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Abstract

A large number of computational problems and physical phenomena in-

volve the motion of interfaces separating two or more regions. These can

include problems in such areas as fluid mechanics, combustion, materials

science, meteorology, and computer vision. In these problems, challeng-

ing issues often involve interfaces that change topology, form sharp corners

and singularities, depend on delicate geometric quantities such as curvature

and normal direction, and involve subtle feedback between the physics and

chemistry off the interface and the position/motion of the front itself. In

this paper, we will explain some of the issues involved in tracking inter-

faces, focus on a particular set of numerical techniques that arise from an

implicit representation of the interface, and provide an overview of some of

the applications that are possible with this view.

∗Dedicated to Professor Steve Davis in thanks for having so generously welcomed me

into the warm community of those celebrating his birthday and his work.

1



October 9, 2001 13:37 WorldScientific/ws-b8-5x6-0 final˙sethian˙paper˙steve˙davis˙conference

2 Computational Methods for Advancing Interfaces

1.1 Characterizations of Moving Interfaces

A B

F

Fig. 1.1 Evolving Interface

Suppose we are given an interface separating two regions, and speed

F in a direction normal to the interface (see Figure 1.1). Typically, this

speed F can depend on the position of the front, the local geometry, and

the solution to associated partial differential equations on either side of

the interface, in addition to given jump conditions across the boundaries.

Nonetheless, let us assume for now that the speed F is given.

1.1.1 Mathematical Formulations

There are at least three ways to characterize a moving interface, and none

of them are new. Interestingly, each comes from its own branch of mathe-

matics. For simplicity, we discuss the issues in two space dimensions, that

is, a one-dimensional interface which is a simple closed curve Γ(t) moving

in two dimensions. Assume that a given velocity field ~u = (u, v) transports

the interface. All three constructions carry over to three dimensions.

• The Geometric View: Suppose one parameterizes the interface,

that is, Γ(t) = x(s, t), y(s, t). Then one can write (see [23]) the

equations of motion in terms of individual components (see Figure
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1.2 ~x = (x, y) as

xt = u ∗

(

ys

(x2
s + y2

s )1/2

)

, yt = −v ∗

(

xs

(x2
s + y2

s)1/2

)

(1.1)

X t , Yt

S

Fig. 1.2 Parameterized View

This is a differential geometry view; the underlying fixed coordinate

system has been abandoned, and the motion is characterized by

differentiating with respect to the parameterization variable s.

• The Set Theoretic View: Consider the characteristic function

χ(x, y, t), where χ is one inside the interface Γ and zero otherwise

(see Figure 1.3). Then one can write the motion of the character-

istic function as

χt = ~u · ∇χ (1.2)

Fig. 1.3 Set-Theoretic View

In this view, all the points inside the set (that is, where the charac-

teristic function is unity) are transported under the velocity field.



October 9, 2001 13:37 WorldScientific/ws-b8-5x6-0 final˙sethian˙paper˙steve˙davis˙conference

4 Computational Methods for Advancing Interfaces

• The Analysis View: Consider the implicit function φ : R2 ×

[0,∞) → R, defined so that the zero level set φ = 0 corresponds to

the evolving front Γ(t) (see Figure 1.4).

Fig. 1.4 The Implicit View

Then the equation for the evolution of this implicit function corre-

sponding to the motion of the interface is given by

φt + u · ∇φ = 0 (1.3)

1.1.2 Discretizations

Each of these views is perfectly reasonable, and each has spawned its own

numerical methodology to discretize the equations of motion:

• Marker particle methods, also known as string methods and nodal

methods, discretize the geometric view, and take a finite number of

points to divide up the parameterization space S (see Figure 1.5).

Fig. 1.5 Discretized parameterization into markers

• Volume-of-fluid methods, also known as cell methods and volume

fraction methods, use a fixed underlying grid and discretize the
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characteristic function, filling each cell with a number that reflects

the amount of characteristic function contained in that cell (see

Figure 1.6).

Fig. 1.6 Discretized characteristic function into cell fractions

• Level set methods, introduced by Osher and Sethian [14] approx-

imate the partial differential equation for the time-dependent im-

plicit function φ through a discretization of the evolution operators

on a fixed grid (see Figure 1.7).

Fig. 1.7 Discretized implicit function onto grid

These discretizations contain keys to both the virtues and the drawbacks

of the various approaches.

• The geometric/marker particle view keeps the definition of a front

sharp. It requires special attention when marker particles collide;

these can create corners and cusps, as well as changes in topology.

These techniques often go by names such as contour surgery, re-

connection algorithms, etc.; at their core, they reflect user-based

decisions about the level of resolution. In addition, this discrete

parameterized characterization of the interface can be intricate for

two-dimensional surfaces moving in three dimensions.
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• The characteristic/volume-of-fluid approach straightforwardly ap-

plies in multiple dimensions, and handles topological merger eas-

ily, since this results from Boolean operations on sets. It requires

some method of differentiating the characteristic function χ; since

by definition this object is discontinuous, one must devise an ap-

proximation to ∇χ in order to perform the evolution update. This

is typically done through algorithms which locally reconstruct the

front from the volume or cell fractions, and then use this recon-

struction to build the appropriate transport terms.

• The implicit/level set approach extends to multiple dimensions and

handles topological changes easily. In addition, because the func-

tion φ is defined everywhere and smooth in many places, calculation

of gradients in the transport term, as well as geometric quantities

such as normal derivatives and curvature is straightforward. How-

ever, a numerical consistent and accurate way is required to produce

the correct viscosity solution to the equations of interface propaga-

tion is required, as discussed below.

1.1.3 Implicit Formulations of Interface Motion

Our goal here is to discuss the implications and implementations of this

implicit approach. We begin writing the implicit form for the equation

of motion of a front evolving with speed F in its normal direction ([14]),

namely

φt + F |∇φ| = 0 (1.4)

In order to approximate this equation and solve for the evolving level set

function φ, there are three central issues.

• First, an appropriate theory and strategy must be chosen in order

to select the correct weak solution once the underlying smoothness

is lost; this is provided by the work on the evolution of curves and

surfaces and the link between hyperbolic conservation laws and

propagation equations, see Sethian [17; 18; 19]; leading up to the

introduction of level set methods by Osher and Sethian in [14].



October 9, 2001 13:37 WorldScientific/ws-b8-5x6-0 final˙sethian˙paper˙steve˙davis˙conference

Characterizations of Moving Interfaces 7

• Second, the Osher-Sethian level set technique which discretizes the

above requires an additional space dimension to carry the embed-

ding, and hence is computationally inefficient for many problems.

This is rectified through adaptive Narrow Band Method given by

Adalsteinsson and Sethian in [1].

• Third, since both the level set function and the velocity are now

defined away from the original interface, appropriate extensions of

these values must be constructed. These extension velocities have

been explicitly constructed for a variety of specific problems. One

general technique for doing so for arbitrary physics and chemistry

problems is given by Adalsteinsson and Sethian in [2] through the

use of Fast Marching Methods to solve an associated equation which

constructs these extensions.

1.1.4 Interrelations Between Techniques

It is important to state that each of the above techniques has evolved to the

point where they provide practical, efficient, and accurate methodologies for

computing a host of computational problems involving moving interfaces.

Marker particles methods have been around for a very long time, and have

been used in a collection of settings, including, for example, for example,

Bunner and Tryggvason [4]. Volume-of-fluid techniques, starting with the

initial work of Noh and Woodward [13], have been used to handle shock

interactions and fluid interfaces (see, for example, Puckett [15]. Level set

techniques have been applied to a large collection of problems; general

reviews may be found in [22; 23]; and an introductory web page may be

found at www.math.berkeley.edu/∼sethian/level set.html.

Finally, we note that the strict delineations between various approaches

is not meant to imply that the various techniques have not influenced each

other. Modern level set methods often use a temporary marker represen-

tation of the front to help build the extension velocities; volume-of-fluid

methods use differentiation ideas in level methods to help construct normal

vectors and curvature values; and marker models often use an underlying

fixed grid to help with topological changes. Good numerics is ultimately

about getting things to work; the slavish and blind devotion to one ap-

proach above all others is usually a sign of unfamiliarity with the range of

troubles and challenges presented by real applications.
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1.2 Algorithms for Front Propagation: Level Set Methods

and Fast Marching Methods

1.2.1 The link with hyperbolic conservation laws

In order to approximate the level set equation given by

φt + F |∇φ| = 0 (1.5)

we must construct suitable approximations to the gradient term. As dis-

cussed in [17; 18], an evolving interface can develop corners as it evolves,

and, once this happens, the correct weak solution must be constructed be-

yond the development of singularities in the curvature. In order to construct

numerical schemes which build this correct solution, we briefly follow the

argument given in [18] which links moving fronts to hyperbolic conservation

laws.

Consider the initial front given by the graph of f(x), with f and f ′

periodic on [0, 1], and suppose that the propagating front remains a graph

for all time. Let ψ be the height of the propagating function at time t, and

thus ψ(x, 0) = f(x). The tangent at (x, ψ) is (1, ψx). The change in height

V in a unit time is related to the speed F in the normal direction by

V

F
=

(1 + ψ2
x)1/2

1
, (1.6)

and thus the equation of motion becomes

ψt = F (1 + ψ2
x)1/2. (1.7)

Use of the speed function F (κ) = 1 − ǫκ and the formula κ = −ψxx/(1 +

ψ2
x)3/2 yields

ψt − (1 + ψ2
x)1/2 = ǫ

ψxx

1 + ψ2
x

. (1.8)

This is a partial differential equation with a first order time and space

derivative on the left side, and a second order term on the right. Differen-

tiation of both sides of this equation yields an evolution equation for the

slope u = dψ/dx of the propagating front, namely,

ut + [−(1 + u2)1/2]x = ǫ

[

ux

1 + u2

]

x

. (1.9)
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Thus, as shown in [19], the derivative of the curvature-modified equation

for the changing height ψ looks like some form of a viscous hyperbolic

conservation law, with G(u) = −(1 + u2)1/2 for the propagating slope u.

Hyperbolic conservation laws of this form have been studied in considerable

detail and the strategy for picking the correct weak solution beyond the

occurence of a singularity is equivalent to the one for propagating shocks

in hyperbolic conservation laws (see [18; 19]).

1.2.2 Link to Numerical Schemes for Hyperbolic Conser-

vation Laws

Given this connection, the next step in development of PDE-based inter-

face advancement techniques was to in fact exploit the considerable nu-

merical technology for hyperbolic conservation laws to tackle front propa-

gation itself. In such problems, schemes are specifically designed to con-

struct entropy-satisfying limiting solutions and maintain sharp discontinu-

ities wherever possible; the goal is to keep fluid variables such as pressure

from oscillating, and to make sure that discontinuities are not smeared

out. This is equally important in the tracking of interfaces, in which one

wants corners to remain sharp and to accurately track intricate develop-

ment. Thus, the strategy laid out in [19] was to transfer this technology to

front propagation problems, and led up to the level set method introduced

in [14].

1.2.3 Numerical Algorithms for Solving the Level Set Equa-

tion

The above discussion focussed on curves which remain graphs. The nu-

merical Osher-Sethian “level set method” recasts the front in one higher

dimension, and uses the implicit analytic framework given above to tackle

problems which do not remain graphs; in addition, that work developed

multi-dimensional upwind schemes to approximate the relevant gradients.

For the sake of completeness, and using the usual notation, a straightfor-

ward first order explicit advancement scheme for the level set equation is

given by

φn+1

ijk = φn
ijk − ∆t[max(Fijk, 0)∇+φ+ min(Fijk, 0)∇−φ], (1.10)
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where

∇+φ =







max(D−x
ijkφ, 0)2 + min(D+x

ijkφ, 0)2+

max(D−y
ijkφ, 0)2 + min(D+y

ijkφ, 0)2+

max(D−z
ijkφ, 0)2 + min(D+z

ijkφ, 0)2







1/2

∇−φ =







max(D+x
ijkφ, 0)2 + min(D−x

ijkφ, 0)2+

max(D+y
ijkφ, 0)2 + min(D−y

ijkφ, 0)2+

max(D+z
ijkφ, 0)2 + min(D−z

ijkφ, 0)2







1/2

For information about these and higher order variations, see [14].

1.2.4 Adaptivity and Efficiency

Considerable computational speedup in the level set method comes from the

use of the “Narrow Band Level Set Method”, introduced by Adalsteinsson

and Sethian in [1]. It is clear that performing calculations over the en-

tire computational domain is wasteful. Instead, an efficient modification

is to perform work only in a neighborhood (or “narrow band”) of the zero

level set. This drops the operation count in three dimensions to O(kN3),

where k is the number of cells in the narrow band. This is a significant

cost reduction; it also means that extension velocities need only be con-

structed at points lying in the narrow band, as opposed to all points in the

computational domain.

1.2.5 Fast Marching Methods

There is a different view of propagating interfaces given by Fast Marching

Methods [20], which exchanges the initial value perspective for a boundary

value approach. Fast Marching Methods are finite difference techniques,

more recently extended to unstructured meshes, for solving the Eikonal

equation of the form

|∇T |F (x, y, z) = 1 T = 0 on Γ.

This can be thought of as a front propagation problem for a front initially

located at Γ and propagating with speed F (x, y, z) > 0. We note that

this is a boundary value partial differential equation as opposed to an ini-

tial value problem given by level set methods, even though it describes a
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moving interface. This Eikonal equation describes a large number of phys-

ical phenomena, including those from optics, wave transport, seismology,

photolithography and optimal path planning, and Fast Marching Methods

have been used to solve these and a host of other problems. We refer the

reader to [24] and [23] for a large collection of applications based on this

technique.

Fast Marching Methods are very fast (O(N logN)) methods for solving

the Eikonal equation, and rely on a marriage of upwind finite difference

schemes, heap sort techniques, and a Dijkstra-like update ordering which

reduces the problem to a single pass algorithm. We note only briefly two

critical facts that lie at the core of Fast Marching Methods:

• An upwind difference scheme can be used to approximate the Eikonal

equation in a viscosity-satisfying framework, namely







max(D−x
ijku,−D

+x
ijku, 0)2+

max(D−y
ijku,−D

+y
ijku, 0)2+

max(D−z
ijku,−D

+z
ijku, 0)2







1/2

=
1

Fijk
, (1.11)

(see Rouy and Tourin [16]).

• The order in which the grid values produced through these finite

difference approximations are obtained is intimately connected to

Dijkstra’s method [7], which is a depth-search technique for com-

puting shortest paths on a network. In that technique, the algo-

rithm keeps track of the speed of propagation along the network

links, and fans out along the network links to touch all the grid

points. The Fast Marching Method exploits a similar idea in the

context of a continuous finite difference approximation to the un-

derlying partial differential equation, rather than discrete network

links. The resulting technique is O(N logN), and hence is extraor-

dinarily fast.

The Fast Marching Method evolved in part from examining the limit

of the Narrow Band level set method as the band was reduced to one grid

cell. Fast Marching Methods, by taking the perspective of the large body

of work on higher order upwind, finite difference approximants from hyper-

bolic conservation laws, allow for higher order versions on both structured

and unstructured meshes. The Fast Marching Method has been extended
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to higher order finite difference approximations by Sethian in [24], first or-

der unstructured meshes by Kimmel and Sethian [10], and higher order

unstructured meshes by Sethian and Vladimirsky [26]. Some early applica-

tions include photolithography in [21], a comparison of this approach with

volume-of-fluid techniques in [9], a fast algorithm for image segmentation

in [12] and computation of seismic travel times by Sethian and Popovici
[25]; see also [27] for a different Dijkstra-like algorithm which obtains the

viscosity solution through a control-theoretic discretization which hinges on

a causality relationship based on the optimality criterion.

1.3 Applications

The range of applications of level set and Fast Marching Methods is vast.

Figure 1.8 gives a perspective on how some of these topics are related.

There are many other aspects in the evolution of these ideas; the chart is

meant to give perspective on how the theory, algorithms, and applications

have evolved. The text and bibliography of [23] gives a somewhat more

complete sense of the literature and the range of work underway.

In this paper, we discuss only one application, namely sintering and flow

under surface diffusion. Sintering (see [11; 28]) is the process under which

a compact consisting of many particles is heated to such a high tempera-

ture that the particles become a viscous creeping fluid, and the particles

begin to coalesce together. One of the oldest technological examples in-

volves the production of bricks; other examples include formation of rock

strata from sandy sediments and the motion of thin films of metals in the

microfabrication of electronic components.

At issue is the solution of the equations for creeping flow, in which the

body forces on the boundary of the materials depend on the tangential

stress derivative on the boundary. In one component of this model, the

interface speed F in its normal direction depends on the second derivative

of the curvature, where the derivatives are taken with respect to arc length

α. Thus, in our level set framework, one wants (in two dimensions) to

follow a curve propagating with speed F = −ǫκαα. Thus,
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Iter=1 Iter=100 Iter=200

Fig. 1.9 Motion of ellipse under speed F = καα.

φt + ǫκαα|∇φ| = φt + ǫ

[

∇ ·
∇φ

|∇φ|

]

αα

|∇φ| = 0,

φt =

[

−ǫ∇

[

∇

[

∇ ·
∇φ

|∇φ|

]

·
(φy,−φx)

|∇φ|

]

·
(φy,−φx)

|∇φ|

]

|∇φ|. (1.12)

This means that the speed depends on the fourth derivative of the level

set function. We immediately note that a circle is a stable object, since

the curvature is constant. A little examination leads one to think that an

ellipse undergoes a restoring force which brings it back into a circle.

What about more complex shapes? The problem is quite subtle. Nu-

merical experiments are notoriously unstable when they involve computing

fourth derivatives†, and are eloquently described by Van de Vorst [28]; he

uses marker particle schemes together with elaborate remeshing strategies

to keep the calculation alive.

A level set approach to this problem was developed by Chopp and

Sethian [5]. In that work, the individual derivatives in the above expres-

sion were approximated by central difference approximations and are used

to study the motion of a sequence of closed curves to analyze flow under

the second derivative of curvature given by Eqn. 1.12. Here, we summarize

some of the results in [5]. First, in Figure 1.9, we show the evolution of a

simple ellipse under this motion. The transformation shows the elliptical

initial state on the left, followed by the evolution into a circle, which then

remains fixed after a large number of calculations.

This might seem to indicate that a convex shape remains convex as it

flows under this evolution equation. This in fact is not true, as seen by

†For example, computing the solution to the biharmonic equation is delicate.
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Iter=1 Iter=100 Iter=200

Fig. 1.10 Motion of elongated ellipse under speed F = καα.

examining the motion of a slightly more elongated ellipse in Figure 1.10.

At points of high curvature, the interface moves inward, leaving a bulge

which propagates around to the flatter sides until the interface balances

itself out. In the case of sharp corners, the effect is more pronounced, as

seen in Figure 1.11. Figure 1.11 shows the evolution of several non-convex

initial shapes, all of which approach the stable state of a circle. The curves

are shown at uneven times, and the flows are not completed.

Second derivative flow becomes even more murky in the face of topo-

logical change. Imagine two ellipses, each with a large ratio between the

major and minor axes. If they are put side by side (rather than end to

end), the flatter sides will cross over each other, and one expects (at least

in many physical situations) some sort of merger, as in Figure 1.12.

This example underlies the difference between curvature flow (F = −κ)

and flow by the second derivative of curvature. In the former, a maximum

principle ensures that two separate closed curves will always remain sepa-

rate under this flow. This allows the sort of natural embedding prescribed

by a level set interpretation. In contrast, flow by the second derivative of

curvature has no such property, as demonstrated in the previous example.

Hence, the notion of embedding the motion of the two ellipses in a single

“level set function” requires thought.

In order to execute true merger of two regions moving under the second

derivative of curvature, care must be taken. In Fig. 1.13, taken from [5],

we show the merger of two rectangular regions. The results show how the

regions come together. Finally, in Figure 1.14, also taken from [5], we show

an example of three-dimensional flow under the Laplacian of curvature,
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⇓ ⇓ ⇓

⇓ ⇓ ⇓

⇓ ⇓ ⇓

Fig. 1.11 Motion of non-convex curves under speed F = καα.

Fig. 1.12 Motions of two ellipses under the second derivative of curvature.

revealing the smoothing effects of this flow. For details, see [5].

Finally, we point out that the above algorithm is slow, because it is

restricted by the time step due to the Courant condition. In [6], an alter-

native technique is presented that uses an approximation to the equations

of motion that allows for a much larger time step.
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Fig. 1.13 Merger of two separate regions under F = καα.

Fig. 1.14 Flow under Laplacian of Curvature
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