz))+ (ux + suz + vy + rvz)= (ux + vy) + s(wx + uz) + r(wy + vz)+ s2(wz + vy) + r2(ux + wz) � rs(vx + uy)By 
omputing the ratios of these lengths, we get as before, sin
e s = �nx=nz,r = �ny=nz, 1 + s2 + r2 = 1=n2z, the 
hange due to the 
ompression/expansionis given by Vt = � D1 + s2 + r2V = �n2zDV = �KVwhere K = n2zD = n2z(ux + vy)� nxnz(wx + uz) � nynz(wy + vz)+ n2x(wz + vy) + n2y(ux +wz) � nxny(vx + uy)In addition, we need to passively adve
t the s
alar �eld. Combining these twoterms gives us the total evolution equationVt = �(u; v; w) � rV �KV6.3 Normal Adve
tionWhen (u; v; w) = F (nx; ny; nz), where F 
an be a fun
tion of spa
e, the aboveequation simpli�es into Vt = �F [(N � rV ) + �MV ℄where �M is the mean 
urvature�M = ( �2z(�xx + �yy) � 2�x�z�xz � 2�y�z�yz+ �2x(�yy +�zz) + �2y(�xx +�zz) � 2�x�y�xy)=(�2x +�2y +�2z)3=225



6.4 Final EquationsCombining the previous equations, we develop an expression for the 
ase inwhi
h � is the di�usion 
oeÆ
ient and the front is moved with a 
ombinationof an adve
tion �eld (u; v; w) and a normal speed F . To simplify the notation,introdu
e the di�erential operator��[u; v; w℄ = 1jjr�jj2 � (vy +wz)�2x + (ux +wz)�2y + (ux + vy)�2z�(vx + uy)�x�y � (wx + uz)�x�z � (wy + vz)�y�z �Using this operator, the mean 
urvature is�M = ��[�x;�y;�z℄and the di�erential equation simpli�es toVt = � [��[Vx; Vy; Vz℄ + �M (rV �N )℄� (u; v; w) � rV � ��[u; v; w℄V� F [(N � rV ) + �MV ℄, with �rst term equal to��[Vx; Vy; Vz℄ = � (Vyy + Vzz)N2x + (Vxx + Vzz)N2y + (Vxx + Vyy)N2z�2VxyNxNy � 2VxzNxNz � 2VyzNyNz �Referen
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